
DEUTSCHES ELEKTRONEN-SYNCHROTRON 
DESY 86-054 
MPI -PAE/PTH 27/86 
May 1986 ...,.,--.. 

I'~,. \ 
A. f\, 

?t _}_-J-J 
l.il,pft rnrti: "--.... · 

CONSTRAINTS ON VARIANT AXION MODELS 

by 

W.A. Bardeen 

{Ma:;.,-Planck·-Institut fUr Physik und Astrophysik, MUnchen) 

R.D. Peccei, T. Yanag.ida 

{Deutsches Elektronen-Synchrotron DESY, Hamburg) 

.ISSN 0418-9833 

NOTKESTRASSE 85 2 HAMBURG 52 

DESY 



"! 
,.·,_ 

, ' 't'c 

' ~~f!l~i:alle aech~ fiir den Fall der Schuttrechtserteilung und flir die wirtschaftliche '. '" :~~~~--.-~,,~.,:'!)> ,., -· :-··· -,.. ;· ----~1 :' : ' ' •. '-·- ' ' 
'· • ·· ' .Ji .,. Verwertung'der in diesem Bericht enthaltehen I nformationen vor . . _: .: : ,,•:·· ... - . ' ' .. , ' - ' ' . 

. -::' 
,. ~I ' 

'•'")":,_ 

~ ,• ,. 

:··. 
' • '9eSlir;~Ne$·'1jll•right!! fat ~mmercial use of information included in this report, especially in ' .•. ' ; w--.•, ~•-- ,,.,._ , , , '"' ·.: - , " ., , '·'·i· , .' ... , , ' 

. ''' ease o!f filing . application for or gram of patents. 

!.,_, ... 
. ', ... _ _.-., ,·,i ._, .;-. 

,,, .. ··,. 

;·' 

:! Tb be "''~ ti\at your preprints a~ promptly included in me 
' HIGH ENfRGYPI-t¥SICS INDEX ' 

· ·.send th~;~~.dle following address ·(.if po~$1ble by air mail ) : 

"'"'' 



ISSN 0418-9833 

- ··--w ...... V"- . ......_--_.--._.-.. -.,- ~-...,-

DESY 86-054 
MPI-PAE/PTH 27/86 

May 1986 

Constrllints on V~riBnt Axion Models 

William A. Bardeen• 
Max-PiancHnstitut fur Physik und Astrophysik 

F6hringer Ring 6, 08000 Munchen 40 

R.D. Peccel and T. Yanagida" 
Deutsches Elektronen Synchrotron, DESY, Hamburg 

Abstract 

Arter describing the general structure or variant ax ion models, we 
examine the theoretical predictions for, and the experimental 
bounds on, weak decay processes and nuclear de-excitations 
involving variant axions. Although no individual reaction alone 
can be used to rule out the existence or variant axions, we rind 
that the recent bound on the decay, n'-+ae've, in combination with 
a bound ror a L'. T=O transition in 109 effectively exclude these 

excitations. 
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I. Introduction 

The existence of a narrow positron line in the produced positron 
spectrum in heavy ion collisions at GSI [1], which appears to be 
correlated with an equally narrow electron line [2], has renewed interest 
in axions. In principle. If there existed an axion of mass near 1.7 MeV 
produced nearly at rest in the heavy ion collision, its dominant decay, 
a-+e•e-, would then provide both a positron peak and a correlated e•e­
signal. There are a number of difficulties with this scenario. First of 
all. as has been pointed out by many authors [31. it is difficult to 
conceive of a dynamics which will produce axions nearly at rest and in 
sufficient quantity to fit the GSI observations. Secondly, very recent 
observations [4] appear to indicate two, not one, correlated e•e- signals 

whose origin, obviously, is difficult to reconcile with a single axion. 
Thirdly, the excitation observed at GSI cannot be a standard axion [51, 
since a standard ax ion with a mass as heavy as 1.7 MeV would have very 
enhanced couplings to either charm or bottom quarks and so would be in 
conflict with the existing bounds on'!'-+ l!'a or Y-+ l!'a [6]. 

Although it is unclear whether one can invent axion models which 
can overcome the first tw9 difficulties, it is possible to construct 
variant axion models in which axions with mass near 2 MeV can exist, 
without being in contradiction with the quarkonia bounds. These models 
are of a type first suggested by Bardeen and Tye [7] and recently 
rediscovered, motivated by the GSI phenomena, by Krauss and Wilczek [8] 

and by Peccei. Wu, and Yanagida [9]. In these variant axion models, the 
axion decays very rapidly into e•e- pairs (for the simplest model 
discussed in (8] and [9], ,;(a-+e'e-) " 6·J0-13sec). As a result most 

previous bounds on axions are irrelevant for variant axions [I OJ. This is 
true for most beam dump experiments done in the past. as well as for 
the 12C de-excitation experiment of Calaprice et al [Ill, which are 
sensitive only to relatively long lived axions. It is clearly important, 
therefore, to ascertain if these excitations really could have escaped 
detection up to now, irrespective of whether variant axions have 
anything to do with the effects seen at GSI. 

The purpose of this paper is to examine the question of the viability 
of variant axion models in detail. Arter briefly discussing the structure 
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of variant axion models in Sec II, we examine in Sec Ill what bounds 

exist on variant axions from weak decay processes. notably n• _, ae•ve 
and K• _, an+. To calculate these processes, we make use of an 

effective Lagrangian technique in Sec IV which incorporates correctly all 

the (approximate) symmetries present at the quark level. This section, 

which is the core of our paper, also serves to clarify certain important 

issues relating to the structure of axion interactions. In Sec V we 

discuss the expectation of variant axion models for nuclear de-excitation 

processes. There we comment particularly on the implications of a 

recent experiment involving 14N [ 121 and on the reanalysis performed by 

the Princeton group [131 of the old nuclear internal pair correlation 

experiments of Warburton et a! [ 141. Our conclusions, which cast 

serious doubt on the existence of variant axions are given in Sec VI. 

II. Variant Ax ion Models. 

In the SU(2)eU(I) electroweak theory, the Yukawa interactions 

between fermions and doublet Higgs fields are invariant under an 

additional global U(!) symmetry, provided one has at least two doublet 

Higgs fields [ 151. Such a symmetry, when imposed also on the purely 

Higgs sector, allows one to solve the strong CP puzzle, since one can 

show that the effective CP violating parameter 

G=e+argdetM (Il-l) 

vanishes [151. If one has a theory where this additional PQ symmetry 

exists, then the breakdown of SU(2)eU( I) caused by the nonvanishing 

expectation values of the doublet Higgs fields also causes the extra 

global Upo(l) to break down. The associated Goldstone boson is the 

axion. However, because the Upo(l) symmetry is anomalous in the 

presence of the strong interaction, this excitation acquires a small 

mass. 

The standard axion model [5] has precisely two Higgs doublets ' <1> 1 
and <1> 2. The model is constructed so that, automatically, there are no 

Higgs induced flavor changing neutral currents (FCNC). This requires 

that <1> 1 couple only to the right handed charge 2/3 quark fields and <1>2 
couple only to the right handed charge -1/3 quark fields. If i,j are 
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family indices and we let Ou stand for the left handed quark doublets, 

then the standard axion couplings are given by 

LYukawo(Std Axion) = ru .. Q ··<1>1 UR· +rd .. OL··<1>2 dR· + h c (11-2) 
· 11 L1 I 11 1 I · · 

Diagonalization of the quark mass matrices will automatically 

diagonallze the Higgs couplings. However, the above structure also 

implies that quarks of the same charge are treated in an identical 

fashion. Furthermore, all that distinguished charge 2/3 from charge 

-1/3 couplings, apart from quark mass factors, is the ratio of the 

doublet vacuum expectation values' 

X= (<1>2>/(<1>1) (11-3) 

To get an axion mass as large as 2 MeV, it is necessary that x (or x-1) 

be large [71. This necessarily implies, therefore, that one has enhanced 

coup! ings to all the charge 2/3 quarks (or all the charge -I /3 quarks) 

and one runs into trouble with the quarkonia bounds 161. 

