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Non-Standard Higgs Bosons in SU(2) x U(1) Radiative Corrections 
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Abstract: 

The 1-loop renormalization of the SU(2) XU( 1) electroweak gauge theory with 

two Higgs doublets is performed in the on-shell scheme with finite self energies 

and vertices. Assuming different vacuum expectation values for the scalar doublets, 

which yield enhanced Yukawa couplings to fermions, we calculate the effects of the 

additional Higgs bosons in the radiative corrections to the leptonic processes: 

-scattering, and e + e- """'"'t JJ. + JJ.-, "t'+"T:_- with longitudinal polarization JJ.-decay , v~ e 
at PETRA and LEP/SLC energies. It is found that large effects occur in the MW-MZ 

mass relation, the determination of sin 2 ew from 

e+e- forward-backward and polarization asymmetries, 

G"(~e)/o(~e) and the 

if either the charged Higgs or 

the additional neutral scalar/pseudoscalar are heavy. Enhancement effects and effects 

of light neutral bosons can better be observed in the e + e--+ t + !'- integrated cross 

section. 

-...... ~ ., ........ , ........ ,..... ·~. 
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1. Introduction 

The standard model of the electroweak interaction based on the gauge group 

SU(2) x U(1) describes successfully charged and neutral current reactions at low 

energies. It has achieved further strong support by the discovery of the predicted 

vector bosons in the correct mass range [1]. From the standard point of view the 

only missing object is the Higgs particle. In the standard model the Higgs appears 

as a fundamental field which describes neutral scalar particles without a sub­

structure. The r61e.of the standard Higgs is twofold: Through its non-vanishing 

vacuum expectation value v i 0 it is responsible for 

the masses of the weak gauge ·bosons, induced by the gauge-Riggs field couplings 

the masses of the charged fermions, induced by Yukawa couplings. 

Thus the masses of vector bosons and fermions are set by the same scale 

v ~ 250 GeV. In order to obtain light fermions the Yukawa coupling constants gf 

must be sufficiently small. Typically the couplings of the Higgs to fermions are 

suppressed by a factor mf/Mw compared to the gauge coupling. As a consequence, Higgs 

effects in fermionic processes are very small Unless heavy fermions like the top 

quark would be involved. 

In SU(2) x U(l) the left-handed fermions are doublets and the right-handed 

singlets. Therefore Higgs doublets can couple to fermions and give them their 

masses, The minimal standard version with a single Higgs doublet ·predicts the 

ratio 
1. 

Mw 
~ - M' em'ew • 

to be unity. But the converse is not true: ~ = 1 remains valid for an arbitrary 

number of Higgs doublets automatically, Higher dimensional representations give 

in general ~ f 1 if no additional restrictions are imposed. Experimental data 
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for fare close to 1, which favours the doublet character of the Higgs field (s). 

Models with more than one doublet have attained interest e.g. in the context 

of CP symmetry breaking [2], the Peccei-Quinn solution of the strong CP problem [3], 

and supersymmetric extensions of the standard model [4] , which need at least two 

scalar doublets. 

The minimal extension of the standard model is a conventional SU( 2)_ x U( 1) 

gauge theory with two scalar complex doublets p' p [5-9} 
• 1 

Three of their eight 
+ 

degrees of freedom form the longitudinal polarization states of the w- and Z and 

five remain as physical particles;· These consist of two charged 
+ cj>- and three 

neutral states H0 , H1, H2 as mass eigenstates of the Higgs potential. One of the 

neutral scalars (e.g. H
0

) behaves similarly to that of the standard model, whereas 

the additional ones may yield effects which are different from those of the con­

ventional Higgs, From e+e- experiments at PETRA a lower limit for the charged Higgs 

mass can be deduced Qo] 

Mf ;:, -1/l GeV 

and for the scalar/pseudoscalar pair H1, H2 the mass range can be eXcluded (95% c.l.) 

where one of them is below 0.2 GeV and the other one between 1 and 21 GeV ~1]. 

In two-doublet models two vacuum expectation values 

<~~ > ~ ( ~ ) (~.) = (;) 

are available to generate the vector boson and fermion masses. Their very different 

mass scales could be traced back to different Higgs vacuum expectation values 

v 1 >> v2 if only f:z. would have Yukawa couplings to fermions. The masses of W 

and Z are then essentially determined by v 
1 

Mw ' "' - Q v .t dl. ... 

~~----

M1 o- .i /•'• a' , d,f dt VA 

~-~~~----"'---'"'---------"'--------~ r_~______...--"--"--· 
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(g2 is the SU(2), g 1 the U( 1) gauge coupling constant), whereas fermion masses 

arise as 

mf gf v2, 

An attractive phenomenological consequence in models with different vacuum 

expectation values is the enhancement of the Yukawa coupling constants by a factor 

v
1
/v

2 
compared to the minimal model , which can (partly) compensate the small mf/~ 

ratios. 

In order to have flavor conservation in the neutral current sector the quartic 

couplings have to be arranged in the way that p
4 

couples to r 3 = ~ and l't to 

1 • 
I

3 
= - 2 quarks only. v

2 
~ v

1 
enhances the u-llke and v 1 

> v
2 

the d-like coupling 
<) 

constants. Existing constraints to v 1/v
2 

are not yet very 

case [8] 

stringent: In the first 

( ~~ ) ' ~ "" ""c 
" 109 for M' " M.., 

and for the second case [9] 

VA .!!:.!ii. ~ v,_ ""b 
for M; "' H..., "' 1-2 

If leptons couple to P1. with v
2 

> v 1 then a restriction resulting from the 

anomalous magnetic moment of the muon would be [6] 

'IJ", lv 
• 

A) 
;> 0. 0-1) (for M

1 
6 GeV) 

In this paper we extend the on-shell renormalization scheme or the standard 

model in ref. D2] to the SU{2) x U(1) theory with two Higgs doublets and different 

vacuum expectation values v
1 
~ v

2
, In particular we discuss the effects of the 

l) For mass degenerate H1 and H2 this limit can be significantly lowered [6]. 

2
) More restrictive bounds from heavy quark systems have been obtained recently 

in ref. [23] . 

A- _ __,., _ _ _r __ ,-
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additional Higgs bosons in the 1-loop radiative corrections to the leptonic low 

energy processes 

(i) 

( ii) 

ll decay 

,_, . 
v~ e -scatterJ.ng 

' + -
and to the lepton1c e e processes 

(iii) e + e- -+ 1.1 + ll-, "C+ "'C- for PETRA energies and un the Z0 • 

' 
A combined analysis of leptonic processe·s and direct MW, MZ mass measurements give 

the cleanest tests of electroweak theories, avoiding hadronic uncertainties as far 

as possible. The basic assumption that only ~ 1 with v2 
~ v 1 couples to leptons 

yields enhanced couplings between·charged leptons and the additional neutral 

i 
scalar/pseudoscalar as well as between .f- 'L and · <f , The natural continuation of 

this picture to the quark sector would lead to gd :> gu, but this is by no means 

necessary. As far as we restrict our discussion to leptons only we can renounce 

to assumptions about the hadronic sector. The obtained results therefore would give 

independent possibilities to explore the validity range of two-doublet models. In 

practice, the enhancement factor 

~ . '\1"1. I v.-~ 

will be considered as an additional parameter, which besides the Higgs masses enters 

the radiative corrections. According to the leptonic constraints from ref.[6], 

which we will use as a guide, the Higgs couplingsto e and ~ still remain small, 

but they can get the normal gauge .coupling strength for T leptons. Technically 

this leads to scalar exchange contributions in the electromagnetic and neutral 

current vertex corrections, which are negligible in the standard model. Additional 

scalars with enhanced couplings could therefore be observed in terms of differences 

between~ and ~final states in e+e- annihilation. 

'• ,...-- ...- ,__-
~-~-----
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The paper is organized as follows: Sect. 2 contains the basic Lagrangian 

and its renormalization, from which the.Feynman rules and the counter terms are 

deduced. The Llllrenormalized 2- and 3-point functions of vector bosons and fermions 

are presented in Sect. 3. In Sect. 4 we perform the renormalization, which yields 

the renormalized propagators and vertices, listed in Sect. 5. Sect. 6 contains 

the discussion of the leptonic processes. specified above. 

