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Abstract:

The i-loop renormalization of the SU{2) x U(1) electrowesk gauge theory with

two Higgs doublets is performed in the on-shell scheme with firnite self energies
and vertices. Assuming different vacuum expectation values for the scalar doubklets,
which yield enhanced Yukaws couplings to fermions, we calculate the effects of the
additional Higgs bosons in the radietive corrections to the leptonic processes:
p-decay . v’“e -scattering, and ete” —ru+u—, ‘C+T-'_-with longitudinal polarization
at PETRA and LEP/SLC energies. It is found that large effects occur in the MW_MZ
mass relation, the determination of sin® By from G‘(\%e) /5 [\';““e) and the

+ - . s . . . .
e & forward-backward and polarization asymmetries, if either the charged Higgs or

the additional neutral scalar/pseudoscelar are heavy. Bnhancement effects and effects

. . + ¥ = .
of light neutral bosons can better be observed in the e € — T T Iintegrated cross

section.

1. Introduction

The standard model of the electroweak interaction based on the gauge group

su{2) x U(1) describes successfully charged and neutral current reactions at low
energies. It has achieved further strong support by the discovery of the predicted
vector bosons in the correct mass range ﬁ]. From the standerd point of view the
only missing object is the Higgs particle. In the standard model the Higgs appears
as a fundamental field which describes neutral scalar particles without a sub-
structure. The r8le of the standerd Higgs is twofold: Through its non-vanishing

vacuum expectation velue v # 0 if is responsidle for

- +{he masses of the weak gauge bosons, induced by the gauge-Higgs field couplings

-  the masses of the charged fermicns, induced by Yukawa couplings.

Thus the masses of vector bosons and fermions are set by the same scale
v 2 250 GeV. In order to obtain light fermions the Yukawa coupling constants &p
must be sufficientl& small. Typically the couplings of the Higgs to fermions are
suppressed by & factor mf/MW compared.to the gauge coupling. As a consequence, Higes
effects in fermionic processes are very small unless heavy fermions like the top

guark would be involved.

In SU(2) x U(1) the left-handed fermions are doublets and the right-hended
singlets. Therefore Higgs doublets can couple to fermions and give them their
masses. The minimal standard version with a single Higgs doublet predicts the
ratio -

1
My
§ = N7 ,..2p.
ﬁ12 tn faw
to be unity. But the converse is not true: g = { remains valid for an arbitrary
number of Higgs doublets automatically. Higher dimensional representations give

in general e £ 1 if no additicnal restrictions are imposed. Experimental data
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for g are close to 1, which favours the doublet character of the Higgs field (s).

Models with more than one doublet have stiained interest e.g. in the context
of CP symmetry breaking [g], the Pececei—-fuinn solution of the strong CP problem [3],
and supersymmetric extensions of the standard model @I, which need at jeast two

scalar doublets.

The minimal extension of the standard model is a conventional SU{2) x [HEN
gauge theory with two scalar complex doublets q&, @L [S~Q} Three of their eight
degrees of freedom form the longitudinal polarization states of the W: and Z and
five remain as physical particlés;'These consist of two charged ¢ft snd three
neutral states HO, H!, H2 as mass eigenstates of the Higgs potential. One of the
neutral scalars (e.g. HG) behaves similarly to that of the standard model, whereas
the additional ones may yield effects which are different from those of the econ-

ventional Higgs. From ete” experiments at PETRA a lower limit for the charged Higgs

mass can be deduced EO]
M ? Z 1 g G;e.\/

and for the scalar/pseudoscalar pair H,, H, the ma3s range can be excluded (95% c.1.}

where one of them is below 0.2 GeV and the other one between ! and 21 GeV 11].

In two-doubtlet models two vacuum expectation values

Q o
<§‘> ot (@z) v,
i Vi

are available to generate the vector boscn and fermion masses. Their very different
mass scales could be traced back to different Higgs vacuum expectation values

vy 3> v, if only Qz'would have Yukawa couplings to fermions. The masses of W

2

and Z are then essentiaily determined by v,

(g2 is the (2}, g, the u{1) gauge coupling constant}, whereas fermion masses

arise as

An atiractive phenomenological consequence in models with different vacuum
expectation values is the ephancement of the Yukawe coupling constants by a factor
v1/v2 compared to the minimel model , which can {partly) compensate the small mf/Mw

ratios.

In order to have flavor conservation in the neutral current sector the quartic
: . 1
couplings have to be arranged in the way that @4 couples to 13 =3 and fi to
1 . . - .
I, =~ e quarks only. v, > ¥, enhances the u-like and ¥4 > Vg the d-like ccupling

3
2}
constants. Existing constraints to V1/V2 are not yet very stringent: In the first

case [8]
(EVL )L < Mg ~ 408 for H¢ = My,
A Mc .

and for the second case [91

vaoo . &Mé L 73 ror Mg T Mw
vy my
If leptons couple to é%. with v, > v, then a restriction resulting from the

anomalous magnetic moment of the muon would be [5]

A)

'U;_/;U; > 0 046 {for i, = 6 GeV)

In this paper we extend the on-shell renormslization scheme of the standard
model in ref, DE] to the SU(2) x U{1) theory with two Higgs doublets end different

vacuum expectation values vy > Vg Tn particular we discuss the effects of the

1 . - C s 7
J For mass degenerate H1 and H2 this limit can be significantly lowered [BJ.

