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Abstract

The modified massive Arratia flow is a model for the dynamics of passive particle
clusters moving in a random fluid that accounts for the effects of mass aggregation.
We show a central limit theorem for the point process associated to the cluster po-
sitions when the system is started from a uniform configuration. The critical mixing
estimate is obtained by coupling the system to countably many independent Brown-
ian motions.

1 Introduction

The modified massive Arratia flow (MMAF) introduced in [Kon10a, Kon17b] is a model
for the evolution of an ensemble of passive particle clusters in a random 1D-fluid. It
describes the positions and sizes of a family of clusters moving as independent scaled
Brownian motions on the real line as long as no collisions between clusters occur, the
diffusion rate of each cluster being inverse proportional to its mass. In case of a collision
clusters coalesce and form a new cluster of aggregate size (cf. Definition 2.1 below). This
model is an overdamped intertial version of the well-studied Arratia flow model of coa-
lescing Brownian motions that has no masses and no diffusivity rescaling [Arr79, Dor04,
DO10, SSS14, BGS15, DKG17, SSS17, DV18, GF18, Rial8, DV20, Dor24]. Variants of
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the MMAF for different initial conditions, asymptotic properties of the trajectories and its
large deviations were investigated in [Kon10a, Kon10b, Kon14, Konl7a, Kon17b, Mar18,
KvR19, Mar21, KM23]. A reversible extension of the MMAF model featuring a splitting
mechanism was introduced and studied in [Kon23, KvR24].

In this note we study the point process induced from the cluster positions when the
MMAF system is started from the uniform configuration on the integer lattice Z. Unlike
for the standard Arratia flow [MRTZ06, TZ11] precise formulas or the structure of the
associated point process of the cluster ensemble are yet unknown, but one can ask for
asymptotic properties. The aim of this work is to show a central limit theorem for the
occupation measure in Theorem 2.2 below. The statement is analogous to the correspond-
ing result in [DH23] for the Arratia flow, however in the MMAF-case the correlation
structure is more involved, leading to a different approach for the critical mixing estimate
in Section 3. The main idea is based on coupling the MMAF to a countable family of
independent Brownian motions, which is the main technical part of this work.

2 Statement of Main Result

For a rigorous statement of our result we recall the definition of the MMAF from [Kon10a],
where we consider the special case of a uniform starting configuration on Z C R.

Definition 2.1. A family of continuous processes {zy(t), t > 0, k € Z} is called a
modified massive Arratia flow started from Z if it satisfies the following properties

(F1) for each k£ € Z the process xj is a continuous square-integrable martingale with
respect to the filtration

Fi=o0(xr(s), s<t,keZ), t=>0;

(F2) foreach k € Z, x(0) = k;
(F3) foreach k < [fromZ and t > 0, z4(t) < x,(t);
(F4) for each k € Z the quadratic variation of x;, equals

b ds

o Mi(s)’

<xk>t - t Z 07

where my(t) = #{l : Js < t zx(s) = x(s)} and #A denotes a number of
elements in A;

(F5) foreach k,l € Z
<xk‘7 xl>t/\7'k’l - 07 t Z 07

where 7;,; = inf {¢ : x4 (t) = 2;(¢)}.



The existence of such a family of processes is shown in [Kon10a, Theorem 2]. More-
over, conditions (F1)-(F5) uniquely determine the distributions of (xj)rez in the space
C ([0, 00))".

We can introduce the associated occupation measure induced on the real line by

m(A) = #(AN{a(t), k€ Z}), AeB(R).

Let P denote the set of bounded measurable functions f : R — R with period one,
ie. f(x) = f(x+ 1) forall z € R. Forevery f € P and k € Z denote

k
Apf = fu)pe(du).

k—1

In Proposition 4.1 below, we show that the random variables Ay, f, k € Z, have finite
moments of every order. Moreover, it is easy to see that the sequence (Ay ;f)kez is sta-
tionary. This directly follows from the fact that the distributions of (z,)rez and (%} )rez
coincides in C([0, oc))Z for every | € Z, where &, (t) = x5,4(t) — I, ¢ > 0.

With this our main result reads as follows.

Theorem 2.2. Forevery f € P andt > 0 the sequence

Y (A — E[Af])
N ,

converges in distribution to a Gaussian random variable with mean 0 and variance

Y;"(f) n>1

9

o7 (f) = Var Agof +2  Cov (Aguf, Aref) .-
k=1

The proof of the statement is based on the classical central limit theorem for stationary
sequences, c.f [IL71, Theorem 18.5.3]. Hence, the main task is to establish quantitative
mixing for the MMAF model which we achieve below by coupling to independent Brow-
nian motions.