2. Lagrangian, Feynman rules, and counter terms. 

We write for the two scalar doublets, splitting off the vacuum expectation values 

v 1 and v2
: 

(,.'~ .... ) ( .: ! 
!!>~ = q> = v, + ~ + ''X1 

I -, 

The Higgs part of the Lagrangian is 

.tH ~ tGH + ,ti=H V ( P., 

It contains the Riggs-gauge field couplings: 

.t GH = 

with 

J) 
!'" 

I ~ r <E. I 
, 

€.r 
g, 

1-
2 

+ I 11,.. if!, 1' 

... 
co 

... 
\VI' + 

;p, ) 

i!· 
2. E-"' ! 

(2.1) 

(2,2) 

(2,3) 

(2.4) 

the fermion-Riggs couplings, where we consider only the case of leptons, coupling 

to ~ ' 
2, 
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2 _t F I! " -
I" <;,-«,T 

(- r f ffr "h <f, Y'R + ~f ( '1{ ) (2.j) 

with YR " el!., 1"-P..' "" and 

"/'L ~ (:e) L I (~L r:)L (2.6) 

and the Higgs potential with quadratic and quartic couplings. These can be chosen 

(assuming CP syrrunetry) that v 1 and v2 are real [7]: 

V· -)<: f f /"~ r f~ + t..('t+i, t r ;t (i/;r. J'-
L 1.. :t2 

+ .:t
3 
(f f, )(~,_+;;,..> +A,_(p:P,.,rt+<~..J f;: ~e.e: {.,. (f 1:. l' 1 

The charged mass eigenstates following from V are 

q,:!: ( v, 
"'· t 

t ) I v ~ - v. <P.-.,_ 

with V= Vv'• v' cp = (¢')+ 
' ' I 

and the neutral mass eigenstates are 

( ~:) = ( 

W)l; 

- s""' ~ 

s ""- .$ ) ( ~~ ) <»-J5 

fi,_ ( v, 'X, v.x,J/v 

~ is a function of the parameters in V 

+"""" zs 
v,v,_ (A, ... ?-,+Ar\ 

)L VL
1 

- ;1~ ~'l. 

+ 

(2.7) 

I 

(2.8) 

( 2 .1) 

(2.10) 

The orthogonal combinations lP-, /C to (2.7,9) form the unphysical components, 

which enter the gauge fixing and Faddeev-Popov Lagrangian. These are specified in 

a 't Hoeft gauge in the same way as in ref. ~2] and we do not repeat them here. 
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The calculation of radiative corrections to fermionic processes where at least 

one fermion pair is light (e+e-, ve, , .. } the Higgs exchange is supressed already 

at the tree level {otherwise enhancement > 10 3 has to be assumed). Hence also 

loop corrections to Higgs propagators can be neglected, which means that we do not 

need the details of the Higgs self couplings in V ( ~ 1 p}. Only the ma"'e' M .p 
< • 

(charged Higgs) and M
0

, M1, M
2 

(neutral} and the couplings to fermions and gauge 

bosons enter the loop diagrams for W,Z propagators and vertices with internal Higgs 

lines. 

The situation of enhanced Yukawa couplings v
1
;v

2 
= r» 4 leads to· 

1> t "' q,:t 
J. 

+ v. 
v. 

+ 
¢.- "" 

A 

+ 
- ¥;' v 

H =- -xz + -v' .zA"' - tt ~ 
L ' 

(2.11 I 

The mixing angle S for the scalar fields in (2.8) makes in general the couplings 

of the neutral scalars different from the charged Higgs couplings. If the quartic 

couplings Ai in V are all of the same order, tan~ is of the order v
1
/v

2 
for 

+ v 1 >> v2 according to (2.10). In this situation we have equal enhancement for ¢~ 

H2 and H1 and a minimum set of additional parameters beyond the standard model. 

For a first view on the effects caused by a second Higgs doublet we choose tan!= v
1
Jv

2 
for concrete calculations in order to keep the number of further parameters as low 

as possible. In this case we get from (2.8): 

-II "-"'}., Q .J.i "" "? 2 • ( 2. 12) 

The masses of the weak bosons are essentially determined by v
1

: 

M ' I ' • Ill = 2 ~. 1(, ;. v,. ' M._ MIV 
' ' ' v9. +j, (2. 13) 

~. 
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+ 
whereas mf gf v

2 
causes enhanced couplings for tj;., H1 , H

2
; H

2 
has a pseudoscalar 

d
5 

coupling to the fermions. 

With the definition of the weak mixing angle 

em e"' : Mw 
Mz, 

(2. 14) 

the Feynman rules for the interaction between the Higgs and gauge bosons /leptons 

can be derived from (2.2). They are listed in appendix D for the model with v 
1 

>) v 
2 

as specified above. 

The neutral scalar H0 
has the same couplings as the standard model Higgs. Also 

the behaviour of the unphysical Higgs and ghosts is that of the minimal version. 

Consequently, the only place where they become relevant in radiative corrections are 

the 2-point functions of the vector bosons. 

Renormalization: 

The formal procedure of multiplicative renormalization is similar to that of ref. ~2]: 

each multiplet of fields achieves a renormalization constant z2 via 

w Q, --+ ~~ f? z w,.. ) B"" - E.f" 
i"' ~ 

~f ht f "f f ---> j i?.~ 1: ----> "fl ) 
L 'P. 

( 2. 15 I 

~~ --> [T<P. iJ!, if2 ,_ _, JT:. Pz 
~ • 

The coupling constants get renormalization constants z1: 

~"' 
---> 

>J ( w ) - lh 

'2'.1 :l;L ~' 

~~ 
___. B l B r ll, 

*~ z:z- ~~ 
I 2. 16) 

'J.t --t 2 { { 'l </> r '" fir 
~ ), 
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Here we drop further details of the Higgs renormalization concerned with V (p4, /?
2

) 

since we do not need loop corrections to Higgs propagators and vertices. 

Expanding Z. = 1 + J Z. yields the renormalized Lagrangian l which can now be 
) ) 

' + 
re-written in terms of the physical fields w-, Z, A, cp- H0 , 1, 2 and the parameter 

'et 

o( Mw, fv/1>, M0 , ('> M 
"' Nt M~ 

( ol. "' 1/ 131.036 is the usual fine structure constant ) and the counter term Lagran-

gian £~ , which can also be expressed by the same fields and parameters. The counter 

terms which we need for our calculation are put together in appendix C. 

3. Unrenormalized self energies and vertices. 

The masses of the additional scalar and pseudoscalar neutral Higgs H1
, 2 

are denoted 

by M1 and M2
; M¢' denotes the mass of the charged Higgs particle <P +. 

In the following sections we list only those contributions to the 2- and 3-point 

functions (and consequently in the renormalization constants) that go beyond the 

standard model set. In exceptional cases where also the standard contributions are 

included this will be mentioned explicitly. All calculations are performed in the 

't Hooft-Feynman gauge. 

3.1 Vector boson self- and mixing energies 

The 2-point functions for the vector fields can be decomposed into their transverse 

and longitudinal parts according to 
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"' tJ,..).t) (- ~r • ~~ ."y ) ~ ~ 

where o(= f. Z, W, ~Z. 

