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Abstract

After describing the generat structure of variant axion models, we
examine the thecretical predictions for, and the experimental
bounds on, weak decay processes and nuclear de-excitations
involving variant axions. Although no individyal reaction alore
can be used to rule out the existence of varfant axions, we Tind
that the recent bound on the decay, m*-+ae*vg, in combination with
a baund for a AT=0 transition in 0B effectively exclude these
excitations.
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1. Introduction,

The existence of a narrow positron line in the produced positron
spectrum in heavy ion coliisions at GSt [1], which appears to be
correlated with an equally narrow electron line (2], has renewed interest
in axions. [n principle, If there existed an axion of mass near 1.7 MeV
produced nearly at rest in the heawy ion collision, its dominant decay,
a»e*e”, would then provide both a positron pesk and a correlated e’e”
signal. There are a number of difficulties with this scenario. First of
all, as has been pointed out by many authors (3], it is dqifficuit to
conceive of a dynamics which will produce axions nearly at rest and in
sufficient quantity to fit the GS1 observations. Secondly, very recent
observations [4] appear to indicate two, not one, correlated ete” signals
whose origin, obviously, is difficult to reconcile with a singie axion.
Thirdly, the excitation cbserved at GS| cannot be a standard axion [5],
since a standard axion with a mass as heavy as 1.7 MeV would have very
enhanced couplings to either charm or boitom quarks and so would be in
confiict with the existing bounds on ¥ » ¥a or T ~» ¥a [B].

Although it is unclear whether one can invent axion models which
can overcome the first two difficulties, it is possible to construct
variant axion models in which axions with mass near 2 MeV can exist,
without being in contradiction with the quarkonia bounds. These models
are of a type first suggested by Bardeen and Tye [7] and recently
rediscovered, motivated by the GS| phenomena, by Krauss and Wilczek [8]
and by Peccei, Wu, and Yanagida [9]. In these variant axion models, the
axion decays very rapidly into e*e” pairs (for the simplest model
discussed in [8] and [9], z{a»e’e™) = 610" 3sec). As a result most
previous bounds on axions are irrelevant for variant axions [10]. This is
true for most beam dump experiments done in the past, as well as for
the 12C de-excitation experiment of Calaprice et al [11], which are
sensitive only to relatively long tived axions. It is clearly important,
therefore, to ascertain if these excitations really could have escaped
detection up to now, irrespective of whether variant axions have
anything to do with the effects seen at GSI.

The purpose of this paper is to examnine the question of the viability
aof variant axlon models in detail. After briefly discussing the structure



of variant axion models in Sec [i, we examine in Sec Il} what bounds
exist on variant axions from weak decay processes, notably 7" -+ ae’v,
and K* » am’. To calculate these processes, we make use of an
effective Lagrangian technique in Sec IV which incorporates correctly all
the (approximate) symmetries present at the quark level. This section,
which is the core of our paper, also serves to clarify certain important
issues relating to the structure of axion interactions. in Sec V we
discuss the expectation of variant axion models for nuclear de-excitation
processes. There we comment particularly on the implications of a
recent experiment involving 1N [121 and on the reanalysis performed by
the Princeton group {13} of the old nuclear internal pair correlation
experiments of Warburton et al {i4l.  Our conclusions, which cast
serious doubt on the existence of variant axions are given in Sec Vi

[1. Variant Axion Models.

In the SW2)sU(1} electroweak theory, the Yukawa interactions
between fermions and doublet Higgs fields are invariant under an
additional global U(1) symmetry, provided one has at least two doublet
Higgs fields [15]. Such a symmetry, when imposed also on the purely
Higgs sector, allows one to solve the strong CP puzzie, since one can
show that the effective CP violating parameter

® =9+ arg det M (-1

vanishes [15]. If one has a theory where this additional PQ symmetry
exists, then the breakdown of SU(Z)eU(1} caused by the nonvanishing
expectation values of the doublet Higgs fields also causes the extra
global Upq(1) to break down. The associated Goidstone boson is the
axion. However, because the UpQ(l) symrmetry is anomalous in the
presence of the strong interaction, this excitation acquires a smali
mass.

The standard axion model [S} has precisely two Higgs doublets ¢ &,
and ®;. The model is constructed so that, automatically, there are no
Higgs induced flavor changing neutral currents (FCNC).  This requires
that &, couple only to the right handed charge 2/3 quark fields and &,
couple only to the right handed charge -t/3 quark fields. If i,j are

family indices and we iet Qp; stand for the left handed quark doublets,
then the standard axion couplings are given by

LYUKWG(SM. Axion} = I‘”ij 5“-0, qu + rd” ?iu-@z dH} + h.ec (”‘2)

Diagonalization of the quark mass matrices will automatically
diagonalize the Higgs couplings.  However, the above structure also
impiies that quarks of the same charge are treated in an identical
fashion.  Furthermore, ali that distinguished charge 2/3 from charge
-1/3 couplings, apart from quark mass factors, is the ratio of the
doublet vacuum expectation values:

% = {@2 /0 {1i-3)

To get an axion mass as large as 2 MeV, it is necessary that x {or x™7)
be large [71. This necessarily implies, therefore, that one has enhanced
couplings to all the charge 2/3 quarks (or all the charge -1/3 quarks)
and one runs into trouble with the quarkonia bounds [B].

variant axion models [8] [9], to avoid the quarkonia bounds, must
de-enhance the coupling of axions to both c and b quarks. Thus these
modeis will not automatically prevent the appearance of Higgs induced
FCNC. Retaining only two Higgs doublets [9], it is not possible to avoid
altogether these interactions but one can minimize the effects by
restricting them to the charm sector. If one is willing to complicate
the Higas sector sufficiently and impose certain discrete symmetries,
one can construct models [8] where no FCNC occur at all. At any rate,
the important property of variant axion models is that the axion has
couplings to quarks which, besides the usual mass factor, can differ for
quarks of the same charge. For example, one ¢an enhance the coupling
of axions to the u quark and de-enhance the coupling of axions to all
other quarks. Indeed, this is precisely the situation for the simplest
variant axion mode! considered both in [8] and {S1.