3 Mixing estimate

Fixing f € P and ¢t > 0 and we introduce the mixing coefficient for i € Z
a;i(j) =sup {[P(ANB) —P(A)P(B)|, Ac M' , BEM?®}, j€EZ j>i,

where M® = o{Ai.f, a < k < b} for —0o < a < b < oo. Our goal is to prove the
following proposition.

Proposition 3.1. There exist constants C > 0 and 3 > 0 depending only on f and t such
that -
ai(j) < Ce™? Vi

forall v < j from Z.



The idea of proof of the proposition is to construct a modified massive Arratia flow
in such a way that particles which came to (—o0, ] and [k, +00) at time ¢ are “almost”
independent. An important role is played by the following construction from [Kon10a].

Let 7' > 0 be fixed and C<([0, 7], R™) denote the Banach space of continuous func-
tions f : [0,7] — R satisfying f1(0) < --- < f,(0). We equip C<([0, 7], R") with
the uniform norm. We next define a map F, : C<([0, 7], R*"™!) — C([0, T], R*"*1) as
follows. For f € C([0,T], R?>"*!) we set 7(® = 0 and

OO .={rC{-mn,...,n}: kilcr < £f(0) = £(0)}.

Note that ©© is a partition of the set {—n,...,n}. Let w1’ denote the set from ©©
which contains k € {—n,...,n}. Define

1
1) = 10) + —= (00 - 1)), telo,T)
my,
where £ is the element from 7T](§0) with the minimal absolute value and m,io) = #71',20). By
induction, we construct f® € C.([0,T],R?>"*!) forall p € {1,...,2n} as follows. For
ke{-n,...,n—1},set

o =it {t>0: [0V = [ AT,

and
70 — inf {T,gp) S 0V ke fon,. - 1}} ,

where as usual inf ) = +o0. Let O) be the partition of {—n, ..., n} defined by

OV .={rC{-n,...,n}: kler < f,gpil)(r(p)) = fl(pfl)(T(p))}.

Let ﬂ,ip) be the element of ©®) which contains k € {—n,...,n}. If 7® = T, we set
)y = fPV(1), t € [0, T). Otherwise,

=1 p), if0<t<r®,
(p-1) m (-1 (r-1) :
FED () 4 Ve (ﬁ (t) — f! (T(P))) i <t < T

where £ is the element from 7"’ with the minimal absolute value and m” = #x\"). We

now define

D) =

Fn(f) = f(Qn)-

We also define maps

Ff: C<([0,T],R™) — C<([0, T],R™)



and
F, : C<([0,T],R™) — C<([0,T],R™*1)

similarly to F},, where the set {—n,...,n} is replaced by {0,...,n} and {—n,...,0},
respectively. By the construction, it is clear that maps F,,, ;" and F, are measurable.

For [ € Z,n € N and a fixed family of independent Brownian motions wy(t), t €
[0,T], k € Z, on R with diffusion rate 1 and wy(0) = k, we define continuous stochastic
processes xXbr ke {l—=n,....1 +n}, Xli’””L, ke {l,...,l + n}, and Xli’”’_, k €
{l—=n,...,l}, by

(Xlﬂl Xl,n

P XY = By (Wi, W), (XU XPET) = E (g win)

l4+n

and
(Xl’n’i e ,Xll’mi) = F7;<wnfl7 s 7wl)'

n—l

We next recall the following lemma proved in [Kon10a, Lemma 5].

Lemma 3.2. Let wi(t), t € [0,T), k € Ny = NU {0}, be a family of independent
Brownian motions on R with diffusion rate 1 and wy(0) = k. Then for every ¢ € (O, %)
the equality

1 1
P t) < — i nt1(t) > — .0. p =
o, ) S i 0> 510

holds.

Let Z<; = {l,l —1,...} and Z>; = {l,l + 1,... }. Using the lemma above and the
construction of F},, F; and F},, similarly to the proof of [Kon10a, Theorem 2] we get the
following statement.

Proposition 3.3. Let X Ln X,i’"’Jr, X,i’"’_ be the stochastic processes constructed above.
Then for every | € 7 the following statement holds.

(i) Foreveryk € Z the sequence { X li’”, n > 1} converges a.s. in the discrete topology
of C[0,T] to a process X}. Moreover, the family X!, k € 7Z, is a modified massive
Arratia flow started from Z, i.e. it satisfies properties (F1)-(F4).