Variant axion models [81 [91, to avoid the quarkonia bounds, must 

de-enhance the coupling of axions to both c and b quarks. Thus these 

models will not automatically prevent the appearance of Higgs induced 

FCNC. Retaining only two Higgs doublets [91, it is not possible to avoid 

altogether these interactions but one can minimize the effects by 

restricting them to the charm sector. If one is willing to complicate 

the Higgs sector sufficiently and impose certain discrete symmetries. 

one can construct models [81 where no FCNC occur at all. At any rate. 

the important property of variant axion models is that the axion has 

couplings to quarks which, besides the usual mass factor, can l1i1ill for 

quarks of the same charge. For example, one can enhance the coupling 

of axions to the u quark and de-enhance the coupling of axions to all 

other quarks. Indeed, this is precisely the situation for the simplest 

variant ax ion model considered both in [81 and [91. 

For simplicity, here we shall consider variant axion models with 

only two Higgs fields, <1> 1 and <1> 2. Furthermore, to avoid the FCNC 

problems in the charge -1/3 sector, we shall couple all charge -1/3 

right handed fields to <1> 2 191. Then the various different axion models 
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are characterized by the number N of charge 2/3 right handed fields 
which are coupled to <1> 1 and they depend further on whether uR couples 
or not to <1> 1• Thus the variant axion couplings are given by 

lYukawa(Vor.!!Xion) = ruij Qli'~j "Rj. rdij Ou·<l>2 dRj • h.c. (11-4) 

and the different models are distinguished by what Higgs field ~ j 

couples to uRj· To avoid the quarkonla problem, however. one must 
always take the Higgs field coupled to~ as 02 = i·7:2 ·~2 *. For three 
families of fermions, there are three possible variant axion models with 

the assignments detailed in Table ll-1 for 'Pj. 

Table 11-1 Variant axioo model assigrynents for three famHies 

1) ~j' ~,. 0,, 02 

2) ~j' ~,. 0,, ~, 

3) ~j' 02, 02, <1>, 

It is convenient to isolate the ax ion field in <1> 1 and <1> 2 as an overall 
phase field, dropping the other quantum excitations. In the zero charge 
sector, the axion is orthogonal to the excitation that eventually gets 
eaten by the zo and it is easy to see [7] that one should write 

~, = (f,l./2). ei·a·x/f. fll 
LoJ 

<1>, = (f ,1./2) . ei·a/xf . [01 

ll J 

(11-5) 

where x = f2/f 1 is the ratio of the Higgs vacuum expectation values and f 
Is the scale or the breakdown or the weak interaction symmetries. 

f = /f 12 • f/ = (./2 · GF)-1/2"' 250 GeV (11-6) 

Under a PQ symmetry transformation the axion field should just 
translate, 

a->a+~·f (II- 7) 

-, ·- .._, -~ 
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A particularly convenient definition of the PQ symmetry in the quark 
sector is one where Ou is left invariant and the right handed quarks 
fields transform so as to insure that (ll-4) is left invariant. Hence 
under a PQ transformation, 

dRj _, e-i·Ux. dRj 

(ll-8) 

uRj _, e-i·t-zj . uRj 

where Zj = x if the corresponding Higgs field in (\H) is <l>j = <1> 1, but Zj 
= -1/x if the corresponding Higgs field is <l>j = 02. The PO symmetry 
current for the variant ax ion models is therefore 

J PO= r·a a • (l/xl·I 1Nf dRi'l!',.dRi • x·I1N uRi11
11

uRi 11 11 ,. 
(11-9) 

N -
• (-l/x)·l:N•1 f uRi1!'11uRi 

where Nf is the number of families and N is the number of charge 2/3 

quarks coupled to <1> 1• Clearly this current has a color anomaly 1151 
which is only proportional toN 

811J/Q = ( i/2)·N·(x+ i/x)-(<Xsl4n) · Fa I1Vf<li1V (\1-10) 

Obviously, besides N, it is important for the physics of the model in the 
I ight quark sector to know whether the u quark couples proportional to x 
or 1/x in Eq(ll-9). 

Besides JlO, it proves useful to define another current, J
11

, which 

is anomaly free and contains the axion. In principle, an infinity of such 
currents exist. However, the only interesting such currents, as Bardeen 

and Tye have emphasized, are ones Which have a soft divergence. That 

is, a divergence which vanishes in the I imit as the I ight quark masses 

vanish. For our purposes it will suffice to consider here the case in 
which only the u and the d quarks are considered as light. Then it is 
easy to see that [7] 
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JJl ; J/0 -(I /2)·N·(x• I /xH (md/(mu•md))·u ll Jlll,u 

(II-II) 
+ (mul(mu•md))· d l1Jlll5d I 

has precisely the desired property. Its divergence 

aJlJ)l;- N·(x+l/x)·(mumd/(mu•md))·{ u[ills ei·a·z·lls/flu 

+ d !ills ei·a·ll,lxf (11-12) 
ld I 

vanishes as either mu or md goes to zero. Here we have neglected the 
effects of axion mixing angles related to possible flavor changing 
neutral currents as they are constrained to be small from the analysis of 
charm decays [9]. 

For what follows, it is convenient to explicitly indicate the axial 
vector current content of JJl. Let us define. as usual. the isoscalar and 
isovector axial currents as 

"'s)l; (112l·lul1Jlll' u. CfliJlll' dl 

A3Jl; (112l·lu ll)lll, u- Cf ll)lll, dl 

Then the current J Jl can be written as 

JJl ; f·8Jla +As AsJl + A3· A3Jl + heavy quark pieces 

The constants, As and A3, are model dependent and read 

As ; (I /2)-{(z+ I /x) - N·(x+ I /x)} 

A3 ; (I /2)·{(z-l /x) - N·(x•l /x)·[(md-mu)/(md•mu)l} 

(11-13) 

(11-14) 

(11-15) 

Here, z; x, if the uR quark in Eq(ll-4) couples to <1> 1 or z; -1/x, if the 
uR quark In Eq(ll-4) couples to ~2 . Given that x will turn out to be 
large, for the axion to have a mass near 2 MeV, and that the light quark 
masses give [ 17] 
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[(md-mu)l(md•mull "' 0.26 (11-16) 

it is possible to have models in which As vanishes or A3 vanishes, but 
both can not vanish simultaneously. This remark will have Important 
phenomenological consequences. 

Ill. Experimental bounds on variant axions from weak decays. 

The decay K+ .., a1t• provides a strong constraint on the standard 
axion model. For ma < 2me, the axion can only decay into two photons 
and its lifetime is very long, of order (IOOKeVIma)5 sec for the standard 
ax ion [7]. In these circumstances, the ax ion just gives, experimentally, 
a missing energy signal (a = nothing). The most stringent bound for 
these axions was obtained by KEK [18] with 

B(K+_, 1t••nothing) < 2.7·10-8 (III-I) 

Although. as we shall see. it is difficult to reliably compute the 
nonleptonic process K• .., a1t•, for the case of the standard ax ion one has 
a Penguin contribution, which gives a relatively safe estimate [19] 

sPenguin(K+->art),. 10-6. x2 (111-2) 

Hence x must be small to survive (III-I). However. an x "' 10-1 would 
then lead one into contradiction with the Y -+ all bound [61. So a 
combination of the K decay bound and the Y decay bound rules out the 
standard ax ion. 