+ -k,.. -(.., 
.-(.2 

~ 

~L ( 3.1 I 

For our purpose of calculating . radiative corrections to fermionic processes 

where at least one fermion pair is light it is sufficient to deal with the trans-

verse parts only. These define the self energies in the following way: 

o( 

tJT = 
~ 

-x':.. M' o( 

... 
4 • 

.,( 1 

2_ (-!..') -{..1 -Ml " : 0< w. t 

lt. 
tl 

T 
= 

1l -Mo( 

... ~i! 
- .{<.' .L {-I<') 

A 

-k'- M'­• 
In particular we have as extra Higgs contributions: 

Photon self energy (Fig. 1): 

L. "6 {A.')= 
o( 

1J.TC 

i 
L.(. {~') = ...... 

t 

~2( a- .e._ ~t') 

o( 

1.2. rr 

1 

Mw 
[ -k' -e.,_ M/ + 

~ .. L. . C1<') 
fvv• J 

2~2 
3 

+ {-k 2 -~M4J') r:(.«', M(>. Me)] 

Photon-Z mixing energy (Fig .. 2): 

(3.21 

( 3.31 

~.. ol 
L. {4') = 4-Tf 

l 
Sw - c 

2 
w 

'Sw Cw 
.(..'(a-

M' ~'t 
~ r wl + I;w. f-t.'), 

Vt o( 

L.. ~ {.J.') = 4rr 
.Sw 1.. - C t 
Gs.,;cww [~'.e._.. M~ M' q, 

+ 
242 

3 

l l) 
+ {.I.. - ~ Mf> F{.tt.~ M(>, Mq.)] 

( 3.4 I 
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Z boson self energy (Fig. 3): 

' '- ' L ~(~ ') = -"'-- 1+ (c.., - s.J) l(l\ _ k Mw ) + 
trn -12.. 'w?.. s~ pl. 

" • " f -"-;---,., L. f,:.. ( ~ l = '+7t: 111 c,!; Sw 

1 

[ 
l"fw + 

.{< 
1 

4 "!, M,_ 

" ~ ' .t..;,;... (A), 

2 4.' 
3 

2 ( M ' M '-) , M, 
+ A - 2. o{A... M-t .,_ 

{M'-M 1 1' 
A 1 

.{<.1 
~ {-1.~ M., 111 ) 

+ (-k '- 211} -211{) ( -1 + M;' + M~ .{... M,_ + {: {-4.'
1 
M_,,fr.J)] 

-.ltl-Mt 11.~~ 
< 1 

(3.51 

' ' + /Cw
1-£w l 

1J..c,Js,;· 

t 

[ -ft '.t.. ~~ + .p 
2 "-2 

3 + (*~lfM~) !='{~; M(>, J.t.pl] f. 

W-boson self energy (Fig. 4): 

2:.. w{-1<') = 
o( 

lj.K 

-{2 

6s' w 

w 0( -1 "' (''')- - --. 
L-~ "' - ~rr -!:Lsw 

+.1. (!-1:- M;) L M" 
~-~~ 

(A_ .e.._ M~ 
r' 

w ') 
+ L.;.:.. (~ ' 

{ -t._~{.e... M~ ""l + 
(> 

+ 2(/'4.,'-MJ) 

t 
~ Mw 

M~M~ 

-tv. ~{> 
M" 

n 

, 
( M)- H~) F (f..~ M" Mol>) + ..{< ... 

' ' ) (}-{/- M.p) F (t .. ; J.1., M.p 
+ _, .. 

+f«2·J..I-1/-2.MtJ[" 
' l •• 

+ IIA f Mp L _M{J 

1-1}- 11/ ..,~ 
+ I= {-l! M., M,p) j 

( 3.61 

+ (~ ·- 2.112.~- .l k/![ -1 + 
Mz'+i-1;} 
M' -!-'1' l .. 

-t. /-i.p 
ML 

+ F{.&.~ M,, M(> l] . 
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In these formulae ~ and cW are used as abbreviations for 

Sw s~ ew) Cw CM Bw I 3. 7) 

All other quantities in (3. 3-6) are defined in the appendix A. 

3.2 Fermion self energy: 

The diagrams of Fig. 5 contain the Higgs scalars with enhanced couplings to the 

charged lepton. The self energy ~_f of the fermion f, defined via 

' .L.fr-t..l ~ 

s. (k) ~ -
-!<- ""~ 

I 3.8) 

-1<.- .... f j( - ""'f 

can be decomposed as 

.L f Ck) = 1< 2.~ {.C) + i: os 1~ U') + """f 2.: U. ') 13.9) 

The diagrams of Fig. 5 give for a charged lepton: 

L~ ~ - :7C Gf ( 1\ (~ ~ ""'f• 1'\) + !3~ (~: """;, 11:ol + B~ (..t.; o, Mt>)j 

.Lf « 
A - - ~'It G.f B~ (A.~ 0, Mq,) 

f 
Ls = "~ G+ [ 13, (A;""+• M~)- !5, (..t~""'.r• H,l] 

and for a neutrino: 

L vf 

v 

L. "• < 

= 

= 

"f 
LA = 

0 

ol. r t 

4 rr "'+ 13~ u,-f, Mq,l 

I 3.10) 

(3.10') 

'- ~-·--- ~----~--.,--~ 
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In these equations we have used Gf as an "effective" coupling 

Gt A (~)t 
Its~ Mw 

I 3.11 l 

that contains the enhancement factor ~ , 

The functions B
0 

and B1 
are given in the appendix A. 

3.3 Vertex corrections 

We calculate the contributions of the extra Higgs scalar with enhanced couplings 

to the leptonic electromagnetic and neutral current vertex. Thereby the fermions 

are taken on-shell; k2 denotes the momentum transfer at the vertex. 

Electromagnetic vertex: 

The results from Fig. 6 can be summarized in the form l) 

r "l'ff eel 
)'-

" "- '( r 

~·e 

"' 1fT! G;f 

Yr 
1 

[-i(.l-Lj:+ -n + (\ {1,: M,,,..+l] 

- "e Y ~ G [-
"!"' 41C f 

1 ( l 
2: Ll -4- ~· ;~-<' 

• i ) 
"' + i\" ( .£; 11u "'~tlJ 

+ ". e -v ( -1 + v ) L G [ i (t, _ o M~ 
or .,. 'tn + 2- """-!A' 1 ) A ( -1< 2 M )·1 

+J:+., ·¢~13.12) 

The UV-finite functions A1
, A 2 

are given in the appendix B. 

l) terms~~} are neglected in (3.12, 14, 17) 
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Weak neutral current vertex: 

With the axial and vector coupling constants 

-1 

4 SwCw 
v = CL ( ~ - 4 s~ ) I 3.131 a. = 

we write for the sum of the diagrams in Fig. 7: 

r;._~ff (~') = "·e.(Jr (v- CJ."(•) 13.141 

~ 

-..:e¥1" (vay,) 4tl." G.t [-i{Cl-L ;~ .,.1) + 1\•(t~ 1-4.,-w.f) J 
-A.· e. .Y,.. (VH<fs)~ Gf [-:I {t:>--t...j..; .. *) + A. (1<~ M., '~~<f l J 
- .,.· e 

~ ~ 
Cw-Sw 

¥~(A ... ¥r) ..!£ 
., ""2 "' - 1 ' 

Gf [}; (o-L-;./' ·~:.) t /\,_[.(.., A-1¢) J 
Z.CwSw ' /j-11" 

e. 
-~ -=--

2-CwSw 

o{ 

o,... C -1+ fs) '1-li 6f (- ~ (6--t.,..t;f +{) -r ,\ {-<..', M;, )J 

o< 
~ 4' d's 1trr .. '" 2cwsw r 

MA ML 
Gt [6-~~ 

The neutral current neutrino vertex reads (Fig. 8) 

< +:r 

r r vv (A..') = 
}'-

e 
~ ltcw Sw ~ (~- ;y,) 

+.\(I<~ M., H,,"'fJ]. 

+ . ( "' { ~ ( M' '\. <> dr A-¥,.) 'nr Gf 4Cwsw Ll- k j'¢> +f) 

Sw 
- Cw /\ 0 ( 4~ M,., ""'f) 

+ 
1. 1 

Cw - Sw 

Lew sw 
/16 (4', M,.,,.,.,.)} 

I 3.15 I 

~~-~~~,...________.- -"'-- ---"'-----~- -------- ---- _ ___..____ __ _.... __ ~_ ~ 
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Finally we give the electromagnetic vertex for the neutrino (Fig, 8): 

;tvv r (4') % 

r- "'ed'r (-1-¥sl F~ {-f'), I 3.161 

"( o( -, - t ] 
F.., (A'J =- 4rr G; [A/.1., M¢'""+) + 11 4 (I.,H¥,?nf) . 