(ii) For every k € Z>; the sequence {X,i’"’Jr, n > 1} converges a.s. in the discrete
topology of C|0, T to a process X,i’+. Moreover; the family X ke 2>, satisfies
properties (F1)-(F4) with Z replaced by Z>,.

(iii) For every k € Z<; the sequence {X,i’n’f, n > 1} converges a.s. in the discrete
topology of C|0, T to a process X ,i’f. Moreover, the family X Lo ke Z<y, satisfies
properties (F1)-(F4) with Z replaced by Z.<;.



We further define the events

- . 1
Alfj(t) = { max max wi(s) <I+j+ =, min wyq(s)>14+7+ 5}

ke{l,...,l+j5} s€[0,] 27 selop)
and
A (t) = { min  min wg(s) > 1 —j — 1 max w;—j_1(s) <l —j— 1}
o] ke{l—j,...1} s€[0,¢] - 27 sejod] 7 2

foralll € Z,j € Npand t € [0, 7.

Lemma 3.4. Let | € Z and j € Ny and let the families { X\, k € Z}, {X\", k € Zx},
{X}™, k € Z<;} be constructed above. Then X. = X, on AfS(T) for each k > 1+,
pef{0,...,5}, and X} = X, "~ on A ;(T) foreach k <1—j,p€{0,...,j}

Proof. The statement of the lemma directly follows from the construction of the families

of random processes X}, Xi", X~ and the events AT, Ap(T). O
We denote
N N
Bivt)=UAG0, Byt ={JA,®), 1€z NeN, tefo,T].
j=1 j=1

Lemma 3.5. For each T' > 0 there exist a constant C = Cr > 0 and a function fr(t) :
(0,T] — (0,00) depending only on T such that tfBr(t) — ﬁ as t — 0+ and for every
leZand N € N

P (Blj,EN(t)) >1— CG—BT(t)[(\/N—\/?)Vl]

foralll € Z, N € Nandt € [0, 7).
Proof. Note that P (B (t)) = P (B, y(t)) = P (B x(t)). Therefore, it is enough to
estimate P (B y()) for each N € N. We denote
M, o(t) = _
0 = e ) = s )

and

1 1
R;(t) = <j+ =, min w(s) >+ =
0 {ke{j“ﬁ}é ..... A we(s) <+ 5, min win(s) >+ 2}

forall2 < n < jandt € [0,7]. Then, by Funibi’s theorem,

j—n+1
ma; max we(s) > 7 0 < P{ max wi(s) > i
{ke{o ..... X 1y 10 W (8) 3}— ; {se[off] k(5) J}

J—n+1 \/5 +o00 w2

00 \/ﬁ +oo 2
Z — e 2tdu < Z —/ e 2tdu
k=0 vt Jix k:nfl\/ﬁ k (3.1

9 +oo +oo w2
\/\/;t/ (/ e_Ttdu) dx
™ n—2 x
V2 / - V2 (-2

=

P (Mjn(1)%) <

IA

u
ue 2du < —e” 2

2 VT



Using the independence of wy, k € Z, we obtain

J+3—k

P (R, .(t) \/_/ e % du H \/_/ % du

(1__/ d)<_/ d)

forall2 <n < jandt € [0 T'). Taking a constant az > 0 such that In(1 — x) > —arx
'lL2 .
forall 0 < o < 22 v IR rdu = i Jr 7% du, we next estimate

InP(R;,(t)) = <1——/ e~ 2tdu> +Zln (1——/k e~ 2tdu>

2

2 u
_\/_aT e_z_zdu — Z \/_aT e_Ttdu
vVt Jg im0 V7L Jktg

2v/2 2 2 [ [T 2 ~
— v2ar e 2 du — aT\/_/ / e 2 dudxr > —C’Te’é,
Vvt Vit o JL z

where éT = %. Thus, foreach 2 < n < jand t € [0, T], we get

(3.2)

—1/8t

P (Rjn(t)) > e 7
Fix p € Z>sandset Ny =p+k, k € {1,...,p},

where N, = S°F | N;. Since [ J_, Gk(t) C Bjy(t) for N = N, = w, one can
estimate

P (BJN(t)) > P U Gi(?) ) (U Ny, Nk Nk Nk(t)c)>

p p (N 2)2
(nR ) ey

where we used (3.1) in the last step. Note that

)2

(Np—2)2 (p+k—2)2 -2
Zei k- — Z e~ Saar < / e S du < 2Te” Y , (3.3)
k=1 k=1




since p > 3. Set yp := —In (1 — e*éTe_l/ST) > (. Using the inequality 1 — e~ < z for
x > 0, we get
| e Cre ST g gk