For simplicity, here we shall consider variant axion models with
only two Higgs fields, ¢, and ®,.  Furthermore, to avoid the FCNC
problems in the charge -1/3 sector, we shatl couple all charge -1/3
right handed fields to 9, {9]. Then the various different axion models



are characterized by the rnumber N of charge 2/3 right handed fields
which are coupled to ®, and they depend further on whether ug couples
or not to &,. Thus the variant axion couplings are given by
LYUKEWS(var. axion) = TU;5 Q0 ug » T9; Q@2 dj + he  (11-4)
and the different models are distinguished by what Higgs field Oj
couples to ug it To avoid the quarkonia problem, however, one must
always take the Higgs field coupled to cg as %, - i-z,0,. For three

families of fermions, there are three possible variant axion models with
the assignments detaited in Table 11-1 for ;-

- i ®i i { r
0 95 0y b, &,
2) o) o, &, o,
3) Ql 62, 6'2, @1

it is convenient to isolate the axion field in ¢, and &, as an overall
phase fietd, dropping the other quantum excitations. In the Zero charge
sector, the axion is orthogonai to the excitation that eventually gets
eaten by the 20 and it is easy to see [7] that one should write

o, '= (f':/ﬁ) iAo [
{oJ
{11-5)

0, = (/Y7 ) - ol-arxl . 10}
L1l

where x = f,/f, is the ratio of the Higas vacuum expectation values and f
I5 the scale of the breakdown of the weak interaction symmetries,

f=JTZ+ 17 =(/2Gp) /2~ 250 GeV (11-6)

Under a PQ symmetry transformation the axion field should just
translate,

a3+ & (i-7)

CoemtL L, e

A particularly convenient definition of the PQ symmetry in the quark
sector is one where Qp; is left invariant and the right handed quarks

fields transform sc as to insure that (11-4) is teft invariant. Hence
under a PQ transformation,
de N e—i{/x . dFlj
(11-8)
ugj > e ) - ug

where zj = x if the corresponding Higgs field in (11-4) is ®; = &y, but z;
= -1/% if the corresponding Higgs field is ®j = &, The PQ symmetry
current for the variant axion maodels is therefore

‘J}.IPQ = f.apa + (]/x)-z‘Nf Hﬂi'gpdﬂi + X'Z]N U_Fii'dpuﬂi
’ (11-9)
» (1) Ty M URi ¥ UR;

where Ny is the number of families and N is the number of charge 2/3
quarks coupled to @,. Clearly this current has a color anomaly [16]
which is only proportional to N

M, PQ = (1/2) N 1 /%) (ox g/ A) - 2, FOHY (11-10)
Obviously, besides N, it is important for the physics of the model in the

light quark sector to know whether the u quark couples proportional to x
or 1/% in Eq(I1-9).

Besides J pPQ, it proves useful to define another current, ."J'“, which
is anomaly free and contains the axion. In principle, an infinity of such
currents exist. However, the only interesting such currents, as Bardeen
and Tye have emphasized, are ones which have a soft divergence.  That
is, a divergence which vanishes in the 1imit as the light quark masses
vanish.  For our purposes it will suffice to consider here the case in
which only the u and the d quarks are considered as light. Then it is
easy to see that [7]
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:‘J'p = J}IPQ = (1/2)N-(x* 1 /%) (mg/(myrmgh) u ¥y¥su
3 (1-11)
+ (my/(my*mg))- d %‘ueisd }
has precisely the desired property. Its divergence
8kJ, u = = Mo 1/)(mymg/ (myrmg))-{ T li%s el 3285/ Ty
{11-12)

« T Li%s ol @ ¥s/xl)g y

vanishas as either my or my goes to zero. Here we have neglected the
effects of axion mixing angtes related to possible flavor changing
neutrai currents as they are constrained to be smati from the analysis of
charm decays [9].

For what foliows, it is convenient to explicitly indicate the axial
vector current content of 5},. Let us define, as usual, the isoscalar and
isovector axial currents as

Agy = (1/2)[u ¥¥sut 4 ¥),¥s dl
(i1-13)
Then the current J,\ can be written as
3'}1 =18+ Ag Agy + Az Agy ¢ heawy quark pieces {0-14)
The constants, Ag and Az, are modei dependent and read
Ag = (1/2){(z+1/%) - N-(x+1/%)}
(1i-15)

Az = (1/2){(z-1/%) - N(x+ 1/%) [{mg~m,)/(m g>m, )1}

Here, z = x, if the up quark in Eq{iI-4) couples to ®, or z = -1/x, if the
uR quark in Eq(11-4) couples to &,  Given that x will turn out to be
targe, for the axion to have a mass near 2 MeV, and that the light quark
masses give [17]

[(mg-my)/ (myrm )} = 0.26 (1-16)

it is possible to have models in which Ag vanishes or Az vanishes, but
both can not vanish simuitaneously. This remark will have important
phenomenological consequences.

11t Experimental bounds on variant axions from wesk decays.

The decay K* -~ am* provides a strong constraint on the standard
axion model. For my < 2my, the axion can only decay into two photons
and its lifetime is very long, of order (100KeV/mg)d sec for the standard
axion [7]. In these circumstances, the axion just gives, experimentally,
a missing energy signal (a = nothing). The most stringent bound for
these axions was obtained by KEK [18] with

B(K*~ w*+nothing) < 2.7-108 (im-1)

Although, as we shali see, it is difficult to retiably compute the
nonteptonic process K* - an®, for the case of the standard axion one has
a Penquin contribution, which gives a relatively safe estimate {19]

BPERQUIngE +5ar*) & 1076 - x2 (11-2)

Hence % must be smail to survive (i11-1).  However, an x = 1071 would
then lead one into contradiction with the T - a¥d bound (6], So a
combination of the K decay bound and the Y decay bound rules out the
standard axion.

For variant axions, since my > 2mg, the main decay channet for the
axion is now into e*e™. Furthermore, the lifetime of the axion is now
very short , and it is no ionger true that experimentaliy the axions give a
missing energy signal. If T5 = 6-10713 sec, as is the case for the
modets of Ref. [B] and [8], then the decay distance for the KEK
experiment wouid be around 2 cm.  The produced e'e” pairs would have
been vetoed in the setup of Ref [18), so that the bound in (HI-1) is
irretevant for the variant axions. To the best of our knowledge, there is
no relevant bound on the process K* » am*with a » e'e”, as yet! A



Berkeley experiment of a decade ago [20], which measured the process
K*» m*e*s™ and found

Bk sntete”) = (2.7:05)- 1077 (1t1-3)

could in principie provide some information, if reanalyzed. However,
the published data has a cul for mgte- > 140 MeV.  Simitarly, the
experiment of Yamazaki el al [21] at KEK, which obtained a bound

B(K*-m*anything) < 2-107% (111-4}

also had a cut on the recoil mass of Manything > © MeV. However, we
understand [22] thal experiments al BNL and KEK should in the pear
future be able to establish limits for the process K* -+ an* with a - e*e”
at the branching ratio level of 1075 - 10-7, Our thecretical estimates,
to be discussed in the next section, shouid be compared, therefore, with
branching ratios of this order of magnitude.

M. Suzuki [ 23] has pointed out another weak decay process which is
of importance for variant axions: T* - a e’v, followed by a »+ e*e™. A
rather stringent bound for the process ¥ » e*ee’v,

B(r » e'e7e’v,) < 5-1079 (-5

was established a decade ago at DUBNA [24]. From a reanalysis of this
experiment, it would be possible to infer a bound on the 7" » a e’y
decay, but this bound would be strongly dependent on the axion lifetime.
Fortunately, very recently, in an elegant experiment at SIN, the process
7" » e’e’e'vy has actually been seen [25].  The observed branching
ratio

Bl + e"¢"e"vy) = (3.440.5)-1079 (in-6)

is slightly below the bound of Eq(IlI-S) and is in agreement with
standard expectations. Furthermore, an analysis of the e*e” invariant
mass distribution can be performed to set a bound on the T*»a evy
decay mode. This analysis has now been completed, giving a branching
ratio bound of the order of [26)

B(n"~a e'y,) < (1-2)-10-10 (1=7)

provided the axion tifetime is sufficiently short (T, < 107! sec). As
we shall see in the next section, this bound is very restrictive for
variant axion modsls.