For variant axions, since ma > 2me, the main decay channel for the 
axion is now into e+e-. Furthermore, the lifetime of the axion is now 
very short, and it is no longer true that experimentally the axions give a 
missing energy signal. If ~a"' 6-\o- 13 sec, as is the case for the 
models of Ref. [8] and [9], then the decay distance for the KEK 
experiment would be around 2 em. The produced e•e- pairs would have 
been vetoed in the setup of Ref [181. so that the _bound in (III-I) is 
irrelevant for the variant axions. To the best or our knowledge, there is 
no relevant bound on the process K+ -+ art+with a -+ e+e-, as yet! A 
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Berkeley experiment of a decade ago [20], which measured the process 
K+-+ n+e+e- and round 

B(K'_,:n:'e'e-) = (2.7±0.5)·10-1 (111-3) 

could in principle provide some information, if reanalyzed. However, 
the published data has a cut for me•e- > 140 MeV. Similarly, the 
experiment of Yamazaki et al [21 I at KEK, which obtained a bound 

B(K'_,:n:'anything) < 2·10-6 (111-4) 

also had a cut on the recoil mass of manything > 5 MeV. However, we 
understand [22] that experiments at BNL and KEK should in the near 
future be able to establish limits for the process K' _, a:n:' with a_, e'e­
atthe branching ratio level of Jo-6 - 10-1. Our theoretical estimates, 
to be discussed In the next section, should be compared, therefore, with 
branching ratios of this order of magnitude. 

M. Suzuki [ 23] has pointed out another weak decay process which is 
of importance for variant axionso :n:' _,a e've followed by a_, e'e-. A 
rather stringent bound for the process :n:' _, e'e-e've 

B(:n: _, e'e-e'vel < 5·10-9 (111-5) 

was established a decade ago at DUBNA [241. From a reanalysis of this 
experiment. it would be possible to infer a bound on the rr' _, a e've 
decay, but this bound would be strongly dependent on the axion lifetime. 
Fortunately, very recently, in an elegant experiment at SIN, the process 
rr• _, e•e-e've has actually been seen [251. The observed branching 
ratio 

B(:n: _, ee-e've) = (3.4±0.5)-10-9 (111-6) 

is slightly below the bound of Eq(lll-5) and is in agreement with 
standard expectations. Furthermore, an analysis of the e'e- invariant 
mass distribution can be performed to set a bound on the rr+.,a e+ve 
decay mode. This analysis has now been completed, giving a branching 
ratio bound of the order of [26] 

"" ~ --
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B(:n:'_,a e'vel < (1-2)·10-lo (111-7) 

provided the axion lifetime is sufficiently short (t:a < 10- 11 sec). As 
we shall see in the next section, this bound is very restrictive for 
variant ax ion models. 

IV. Theoretical considerations on weak decays involving ax ions. 

Branching ratios for the processes Kt -+ ant and nt -+ aetv8 can be 
estimated rather simply by using the fact that the axion, at some level, 
"mixes" slightly with the :n:0 [27]. Let us consider, for instance, the 
decay :n:' _, ae've, which is somewhat simpler to calculate because it is 
a semileptonic process. To compute the decay rate for this process, one 
needs to know the matrix element of the charged current, J_Jl• between 
an axion and a :n:' state. If we denote the mixing angle between the :n:" 
and the axion as t:n:a and proceed naively, then we expect the relations 

<a I J_ Jll :n:'> "' t:n:a <:n:" I J_ Jll :n:'> = 12 -t:n:a·(Pa'Prrl J1 (IV-I) 

The second line follows, since only the f, form factor is nonvanishing 
for the pion matrix element. A simple calculation then gives a formula 
for the rate 

r(:n:' _,ae 'vel = (3841!3)-L(GF )2·(mrrl5·(trral' (IV-2) 

The mixing angle t:n:a can be taken as the fraction of the isovector axial 
current A3Jl present in JJl, modified by the ratio of the pion to axion 
decay constants, f rrlf. 

~rra = :A3·(f:n:/f) (IV-3) 

using Eq(IV-3) in Eq(IV-2), one obtains a sizable branching ratio for the 
process TI't -+ aetv8 in variant axion models. For instance, in the 
simplest variant model considered in Ref [8] and [9], one has N = I and 
z = x" 70, so that A3 "'25. This value implies a branching ratio 
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Bslmplest(1f'-+ae'v9)"' 2·J0-6 (IV-4) 

which is four orders of magnitude above the SIN bound (111-7)11 Clearly, 

If the above estimate of the J_Jl matrix element (Eq(IV-1)) and of the 

n°-a mixing (Eq(IV-3)) are correct, then the only tenable variant axion 

models are ones where the isovector mixing parameter A3 is suppressed 

by about two orders of magnitude below that found for the simplest 

case. Although such models exist. they require one to have N = 4 and so 

one needs more families than we presently know with PQ couplings, or 

they require some other mechanism for producing a large color anomaly 

in the Higgs sector. 

Because the bound obtained from the process, n' -+ ae've. is so 

strong, it is imperative to make sure that the above estimate for the 

branching ratio is not in error. We will see that, in fact, the result 

obtained above is correct. However. It is Important to analyze this 

process (and also the process, K' -+ an') with some care, since there are 

a number of questions which tend to cast some doubt on the simple 

minded treatment used to obtain the above bound. Two such questions 

Immediately come to mind= 

i) If it were not for the axial anomaly, the axion would be a 

massless Goldstone boson. Therefore, the axion should decouple at 

zero momentum. so. why is the matrix element in Eq(IV-1) not 

simply proportional to the axion momentum, Pa· only? 

ii) The current, JJl, which contains the physical axion and is 

anomaly free, has a divergence which is purely isoscalar (c.r. 

Eq(ll-12)). How is it possible that there should be any 

communication between the low energy coupling of the physical 

axion and the physical n"? Doesn't the mixing angle, ~1fa• actually 

vanish? 

To answer these questions, one can systematically study the low 

energy theorems associated with the current algebra of the axion, or 

alternatively one can give a general solution to the current algebra by 

constructing an effective Lagrangian involving pions and axions (or n's, 

K's, and axions) which reflects all the symmetries present at the quark 
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level. This effective Lagrangian can be used to compute all the decay 

amplitudes. such an approach was used by Bardeen and Tye [71 and by 

Kandaswamy, Salomonson, and Schechter [281 to compute standard axion 

properties and, more recently, by Georgi, Kaplan, and Randall to compute 

some properties of invisible axion models [291. We will find it also to 

be very useful to examine the variant ax ion models. 

We want to construct an effective Lagrangian for pions and axions, 

including the effects of the weak interactions, which reproduces the low 

energy dynamics of the standard model augmented by a PO symmetry 

[15]. Before constructing the effective Lagrangian, it is important to 

understand the full global symmetry structure at the quark level. The 

variant axion models discussed in Section II are described by the 

following fermion-axion Lagrangian. 

l = QL {iO'·D}QL + LL {iO'·D}LL + uR[iO'·D}uR + dR{iO'·D}dR + eR{iO'·D}eR 

- uL {Mu·ei·z·a/f)uR + h.c. - dL {Md·ei·a/xf)dR ' h.c. (IV-5) 

- [L{M0ei·z·a/f)eR • h.c. • (I/2H8Jla)2 

where {DJl) are the covariant derivatives for the SU(3)c"'SU(2).,U(I) 

gauge interactions of the standard model and Mu. Md, and Me are fermion 

mass matrices with the family indices being suppressed. The axion 

couplings are model dependent with the elements of the matrices, z, 

being x or -I /x for up quarks and I /x or -x ror leptons. The ax ion 

couplings are clearly directly related to the structure of the right 

handed fermions. 

The physical structure or this Lagrangian may be examined if we 

first diagonalize the mass matrices for the fermions. The mass 

matrices for the up and down quarks can be put in the form, 

M - + 
u- Bu·mu·Cu 

Md = Bd-md·Cd + 

(IV-6) 
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where mu and md are the diagonal quark mass matrices and Bk and Ck 
are the necessary rotations in flavor space. we diagonalize these 
matrices by making the following transformations on the quark fields, 

uR ., Cu uR, uL ., Bu uL 

(IV-7) 
dR ., Cd dR, dL ., Bd dL 

In the standard axlon model, all reference to the mixing matrices 
disappears from the Yukawa terms and the only physical dependence on 
these matrices is in the combination Bu +.Bd which is just the K.M. 
matrix for the w± interactions. In variant axion models, more of the 
mixing angles become physical as the YUkawa interactions are not 
independent of Cu. After diagonalization, we have 

L Yukowo = - uL lmuc;·ei·z·a/f.culuR + h.c. - dL {md·ei·a/xf)dR + h.c. 