Weak charged current vertex: 

The leptonic charged current vertex gets contributions from Fig. 9: 

I Wvf (-f') = 
)'-

+ lj-~1[ tJ 

e 
., Flsw 1r(1 -ts) {.-1• 

k l:l~ 
f' 

+_j_ 
2 2 .h M., ""• . }1l. ,. 

+ ± 1\1 (-*.~ M., /111>) + 
1 -
); A, (-k~M;p,M.) J 1 

13.17) 

For the invariant functions i\~ 1 ••• i\
7 

again see appendix B. Gf is defined in 

eq, ( 3.11). 

4. Renarmalization 

We follow the on-shell renormalization scheme as worked out in detail in ref. [:2]. 

The procedure for obtaining the renormalized 2- and 3-point functions by adding 

counter terms is specified in the appendix C. We restrict ourselves to the renorma-

lization in the physical sector (without longitudinal vector boson, ghost and Higgs-

ghost self energy renormalization) that enters the radiative 1-loop corrections of 

the fermionic processes (i)- (iii), sect. 1. The physical sector can be treated 

seperately from the unphysical one by the method of ref. Q2], A complete renormali-
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zation would need the whole information about the 2-doublet Higgs potential. 

We denote the renormalized quantities by the same symbol as the unrenormalized 

ones in sect. 3 but with an extra ft. 

The conditions which fix the renormalization constants in the counter terms 

of appendix C are: 

A W 
Re. i < 0.1~) = 12e.. L. c fvt:;) 

A f 
'Re 2:. {-t.. »<.;) = 0 (4.1a) 

i 1 i!.(o) 

oi.rio) ~ 
Cl-4.'" 

0 

0 

_A - [f (ft)l = 
-j(- ""f ft. = ""f 

r.~ee (O) = "- e ilr r 

(b) 

(c) 

0 (d) 

(e) 

The last condition involves the electrons on-shell. It is only a condition for the 

vector part; the vanishing axialvector in the Thomson limit is already a conse-

quence. 

From the set of equations (4.1), together with (C.2), (C.3) from appendix C, 

the following expressions for the gauge field and gauge coupling renormalization 

constants are derived: 

( 11w 11 - .-e._ 

sr.; = Hr 
~ 

= 

M~ 
r' 

"' -12.7f 

) 

(A...,+~ 
2 Mw 

MJ, ) } 
(4.2) 

~z· 
.L 

u w = 
II-

n>1 = ,. 

with 
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.Sf:"' 
~ 

= "' [ -1 - ~ .. +- (c.,}·- s~) l. 
/f2c L s 2... Lj,w 

w " 

~ 

+ 3 4-. 

+ 
l. ~ 

Cw -Sw 
S'-w 

(
.SM'" --· fvl" "-

& fvl~) 
fvl~ f,;,... 

- - -- A W + - Jfv._ .L:!lo!.. o< ( ~ 1 f.1'" ) 
Y. rr bs;:; 3 f'-1/ 

c' 
l. s ,..,;, ) + ---"'!. ( 01'1 2 -

s'- M'" M • ;.:.,. w a w 

Si! lt: = o(-
Swl.-c..; 

6w + 
.., 411 b>wCw 

t 
S M!) + Cw (j_& -

Sw M' M~ .{w. ~ 

/.A"'~ 1 
k,s 

l 
S M' ) 'Re ( z;,:,.,_ (1-12') ( ci'Me - w -

11'" ~-~~ .f,;.. - Mi!' ~ 

2::.. (M;) ) 
Mw' 

(4.3) 

" w 
and L, .('.;.,. \ :LT from eq's (3.5) and (3.6). 

'"' 
For the charged leptons we give the expressions for the vector and axial vector 

renormalization constants which enter the counter terms for the vertices. They 

follow from (4.1d) and (C.6): 

"' .Slv = ~n: 6i.f { 
• ( M' •) • ( -- J-k~ +- -- .1 ,.. r' :t :t 

l Hf,;,.J - "- ( 11 - L 14
t> + .i. ) + 

L r'" L V I 

H= ol. 111. 
~ ) ~7i. 

G -~(6--£,.. ::!i + 
A + J, )''" 

-~ M~ 
f-'' + ~) 

(4.4) 

( 4.5) 
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.f;....,. 
$;tV in eq. (4.4) denotes the finite part 

n.''" v 
; - ' B. {'llif' ""'f• M, J t g_: ( -/• "".t 1 fvl, ) 

+ .z"'f "l. [ B.' ( -""ll ""'f I M) 13: (-.../, ""I' )1~) 

~ B.,' r,..], ""+' fvl,l + a: r-.~ #1+' fvi,J]. 

For the functions B1, B1• B0 ' see appendix A. 

Two limiting situations are of particular interest: 

heavy Higgs C M 2 >> ""r ) o:Sz f.-... 
"' 0 .,. v 

( 4.6) 

light Higgs ( M,\ <::< ""f) s :2 .r ..... ~ 1 + 3 .e... }of, - 4. 1-1, 
v ,t ""+ "'+ 

The condition ( 4. ld) ensures that we do not need an external wave function re-

normalization in calculations of matrix elements with external charged leptons on 

their mass shell, External neutrino lines, however, get a wave function renormali-

zation constant 

< 
A- i 

ol. 

4-r<: 6+ (.t... N, M, 

M' tb 

5, Renormalized self energies and vertices. 

? n!';..) ( 4. 71 

The formulae of appendix C together with the explicit form of the renormalization 

constants from the previous section allows us to give the following list of the 

relevant boson self and mixing energies and vertex corrections. 

----------~-~-~- -~-~----
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Boson self energies: 
1 

i '6 1-.f<.'l 
t • .._ ~ Mw 

= L f,;... {.ft. ) - wr l M/ ' (5.1 I 

• • = ± .~(1 .. ') -,f._'- c.., ( /S~· sM') ,__, ' 
2:. l {4') - __ w + i,_ .CoJ -Sw l 1 k Mw 

+·"' Sw Ml M! ~;. 1;11' bswCw 1"1 I 

i " ( ./<. ') ~ 2. ~ (.J!) - P.e 2. ~;,.. (/--1 ~.._ ) 

+(.!..'- M:lr c.,/-s~ ( sM~ _ 811~) 
L ~ ... • ht M~ .{ . ._ 

i_,W(~'J " .L. ~:... ( 4 'J - 'R.e d..;:.. ( M.,J) 

"­
... 7f 

+(~'- M~) l cJ 
s'" w 

t 

( JM~ 
1-1' 
~ 

) f-<- - ::11 
2 

Jkw 

"'~ 
Electromagnetic vertex: 

A t.f.f (i.') 
~ = 

. . ( '( ~ -tev +•e.v ,:-- r v) 'r a,.. v A O> 

with the formfactors 

t "' r- , - , Fv ~- l;rr Gr L II, u .. , M,, ""+) + AA {.{.., M._, ""+) 

F~ 
A 

1\,_(.U.',Mq,)- f.-,. 1 Szv , 

"' ~jl G.f /1.2. ( 4c. l. fvl "' ) 

/.1,; 
4-v 

"' 

L fvt~ 
1-1' 1/i 

], 

]. 

( 5-21 

(5-3) 

(5.4) 

~Z ~~"" is defined in (4.6), Gf in (3,11) and the X -functions in the appendix B. 

FA vanishes for k 2 ~ 0 so that real photons have no axial coupling. 



Weak neutral current vertex: 

"<H r,. = -l.et (v-o.'t,) ,... 