Iv. Theoretical considerations on weak decays involving axions.

Branching ratios for the processes K* + an® and m* » ae’vy can be
estimated rather simply by using the fact that the axion, at some level,
"mixes” slightly with the 70 [27).  Let us consider, for instance, the
decay 71* + ae’v,, which is somewhat simpler Lo calculate because it is
a semileptonic process. To compute the decay rate for this process, one
needs to know the matrix element of the charged current, J-}J, between
an axion and a 70" state. If we denote the mixing angle between the w0
and the axion as &4y and proceed naively, then we expect the relations

@l |75 % By <O Iy [0 = VT Ly (pyeprd)y (iv-1)

The second line fallows, since only the f, form factor is nonvanishing
for the pion matrix element. A simple calcuiation then gives a formula
for the rate

Tt »ae vy} = (38473 (G )2(m )3 (£ )2 (Iv-2)

The mixing angle &y, can be taken as the fraction of the isavector axial
current Az, present in jll’ modified by the ratio of the pion to axion
decay constants, fq/f.

Era = Az (/1) (tv-3)

Using Eq(1V-3) In Eq{1V-2), one oblains a sizable branching ratio for the
process " » ae'vg in variant axion models.  For instance, in the
simpiest variant model considered in Ref {8] and [9], one has N = 1 and
z=x% 70, so that Az ~ 26. This value implies a branching ratio



R}

Bsimp]est(ﬂt’a e+ve) = 2 10-5 (IV"“)

which is four orders of magnitude above the SIN bound (11I-7)1  Clearly,
If the above estimate of the J-y matrix eiement (Eq(Iv-1)} and of the
70-a mixing (Eq{IV-3)) are correct, then the only tenable variant axion
models are ones where the isovector mixing parameter X3 is suppressed
by about two orders of magnitude below that found for the simplest
case. Although such models exist, they require one to have N = 4 and so
one needs more familiss than we presently know with PQ couplings, or
they require some other mechanism for producing a large color anomaly
in the Higgs sector.

Because the bound obtained from the process, W' -+ ae'Ve, is so
strong, it is imperative 10 make sure that the above estimate for the
branching ratio is mot in error.  We will see that, in fact, the result
obtained above is correct. However, it is important to analyze this
process (and also the process, K + ant’) with some care, since there are
a number of questions which tend to cast some doubt on the simple
minded treatment used to obtain the above bound. Two such questions
immediately come to ming: )

i) If it were not for the axial anomaly, the axion would be a
massless Goldstone boson.  Therefore, the axion should decouple at
zero momentum. S0, why is the matrix element in Eq(iv-1} not
simply proportional to the axion momentum, pa, only?

ii) The current, jﬂ, which contains the physical axion and is
anomaly free, has a divergence which is purely isoscalar (c1.
Eq(I-12)). How is it possible that there should be any
communication between the low energy coupling of the physical
axion and the physical @7 Doesn't the mixing angle, Lyr,, actually
vanish?

To answer these questions, one can systematically study the low
energy theorems associated with the current algebra of the axion, or
alternatively one can give a general soiution to the current algebra by
constructing an effective Lagrangian involving pions and axions {or 7's,
K's, and axions) which reflects all the symmetries present at the quark

12

level. This effeciive Lagrangian can be used to compute all the decay
amplitudes.  Such an approach was used by Bardeen and Tye (7] and by
Kandaswamy, Salomonson, and Schechter [28] to compute standard axion
properties and, more recently, by Georgi, Kaplan, and Randal! to compute
some properties of invisible axion models [29]. We will find it also to
be very useful to examine the variant axlon models.

We want to construct an effective Lagrangian for pions and axions,
including the effects of the weak interactions, which reproduces the low
energy dynamics of the standard model augmented by a PQ symmetry
[15]. Before constructing the effective Lagrangian, it is important to
understand the full global symmetry structure at the quark level. The
variant axion models discussed in Section Il are described by the
following fermion-axion Lagrangian,

L= GL[lth]QL + IL{IUD}LL + ﬁ“ﬂ{i'b'-D}uR + ERIIZD}UR + ER[IKD}QR
S M iZal Ty, T M alaful . -
UL{HU e }UR h.c. GL{”d 4] }dR h.c. (IV 5)
- T iMge 22 Neg + ne. + (172)(8 @)

where {Dy} are the covarfant derivatives for the SU(3)-esU(2)elX 1)
gauge interactions of the standard model and My, Mg, and Mg are fermion
mass matrices with the family indices being suppressed.  The axion
couplings are model dependent with the elements of the matrices, z,
being x or -1/x for up quarks and 1/x or -x for leptons. The axion
couplings are clearly directly related to the structure of the right
handed fermions. '

The physical structure of this Lagrangian may be examined if we
first diagonalize the mass matrices for the fermions. The mass
matrices for the up and down quarks can be put in the form,

- +
”u = Bu'mu'cu
V-6
] \ (Iv-8)
Mg = BymgCy
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where m,, and mg are the diagonal quark mass matrices and By and Cy
are the necessary rotations In flavor space.  we diagonalize these
matrices by making the following transformations on the quark fields,

ug - CU Up, Yy - BU U

(v-7)

In the standard axion model, all reference to the mixing matrices
disappears from the Yukawa terms and the only physical dependence on
these matrices is in the combination B,*-By which is just the K.M.
matrix for the W* interactions. In variant axion models, mare of the
mixing angles become physical as the Yukawa interactions are not
independent of C,,. After diagonalization , we have

L Yukews - - UL{mu-Cu+-ei'2'3/r-Cu]uR +he. - '&"L{md-ei'a/xf}dn + he.
- 'L_L{me'ei'z'a/ f}eH + he. {1v-8)

where we have presumed the lepton mass matrix to be diagonal.  The
physical mixing angles in C, are responsible for FCNC interactions and
are strongly censtrained by the charm decays [9]. We will ignore their
effects in our subsequent discussion,

The relevant symmetries can be seen by examining the Lagrangian in
(Iv-5). As in Eq{11-9), the PQ current may be written in terms of the
right handed rermion currents

I P4 =182 ¢ Uglz B Jug + Gl "8 g + Bplz ¥ deg  (Iv-9)

The PQ symmetry [15] is spontaneously broken at the same time as the
SU(2)8U(1) weak symmetry breaking by the non zero vacuum expectation
value of the Higgs fields, <®,»> and <9,>. The concomitant Goldstone
boson is massless in the absence of the nonperturbative QCD
interactions.  The axion Lagrangian (IV-5) has additional right handed
symmetries if some of the quarks may be considered as massless.