- IL {meei·z·a/f)eR + h.c. (IV-8) 

where we have presumed the lepton mass matrix to be diagonal. The 
physical mixing angles in Cu are responsible for FCNC interactions and 
are strongly constrained by the charm decays [9}. We will ignore their 
effects in our subsequent discussion. 

The relevant symmetries can be seen by examining the Lagrangian in 
(IV-5). As in Eq(ll-9), the PQ current may be written in terms of the 
right handed fermion currents 

J/0 = f·8Jla + uR{z·'b'Jl}uR + dR{x-L'b'Jl}dR + eR{z·'b'Jl}eR (IV-9) 

The PQ symmetry [ 15} is spontaneously broken at the same time as the 
SU(2)&U( 1) weak symmetry breaking by the non zero vacuum expectation 
value of the Higgs fields, (<1> 1) and (<1>2). The concomitant Goldstone 
boson is massless in the absence of the nonperturbative QCD 
interactions. The axion Lagrangian (IV-5) has additional right handed 
symmetries if some of the quarks may be considered as massless. 
Taking the first family of quarks to be massless, we have the freedom to 
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rotate independently the corresponding UR and the dR fields 

uR-+ ehx ·uR 

(IV-I 0) 
dR" ei·~ ·dR 

and the currents which correspond to these symmetries may be written 
as isoscalar and isovector currents as in (11-13) 

Asll = 0R 'b' l!UR + dR 'b' lldR 

(IV-II) 

A3ll = uR 'b'lluR- dR 'b'lldR 

The effects of including the strong interactions are two fold. 
First, non trivial condensates of the light quarks form in the physical 
vacuum of QCD, 

<u u) "' <<f d) ~ 0. (IV-12) 

These condensates induce a spontaneous breaking of the global 
symmetries (IV-10), producing (apparently) two additional Goldstone 
bosons in the neutral charge sector. the rro and an lsosinglet excitation 
we shall call <j>0 Second, when the full strong interactions are 
included, the isoscalar current is no longer a good symmetry current. 
Indeed, this current has an Adler-Beii-Jackiw anomaly [16} associated 
with the color gauge fields, 

8llAgjJ = (<><s/411:) · FajJVj'<llJV (IV-13) 

This anomaly combined with the QCD vacuum structure implies there is 
no symmetry reason for the <j>0 meson to remain massless. In fact the 
situation is more complicated due to the presence of the PO symmetry. 
The global PQ symmetry is also broken by the same anomaly as given in 
(Il-l 0). However, the strong anomaly cannot break independently both 
symmetries, and a linear combination of the PQ current and the isoscalar 
quark current remains conserved. It is easy to see that the current 



15 

J" = J PQ - (I /2)·N·(x+ I /x)· As)l 
Jl Jl 

(IV-14) 

does not have a str~ anomaly and Is conserved al~ with the isovector 

current in the limit that the light quarks remain massless. Hence, we 

expect to have only two true Goldstone bosons in the symmetry limit, 

the physical no and the ax ion. The presence of mass terms for the light 

quarks breaks both of these remaining symmetries. However, this 

symmetry breaking is much weaker than the breaking caused by the 

str~ anomaly, (m'l\ • » mno). Hence, the mixing between the pion and 

the axion can be determined by studying the chiral limit, mu,md ~ 0, as 

emphasized In [71. The interplay between these three symmetries will 

be evident in our formulation of the effective Lagrangian to be discussed 

below. 

The structure of the axion couplings can be explicitly exhibited at 

the quark level by making a local, right handed gauge transformation to 

remove the axion field from the Yukawa interactions. This trans­

formation is accomplished by rotating the quark and lepton fields, 

uR-+ e+z·alf uR 

dR-+ e-i·a/xf d 
R 

eR-+ e-i·z·a/f eR 

(IV-15) 

In making this transformation we must be careful to account for the 

anomaly structure of the fermions. The naive transformation removes 

the axion field from Yukawa interactions and generates derivative 

interaction from the kinetic terms for the fermions. The anomalies 

produce additional, nonderivative Interactions which can be computed 

from the known anomaly structure of the fermion loops [ 15]. We obtain 

the following Lagrangian equivalent to (IV-5) ignoring the right handed 

mixing angles associated with FCNC, 
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l = Ql {ilf·D)Ql + Ll {ilf·D)LL + uR{ilf·D)uR + dR{ilf·D)dR + eR{ilf·D)eR 

- uL !muluR + h.c. - dL {md)dR + h.c. - Ll {meieR + h.c. 

• f-LiJR{z·lfJl)uR·aJla + (xf)-1.(fR{·1fJl)dR·8Jla (IV-16) 

• f-LeR{z·lfJl)eR·aJla + (I/2)·(8Jla)2 

+ a ·{tr u!zlfl + tr d[ I /xf]}·("'s/87t)·{Fa JlVfaJlV] 

+ a ·{( 4/3)·tr u!zlfl + ( l/3)·tr d[ 1/xf] + tr efz/f]}·( 16n2)-1.{BJIV1l JlV] 

where Fa)JV is the color gluon field strength and B)lv is the field 

strength of the U( I) weak gauge field coupled to the right handed 

fermions, 

B)JV = e·(F1fJlV-(g'/g)·FzJlV) (IV-17) 

For the standard ax ion, it is this last term which is used to compute the 

decay of the axion to two photons. From the form of the Lagrangian in 

(IV-16), we see that the axion has only derivative coupling to hadrons 

except for the anomaly coupling to gluons which will obviously generate 

only flavor singlet interactions. we will see that it is, in fact, the 

derivative interactions which are responsible for the mixing with the 

pion and give the str~ constraints from pion and kaon decay. We also 

remark that the Lagrangian in (IV-15) can be used to demonstrate the 

decoupling of the heavy quarks as their derivative interactions with the 

axion can only generate a small renormalization of the kinetic energy of 

axion, or terms which are highly suppressed by powers of the heavy 

quark mass. The real effect of the heavy quarks on the low energy 

theory only comes through the contribution or tne anomaly. 

We now return to the formulation of our effective Lagrangian. This 

Lagrangian represents the full interactions of the axions and mesons as 

expanded to lowest order In the meson momenta br masses. The 

effective Lagrangian contains three separate pieces. There is a chiral 

Lagrangian term describing the U(2)<>U(2) invariant strong interactions of 
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the 1f and <j>O fields plus a kinetic term for the axion, 

Lchlral = (1/4}(f1f)2 ·tr{aJlu•aJlu) • (112)·8JlaaJla (IV-18) 

where the chiral field U is given by 

U = exp{ i{c·1f • <j>O)ff1() (IV-19) 

Clearly Eq(IV-18) is invariant under global U(2)eU(2) transformations, 

U"gLUgR + (IV-20) 

and under a global translation of the axion field, 

a.,a·~·r. (IV-21) 

The electroweak interactions can be introduced into Eq(IV-18) by 

replacing the derivatives by the appropriate covariant derivatives. 

According to our discussion at the quark level. even after this Is done. 
the theory should still be invariant under three chiral U(l) symmetries. 

It is easy to check that the substitution 

8l'U" Dl'U = 8)1U + i(l/2)·gt:·W)lU + i(l/6)-g'Yl'U 

+ i·g'Y)lU f-2/3 01 
l 0 1 /3] 

(IV-22) 

which introduces the electroweak interactions for the U field, still 

preserves the (U(1))3 symmetry in the effective Lagrangian, 

Lchiral+WI = (1/4)·(f1()2 tr{ (D)lUt(Dl'U)) + (112) 8)la8l'a (IV-23) 

That is, Eq(IV-23) is still invariant under the restricted set of 

transformations (IV-20) where 

gR = feiO< 0 1 

lo eiJI J 
gL = I (IV-24) 
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and is obviously also invariant under (IV-21 ). 