~ith the form factors 

- 20 -

.. t'e¥r(F,;r- ~'t?f> ( 5. 5) 

F/' = - ~ 6~ { v[ A. 1-t..; M,, lk~) +X. (.I.~ M2 , ~>~.;) - .rz!'"'] 
~ 1 

+ Cw - Sw 

2c., Sw 

- t 
A .. {A. I M .. ) + 

-1 

:Lc.,rw 
i\3(4~,1<1¢)} 

.. " { r- . - . FA = 411 G.f ec A. (.I.., M,, "'+) ;- A. 14, M,, "'-'.;) 

+ :L i\~ (-t..~ N~, M2 , ""f) + 6'2/'.._ ) 
1 l 

A:~. (A', M91 ) + u:sw A3 (.{~.; 1'1¢) y c.,. - s,. 
;-

l..cw.Sw 

For the neutrino vertex one finds: 

f '<vv (4'} = "'e(J!' {A-ts-l[ ~ 
)" 

F <: {A!) .., ol. 

= *" 6 { -1 f.t,.. + If c.,.r.,. \: 
M..M~ 

M' 
" 

+ F' < (4 ') ] 
\> ) 

+ J :;._/'-) 

( 5.6) 

( 5. 7) 

( 5.8) 

>w 
Cw 

i\5 (A~ Mq,, ""'f l ' Cwl.-Sw 
+- .zcw s,.., 

- l ] 11~,{4,M~,.,.,t). 

Since there is no counter term for the vv ~vertex the form (3.16) is identical 

to the renormalized f "I"" 
"" 
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Weak charged current vertex: 

• Wvf (./,.')=A..-e-Yr I;, 1. fiSw 
l-1- Y.rl [ -1 + F"'(4'J}, 

oL { -1 F" (4') = t,n b.( :i:. 

For the functions A_, I 

A 
+ -

?.. 

111 (4~ 11., Mq,) 

t\ + I"-.~ M.., h.p) 
-la'Ao. 

.,. Si!v 

~e again refer to appendix B. 

6. Discussion of leptonic processes. 

1 . 

The results of sect. 5 enable us to discuss the effects of non-standard Higgs 

( 5.9) 

particles on those observables from ~hich s.., 2 and the vector boson masses can be 

determined, We restrict the investigation to the follo~ing electroweak processes: 

(i) 1.1 decay: the lifetime ~ yields a relation bet~een MZ and Mw; 
,_, 

(ii) v'" e scattering, which allo~s a determination of the weak mixing 

angle; 

{iii) e+e--+ l.l+ ~.~-, 'C+t:"- for PETRA and LEP energies. 

6.1 Relation between MW and MZ: 

For a given value of MZ the mixing angle resp. ~ = c~z is fixed in terms of the 

well known 1.1 lifetime T~ and the theoretical expression 

-1 

<;.. 
with 

~ 

r• .,.. 

1 

T{o) ,. 
!; '-)] -· I A+ ': (iL - TI (A- £WeAk. ) 

ln 4 
(6.1) 

"2 
""'r (-1- !,.":; ) { ""'e ) ~;-

1" MwSw ] lr4 7( 
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S weak depends on Mz and sw 2
; therefore eq. (6.1), together with MW 

be solved numerically yielding values sW 2 ' Mw for a given Mz. 

MZ cw, can 

> $ weak is the sum of the standard weak corrections $.weak (including the 

standard single Higgs contribution) and a non-standard part 

extra scalars. The standard part is specified in ref. D3]. 

NS 
Jweak due to the 

The non-standard contribution allows the following approximation: All the Higgs 

couplings to the fermions involved in ~ decay contain at least a factor (mu/Mw) 2 in 

the matrix elements, that suppresses.single Higgs exchange and box diagrams with 

Higgs exchange so much that even ,., ""10 3 would not be sufficient a make their 

contribution physically significant. Also the insertion of vertex corrections and 

V wave function renormalization do not give larger effects. Therefore the only 

relevant part in 

8weoit. = 

.~ . . oweak 1s the W self energy generated by the extra H1gges: 

s 
~ .. e.k 

£ w lo) 

M~ 

with 
~ w 
L.. from eq. (5'.1). 

( 6.2) 

The results for sw 2 and~ obtained numerically from {6,1) and (6.2) for a 

given Mz are listed in table 2 for some values of the extra Higgs masses. In this 

analysis also the standard correction s sak is incorporated with 
we "" = 0 

The results can therefore directly be confronted with experimental data. 

100 GeV. 

+ 
A significant deviation from the standard result is obtained if either <b or 

H
1

, H2 are heavy. All other cases lead only to small modifications. These results 

are in agreement with those of a similar analysis by Bertolini [14] performed in 

Sir lin's renormalization scheme [15] without field renormalization, 
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If the neutral H
1

, n
2 

become light the values for sW 2 and Mw tend to become 

insensitive to their actual masses depending only on M~ {besides Mz). Precision 

measurements of Mw and Mz may decide about the existence of additional Higgs bosons 

with large mass splittings, since a variation of MH in the standard model between 

10 and 500 GeV gives only ~ sW 2 0,0035 resp. /J ~ 0.19 GeV. The value for 

'\ in case of M~ ~ 5 MZ is about the A-6' limit of Mw 06]. 

6.2 Neutrino electron scattering 

The determination of sin 2 Gw with help of a purely leptonic process has the advan­

tage that it is free of theoretical uncertainties. A sensitive measurement can be 

obtained in terms of the ratio of neutrino and antineutrino cross sections 

R = 
" 

o-(v,.. el 

e>(v,..eJ 

which reads in lowest order: 

0 

fl.y = 

1. 
A+\+'s 

A-~ + ~' 
s= A-4s'-w 

(6.3) 

(6.4) 

The standard model corrections toR~ have also been discussed in ref. Q3J and 

turned out to be very small around sw 2 ~ 0.22. This is agreement with an indepen­

dent analysis by Bardin and Dokuchaeva OaJ . In particular the standard corrections 

are nearly insensitive to the mass of the standard Higgs such that R v can be con­

sidered as a function of sW 2 only, also in higher order. 

Now let us discuss the extra Higgs contributions. They consist of 

a) the "' Z mixing energy 

b) the neutrino charge radius {from the electromagnetic neutrino vertex) 

c) box diagrams with exchange of one or two Higgses. 
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The Y'V '2 vertex contributions together with the neutrino wave function renormali-

zation vanishes for k 2 -+ 0. Moreover, by the same argument as in 6.1 one can neg-

lect all diagrams where a Higgs couples to the electron (small me/~ factors). 

Therefore the only relevant part consists of a) and b) which lead to 

R ~ 
-1+ & 1< ... '!(-1+2.5 1 <) + ~~ 

v 
A -,s•c - 5 ("-:1. .s•~) f + 

(6.5) 

where 

s 1%: 4 Cw s.., 
±'"(-t'J I 
4' -4'~o 

+ ~ (~""r )'(..e....~ 5 ) - 1: JTT M~ ""'. 
"" 

(6.6) 

with 
. {~. 
L.. from (5.1 }. The second term is the Vcharge radius ~ F} / . .f.: 

-A."-+- 0 

where F} is the electromagnetic v formfactor in (3.16). Fig. 10 shows the 

dependence of Ry on the mixing angle sw 2 for various mass values of the extra Higgs 

bosons. In contrast to the standard situation there is now also a significant 

dependence on the scalar masses, which means that the extraction of sw 2 from a 

measured R~ value will lead to different sW 2 for different masses of the extra 

Higgses. Again we encounter the situation that remarkable deviations from the 

standard model occur only if either M
4 

or (M
1

, ~)are large. Ry becomes indepen­

dent of M
1 

and M
2 

for light neutral scalar/pseudoscalars. 

The neutrino charge radius in (6.6) plays only a subordinate r6le, in particular 

+ for heavy q, . E.g., M</J .....J Mz and {3= 300 yould change R>J by less than 0.01. 

This is also different from the minimal model, where relatively large contributions 

••• .L and the )1 charge radius cancel each other. from 
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The experimental value for Rv is [19] 

Rexp 
> 

1.26 + 0.41 
0.28 

This gives in the standard model: 

sin 2 ew 0.221 + 0.031 

The mean value of Rv would give in the two doublet model: 

M1 
M2 M~ 

10 GeV 10 GeV Mz 

10 GeV 10 GeV 5 Mz 

Mz Mz 5 Mz 

5"z 5"z Mz 

sin 2 Bw 

0.220 

0,203 

0.208 

0.208 

The present accuracy does not allow to put tight restrictions on the possible mass 

range of extra scalars, but this will change with the expected improvement in the 

Ry measurements aiming an accuracy of d. sw 2 = 0.005. 