Taking the Tirst family of quarks to be massless, we have the freedom to

rotate independently the corresponding ug and the dg fislds

up - ol o "Up

. (Iv-10)
dg> el P g

and the currents which correspond to these symmetries may be written
as isoscalar and isovector currents as in (11-13)

AS].l = El—ﬂ BIJUH + ER Zj.ldﬁ
(Iv-11)
A3u = UH BIJJ.UH - dR Kde

The effects of including the strong interactions are two fold.
First, non trivial condensates of the light quarks form in the physical
vacuum of QCD,

by dddy=0. (Iv-12)

These condensates induce a spontaneous breaking of the global
symmetries (IV-10), producing (apparently) two additional Goldstone
besons in the neutral charge sector, the 7@ and an Isesinglet excitation
we shall call ¢0. Second, when the full strong interactions are
included, the isoscalar current is no longer a good symmetry current.

indeed, this current has an Adler-Bell-Jackiw anomaly [16] associated
with the color gauge fields,

This anomaly combined with the QCD vacuum structure implies there is
no symmetry reason for the P0 meson to remain massiess. In fact the
situation is more complicated due to the presence of the PQ symmelry.
The global PQ symmetry is also broken by the same anomaly as given in
(II-10).  However, the strong anomaly cannot break independently both
symmetries, and a linear combination of the PQ current and the isoscalar
quark current remaing conserved. It is easy to see that the current



2= 9P - QNG /%) Agy (Iv-14)

does not have a strong anomaly and is conserved along with the tsovector
current in the limit that the light quarks remain massless. Hence, we
expect to have only two true Goidstone bosons in the symmetry limit,
the physical =¥ and the axion. The presence of mass terms for the light
quarks breaks both of these remaining symmetries. However, this
symmetry breaking is much weaker than the breaking caused by the
strong anomaly, (mq- >> my0).  Hence, the mixing between the pion and
the axion can be determined by studying the chiral limit, my,mq =+ 0, as
emphasized in [7l.  The interplay between these three symmetries will
be evident in our formulation of the effective Lagrangian to be discussed
below.

The structure of the axion couplings can be explicitly exhibited at
the quark level by making a local, right handed gauge transformation to
remove the axion field from the Yukawa interactions. This trans-
formation is accomplished by rotating the quark and iepton fields,

ug e-i—z-a/r ™

dg - o 1 g (iv-15)

e+ e 1291 o

in making this transformation we must be careful to account for the
anomaly structure of the fermions.  The naive transformation removes
the axion fieid from Yukawa interactions and gererates derivative
interaction from the kinetic terms for the fermions. The anomalies
produce additional, nonderivative interactions which can be computed
from the known anomaly structure of the fermion toops {16]. We obtain
the following Lagrangian equivalent to (IV-S) ignoring the right handed
mixing angles associated with FCNC,

16
L = Q (iDla + T (IOl + Uglio-Dug + TplizDldy + epflizDleg
- G imylug + he - G fmgldg + hc. - I {mgleg + he.
+ 1 1uglz Mg Bya + (xN)"dgl-BHldg 9 (Iv-16)
B t-1-eglz¥Mlegda + (1/2)(38)
» a{trl2/1] + trgl 1 /xfTH(ocg/8TOF2  FOHY)
+ 2 -{(4/3)tr /1 + (173)r g1 /%11 + trglz/M-(1672) (8, BHP)

where F2,, is the coior gluon fieid strength and By is the field
strength of the (1) weak gauge field coupled to the right handed
fermions,

By = e-(FyMP~(g' /01 F 4P (v-17)

Faor the standard axion, it is this jast term which is used Lo compute the
decay of the axion to two photons. From the form of the Lagrangian in
(Iv-16), we see that the axion has only derivative coupling to hadrons
except for the anomaly coupiing to gluons which will obviousty generate
only flavor singiet interactions. We will see that it Is, in fact, the
derivative interactions which are responsible for the mixing with the
pion and give the strong constraints from pion and kaon decay. We also
remark that the Lagrangian in (IV-16) can be used to demonstrate the
decoupling of the heavy quarks-as their derivative interactions with the
axion can only generate a small renormalization of the kinetic energy of
axion, or terms which are highly suppressed by powers of the heavy
quark mass. The real effect of the heavy quarks on the low energy
theory onty comes through the contribution of the anomaly.

We now return to the formulation of our effective Lagrangian. This
Lagrangian represents the full interactions of the axions and mesons as
expanded lo lowest order in the meson momenta Or masses. The
effective Lagrangian contains three separate pieces. There is a chiral
Lagrangian term describing the W(2)8LX(2) invariant strong interactions of



the 7 and 90 fields plus a kinetic term for the axion,

Lopirat = (179015002 tr{BU"8HU) + (1/2)-8 jadHa (1v-18)

where the chiral fietd U is given by

U = exp{ i-{(z-7 + 90)/7 g} (Iv-19)
Clearly Eq(1V-18) is invariant under global U(2)eU(2) transformations,

U-g Ugy (1v-20)
and under a global translation of the axion field,

ara+if. (v-21)

The slectroweak interactions c¢an be introduced into Eq{IV-18) by
replacing the derivatives by the appropriate covariant derivatives.
According to our discussion at the quark level, even after this is done,
the theory should still be invariant under three chiral (1) symmetries.
It is easy to check that the substitution

dyU~DyU=yu + i(1/2)-gT-WyU + i1/6)g" Yy U
(Iv-22)
+ iy U [-2/3 0]
L o 1/3]

which introduces the electroweak interactions for the U field, still
preserves the (U(1))3 symmetry in the effective Lagrangian,

Loniratswi = (1/4(T02 tr{ (D W)@} } + (1/2) 83082 (1v-23)

That is, Eq{IVv-23) is still invariant under the restricted set of
transformations (IV-20) where

iR = fel 017, g <! . (1y-24)
lo el

and is obviously alsc invariant under (1V-21}.

In addition to (IV-23), the effective Lagrangian must contain terms
which incorporate the effects of the chiral anomalies and terms which
reflect the Yukawa interactions at the quark level. Let us logk at this
last term first. = For the models under consideration, the interaction of
Eq(l1-4) for the light quark sector reads effectively,

Lingss = - My(0 e 2T ug) + he. - my(d e"/%T gg) « hc. (1v-25)

where z = % or —1/x depending on the particutar model considered. This
interaction no longer preserves the two U(1) transformations of
Eq(1v-10), but it does preserve the PQ symmetry, provided that up and
dp respond appropriately (c.f. Eq 1i-8). Thus, we may include the effects
of the Yukawa interactions in the effective Lagrangian by adding a term
which explicitly breaks the symmetry in an analogous way to (1v-29).
Since the U matrices are the unique, nonderivative fields which have the
samne chiral transformation properties as the quark mass operators, the
Yukawa interactions are represented by

Linass bresking = (/2)v- tr{UAM « 11" A"U') (1v-26)
where M=[m,; 0] (Iv-27)
Lo de
and A= [ehZ9/ gy (Iv-28)
| o ela/x]

The parameter v is related to the scale of the spontaneous chiral
symmetry breaking. Clearly (1V-26) is invariant under the PQ symmetry
transformation,

a-a+&f (1v-29)

and )
u-u- [e"2% 0} (Iv-30)
Lo e t/x]
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This interaction, however, is not invariant under the transformations
{Iv-24). Thus, two combinations of the Goldstone fields, a, ¢9, and m®
will acquire masses from this term in the effective Lagrangian. A
linear combination of the neutral meson fields remains massless and is
the Goldstone excitation associated with the naive PQ transformation.