In addition to (IV-23), the effective Lagrangian must contain terms 

which incorporate the effects of the chiral anomalies and terms which 
reflect the Yukawa interactions at the quark level. Let us look at this 

last term first. For the models under consideration. the interaction of 

Eq(ll-4) for the light quark sector reads effectively, 

Lmass = - mu(uL ei·z·a/f uR) • h.c. - ml<iL ei·a/xf dR) • h.c. (IV-25) 

where z = x or -1/x depending on the particular model considered. This 
interaction no longer preserves the two U(l) transformations or 
Eq(IV-1 0), but it does preserve the PQ symmetry. provided that uR and 
dR respond appropriately (c. f. Eq 11-8). Thus, we may include the effects 

of the Yukawa interactions in the effective Lagrangian by adding a term 
which explicitly breaks the symmetry in an analogous way to (IV-25). 

Since the U matrices are the unique, nonderivative fields which have the 

same chiral transformation properties as the quark mass operators, the 
Yukawa interactions are represented by 

Lmass breaking = ( 1 /2)·v· tr{UAM + n• A •u•) 

where 

and 

M = fmu 0 1 

l 0 mdJ 

A= fe-i·z·a/f O 1 
l o e-i·a/xfJ 

(IV-26) 

(IV-27) 

(IV-28) 

The parameter v is related to the scale of the spontaneous chiral 
symmetry breaking. Clearly (IV-26) is invariant under the PQ symmetry 

transformation, 

and 

a"a·~·f 

u .. u. rei·z·~ 01 

l 0 eiVxj 

(IV-29) 

(IV-30) 
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This interaction, however, is not invariant under the transformations 
(IV-24). Thus, two combinations of the Goldstone fields, a, <jlD, and :n:o 
will acquire masses from this term in the effective Lagrangian. A 
linear combination of the neutral meson fields remains massless and is 
the Goldstone excitation associated with the naive PO transformation. 

The final piece to be added to the effective Lagrangian is a 
term which incorporates the anomaly structure of the quark theory. For 
the heavy flavors, we have exhibited, in Eq(IV-16), the axion anomalies 
which are induced by the quark theory. There are anomalies associated 
with both the weak and the strong gauge fields. For the processes we 
wish to consider, only the strong anomalies contribute and we will 
ignore the weak anomaly contributions. Using Eq(IV-16), we obtain 
from the heavy quarks, 

lanornoly(a) = a ·{tr ulzlfl + tr d[l/xf)}H·(e<s/81f)·{Fa JIVfaJIVj 

(IV-31) 
= a ·f-L{NH·(x• 1/x)}·(e<g/B:n:)·{Fa JIVF'aJIVJ 

where NH is the number of heavy quark families with PO couplings, z = x. 
The effective Lagrangian must also reflect the strong anomalies of the 
meson fields as indicated by the anomalous divergence of the isosinglet 
current in Eq(IV-13). This anomaly may be determined in a manner 
similar to (IV-31) with the result 

lanomai/'PD) = <j)D·(2/f 1f)-t.(e<s/B1f)·{F a JlVF'aJlVJ (IV-32) 

The strong gauge fields may be integrated out with the effect that the 
strong anomaly contribution is effectively a mass term for the meson 
fields which multiply F·F For the case at hand, this procedure gives 
the anomaly term in the effective Lagrangian 

lanomaly = - (I /2)·mo2·l<P0 + (I /2)-(f 1(/f)·{NH·(x• I /x)}-a]2 (IV-33) 

Since the mass parameter, m0, must be large to produce the physical 
meson mass spectrum, the combination or fields appearing in (IV-33) 
effectively decouples from the low energy dynamics. The orthogonal 
combination of .po and a 
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a = (f·a - ( 1/2)-f :n:·INH·(x+ 1/x)}·<jl0)/f (IV-34) 

does not feel the effect of the strong anomaly. In the absence of the 
Yukawa Interactions, but Including the full weak Interactions and the 
strong anomalies, both a and 1(0 - in the neutral sector - would be 

massless. 

The physical meson states and the mixing parameters may be 
determined from the meson mass matrix which can be obtained by 
expanding the Yukawa interactions (IV-26) to second order in the meson 
fields and adding the contribution of the strong anomalies (IV-33). In 
the charged pion sector, we find 

Lm
665

(charged) =- (f:n:)-2 ·(mu•md)·v ·1f·1f- (IV-35) 

which identifies the parameter, v, as 

v = (f:n:·m:n:)2/(mu•md) (IV-36) 

The mass terms in the neutral sector read, 

Lm665(neutra1) = - ( 1 /2)·((1 1f·m:n:l2/(mu•md)) 

·lmu·[1f0/f 1f•<j)D/f 1f-z·aff]2 + md·[-1(0/f 1f+<j)Dff 1f-a/xf]2) 

- (1 /2)·m02·[<jlD + ( 1 /2)-(f1f/f)·{NH·(x+ 1 /x)}·aF 

= - ( 1 /2)·m1f2·(mul(mu +md))· [1fD+<j)D-a·(z·f :n:1f)J2 (IV-37) 

- ( 1 /2)·m:n:2·(md/(mu•md))· [-1f0+<j)0-a·(f 1(/xf)F 

- (I /2)·m02·[<jlD + ( 1 /2)·(f 1(/f)·{NH·(x+ 1 /x)}·aF 

Since m0 » m1f. the mass matrix can be easily diagonalized to give the 
axion mass, 



ma' = mn2·(fnlfl'·N2·(x• I /x)2·(mu·md/(mu•md)2) 

and the axion mixing parameters, 

~na = "-3·(fn/f)·[l + ma21mn'l 

~a<P = "-s·(fnlf) 
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(IV-38) 

(IV-39) 

where N is the total number of PQ families ( N=(Nwl) if z=x and N=NH if 
z=(-1/x)) and !..3 and "-s are as given in Eq(ll-15), 

!..3 = ( 112)-((z-1 /x) - N·(x+ I /x)·[(md-mu)/(md•mulll 

(lV-40) 
"-s = -(I /2)·NH·(x+ I /x) 

These are essentially the results for the mass and mixing parameter as 
given by Bardeen and Tye [7]. Then-a mixing parameter of Eq(lV-39) is 
precisely that of Eq(IV-3) apart from a tiny correction of order 

(ma'lmn2). 

The principal strong and weak interactions of mesons are described 
by the interactions contained in the chiral Lagrangian of Eq(IV-23). The 
couplings involve only the n" and <9° fields and have no explicit 
dependence on the axion field. Therefore, the axion couplings are 
generated by the mixing with the meson fields as determined by the 
mixing parameters of (IV-39) and the relations 

n° "' n°phys + ~an· aphys 

<P" "' <P
0
phys • ~a<P · aphys (IV-41) 

a "' aphys - ~an ·n"phys - ~a<P · <P0phys 

There will be corrections to the results obtained by this procedure of 
order (mn2/mK2). If we use the obvious generalization of this 
procedure to include the strange quark as one of light quarks. then the 
predictions should then be good to order (mn2/mTJ· 2). The mixing with 
the n° is described with sufficient accuracy for our purposes by the 
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calculation given above. 

The calculation of the process n• _, ae've is now straightforward, 
using the effective Lagrangian given in Eq(lV-23) with definitions in 
(lV-22). As we have discussed above, there is no direct cooping of the 
axion to thew± and the weak decay proceeds through the mixing with the 
n°, as there is also no coupling for the <P" in this amplitude. The mixing 
gives the following amplitude 

A(n'_,ae'vel = ~an·A(n'_,n°e'vel<Pno =Pal (IV-42) 

= ~an· GF ·I <Pn ' Pa)Jl iJ(pv)(l' Jl( I-lls) V(pe) I 

Here, as usual Gf is the Fermi constant, GF = g2/8M'w =l/v'2f2. This 
amplitude gives the rate quoted in Eq(IV-2). 