There is also a second way to discuss the quantity Ry 

For a fixed MZ' sin 2 QW can be determined with help of ~as done in 6.1. The 

theoretically predicted value for Rv is then a function of the extra masses and 

can directly be compared with the exprimental result. The theoretical R~ values 

obtained in this way are listed in table 3. Again the variation of Ry is within 

the experimental uncertainty. 
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6.3 e+e- + £+£-: 

The standard electroweak corrections in the on-shell scheme have already been 

presented in ref's 03, 20] for the forward-backward asymmetry, and for the pola­

rization asymmetry in [20, 21] • 

We want to discuss now the effect of the additional scalars in the 2-doublet 

extension of SU(2) x U( 1). Some simplifications can be made based on the small 

m/Mw ratio: 

vertex corrections with scalars in the e+e- vertices can be neglected because 

of the factor ( ~m/Mw) 2 , 

Box diagrams with exchange of one and two scalar bosons can also be neglected 

since the Higgs has always to couple to the electron. 

The scalar-vector mixing propagators give also terms of order <pmemr/MW) in 

the matrix element and can therefore also be neglected for f) not essentially 

larger than 102 , 

Consequently we have to take into account 

the y and Z self energies 

r z mixing energy 

the final state vertex corrections. 

In case of a J.l.+ll- final state thelatterone will also give a negligible contribution 

due to the factor (mJ.I./~)2 in the vertex di.cgrams; for a r+r:- final f;tate, how­

ever, m,f~ can be (partly) compensated by the enhancement factor ($ . This different 

magnitude of the vertex corrections can give rise to an apparent violation of the 