The final piece to be added to the effective Lagrangian is a
term which incorporates the anomaly structure of the quark theery. For
the heavy flavors, we have exhibited, in Eq(Iv-16), the axion anomalies
which are induced by the quark theory. There are anomalies associated
with both the weak and the strong gauge fields. For the processes we
wish to consider, oniy the strong anomalies contribute and we will
ignore the weak anomaly contributions.  Using Eq(IV-16), we obtain
from the heavy quarks,

Lanomaly(@) = @ -{trylz/1) + trof /x0Tl (ocg/8R)-(F2,, 21V}
(Iv-31)
= @ f Ny (% 1/%)} (o /8T0)-{F a)WF'BJJV}

where Ny is the number of heavy quark families with PQ couplings, z = .
The effective Lagrangian must also reflect the strong anomalies of the
meson fields as indicated by the anomalous divergence of the isosinglet
current in Eq(Iv-13).  This anomaly may be determined in a manner
similar to (IV-31) with the result

Lanomaly(9%) = $°2/ 1) (oxg/ Br0)-(F 3, F 21V} (Iv-32)

The strong gauge fields may be integrated out with the effect that the
strong anomaly contribution is effectively @ mass term for the meson
fields which muitiply F-F.  For the case at hand, this procedure gives
the anomaly term in the effective Lagrangian

Lanomaly = = (172)mg? {90 + (1/2)- (1o /M {Ny(x 1/x))-a (1v-33)

Since the mass parameter, mg, must be large to produce the physical
meson mass spectrum, the combination of fields appearing in (IV-33)
effectively decouples from the low energy dynamics. The orthogonal
cornbination of 99 and a
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@ = (12 - (1/2) TNy (x 170190/ T (1v-34)
does not feel the effect of the strong anomaly. In the absence of the

Yukawa interactions, but including the Tull weak interactions and the
strong anomalies, both @ and 7® - in the neutral sector - would be

massless.

The physical meson states and the mixing parameters may be
determined from the meson mass matrix which can be obtaired by
expanding the Yukaws interactions (IV-26) to second order in the meson
fields and adding the contribution of the strong anomalies (IV-33). In
the charged pion sector, we find

Lygsgtcharged) = - (f5)72 (mp+mg)-v - 7" (1v-35)
which identifies the parameter, v, as

v = (fem 2/ (m +mg) (1v-36)
The mass terms in the neutral sector read,

Lasstheutral) = - (1/2)-{(f,-m)2/(m+my))

Ay [0/ 90/ 20/ 112 + g =70/ 1+ 9O/ 1 -/ xT12)
= (1/2)mp2 (99 + (1/2)-{15/1)- Ny (x+ 170} a2
= - (1/2)my2-(my,/(mrmg)- [n0+90-a-(z-1/1)1 (1Iv-37)
- (1/72)mp2m g/ rm ) [-m0+@O-a {1 /x1))2

= (1/2)mg2 (90 » (1721 /0)-{Ny (x+ 1/x)}-al?

Since mg >> myy, the mass matrix can be easily diagonaiized to give the
axion mass,
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mg? = My (f/ D2N-(x+ 1/%)2-(mym g/ (myrm g)?) (1v-38)
and the axion mixing parameters,

Earg = Az (/DA + my2/my 2l
(1v-39)
an) = }\s'(fﬂ/f)

where N is the total number of PQ families { N=(Ny+1) if z=x and N=Ny if
z=(-1/x} ) and Az and Ag are as given in Eq(11-13),

Az = (172)4(2-1/%) = N-(x+ 1/%)Km g )/ (mg+m )}
(Iv-40)
Ag = ~(1/2)Ny{xr 1/%)

These are essentially the results for the mass and mixing parameter as
given by Bardeen and Tye [7). The m-a mixing parameter of Eq(1V-39) is
precisely that of Eq{Iv-3) apart from a tiny correction of order
(maz/mn'z).

The principal strong and weak interactions of mesons are described
by the interactions contained in the chiral Lagrangian of £q(Iv-23). The
couplings involve only the m® and 90 fields and have no explicit
dependence on the axion field.  Therefore, the axion couplings are
generated by the mixing with the meson fields as determined by the
mixing parameters of (1v-39) and the relations

0 Trophgs * Lart 2phys
90 % 99 i * Eag 3pnys (1v-41)
x - . - Qe
a % aphus ~ Lae Cphys ~ Lag Ppnys
There will be corrections to the results obiained by this procedure of
order (my2/mg?). If we use the obvious generalization of this
procedure to inciude the strange quark as one of light quarks, then the

predictions should then be good to order (mnzlmn-z). The mixing with
the 70 is described with sufficient accuracy for our purposes by the

22

calculation given above.

The calculation of the process 1r* - ag*v, Is now straightforward,
using the effective Lagrangian given in Eq(IV-23) with definitions in
(1v-22). As we have discussed above, there is no direct couping of the
axion to the W* and the weak decay proceeds through the mixing with the
78, as there is also no coupling for the ¢° in this amplitude. The mixing
gives the following amplitude

AT 530" pg) = £y AT 108 v Jpyco = py) (1v-42)
= Ean’GF [ (P-J-( + pa)jl U(pp)xp(l '35) V(De) l

Here, as usuat Gp is the Fermi constant, Gp = g2/8M%, =1//2 12, This
amplitude gives the rate quoted in Eq(iv-2).

We can now make some comments on aspects of the effective
Lagrangian solution to the current algebra. We first consider the role
of the 3}1 current for studying the properties of axions. it was
constructed from the PQ current by using a particular combination of the
light quark currents which cancels the strong anomaly. It is dominated
by the axion pole and its conservation implies a massless axion. The
structure of the currents can be seen explicitly using the effective
Lagranglan to express them in terms of the meson currents, The PQ
current becomes

JP9 = 182+ (172 @1/ 158,90 + (Z-1/%) 1y @m0 (1v-43)

This is just a transcription of E£q(I1-9) in which the roles of the
isoscalar and isovector currents are given by

- 0
Agy = T8y ¥

Ag

{Iv-44)

= 0
= T8, 70

H K

Using these identifications the anomaly free, soft current 311 of Eq(11-4)
is simply
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Jy = 18ya » Mg 90 + Az-1y B, (1v-45)

Of course, any linear combination of the currents, A3p and 3“, is
anomaly free, and both currents are conserved in the chiral limit
my,mq*0. However, when the chiral symmetry breaking from the Yukawa
interaction is included, it is clear that fJ"u is the axion current for two
closely related reasons:

1) The divergence of 31, is soft, i.e. it vanishes in any of the
symmetry limits for the axion, my or mg -+ 0.

i) Expanding the 'J"JJ current in terms of the physical fields, we
see that it has essentially only an axion contribution.

jj.l = fapaphgs - (ma/mﬁ)z?\s‘rn’apﬂophgs (’V"‘Iﬁ)
The pion component is suppressed by the small axion mass.