Hence, by the independence of R N Ny» k € {1,...,p}, and estimate (3.3), there exists a
constant C' > 0 depending on 7" such that

p
c _(p=2)?
P (Bin(t) = 1= ]]P (Ry n, (1)) — Ce
k=1
Using the observation (3.2) and the inequality 1 — e™* < z for x > 0, we continue

1/8t (p—2)*

P —Ce =

P (Biy(t) >1—(1—e e

) o2
>1-— 67[($*IHCT)V'YT]I) — Ce_(p2t2) >1- CTG i

forallp € Zs3 and N = w, where Sr(t) = [(é —1In C’T> V’YT] A % and the

constant Cy depends only on T'. Next, for every N € Zs1s and p = |\/N/2| we have
N > @rtlp Hence,

F (B&N(t)) Z P (BJ(SP-H)I)( )) Z 1— CTeiﬁT(t)p =1— CTefﬁT(t){\/gJ

>1— CTefﬁT(t)<%*1)

for every N > 18.
It only remains to get the estimate for /N < 18. We first note that

P (Alfj(t)c) <(+2)P {max wo(s) > 1}

s€[0,t] 2
- \/§(J+2)/ gy VG2
vrt o Jy VT

Thus, for all integer numbers N < 18

Z4\/ﬁ(]+2 1

P (B () 21Ot

7T

This completes the proof of the lemma. U

Proof of Proposition 3.1. Let X}, k € Z, X'", k € Zs; and X}™, k € Z<, be the
families of processes constructed in Proposition 3.3 for each [ € Z. We fix ¢ < j from Z,
t > 0 and define for | = | 2| the measures

pu(A) = # (AN {XL(1), k € Z}),



and
i) = # (AN{XET ke Zaad), i (4) = # (AN (X keZa)),

for all A € B(R). Set also

k k
Ajuf = : 1f(u)/ii(dU) and A, f = : 1f(U)ufe’i(dU), ke

By Proposition 3.3, the distributions of (Aj , f)xez and (A f)rez coincide in R”.
We next assume that j — ¢ > 3 and take arbitrary sets A € EJJIi_OO, B e zmjm. Then

there exist Borel measurable sets A C RZ<i and B C RZ>s such that

A={(Asflrer., € Ay and B = {(Apif)rez, € B}.

Then, using Lemma 3.5, we can estimate

P (4N B) - PAPB)| = [P ({(Arefreze, € A} 0 {(Auhhre., € BY)
P{ Apif)rez, € A} {(Ak,tf)kezzj S BH
= [P ({(AlPrere € A} 0 {(AL ez, € BY)
- P{(A ez, € Ay P{(AL ez, € BY |
< [P ({(Abuhrese. eA} {4 e, € By B N By)

-P ({ (Afofkeze, € A} NB,_ z) P ({(Afk,tf)kezzj € B} N Bﬁj—z) ’
+ CePVi—i

for some positive constants C, § independent on ¢, j and A, B. By Lemmas 3.4 and 3.5,
we get

[P(AN B) — P(A)P(B)
‘P <{ i Fkez, € A} {(AZH +f)keZ> S B} n Bl] NBy, z)
_Pp ({(Aﬁ;;f)kezgi S A} N Ble) P ({(Aijt”f)kezzj S B} N Bl—f—jfl) ‘
+ Ce Vit
‘]P’ <{ i fkeze, € A} {(AZ—;L—FJC)]?EZZ]' € B})

—P {(Aié;f)kezgl c A} P {(AZJ;LJF )kEZZ]’ c B} ’
+ Cleiﬁ\/ﬁ,
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where C'; > 0 is a constant independent on 7, j and A, B. Hence, using independence of
(A ) rez<i and (ALLY) ez 5, we can conclude that

IP(AN B) — P(A)P(B)| < Ce Vi,

Now, taking the supremum over A € MM’ __ and B € Dﬁ;roo, we obtain the statement of
the proposition. L

4 Proof of Theorem 2.2

In this section, we will prove Theorem 2.2. According to [IL71, Theorem 18.5.3] and
Proposition 3.1, the statement of Theorem 2.2 follows from the fact that £ [(Ak,t f)Fe } <
oo for some ¢ > 0. We will show that A;, f have finite moments of all orders.