j.l.- 7: universality in physical observables. 

~~~-~-----~~--~·-·--
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Since polarization experiments become feasible around the Z0 we include the 

case where the electron is longitudinally polarized with polarization degree P
1

. 

The following observables are of particular interest: 

Integrated cross section: 

S' ~ s o(.JL 
o{l> 
~Jl. 

Forward-backward asymmetry AFB: 

AFB • 
.£!5 
,Ln.. Join ; ( c.Ie~oft 

VP9£ 0 

Longitudinal polarization asymmetry ~: 

'P . A = s C1U - 1> (- Pel 
L l 

i> ('J'L) t I) (-ttl 

The differential cross section has the form 

ol.o . ) 
ol-n. 

ol.<S' 

ot..n. 
= 

cl.,_ 

Its 
L O 11, ( ()) + 'f'L f> L (g) J 

where s = (pe_ + pe+) 2 e = ~ C e-,f<-). 

With the propagator function 

'X(>) = 
s 
1. ' ~ S- /11 0 + L.. (s) 

6"' U and ~ can be specified in the following way: 

(6. 7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

1) In J~i~we include also the standard part; the extra contributions to the 

Z width is " ' 
2. 

rl'l:->vv). 
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6'· - (A 1 + A 1 Re.,. 1 A l '\ 
A{ J-.. 11: .. A: l?; 1'" ) · ( ~+ w:,'e) ... 

. ~ 

+ ( B} + B2 'Re :>;. 
~ 1 .,. ) 2 

-t 13 3 J""' X + B.,_ IX I · lNlil 
(6.12) 

for j = U and j = L. 

The e -independent coefficients A, Bare put together in table 1.·The form factors 

Fy and FA in the table are those defined in (5,3- 7), For the nUmerical discussion 

ve have used fi:. = 50. The quantities TT are the relative self energies 

TT r = 
• I.~(<) 

s 
-~1: 
II = 

i .~(s) 

s 

i_ 'i, '1l are the renormalized functions of ( 5.1), 

We divide the discussion into two parts: 

a) PETRA energies: 

I 6.13) 

At energies around 40 GeV the leptonic polarization asymmetry is small ( ~ 2%); 

higher order effects are ~ 1%. Therefore we concentrate our discussion on the 

unpolarized observables 6' and AFB, 

Fig. 11 shows how the relation between AFB and sW 2 (for fixed M2 ) is modified 

in case of a heavy cp+. A heavy H1
, H

2 
pair gives a similar effect. For light H1

, H
2 

~becomes independent of M1, M2
• Values for sW 2' if extracted from A;~p for given 

MZ, would be lower than in the standard model. This behaviour is just opposite to 

the tendency of the PETRA experiments Q7}· On the other hand, the measured ~B can 

be converted to restrict 

MW,z measurements as sW2 

possible extra heavy Higgs states if sW 2 is taken from 

, 1 - "w)M ' z • 

Differences between the ~ and -r asymmetry are small in all cases ( .... o.l%), This 

is due to cancellations of the leading vertex corrections which are different for 

~and"t'. 

- 29 -

The second point of view incorporates the results of 6.1 and relates G' and 

AFB directly to M
1

, M
2

, M
1 

by means of (6.1 - 2). The results are listed in table 4.~) 
Deviations from the standard model would be hard to detect experimentally ( ~ 0.3%). 

The reason is that the effect of the Z self energy in (6. 12) and of theW self 

energy in (6.1) largely compensate each other. 

In the cross section, however,· there is a violation of the universality in the 

case of light neutral particles (1-3% effect). A light pseudoscalar gives a constant 

contribution for M2 -+ 0, whereas a light scalar yields a logarithmic increase for 

M1 -+ 0. Their contributions to ~are always negative. A 5% effect, which corres­

ponds to the present experimental uncertainty for ~/':. [22] is obtained e.g. for 

M1 = M2 
= 10 GeV and (1 = 200 or M1 = M2 

= 5 GeV and ~ = 140. This is a tighter 

limit for (! as from g-2 for muons [6] in the degenerate H1, H2 case. 

b) On-resonance; 

We consider the experimentally most interesting case ~ Mz and include the 

longitudinal polarization asymmetry (6.9). 

Fig. 12 and 13 display the sW 2-dependence of AFB and~ for the case of a heavy 

charged Higgs. The asymmetries for~ and r are only slightly different due to 

the fact that the formfactors largely cancel in the asymmetries. Also a common 

limiting curve is reached for light neutral particles, which represents essentially 

the lower curve in the figures. 

The case of a heavy H1 , H2 
pair and M~ ~ Mz practically coincides with the 

previous one ( ~~heavy, M
1 

M2 
~ MZ) and is not displayed seperately. Deviations 

from the standard model prediction in all other cases (no large mass splitting) are 

less significant ( Z 0.7%). Qualitatively, this behaviour is quite similar to that 

encountered in a). 

1) m/. /s terms included in the Born term 
r 
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Now we follow the lines of a) and incorporate the results of 6. 1, which means 

that sW 2 is no longer an independent quantity but already fixed if M2 and the Higgs 

masses are specified. 

The values of ~, AFB' ~ obtained in this way are put together in table 5 for 

various choices of the Higgs masses, both for ll and 1.':' final states. 

Let us first have a look at the asymmetries: Differences between A11 and A~ 

not more than ~ 0.4%; this is again a consequence of cancellation of the leading 

vertex corrections in AFB as well as in~· Consequently, AFB and~ are not very 

sensitive to the enhancement factor. 

Comparing the results with the standard model it becomes obvious that the on-

are 

resonance asymmetries are sensitive to the extra Higgs contributions, in particular 

when either q/ or H1, H2 are heavy. This is different from the off-resonance case. 

The reason for this is that W and Z self energies do not compensate each other for 

s = MZ 2 (on-shell subtraction of ;E~ ). One can also learn that a light H1 , H2 

pair tends to a common limit in the asymmetries. 

The integrated cross sections in table 5 are given as ratios ~/rs0 , where e$'
0 

measures the lowest order standard cross section (sw 2 = 0.2208). The sources for 

deviations from 1 are 

different coupling constant resulting from (6.1) and (6.2); 

contributions from 
• l 
L 'I and the :'ormfactors; light neutral Higgs give 2-3% 

difference between ll and t"" · 

different Im .L 1 
( MZ 2 ) in case of light neutral particles. 

~ will therefore, in contrast to the asymmetries, show a dependence on light neutral 

particles and to enhancement effects. For a more realistic experimental discussion 

also the effect of light scalar bremsstrahlung has to be considered. 
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7, Conclusions 

In the framework of a SU(2) xU( 1) gauge theory with 2 Higgs doublets and enhanced 

Yukawa couplings we have calculated the 1-loop corrections to the leptonic processes 

ll decay, ~ e scattering and e + e-~ ll +ll-, 1:"_. t:"- • The renormalization is per-

formed in the on-shell scheme; field renormalization leads to-finite self energies 

and vertex functions. Measurable effects on the~-~ mass relation, <S"(~d IG""{~t") 

and AFB' Ar, in e+e- ----i>,£~1,-appear if either the charged Higgs mass or the neutral 

Higgs masses are heavy. Effects of light scalars/pseudoscalars and the influence of 

the enhancement factor play a subordinate r8le in the asymmetries. They are better 

investigated in terms of crass sections. Present limits on 6'" re.J.e-__,. ·c'"T·J 

restrict the enhancement factor to N 140 for a neutral H1, H2 pair at 5 GeV and 

200 for 10 GeV, The best place to look for heavy Higgs particles with large mass 

splittings will be the on-resonance polarization asymmetry in connection with pre-

cise vector boson mass measurements, 
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Appendix A: Invariant functions in 2-point integrals 

With 4 = 
2 
£ - r + 4 o1r, £;4--1>/ and the mass scale ~ intra-

duced in dimensional regularization the functions B
0 

reads 

- ' +- f3o {../c.,~' ll-Wa.) 1 
(A.l) s. ( -«: -... ""•) = ~""'t.. 

7 4 -k 

iL r -l; ""·· ""· l 
2. l. '"" ... Mot,., + ?ttl. k -

41( 1_ )\1 z. A+l:z. 
< lo 

' + {:(-"., ... ,, .... ) . (A.2) ; 1-

An analytic expression for F(k 2 , m1, m2 ) is given in ref. ~2]. The integral re­

presentation for B
0 

is 

• 
llJ~:-.,-,l = Jdx-?... 

2 2 ( lo ... ~) ... • 
X .J. - X _.4 .,.. Mt.., - ..,...,'Z. + 'Jtt..., - t £ 

With help of 

A[,.. l 

0 

-'>(,< l. { .1 - ..t., .-' 
,..~ 

one can write for the function B1: 

1.. 1. ,t 

AMA'K1.t, 

+A) 

B. {..4; ""•·""'> J = 
.-Hotz,. -""""" ... -....r.(.. . 

.z -&.' 130 CA~ "-'•• ""'-) 

+ 
A[-.. .._! - A(,.,,) 

2 .ft 1 

For the fermion renormalization constants we need the specific val~es 

4 
~ {/KtA~ I}M-t' ml.) =- ""E (!J-k-5 

I'~ 
+ i) - ~ 

+ B {,.,._ •"" ' "" ) "' "' ., z. 

(A.2 1 ) 

(A.3) 

(A.4} 

- ---- -,_"-----~~----
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A 
,.,1 

BA {Mi"~~~~4) :: --·---Hot. 'L -A4t 1. 
- . .£... ""• + 

""• 
,., J. 't- 2 44.t,.:~­.z-· j:"("''fAA; ~~ ,..2) • 

" ~ ' • 
I A. 5 I 

Furthermore we need the derivatives 