This discussion hopefully clarifies an essential point raised at the
beginning of this section. it is indeed true that the current, fJ'JJ, has an
isoscalar divergence and that this current is dominated by the axion
poie.  This, however, does not mean that there is no T-a mixing as
described by the mixing parameter, £35r.  This mixing occurs for the
chiral invariant interactions, while the properties of the divergence of
the current relate to the interactions which involve symmetry breaking.
The weak processes we are considering are all related to the chiral
invariant couplings of the 1® and the axion.

In view of the above discussion, there remains a smatl problem of
principle to clarify connected with the first query raised in the
beginning of the section: why is the pion decay amplitude (I1v-42)
proportional to (py + Pa)p and not only to the axion momentum py as one
might expect from the low energy theorem associated with the almost
Goldstone nature of the axion. We note that in the chiral limit, both the
70 and the axion should be exact Gotdstone bosons as the explicit weak
interactions should not break the chiral symmetry. Hence, it should be
sufficient to study these interactions at purely the pionic level.

24

To understand the point it is necessary to write out a bit more of
the structure of the weak vertex for the pions as we have kept onty the
leading terms needed for our calculation. From the Lagrangian given in
{1v-23), the full pion - W boson interactions are given by

Lo = (l/2)-gAfﬂ-w‘ﬂ-ei'(“°/fn) -{apﬂ+ - w8 (/)
(Iv-47)

The non derivative interaction term involving the m® appears as a phase
which reflects the chiral structure of the left handed current.  This
phase can be removed by a point transformation of the ™ field

Y ALY (1v-48)

With this transformation, the Lagrangian really involves only the
derivatives of the 7@ field :

Ly = (1720 Wl L8 5* - 2:000°8 0 | (1v-49)

A similar transformation at the quark level in (IV-16) was used to make
all interactions of the axion into derivative coupling except for the
anomaly terms which contribute effectively only to the meson mass
terms. Of course, the transformation (1V-48) also affects the purely
strong interaction terms in the effective Lagrangian ([V-23), giving an
additional term

AL = i BMRO/1)-(r78 m" - '8 m") (1v-50)

In
Ore can check, explicitly, that (Iv-50) and {[v-49) give the same
physical amplitudes for W interactions as (1v-47), as they should since
the S-matrix elements are unaffected by point transformations at tree
levei.  Although the transformed Lagrangian involves only Suzro, and
therefore through mixing only apaphgs, the presence of the trilinear
coupling (Iv-S0) gives an extra contribution to the amplitude for
m*+ae'v,, involving an intermediate pion pole.  The charged pion
propagator is also proportional to py-py and this cancels oul the py
factor in the numerator, yielding a result consistent with the previous
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calculation.

Let us turn now to the process K* -+ am*.  This reaction is
considerably more difficult to estimate than the decay 1t* - ae’vg, since
the processes it is naturally related to, K* » w*n® and K* = 70 Nyjrtyal,
are both nonieptonic decays. A number of approaches exist already in
the literature to compute this rate for the standard axion [30]. Here we
shall try to estimate the rate by using a chiral Lagrangian for the weak
decay involying the meson nonet, supplemented with appropriate mixings
of the axion with the n®, 1, and 7',  Although there is considerable
uncertainty in our estimate, it is important to get at least an order of
magnitude idea of the expected branching ratio as this process provides
complementary information to the decay 7m* - ae*vy.  This latter
process, as we have seen, measures essentialiy the Isovector mixing of
the axion, Az. This mixing, because of the SIN experiment [26], must be
much below what is expected in the simplest axion modets {81[9]
requiring a delicate cancellation to take place in Eq{li-15). However ,
ir Az nearly vanishes, then it is not possible to also get the mixing of
the axion with the m or ¢ (essentially the Ag coupling) to aiso be small.
This means that the process K* » an*, proceeding through the m,9-axion
mixing, could provide an additional independent constraint on variant
axion models and indeed serve to rule out these models.

To pfoceed with our model calculation, we need the mixing of the
axion with the pion and the eta and the singlet isoscalar ¢ = 7°,

ana = (rﬂ/f)-?\3
Lna = Ug/Ng ' : (v-51)

To compute the miging angies, we can proceed in two aiternative ways.
Either we construct a U(3)®U(3) chiral Lagrangian and proceed as before
to compute the mixing by diagonalizing the relevant 3x3 mass matrix
analogous to (IV-37), an approach taken in the last reference of [30],

Or more simply, we can extract Az, Ag and Ag by considering the current
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3}1, appropriate to three light flavers, analogous to {(1i-11). This latter
route is much more efficient, since the generatization of £q(li-11) is
immediate.  One defines the current
3';1 = JpPQ = (1/72)N(x 1 /%) (mymgrmmg +mymg)~!
_ _ . {Iv-52)
{ mdms u‘b’p‘éfsu + mumsd '5’}185(1 + mumds 3’”555 }
In terms of the light quark currents,

A3j.l = (1/2)'(U3}135U - H?fp'a’sd)

Agy = (I/2ﬁ)-(u2ﬁ’”85u rd¥

u¥sd - 2's ¥, ¥58) {(Iv-53)

AO].! = (‘/E)(UquSU * Eﬁub’sd * 33}1355)
one may rewrite J; as
Jp=18ya+ Az Az * Ag -Agy * Ng Ay (1v-54)

The parameters, {A}, are easily identified. Since mg >> my,my, one can
read of T the approximate values from the structure of the current

Az = (1/2) 1(z-1/9) - N-(x+llx)-(md~mu)/(md+mu)]
Ag = (1/2/3) Hz-1/%) - N-(x#1/x)] (1v-55)
Ag =V 176 4z + 2/% - N-(x+1/x)}

The SIN bound (111-7) puts a very strong constralnt on Az.  Since
(mg-my)/(mq+m,) = 0.26, it is clear that the only model consistent with
the SIN data would be one with N = 4 and with z = ¥. The combination
N-x, furthermare, is determined from the axion mass {c.f. Eq(1v-38)),

m, % 25°NX Kev (1v-56)

Using the value inferred from the GSI experiment [1],[2] would give an
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axion mass, my = 1.7 MeV, which implies for N=4 that x = 17. This
determines X3 = -0.34 which is marginally consistent with the SIN
bound [26]. However, we are then able to predict the value of Ag:

Ag ® (IVZyag = (11T g = -(V3/2)x = - 15 (1v-57)
which will give phenomenological troubles for variant axions.