We can now make some comments on aspects of the effective 
Lagrangian solution to the current algebra. We first consider the role 
of the JJl current for studying the properties of axions. It was 
constructed from the PQ current by using a particular combination of the 
light quark currents which cancels the strong anomaly. It is dominated 
by the axion pole and its conservation implies a massless axion. The 
structure of the currents can be seen explicitly using the effective 
Lagrangian to express them in terms of the meson currents. The PQ 
current becomes 

J/Q = f()Jla + (1/2)·[ (Z+I/xJ-fn8Jl<j>0 + (z-J/x)-r1l()Jln° (IV-43) 

This is just a transcription of Eq(ll-9) in which the roles of the 
isoscalar and isovector currents are given by 

AsJl = fn8Jl<P" 

(IV-44) 
A3Jl = fn8Jlno 

Using these identifications the anomaly free, soft current JJl of Eq(ll-4) 
is simply 
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JJl = f·aJla • Asf:n:8Jl<J>0 
• A3·f:n:aJl:n:0 (IV-45) 

Of course, any linear combination of the currents, A3Jl and JJl, is 
anomaly free, and both currents are conserved in the chiral limit 
mu,m,ro. However, when the chiral symmetry breaking from the Yukawa 
interaction is included, it is clear that JJl is the axion current for two 
closely related reasons' 

i) The divergence of JJl is soft, i.e. it vanishes in any of the 
symmetry I imits for the ax ion, mu or md-+ 0. 

i I) Expanding the JJl current in terms of the physical fields, we 
see that it has essentially only an ax ion contribution. 

JJl = f·8Jlaphys- (malmrr)2·A3·f:n:8Jlrr"phys (IV-46) 

The pion component is suppressed by the small ax ion mass. 

This discussion hopefully clarifies an essential point raised at the 
beglmlng of this section. It Is indeed true that the current, JJl, has an 
isoscalar divergence and that this current is dominated by the axion 
pole. This, however, does not mean that there is no rr-a mixing as 
described by the mixing parameter, ~arr· This mixing occurs for the 
chiral invariant interactions, while the properties of the divergence of 
the current relate to the interactions which involve symmetry breaking. 
The weak processes we are considering are all related to the chiral 
invariant couplings of the rr" and the axion. 

In view of the above discussion, there remains a small problem of 
principle to clarify comected with the first query raised in the 
begiming of the section' why is the pion decay amplitude (IV-42) 
proportional to (P:n: • PalJl and not only to the axion momentum Pa as one 
might expect from the low energy theorem associated with the almost 
Goldstone nature of the axion. We note that in the chiral limit, both the 
rr0 and the axion should be exact Goldstone bosons as the explicit weak 
interactions should not break the chiral symmetry. Hence, it should be 
sufficient to study these interactions at purely the pionic level. 
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To understand the point it is necessary to write out a bit more of 
the structure of the weak vertex for the pions as we have kept only the 
leading terms needed for our calculation. From the Lagrangian given in 
(IV-23), the full pion- W boson interactions are given by 

L:n:-W = (l/2)·g·f:n:·W-Jl·ej.(:n:Off:n:) ·{8Jl:n:•- i·:n:'·8Jl(:n:Off:n:)l 

(IV-47) 

The non derivative interaction term involving the 1t0 appears as a phase 
which reflects the chiral structure of the left handed current. This 
phase can be removed by a point transformation of the rr• field 

rr•-+ rr'·e-i·(:n:Off:n:l (IV-48) 

With this transformation, the Lagrangian really involves only the 
derivatives of the :n:0 field 

Lrr-w = (l/2)·w-Jl ·[ f:n:8Jlrr•- 2·i·rr'8Jl:n:o 1 (IV-49) 

A similar transformation at the quark level in (lV-16) was used to make 
all interactions of the axion into derivative coupling except for the 
anomaly terms which contribute effectively only to the meson mass 
terms. Of course. the transformation (IV-48) also affects the purely 
strong interaction terms in the effective Lagrangian (IV-23), giving an 
additional term 

llL = i·8Jl(rr"lfrrl·(rr-aJlrr• -:n:•aJl:n:') (IV-50) 

One can check, explicitly, that (IV-50) and (IV-49) give the same 
physical amplitudes for w interactions as (IV-47), as they should since 
the s-matrix elements are unaffected by point transformations at tree 
level. Although the transformed Lagrangian involves only 8Jlrr", and 
therefore through mixing only a)laphys· the presence of the trilinear 
coupling (IV-50) gives an extra contribution to the amplitude for 
rr'-+ae've, involving an intermediate pion pole. The charged pion 
propagator is also proportional to PaPrr and this cancels out the Pa 
factor in the numerator, yielding a result consistent with the previous 



25 

calculation. 

Let us turn row to the process K' _, a:n:'. This reaction is 

considerably more difficult to estimate than the decay :n:' _, ae've, since 

the processes it is naturally related to, K' _, :n:':n:0 and K' _, :n:'llvirtual• 
are both ronleptonlc decays. A number or approaches exist already In 
the literature to compute this rate for the standard ax ion [30]. Here we 

shall try to estimate the rate by using a chiral Lagrangian for the weak 
decay involving the meson ronet, supplemented with appropriate mixings 

or the axion with the :n:o, TJ, and TJ'. Although there is considerable 
uncertainty in our estimate, it is important to get at least an order of 

magnitude idea of the expected branching ratio as this process provides 

comPlementary information to the decay :n:' _, ae've. This latter 

process, as we have seen. measures essentially the lsovector mixing or 
the axion, X3. This mixing, because of the SIN experiment [26], must be 
much below what is expected in the simplest axion models [8].[9] 
requiring a delicate cancellation to take place in Eq(ll-15). However, 

If X3 nearly vanishes, then It Is llQl possible to also get the mixing or 
the axion with the TJ or cp (essentially the As coupling) to also be small. 
This means that the process K' _, a:n:', proceeding through the TJ,<P-axion 

mixing, could provide an additional independent constraint on variant 

axlon models and Indeed serve to rule out these models. 

To proceed with our model calculation, we need the mixing of the 

ax ion with the pion and the eta and the singlet isoscalar cp• "TJ ', 

~:n:a = (f:n:/f)·X3 

~TJa = (f:n:/rJ·Xs (IV-51) 

~cp·a = (f rrlf)·Xo 

To compute the mixing angles. we can proceed In two alternative ways. 
Either we construct a U(3).,U(3) chiral Lagrangian and proceed as before 

to compute the mixing by diagonalizing the relevant 3x3 mass matrix 
analogous to (IV-37), an approach taken in the last reference or [30]. 

Or more simply, we can extract x3, x8 and x0 by considering the current 
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J11, appropriate to three light flavors, analogous to (11-11). This latter 
route Is much more efficient, since the generalization or Eq(ll-11) is 
immediate. One defines the current 

J = J PO - (I /2)·N·(x• I /x)·(mums •mdms •mumd)-l J1 J1 

·{ mdm;u11 11115u • mumsd 11Jl115d • mumds 11 
11

115s I 

In terms of the I ight quark currents, 

A3Jl = (1/2)·(u11
11

115u- d11
11

115d) 

A811 = (112/3)·(u11
11

115u • <f11
11

115d- 2·s11
11

115s) 

Ao 
11 

= ( 1 I 16 )·( u11 
11

115u + d 11 
11

115d + s 11 
11

115s) 

one may rewrite J 11 as 

J
11 

= ra
11

a • x3 ·A311 • x8 ·As
11 

• x0 ·A011 

(IV-52) 

(IV-53) 

(IV-54) 

The parameters, (X], are easily identified. Since ms » mu,md, one can 
read orr the approximate values from the structure or the current 

x3 = (1/2) ·[(z-1/x)- N·(x+1/x)·(md-mu)l(md+mull 

x8 = (I 12/3) ·[(z-1 /x) - N·(x+ I /x)J (IV-55) 

x0 = .(f76 ·[z + 2/x - N{x+ 1 /x)J 

The SIN bound (11!-7) puts a very strong constraint on x3. Since 

(md-mu)l(md+mu) " 0.26, it is clear that the only model consistent with 
the SIN data would be one with N = 4 and with z = x. The combination 
N·x, furthermore, is determined from the axion mass (c.f. Eq(IV-38)), 

rna " 25·N·x KeV (IV-56) 

Using the value inferred from the GSI experiment I 1],[2] would give an 
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axion mass, ma "' 1.7 MeV, which implies for N=4 that x "' 17. This 
determines 'A3 "' -0.34 which Is marginally consistent with the SIN 
bound [26]. However, we are then able to predict the value of 'Aa' 

'Aa"' (1!/2)-A0 "'(li/3)·'As"' -(/3!2)·x"'- 15 (IV-57) 

which will give phenomenological troubles for variant axions. 