s: {"'»t.,z.,..,.,.,"1,-m2.) 

a; r '"'·; ""'·, ..,.,, J ; 

They read: 

0 2 2 ~· (A : ""•' o-'<, "".,, ""2 ) 

JB1 {.A.'=->~<:, ""•• ..,..,) 
~4' 

'{ t 1l. ...... , ""·· ..... ) - 1 ~;+4.~ 80 ( ..U.,. ~ -1«_, I i'W.t~ ) ...... 

2 ~ { ""• ~ ,.,., ""z ) + 
'2',/., ) I)'Jf"'- l'kot,. 8 (ltH,~,,.,..,2.. I 0 ... ,, • • ... - 1_, 

(A.6) 

"'{""''""......,) = 0 o "'' ,, z 

.;,.,, (,,'-3.,.') 
-m/ i I""'.~.'"- It"": I 

" -no' 
A 

l ' 1'1f l. - 11'1 .. 
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Appendix B: Invariant functions in 3-point integrals 

The finite parts of the J' and "/ '¥. coefficients in sect. 3 are: 
,.. I" s 

"A (. ' 4 , .It' 
"• ,(.' M, .,..) = - It- r :[h. M~ 

~ 1. """t /'11. 
• ~ [ ~ - 4.. A. + -.-~ h. --,_ t 
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-t - C (J.. • "'-' • ""'· M,·m) • A' o 
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2 A, Ml = q: + l;" A- *' ~, M, M + lc' 
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C
0 

denotes the scalar vertex integral with equal external masses p 1
2 p2

2 

and the momentum transfer k 2 = (p 1 
+ p2

) 2 : 

-1:n' c. (.f~ M..J1,, 113;"">=fA 
(2"). 

1 

[tp,+f)'-M:J[t!l,-f)'-1-f:] [ q'- Mj J 

In our cases we do not need the fUll expression containing 12 Spence functions. 

Since we work in the approximation m2 .t< k 2 and since the C0 functions in 

(B.1) and (B.4) appear with coefficients Mi 2 /k 2 we need only their approximate 

form for m2 <~ M
1

2 , M
2

2 : 

m' 

J.•.c.r~~,.,M<,Mj1tl):>[.-t..(~:)- ,·r.j~(A+~:)dp{·!:l (B.S) 

and 
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~"A 

"' G 

.rp ( 

-"'' 
Sp (A- M") 

t ~ 

11, - ~ 

" ' -X. .... ~ 
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' ( t ' t + ~ { 1. ~ ,.) .. /, fv1' ~ . ) 

= ""i" H, - h, -.It - M, - M. --« - ., 2 ~ + '£ 
X-1,2.. 

Sp means the Spence function or Dilogarithm 

Sp{~l = 

A 

I dx 
0 

.£.. (A-x'2) 

.X 
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Appendix C: Counter terms for self energies and vertices 

Here we collect the formulas for the renormalized 2- and 3-point functions which 

are composed by the unrenromalized quantities and their corresponding counter terms. 

We expand the renormalization constants according to 

2· 
' 

== A + tl . 
' 

It is convenient to introduce the following linear combinations of the SU(2) and 

W& 
Sl ' and the gauge coupling renromali:z.ation 

:1. 
U(1) field renormalization constants 

constants 
S:t. w, s 

' 

(

. [)7.~1 ) 

.sz.~ 
' 

= ( 
s.: 
Cw,_ 

c 1 
'N 

_w 

.. s, ) (::} ,·= 4, 2. (C.1) 

Denoting with 
. .~ 

L.,2.' 2."' 
' 

2., the unrenormalized boson self energies, 

the corresponding renormalized ones are obtained via 

.i ¥(-It') = 2:. • U.'J + s r.,'-/.' 
' i! L. U'1 'i. <(..f. '1 - .S M~ + Sz'J,?. { .&. '- M i) 

i w (.4') = 2.. w (.t ., - S M~ .. cz: { 4 '- M;) 
(C.2) 

i'~ (.4') = L.lrl-&.', sr.ll ',_ M. ( &!: r<_u ·•) 
:L~+l ... 2. 

In the last .line the combinations 

Cw Sw 
(C.3) s~!z. 

~ 

( Si! < - H _11 ) 

< ' ' 
~·~1,~ 

; .. ... c., - i;"' 

have been introduced. 
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~ 

The mass counter terms J~W1 l (which get fixed by the on-shell conditions) 

fulfil the important relation 

SM; 
,.,: 

SJ-1~ 
-~ 

kw 
= s,. { 3J?:;" - 2 J'l, 7 ~). 

c"' 

1. w 

( c .4) 

This relation allows to express H-
~ 

liz· 
' 

by means of the on-shell values of 

the unrenormalized vector boson self energies. 

For fermion renormalization a field renormalization constant S z
1 

is assigned 

to the left-handed lepton doublet and a $zR to the right-handed charged singlet. 

We make also use of the combinations 

S"i.'l = 
S'lL + .r~R 

:2.. 
HA ~ 

Ji!c-J'lR 
2.-

The renormalized fermion self energy can be written as 

i_ .f' {.-ll • { ( 2.~ U, ') • Hv) + -1< 'i's ( 2:.! (-'.'J- HA) 

-+ ""'+ (I.!(..&. 'J - H~ """• ) 
"".; 

with the unrenormalized 
.f 

Lv,A,s 

Finally we need the renormalized electromagnetic vertex of the leptons 

rr.ff 
I'" 

r •H . ( l ' ,v • 'e ¥r SZA - ~~L + .Hv- HAl's) 

-t ,·e. r,... (v-<>rr> ( n,l"- n.,>'') 

and the leptonic neutral current vertex: 

(C.5) 

(C.6) 

(C.7) 
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' t.ff i!:ff t 2 r; = ~ ... .-el'r (v-"l's-l u~.- at) 

- ~ e ( s~ 11 -sz~~) d' )'" A :J. 

+ , e. ¥,.. ( v S?.y + o. Si!A ) 

- ,· e a,.- r~ ( v HA + "- 'Zv) 

~ stands for the corresponding unrenormalized vertex. 

" 
The 

f'tvv 
r 

~ -z vertex is given by 

= r;vv t ; ifeCw'w ~ (4-Ys) ( J"zL + Jr}- J't.1.c ) 

and the electromagnetic neutrino vertex: 

f\ 1vv 
r;_ ; 

r '(YV 

i" 
- ' 

e 
4 cwrw 

~t 'i r,.. (A- ¥.r > ( n -J-t l ) . ~ 

(C.8) 

(C.9) 

(C.IO) 
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Appendix D: Feynman rules for gauge-boson Higgs and fermion-Riggs interaction 

( 't Hooft-Feynman gauge) 

+ 'f- 1 'X denote the unphysical Higgs states, 
+ qp- and H

0
, H1

, H2 
the charged and 

neutral physical states. Charges are always understood as incoming. 
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Loop Integration: 
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Mw 
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Mw r, 
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The matrix element M. for a+b _., 1 + ••• + N obtained by these rules is related 

to the differential cross section in the following way: 
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Table 4 : IS 34.5 GeV ((lo>O) 

M1 M2 M~ ah+•-)!a
0 AFB(,) ah/ v -)/a

0 AFB(~) 

"z "z "z 1.003 - 8.52 1.002 - 8.62 

10 10 "z 0.999 - 8.57 1.002 - 8.63 

0. 1 0. 1 "z 0.980 - 8.57 1.002 - 8.63 

t·!z "z 5 "z 1.003 - 8.69 1.002 - 8.80 

10 10 5 "z 0.999 - 8.79 1.002 - 8.86 

1 1 5 "z 0.990 - 8. 79 1.002 - 8.86 

0. 1 0.1 5 "z 0.978 - 8.79 1.002 - 8.86 

5 t·1z 5 "z "z 1.002 - 8.69 1,002 - 8.80 

5 "z "z "z 1.003 - 8.59 1.002 - 8.62 

5 Hz "z 5 "z 1.003 - 8.59 1.002 - 8.61 

0. 1 "z "z 0.985 - 8.53 1.002 - 8.62 

"z o. 1 "z 0.998 - 8.54 1.002 - 8.62 
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TableS. ''""z • (p~:;o) . -
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M1 "' "o o/o0 AFB AL o!o
0 AFB "r. 

Mz "z "z 0.9989 3-95 22.90 0.9986 3.96 22.90 

10 10 Mz 0.9403 4.07 23.29 0.9398 L.09 22.90 

"z 0.9287 4.07 23.28 0.9395 4.09 23.29 

0.1 o. 1 "z 0.9182 4.07 23.27 0.9395 4.09 23.29 

rJ.z "z 5 Hz. 0.9508 4.92 27.75 0.9506 4.92 27.75 

10 10 5 ~-t 2 0.8786 L .83 29.37 0.8783 L.89 29.36 

;.,:-!z 0.8662 !:.73 2?.21• 0.874~ C.88 29.38 

o. 1 0.1 5 !~z 0.8546 4.60 29.03 0. 8744 C.88 29.37 

5 ~:z 5 !-!z ":z 0.9526 4.86 27.45 0.9528 L.87 27.45 

5 M
2 5 "z 5"z 0.9982 3.89 22.70 0.9991 3.89 22.70 

5 M
2 Mz 5 M

2 0.9972 3-92 22.79 0.9981 3.92 22.97 

"z 10 5 ~~z 0.9424 4.92 28.L5 0.9421 4.95 28.44 

"'z 5 "z 0.9399 4.88 28.39 0.9420 4.93 28.41 

~~z o.' 5 "z 0.9395 4.88 28.38 0.9420 L.93 28.41 

10 "z 5 Mz 0.9428 4.92 28.45 0.9421 4.95 28.44 

!·:z 5 M
2 

0.9371 4.86 28.35 0.9420 4.93 28.41 

0.1 "z 5 !-!z 0.9256 4. T7 28.19 0.9420 1..93 28.41 

5 :~z 5 ~~z "z 0.9562 4.86 21 .Ls 0.9528 4.86 27.45 

::. :1z " "z 0.9982 3.89 22.70 0.9991 3.89 22.70 ··z 
5 !1z "z 5 :.lz 0.9972 3.92 22 '79 0.9981 3.92 22.79 

!·tz 10 5 M2 
0.9424 4.92 28.45 0.9421 4.95 28.44 

... 5 Mz 0.9399 4.88 28.39 0.9420 4.93 28.41 .. z 

"z 0.1 5 "z 0.9395 4.88 28.38 o. 9420 4.93 28,41 

10 "z 5 "z 0.9428 4.92 28.45 0.9421 •• 95 28.44 

"z 5 "z 0.9371 4.86 28.35 0.9420 4.93 28.41 

0.1 " 5 "z 0.9256 4.76 28.19 0.9420 4.93 28.4t ··z 
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Figure Captions: 

Fig. 1 ~ 9 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5a: 

b' 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. 11: 

Fig. 12: 

Fig. 13: 

Non~standard -contributions to self energies and vertices 

photon self energy 

photon~Z mixing energy 

Z boson self energy 

W boson self energy 

charged lepton self energy 

neutrino self energy 

Electromagnetic vertex of charged leptons 

Weak neutral current vertex for charged leptons 

Electromagnetic vertex of neutrinos and neutral current neutrino vertex 

Charged current leptonic vertex 

R v , eq. ( 6:3), in lowest order ( -) and for different Higgs 

masses with radiative corrections due to additional Higgs bosons. 

MZ = 93.2 GeV. 

-·-·-M, M2 = Mz, Mf = 5 Mz 

------M1 M2 = 10 GeV, Mt = 5 Mz. ~=50. 

Forward backward asymmetry as function of sw 2 at s = 34.5 GeV. 

Mz = 93.2 GeV. Ml 

-·-·- M1 

M2 

M2 

MZ' M.f> = 5 Mz 

10 GeV, Mt = 5 Mz. 

On-resonance forward backward asymmetry, sw 2 -dependence. 

"z = 93.2 GeV. ----- M1 = M2 = "z• Mt = 5 Mz 

-·-·-M1 M2 

On-resonance polarization asymmetry 

Mz = 93.2 GeV. -·-·- M1 = M2 

----- - Ml M2 

10 GeV, Mt = 5 Mz. 

AL. sw 2 -dependence, 

Mz, M.fl = 5 Mz 

10 GeV, M~ = 5 Mz• 
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