Proposition 4.1. Let f : R — R be a bounded measurable function. Then for every a < b
from R, T" > 0 and p > 1 there exists a constant C' > 0 such that

p

E <C

[ sondan

forallt € [0,T].
Proof. Set || f||c := sup,er | f(u)|. Using the definition of /i, we estimate

p

E < NAIEE [pe([a, b1)]

p
<Z H{:vz(t)e[mb]}) ]
leZ
n p
= [1flI% Y _E (Zﬂ{zl@e[a,m) HBg;g(t)]
=k

k<n
where BZZ(t) = {xr_1(t) < a,zx(t) > a,2,(t) < b,x,41(t) > b}. By the Cauchy-Schwartz
inequality, we get

[ ondan)

= [[fII%E

1
2

P n 2p
] <|fIRD> R (Zﬂ{xz(t)é[avb]}> P(Bin(t))?.
1=k

k<n

E

[ rondan)

Next, using Holder’s inequality, we obtain
1
2

E P(Byh(t))2.

[ rondan

] <IfI2> (n—k+1)P2E

k<n

> Twelan
=k



Since (x4i(t) — l)kez and (x(t))rez have the same distributions, we conclude

Zﬂ{ml(t)e[a,b}}] = ZE (e () t€[—ta,—1+5} ]
Ik

E
I=k

- ZE [H{mo(t)e[*lJra,fler}}] <b—-a+1.
1=k

Consequently, we have

b
E / ﬂmeM

]snﬂ&w—a+1ﬁ§jm—k+1V%P@ﬁﬂwﬁ.

k<n

11

Now it remains to show that the series ) , . (n — k + 1)p_%IP’(BZ:fL(t))% converges
and is uniformly bounded on [0, T']. We first estimate P {x((t) > c} for every ¢ > 1. Ac-
cording to [TW89, Theorem I1.7.2°], there exists a Brownian motion w(t), t > 0, probably
on an extended probability space, such that z((t) = w ((x¢),), t > 0. Since the quadratic

variation

for all t > 0, we get

s€[0,t] s€[0,t]
2 [ 2 2V2t 2
<P {max w(s) > c} = i e 2idu < \/_6_27
s€[0,¢] NZp VLS
Similarly,
22t 2
P{zo(t) < —c} < P
T
for all ¢ > 1. We next rewrite
1 1 2 2 1 1
D =k 1P RPBE (1) =) > (n—k+ 1P 2 P(By (1)
k<n k=0 n=k+1
-1 0
1 1
+ > (n—k+ )P RP(BA (1))
k=—oon=k+1

+ i S (n—k+ 1P RR(BE(H)5.

k=—o00 n=1

In the first term of the right hand side of (4.3), we estimate

P (BZ:fi(t)) < P{ax1(t) < a,2,(t) <0} = E [T, (9<a} Lo (<t} ]

4.2)
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< \/ = [H?m_lu)@}] \/ K [fo <t><b}}
= VP {zr_1(t) < a}y/P{x,(t) < b}

Since the distributions of the random variables x,;(t) — [ and x((t) coincide, we get

forall £ > a + 2, and

2 n—b)?
P {w,(t) < b} = P{zo(t) < —(n — )} < ¢\/; B
for all n > b+ 1, by (4.2). This implies that
+oo 4o ) L
o> n—k+1)PEPB (1) < C
k=0 n=k+1

forallt € [0, T] and some constant C' > 0. Similarly, estimating IP’(BZZ(t)) by P{x(t) >
a, Tn41(t) > b} and P {z(t) > a,x,(t) < b} in the second and third terms of the right
hand side of (4.3), respectively, and using (4.1), (4.2), we get

-1 0
SN -k )P EPBRA) %+Zzn—k+ “P(BRh (1) < C

k=—o00 n=k+1 k=—o00 n=1
for all ¢ € [0, T]. This completes the proof of the lemma. U

We will next show that o2( f) is strictly positive for some time ¢ > 0 and function f.
The following lemma is true.

Lemma 4.2. Let f € C}(R) be an odd, 1-periodic function. Then @ — (f"(0))* as
t — 0-+. In particular, there exists t > 0 such that o2(f) > 0 if f'(0) # 0.

Proof. For the proof of the lemma, we will use the fact that the particles in the modified
massive Arratia flow become more independent for small times .