with the mixing angles determined by (IV-51) and (1V-35), we must
now find the appropriate effective Lagrangian to describe the AS=1,
nonleptonic K-meson decays. The construction of this effective
Lagrangian is complicated by the large enhancement of the Al=1/2
component of the interactions. It is expected that this enmhancement
will also enhance the processes involving axions. The f{undamental
interaction is the current-current interaction generated by W-boson
exchange. However the strong interactions renormalize this interaction
and cause a mixing of the operators participating in the interaction.
when the short distance QCD corrections are inciuded, there is the
expected enhancement effect which increases the Al=1/2 components
and decreases the A{=3/2 components, but only by a factor.of 2-3
generated by the usual mixing [311.  This effective Lagrangian has two
pieces, corresponding to operators that transform under SU(3)eSU(3)y_a
as an 8 and 27:

Here the operators in Lg and L7 <an be represented in terms of
currents, Jy, which in turn are described in terms of the chiral 3x3
matrices, U = exp{i-A-3/f;x}. One has the current
= )2 u -
Jp I(f.n) {UBJJU i {1v-59)
and the octet operator, Lg, is given by

Lg = (" IH)gg = (1) (8,U-8HU g (1v-60)

This enhancement does not explain the large factors observed in the
K-decays. However, additional operator mixing can occur through the
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exchange of glugns through the mechanism known as penguins [32). The
penguin interactions generate new operators of a different structure
than the usual left handed current-current operators. It is likely that
the penguin contributions wilt explain much of the Al=1/2 enhancement
{321,[33). For our analysis, it is sufficient to observe that both the
enhanced current-current interactions and the penguins have exactly the
same chiral structure and are both represented by effective Lagrangian
given by (IV-B0).  In fact, this effective Lagrangian is the unique
operator giving the correct chirat structure for the Al=1/2 amplitude, if
we compute the amplitudes to towest order in the meson momenta.
Hence, we can compute the axion amplitudes in terms of the enhanced
Al=1/2 amplitudes directly from the structure of the operator given in
{IvV-60). For the two body decays, we can expand (1v-60) as

Lg = 1-(1/2){1)(3 28Kt - 8 3 3Hn2) (Iv-61)
The necessary matrix elements elements are given by

ot | Lg 1K = C{2VZ -(P)2 - 2/ 2 -(Py)?) (Iv-62)

0| Lg [K*D = C{-2:(Pp)2 + 2(P0)?} (1v-63)

| Lg[K*> = CLANT MR - (613 )Pyl + (213 1Py)?)
(1v-64)

<@g K> = C{(av273 (Py)? - (4/273 (PR} (1v-65)

We may combine these amplitudes with our knowledge of the axion
mixing angles to relate the axion ampiitude to the Al=1/2 K=decay
amplitude. Using this relation and that (P;)Z = 0, we find
<Tf+a‘Hwk l K+> ® (TE+TI’- | Hwk|K0>‘(m2K"m2,’T)_1‘{ 'Eaﬁﬂ‘mﬁﬂ/ﬁ
+ Laq @mP + m)/VE » Epe (B - m2p)(2/Y/3)

(lv-68)
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Neglecting terms of order (m?r/m?), this result simplifies to
Gt alHyy [K*D % KU [Hy (KO A8 g (278 ) + Epg0-(2//3 )}
% T [Hygy [KD - V7 L8 49} (Iv-67)

where é‘,aq) is just the mixing with the two flaver isoscalar previously
considered. Hence, a bound on this amplitude directly compiements the
bourd on the isovector mixing. From (1vV-51) and (1v-55), we have

<t al Hyy [K™D 2 U0 [Hyy KO/ 275 Ag + (2743 )2 (T /T)
(1Iv-69)
& ST | Hygge | KO-V 2 Agh(T/1)

Therefore, we compute the result for the branching ratio for axion
amplitude

B(K'»an™) = (P,/Pr) (P(K O3t 57 )/ T(K »al)}H(VZ Ag)2-(My /T2

(1v-70)
22.9- 1075 {xg12

Using the mixing parameters given in (IV-57), one sees that the
branching ratio is very large.  Qur calculation is based on the chiral
structure of the Al=1/2 amplitudes and should be a good estimate for
the expected rate. Even the prediction based only on the short distance
enhancement of the current-current amplitudes, which is weaker by two
orders of magnitude, would give a strong bound on this amplitude.

Although there is as yet no real experimental bound on the process
K*»an*, a»e*e”, it is clear that the situation for variant axions is
extremely precarious. As we will see in the next section, nuclear
de-excitation experiments give similar discouraging results for the
existence of the variant axion. '
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Xions e-excitations.

Axions can cause the decay of an excited nuclear state, N*, to its
ground state, N. A general discussion of the formalism for calculating
the ratio of the rates of axion and photon de-excitation of a nuclear
level is contained in the paper of Donnelly et al [34]. Basically, because
the axlon is a 0™ excitation, 1t acts as a "magnetic” photon. Thus the
axion rate, T'y, can be computed in an analogous way to the photon rate,
Ty, by using standard muttipote techniques [351. Many of the details of
the precise nuclear wavefunctions disappear when one considers the
ratio Tg/Ty. Furthermore, since the transition energies to be
considered are much smaller than the typical nuclear Fermi momentum
(kp > 250 MeV), one may evaluate the multipole operators in the long
wavelength limit.  In this case the ratio, I'3/Ty, depends essentially
only on some static quantities describing the coupling of axions and
photons to nucieons.

We reproduce below, for the case of M1 transitions, the relevant
formulas for T'a/I'y obtained by Donneily et al (34l  One finds for
isovector M1 transitions

Fa/Ty = (172)(a/c- (a3 [pt /(i - ()], AT = | (v-1)

while for isoscalar M1 transitions one has

[a/Ty = (172){a/o0)-(kg/KP3(pP/(u -0 )], AT =0 (v-2)
Here kg and k are the momentum of the axion and the photon in the
transition and & is the relevant scaled effective coupling squared of
axions to nucleons

; = g2n-NN(fTr/f)2/47T (V‘3)
where gy is the pion nucleon coupling constant. Numerically, one has

&/ %= 2.33-107% (v-4)

The parameters y(T), n(7), and (T) (1=0,1) are related to the coupling
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of photons and axions to nucleons. Since one is dealing with a magnetic
photon transition, u(T) is related to the magnetic moment , white n(T)
is .retated to the ratio of the convection current contribution to that of
the magnetization current contribution [34][35]. Specifically, one has

plor = Hp * Hip = 0.88
ptit = By~ lip ¥ 470 {(v-5)
7 = /2

white 1!V depends on the specific nuclear transition considered.
However, typically 'V << p!V and we shall neglect it in what follows.
IT one writes an effective axion - nucleon Lagrangian as

Lan = i(172)-N ¥5[gt® + gz N2 {v-6)

then the parameters p(T) are given by the equation [34)

@M = (0087 g (v-7)

To compute nuclear de-excitations of variant axions, we need, Ltherefore,
to ascertain what the p(T) parameters are.  We shall see that p'@ and
p'! are simply related to the mixing parameters g & '3 Ag and Az of
the preceding section, see Eqs(1v-$3),(1v-37).