With the mixing angles determined by (IV-51) and (JV-55), we must 
now find the appropriate effective Lagrangian to describe the 1'15= I, 
nonleptonic K-meson decays. The construction of this effective 
Lagrangian is corrplicated by the large enhancement of the 1'11=1/2 
component of the interactions. It is expected that this enhancement 
will also enhance the processes involving axions. The fundamental 
interaction is the current-current interaction generated by W-boson 
exchange. However the strong interactions renormalize this interaction 
and cause a mixing of the operators participating In the Interaction. 
When the short distance QCD corrections are included, there is the 
expected enhancement effect which increases the I'll= I /2 corrponents 
and decreases the 1'11=3/2 corrponents, but only by a factor. of 2-3 
generated by the usual mixing [31]. This effective Lagrangian has two 
pieces, corresponding to operators that transform under SU(3).,SU{3lv-A 
as an ll. and ll' 

Leff(L'IS= I l = ga La • g27 L27 (IV-58) 

Here the operators in La and L27 can be represented in terms of 
currents, JJl, which In turn are described in terms of the chlral 3x3 
matrices, U = exp(i·'A·n:/f1(). One has the current 

J)l = i·(f1()2 [U8)JU+l (IV-59) 

and the octet operator, La. is given by 

La= (JJl•-J)I)ds = (f1()4·18Jlu-a)lu•lds (IV-60) 

This enhancement does not explain the large factors observed in the 
K-decays. However, additional operator mixing can occur through the 
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exchange of gluons through the mechanism known as penguins [32]. The 
penguin interactions generate new operators of a different structure 
than the usual left handed current-current operators. It is likely that 
the penguin contributions will explain much of the 1'11=1/2 enhancement 
[32],[33]. For our analysis, it is sufficient to observe that both the 
enhanced current-current interactions and the penguins have exactly the 
same chiral structure and are both represented by effective Lagrangian 
given by (IV-60). In fact, this effective Lagrangian is the unique 
operator giving the correct chiral structure for the 1'11=1/2 amplitude, if 
we compute the amplitudes to lowest order in the meson momenta. 
Hence, we can compute the axion amplitudes in terms of the enhanced 
1'11=1/2 amplitudes directly from the structure of the operator given in 
(IV-60). For the two body decays, we can expand (IV-60) as 

L8 = i·(I/2Hfn)2(aJln:2aJln:- aJln:aJln:2J (IV-61) 

The necessary matrix elements elements are given by 

(n•n-ILaiKO) = C.(2/2·(PK)2- 2/2·(Pn)2) (IV-62) 

('n:•no I Lei K+) = C·( -2·(Pn• )2 • 2·(Pnol2 l (IV-63) 

<n•'l I La I K•> = c ((41/3)(PK)2- (61/3)·(P'1)2 • (2!/3HPn)2J 

(IV-64) 

(1(+<PIL8 1K+) = c-((4/273·(PK)2- (4./2/3 ·(P1()2) (IV-65) 

We may combine these amplitudes with our knowledge of the axion 
mixing angles to relate the axlon amplitude to the 1'11=1/2 K=decay 
amplitude. Using this relation and that (Pa)2"' a, we find 

(1(•a I Hwk I K+) "' <n•1(-l Hwk I K0)·(m2cm21()·1.( -~a1(o·m 21(/ /2 

+~aT[ ·(2·m2K + m2n)1/6 + ~a<jl' ·(m2K- m21()·(2!/3)) 

(IV-66) 
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Neglecting terms of order (m2rrfm2K), this result simplifies to 

<:n:'aiHwkiK')"' <n'rr-IHwkiK0)·{~8'Tl·(2·1/6) • ~a.p··(21/3)} 

"' <n'rr-1 Hwk I K0
) - 12 -I ~a.pl (IV-67) 

where ~a<P is just the mixing with the two flavor isoscalar previously 
considered. Hence, a bound on this amplitude directly complements the 
bound on the isovector mixing. From (IV-51) and (IV-55), we have 

<rr'aiHwkiK')"' <rr'rr-IHwkiK0)·{(/2/3 -;..8 • (21/3)-;..0 }-(fn/f) 

(JV-69) 
"'<rr'rr-1 Hwk I K0)·{(/2 J..s}·(fn/fl 

Therefore. we compute the result for the branching ratio for axlon 
amplitude 

B(K' ->art') ; (P /P nl · {f(KO.,n' rr-)/r(K' ->a II)}·{ (/2 J..g)2-(f n1f)2 

(IV-70) 
; 2.9. 10-s ·[J..s)2 

Using the mixing parameters given in (IV-57), one sees that the 
branching ratio is very large. Our calculation is based on the chiral 
structure of the t>J;J/2 amplitudes and should be a good estimate for 
the expected rate. Even the predict ion based only on the short distance 
enhancement of the current-current amplitudes, which is weaker by two 
orders of magnitude, would give a strong bound on this amplitude. 

Although there is as yet no real experimental bound on the process 
K'->arr'. a-.e'e-. it is clear that the situation for variant axions is 
extremely precarious. As we will see in the next section, nuclear 
de-excitation experiments give similar discouraging results for the 
existence of the variant axion. 
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V. Variant ax ions and nuclear de-excitations. 

Ax ions can cause the decay of an excited nuclear state, N". to its 
ground state, N. A general discussion of the formalism for calculating 
the ratio of the rates of axion and photon de-excitation of a nuclear 
level is contained in the paper of Donnelly et al [34]. Basically, because 
the axlon Is a o- excitation. It acts as a "magnetic" photon. Thus the 
ax ion rate, r a• can be computed in an analogous way to the photon rate, 
rlf. by using standard multipole techniques [35]. Many of the details of 
the precise nuclear wavefunctions disappear when one considers the 
ratio ralfl). Furthermore. since the transition energies to be 
considered are much smaller than the typical nuclear Fermi momentum 
(kF "' 250 MeV). one may evaluate the multipole operators in the long 
wavelength limit In this case the ratio, ralrlf. depends essentially 
only on some static quantities describing the coupling of axions and 
photons to nucleons. 

We reproduce below, for the case of Ml transitions, the relevant 
formulas for rafrli obtained by Donnelly et al [341. one finds for 
isovector M 1 transitions 

ratrli; (1/2)-((;;t.x)·(k/k)l·[p{llf(JlC\J_'Tl{ll)J. M; 1 (V-1} 

while for isoscalar Ml transitions one has 

f/fli; (l/2)·((;;f<X)·(k/k)3-[pWlf(J1WLT]{Ol)J. M; 0 (V-2) 

Here ka and k are the momentum of the axion and the photon in the 
transition and ;;; is the relevant scaled effective coupling squared of 
axions to nucleons 

;;; ; g2nNN·(frrlf)2/4rr (V-3) 

where grrNN is the pion nucleon coupling constant Numerically, one has 

;;;;"'"' 2.33·10-4 (V-4) 

The parameters )l(Tl, TJ(T), and p(T) (T;Q,I) are related to the coupling 
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of photons and axions to nucleons. Since one is dealing With a magnetic 

photon transition. Jl(T) is related to the magnetic moment . while Tl (T) 

is related to the ratio of the convection current contribution to that of 

the magnetization current contribution [34)[35]. Specifically, one has 

Jl'"' " Jlp • Jln "' 0.88 

Jllll" Jlp- Jln" 4.70 (V-5) 

T\101 " I / 2 

while Tl"' depends on the specific nuclear transition considered. 

However, typically Tl''' « Jl'" and we shall neglect it in what follows. 