Let
k+3

Ak,tf = f () e (du)

1
k-3

for each k € Z and t > 0. Using the fact that f(—x) = —f(x) for all z € R and the
periodicity of f, we conclude that E [Ak,t f } = 0. Let

V)= > A - - S (s ~E[Aug]). nz1
k=1 k=1
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Similarly to the proof of Proposition 3.1, one can show that the family (flm f ) pez, Sat-
isfies the mixing condition with the same bound for the mixing coefficients. Hence,
{Y;"( f) }n> , converges to a Gaussian random variable with mean 0 and variance

G3(f) = Var Ao f +2) Cov (Aouf. Anef )
k=1

=K |:(Ao’tf)1 +2 iE [Ao,tf;lk,tf} .
k=1

On the other side, one can estimate

y {(Yt”(f) - fé"(f)ﬂ = -E (6~ Bl6)"] < ;B [¢).

3

where ) o
o= [ttt = [ fpdan),

Due to Lemma 4.1 and the stationarity of the modified massive Arratia flow, we estimate

E (&3] < 2E (/jf(umt(du)> +2E <ﬂ f(U)ut(du)> < 00.

Thus, E[(Y,"(f) — fft"(f))Q] — 0 as n — oo. Therefore, according to Theorem 2.2,
{Y;"(f)} ., converges in distribution to the same limit as {Y;"(f)}, 5, . This implies

that 02 (f) — 52(/).
Let (wy,),cz be a family of Brownian motions that were used for the definition X L7 in
Proposition 3.3. Using Proposition 3.3, we get

| (does) | =B [Pun(0)]
+E [((Aoi f>2 - f2(w0(t))) I[A} : (4.4)

where A := {|Xo(t)] > 1} U{X_1(t) > =1} U{Xi(t) < i} . By Taylor’s formula and
the equality f(0) = 0, that follows from the fact that f is odd function, the first term of
the right hand side of the equality above can be rewritten as

E [£2(wo(0)] = £0) + 3 505 (O)F [u3(0)] + of0)
= (FO) 1+ oft).

Using Holder’s inequality, the square of the second term of (4.4) can be estimated by

= (2] (Auef) | + £ L) ) pea).
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Now, by the boundedness of f and Proposition 4.1, there exists C' > 0 such that

I <C (P{|X0(t)| > %} +IP’{X_1(t) > _%} +P{X1(t) < %})

1 1 1
<aop{ x> 3} <30p {luo] 2 3 b < ce s

Thus,

12| (der)] - oy

ast — 0.
Similarly, we estimate [E [flo,t f flk’t f ] for each £ € N. Using the notation from the
proof of Proposition 3.1 and denoting

k+3

. kt3 .
A= [ Fpddn) and A= [ fn). ke

we estimate for £ > 1 and [ := LgJ

E [Ao,tf;lk,tf} =K [Aétfzzﬁctf}

=E [Aé,tfzzlgc,tfHB;kilﬂB;l} +E [Af),tf/ﬁs,tfﬂ(3+ nB,) |

Lk—1

By Lemma 3.5, Proposition 4.1, and Holder’s inequality, the square of the second term of
the equality above can be estimated by

E {(flé,tfﬂ E [(Ak,tf)z} (B ((B))") + B ((Br))) < Crer0lF~va)V]

for all ¢ € [0, T, where the function 87 : (0,7] — (0, 00) and the constant C depend
only on T" and t837(t) — ﬁ ast — 0. Using now Lemma 3.4, we get

E [Alo,tfjlgc,tf]IB+

k=1

Al— ¢ Al+1,
mBljl] =E [AO,t fAI:_t JFJPI[B+ nBljl]

k=1

= B A AL+ B AR ]

l,k—1

We can similarly estimate the square of the second term of the equality above by the
expression Cire " () (VE-v2)v1] By the independence of flé’; f and 1215:;1* f, the first
term of the equality above equals E [flé’; f ] E [Aﬁ:ﬁl* f ] . Furthermore,

0=E [Ao,tf] E [Ak,tf] =E [Aé’;f] E [A?;lﬁ ] + Ryt

where
|Rk,t|2 < C«Te—ﬁT(t)[(\/E—\/i)\/l]
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forall ¢ € [0,7] and k > 1. Combining the estimates above, we have shown that

Cov (Aouf Avaf )| < [E [Aouf Acaf| — E [Aoof | E [Arif]|
< C’Tefw [(VE—v2)vi] .

Using the dominated convergence theorem and the fact that ¢5r(t) — 8—\1/5, we conclude
that

% i ’COV (Aoﬂtf, Ak,tf) ’ < % i CTe*w[(\/E*\/i)\/l] 0
k=1 1

as t — 0+. This completes the proof of the statement. L
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