To compute the effective Lagrangian (v-6), we remark that,
neglecting terms of O(my2/my?), the current J contains only physical
axion poles (Recall the result (IV-46)). Therefore the matrix element of
'J"}1 between nucleon states will allow us 1o compute directiy the
coupling constants g/ and gV, since the pseudoscalar form factors will
be dominated by just the axion pole. Let us write in all generality

N| I N> = Up™ MY s BN + TPl ¥s GOp(1(1/2)
(v-8)
¥y Gt + i'(P"P)p?‘s G ()1 (w3/2(p)

3z

The pseudoscalar form factors G(T)p are dominated by the axion poie and
measure the coupling gl

6(Mp(t) = g/t + my2) (v-9)

The pseudovector form factors, given the form of jp in Eq(il~14), are
nothing but the usual nucieon pseudovector form factors muitiplied by
the mixing parameters, Ag and Az. That is

"G(OIA(t) - Q\S.GEUIA(U
(v-10)
G(”A(t) = 7\3‘6[”/_\('{)

Using the fact that the divergence of the :l'ﬂ current is dominated by the
axion pole one oblains, in the usual Goldberger-Trieman way [36], a
retation for the couplings, g{T? in terms of G(T)A(O).

gm) - Q'KS'GlU’A{O)'H/f

(v-11)
gt = 2A5- 611 5 (0)1/f
Using the Goldberger-Trieman relation [36]:
G AOF = T G {v-12)
and Eq(Vv-7), we identify
p[ﬁ] = 2‘?\8'[6[0]A(0}/G€1)A{0)]
(v-13)

p[U = 2.}\3

There is no direct measurement for GA(O) axperimentally.  We shail
therefore use a quark model estimate [36} for the ratio G'¥5{0)/G M 4(0)

60 ,(0)/6115(0) & 3/5 (v-14)

Since, for the modeis of interest for variant axion, Ag & V'3 Ag. we
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obtain finally the result

pl = (6/3 /5¥hg’

(v-13)
p“] = 2'%3

with these parameters fixed and Eqs (V-1) and (v-2), we are now ready
to confront experiment.

As mentioned in the introduction, there are two recent nuclear
de-excitation studies which have bearing on variant axions. Savage et
al [12] studied, in a very pretty experiment, the decay of the 9.17 MeV,
2*, T=1 state of "N to the 1*,7=0 ground state. Calaprice et al [13]
reanalyzed the pair correlation experiments of Warburton et al [14],
focussing in particular on the isoscalar, M1 transition from the 3.58
Mev, 2*, T=0 state of 0B to the 0.72 MeV, |7, T=0 state. In both cases,
the presence of variant axions would give an additional source of prompt
e'e” pairs, besides those expected from normal internal conversion.
Furthermore, the angular distribution of the e*e™ pairs for variant axions
is significantly different from that of internal pair conversion, so that
one can distinguish between the two sources of pairs even if the rates
are comparable in magnitude.

Using Eqs (V-1) and (V-2), one predicts for variant axion models
(assuming my = 1.7 MeV) the foliowing rates:

i) 9.17-0, AT=1, ¥ transition: T,/Ty = 2-1073 {A3)? (V-16)
i) 3.530.72, AT=0, 108 transition: T,/Ty = 2.4-10-3(Ag)2  (V-17)
The main difference in these rates apart from the A factors comes from
the large isovector magnetic moment in the AT=t transition. If the

axion lifetime is less than 107! sec, then Savage et a! [12] gives a 90%
confidence limit bound on the rate,

M (P a/Tydayp < 41074 . (v-18)

which implies
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Az <45 (Vv-19)

This bound on the Az is enough to rule out the simplest variant axion
model of Ref [8] and (8], which had predicted Az = 26.  However,
Eq(v-19) gives roughly an order of magnitude weaker bound on the
isovector parameter, Az, than that obtained by the SIN experiment [26].

The reanalysis of the warburton et al experiment [14], as done by
Calaprice and collaborators [13], gives a branching ratio limit for axion
lifetimes shorter than 10-1! sec, at the §¢ level,

108: (I'y/Tglgyp < 0.751074 (v-20)
which implies that

|ngl <0.18 _ (v-21)

This value of Ag is about two orders of magnitude below what would be
predicted by Lhe mode! where Az was tuned to be small enough to escape
the Isovector bound of the SIN experiment. That is for the case of N=4
and x = |7 where we recall that we found the value for hg = -15 (c.1.
£q(Iv-57)). Thus the combination of both of these bounds excludes the
existence of the wvariant axions. Of course, the result (v-20) was
obtained by reanalyzing an old experiment and one should be a bit
cautious. However, if Ag were of the order of magnitude expected in
the surviving N=4 model, one would have expected a rate of Fp/Ty ~ 0.3
which would have totally swamped the predicted internal pair rate
Ty/Tx = 151074 (38].  So although the bound in Eq(V-21) may be too
strong, a value of 15 should definitely be excluded.

VI. Conclusions.

The narrow e*e” signal observed at GS! motivated the construction
of variant axion models. Because, in these models, the axion decays
very rapidly to e*e” pairs, many of the previous bounds on axions are
rendered irrelevant. Furthermore, by assigning the same PQ charge for
¢ and b quarks, one can suppress both the ¥-+¥a and T-%a decays.
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Herce these models appear, at first sight, to provide a viable and
interesting way to solve the strong CP puzzle.

In variant axion modeis the isoscalar and isovector properties of the
axions, characterized by the mixing parameters Ag and Az, respectively,
are not universal but depend on the individual model considered. It is,
in fact, possible to have models whera either Ag or Xz vanishes, so that
no individual further experiment can be used alone to rute out the
existence of variant axions. However, as one can see from Eq(1V-38),
(1v-55), and {IV-57), there is a model independent prediction for the
difference between A and Az. For large x, one has

(hg = Az)? = N2-(x+ 1/%)2- () /(m, ,+mg))?
(Vi-1}
% (f/1)2-(my/mp)?-(m /my) = (25)2

where the numerical result applies for the case in which mg = 1.7 MeV.
Because of this relation {VI-1) variant axion models are excluded by
combining the recent results of 7t decay and nuclear de-excitation which
require individually that X3 and Ag be less than about 0.25. Note that
since the constraint (VI-1) is applicable for any variant axion model, the
precise mass value inferred from G5! is not a particularly important
factor in ruling out models with my > 2mg.  We wish to remark that
the phenomenology of completely general axion models is sensitive to
only three potentially independent parameters, the axion coupling to the
up quark {z/f), the coupling to the down quarks (1/xf), and the coupling
to the color gauge fields {r = N-(x+1/x)/f} through the strong anomaly
which determines the axion mass. Even models with no direct axion
coupling to the quarks (z/f = 1/xf =0) are strongly constrained because
of the mixing induced by the strong anomaly of the quarks.

The above considerations suggest that there is no window for axions
Lo exist, whether standard or variant type, if the break down of the PQ
symmetry is intimately connected with that of SU(2)eSU(1) scale, i.e.
f=230 GeV. Thus, if the solution to the strong CP puzzle is to be found
by using an additional chiral symmetry, this symmetry most likely must
be brokan at a large scale, and the axion is of the invisible type.
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