If one writes an effective axion- nucleon Lagrangian as 

LaNN" i·(I/2)·Nll5 !g'"1 • g111 t:
3

]N ·a (V-6) 

then the parameters p(T) are given by the equation [34] 

g(T) = (f ,,Jf)· p(T) · gnNN (V-7) 

To compute nuclear de-excitations of variant axions, we need, therefore. 

to ascertain what the p(T) parameters are. We shall see that p'0' and 

p111 are simply related to the mixing parameters "As "' 13 "As and "A3 of 

the preceding section, see Eqs(IV-55),(1V-57). 

To compute the effective Lagrangian (V-6), we remark that, 

neglecting terms of O(ml!m;r2), the current J contains only physical 

ax ion poles (Recall the result (IV-46)). Therefore the matrix element of 

JJl between nucleon states will allow us to compute directly the 

coupling constants g'"' and g111 , since the pseudoscalar form factors will 

be dominated by just the axion pole. Let us write in all generality 

<N I JJll N) "\J(p')l!ill )Ills G'"'A(t) • i·(p'-p)Jlli5 G101p(t)l(l/2) 

(V-8) 

•[iliJllis (311lA(t) • i (p'-p)Jllis G111p(t)]·(t:3!2))U(p) 
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The pseudoscalar form factors dTlp are dominated by the ax ion pole and 

measure the coup I ing g(Tl 

dT)p(t)" g(T) f/(t • ma2) (V-9) 

The pseudovector form factors, g1ven the form of JJl in Eq(ll-14), are 

nothing but the usual nucleon pseudovector form factors multiplied by 

the mixing parameters, "As and "A3. That is 

(j!OIA(t)" "As·G'"'A(t) 

(V-I 0) 

G"'A(t)" "A3·G111A(t) 

Using the fact that the divergence of the J)l current is dominated by the 

ax ion pole one obtains, in the usual Goldberger-Trieman way [36], a 

relation for the couplings, g(T) in terms of dTlA(O), 

g!Ol "2·"As·GIOIA(O)·M/f 

(V-II) 

g111 "2·"A3-G' 11 A(O)·M/f 

Using the Goldberger-Trieman relation [36], 

G'liA(O)·M = fn·gnNN (V-12) 

and Eq(V-7), we identify 

piOJ = 2·"As-[G'OlA(O)/G'liA(O)] 

(V-13) 

p"' " 2·)\3 

There is no direct measurement for GA(O) experimentally. We shall 

therefore use a quark model estimate [36] for the ratio G'01A(O)/G1 "A(O) 

G'"'A(O)IG"'A(O)"' 3/5 (V-14) 

Since. for the models of interest for variant axion, As " 13 "Aa. we 
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obtain finally the result 

pw' = (5/3 /5)·t-a · 

(V-15) 
p' 1l = 2·1.3 

With these parameters fixed and Eqs (V-1) and (V-2), we are now ready 
to confront experiment. 

As mentioned in the introduction, there are two recent nuclear 
de-excitation studies which have bearing on variant axions. Savage et 
al [ 12) studied, in a very pretty experiment, the decay of the 9.17 MeV, 
2', T=l state of 14N to the I',T=O ground state. Calaprice eta! [13) 
reanalyzed the pair correlation experiments of Warburton et al [ 14), 
focussing in particular on the isoscalar, M I transition from the 3.58 
MeV, 2', T=O state of lOB to the 0.72 MeV, !', T=O state. In both cases, 
the presence of variant axions would give an additional source of prompt 
e•e- pairs, besides those expected from normal internal conversion. 
Furthermore, the angular distribution of the e•e- pairs for variant axions 
is significantly different from that of internal pair conversion, so that 
one can distinguish between the two sources of pairs even if the rates 
are comparable in magnitude. 

Using Eqs (V-1) and (V-2), one predicts for variant ax ion models 
(assuming ma"' 1.7 MeV) the following rates' 

i) 9.17 .. 0, t.T=I, 14N transition' rafr0 "' 2·10-5 ·(t-3)2 (V-16) 

ii) 3.53 .. 0.72, t.T=O, Ids transition' ratr'il"' 2.4·10-3·(1.8)' (V-17) 

The main difference in these rates apart from the f. factors comes from 
the large isovector magnetic moment in the l>. T= I transition. If the 
axlon lifetime is less than 10-1< sec, then savage et al [12) gives a 90% 
confidence limit bound on the rate, 

14N, cr tr ~) < 4·10-4 a o exp (V-18) 

which implies 
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t-3 < 4.5 (V-19) 

This bound on the t-3 is enough to rule out the simplest variant axion 
model of Ref [8) and [9), which had predicted t-3 "' 25. However. 
Eq(V-19) gives roughly an order of magnitude weaker bound on the 
isovector parameter, t-3, than that obtained by the SIN experiment [26). 

The reanalysis or the Warburton et al experiment [14), as done by 
Calaprice and collaborators [13), gives a branching ratio limit for axion 
lifetimes shorter than 10-11 sec, at the IOievel, 

10B, (rafr0 )exp < 0.75·10-4 (V-20) 

which implies that 

ft-8 1 < o.1a (V-21) 

This value or "a is about two orders or magnitude below what would be 
predicted by the model where t-3 was tuned to be small enough to escape 
the isovector bound of the SIN experiment. That is for the case of N=4 
and x "' 17 where we recall that we found the value for t-a "' -15 (c.f. 
Eq(IV-57)). Thus the combination or Doth or these bounds excludes the 
existence of the variant axions. Of course, the result (V-20) was 
obtained by reanalyzing an old experiment and one should be a bit 
cautious. However, if As were of the order of magnitude expected in 
the surviving N=4 model, one would have expected a rate or ralr0 "' 0.3 
which would have totally swamped the predicted internal pair rate 
r;r/r0 " 1.5·10-4 [38). So although the bound in Eq(V-21) may be too 
strong, a value of 15 should definitely be excluded. 

VI. Conclusions. 

The narrow e•e- signal observed at GSI motivated the construction 
of variant axion models. Because, in these models, the axion decays 
very rapidly to e•e- pairs. many or the previous bounds on axions are 
rendered irrelevant. Furthermore, by assigning the same PO charge for 
c and b quarks, one can suppress both the 'l' .. 'ila and y-.'ila decays. 
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Hence these models appear, at first sight, to provide a viable and 
Interesting way to solve the strong CP puzzle. 

In variant axion models the isoscalar and isovector properties of the 
axions, characterized by the mixing parameters A,; and A3, respectively, 
are not universal but depend on the individual model considered. It is. 
in fact, possible to have models where either As or A3 vanishes, so that 
no individual further experiment can be used ~ to rule out the 
existence of variant axions. However, as one can see from Eq(IV-38), 
(IV-55), and (IV-57). there Is a model Independent prediction for the 
difference between As and A3. For large x, one has 

(As- A3)2 "'N2·(x•l/x)2·(mul(mu•md))2 

(VI-I) 
"'(f/f:n:F·(mafm:n:)2·(mu/md) "' (25)2 

where the numerical result applies for the case in which ma "' 1.7 MeV. 
Because of this relation (VI-I) variant ax ion models are excluded by 
combining the recent results of :n: decay and nuclear de-excitation which 
require individually that A3 Jm!l As be less than about 0.25. Note that 
since the constraint (VI-I) is applicable for any variant axion model, the 
precise mass value inferred from GSI is not a particularly important 
factor In ruling out models with ma > 2·m9 . We wish to remark that 
the phenomenology of completely general axion models is sensitive to 
only three potentially independent parameters, the axion coupling to the 
up quark (z/f), the coupling to the down quarks (1/xf), and the coupling 
to the color gauge fields (r = N·(x• I /x)/f) through the strong anomaly 
which determines the axion mass. Even models with no direct axion 
coupling to the quarks (z/f = 1/xf =0) are strongly constrained because 
of the mixing induced by the strong anomaly of the quarks. 

The above considerations suggest that there is no window for ax ions 
to exist, whether standard or variant type, if the break down of the PO 
symmetry is intimately connected with that of SU(2)<>SU( I) scale. i.e. 
f"'250 GeV. Thus. if the solution to the strong CP puzzle is to be found 
by using an additional chiral symmetry, this symmetry most likely must 
be broken at a large scale, and the ax ion is of the invisible type. 
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