2 L .
; More restrictive bounds from heavy quark systems have been obtained recently
M o 2 v M o i ,fg"*g‘ v .
w 4 31 + )} % A 4 2 A in ref. [23].
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additional Higgs bosons in the 1-loop radiative correcticns to the leptonic low

energy processes

(i) u decay

.- t= .
{ii) V.. € -scattering
and to the leptonic e'e processes

PR + - + -~ - __- . .
{iii) e e — uu , T T for PETRA energies and on the Z°.

B . Al .
A combined analysis of leptonic processes and direct MW’ MZ mass measurements give
the cleanest tests of electroweak theories, avoiding hadronic uncertainties as far
as possible. The basic assumption that only @1 with v, <V, couples to leptons
yields enhanced couplings between charged leptons and the additional neutral
4
scalar/pseudoscalar as well as between f”' \2 and 4: . The netural continustion of
this picture to the quark sector would lead to g, > g, put this is by no means
necessary. As far as we restrict our discussion to leptons only we can renounce
to assumpbions about the hadronic sector. The obtained results therefore would give
Al

independent possibilities to explore the validity range of two-doublet medels. In

practice, the enhancement factor

/5 = AL / vy
will be considered as an additional parameter, which besides the Higgs masses enters
the radiative corrections. According to the leptonic constraints from ref.{b],
which we will use as a guide, the Higgs couplingsto e and p still remain small,
but they can get the normal gauge .coupling strength for T leptons. Technically
this leads to scalar exchange contributions in the electromagnetic andlneutral
current vertex corrections, which are negligible in the standard model. Additional
scalars with enhanced couplings could therefore be observed in terms of differences

. + - Pl .
between u and -+ final states 1n e e -annihilation.

The paper is organized as follo

ap——

P e Tl A A e — e

ws: Sect. 2 contains the

Lagrangian

and its renormalization, from which the. Feynman rules aund the counter terms are

deduced., The unrenormalized 2- and 3-point functions of vecter bosons and fermions

are presented in Sect. 3. In Sect. b we perform the renormalizeticu, which yields

the renormalized propagators and vertices, listed in Sect. 5. Sect. 6 contains

the discussion of the leptonic processes. specified above.

2. Lagrangian, Feynman rules, and counter terms.

We write for the two scalar doublets, splitting off the vacuum expectation

Y4 and Vg:

The Higgs part of the Lagrangian is
= +
Ly = Loy + Ley

It contains the Higgs-gauge field c

N

V(g, &) .

oupiings:

Zew= (0.8 " + I2. 8, I’

with

/P-

\D=€M-—1—g@+{

9a
2 B/u)

values

(2.1}

(2.2}

(2.3)

{2.4)

the fermion-Higgs couplings, where we consider only the case of leptons, coupling

t H
Oéz,



-6 -

— ¢ £ e
i Ir (q'pt ¢, ¥ o+ ‘/?zf ¢, ‘/’Lf ) e

f=é&xt
ith Cos
Wi, ‘\{JR @g, Ma ?’—R
and
v, Y v,
v = e) ’") v (2.6)
L € Iy it Il Ty

and the Higgs potential with quadratic and quartic couplings. These can be chosen

{assuming CP symmetry) that vy and v, are real [71:
Vel 8T8 ol B8 A(ETE) 288
hy BV P A (FE (B ¢ [ (8]

The charged mass eigenstates following from V are

t : 1 (2.7)
d)" = ( Vo ¢4 - qb.,_ )/V
— - +
with ve Vit ¢ = (")
and the neutral mass eigenstates are
Yy [ w3 Sws ) [, (2.8)
Ho ~Sua § wa g M.
Hl = (VL (xl = Va x-:)/v (2.9)
5 is a function of the parameters inV
vava (Ag+ Ay ¢ As) {2.10)

tam 1y =

1 1
MY T Al

+
The orthogonel combinations ’\1[/ » X to(2.7,9) form the unphysicel components,
which enter the gauge fixing and Faddeev-Popov Lagrangian. These are specified in

a 't Hooft gauge in the same wey as in ref. [12] and we do not repeat them here.

The calculation of radiative corrections to fermionic processes where at least
one fermion pair is light (e+e—, Ve, ...) the Higgs exchange is supressed already
at the tree level {otherwise enhancement » 10 has to be assumed). Hence also
loop corrections to Higgs propagators can be neglected, which means that we do not
need the details of the Higgs self couplings in V(é“@z} Only the masses M¢
{charged Higgs) and MO’ M M2 (neutral} and the couplings to fermions and gauge

bosons enter the loop diagrams for W,Z propagators and vertices with internal Higgs

lines.

The situation of enhanced Yukawa couplings v1/v2 = p,\) A leads to

. 95:‘) v, (2.am)

L SRS R A I

<
-+

I?

1
B
14

+
NS Ir}.‘
o8-

ks

The mixing angle & for the scalar fields in (2.8) makes in general the coupiings

of the neutral scalars different from the charged Higgs couplings. If the quartic
couplings ﬂ'i in V are all of the same order, tang is of the order v1/v2 for

vy 2>y, according to {(2.10). In this situation we have equal enhancement for 95"":‘
E{E and H‘F and a minimum set of additionzl perameters beyond the standard model.

For a first view on the effects caused by a second Higgs doublet we choose tang = v1/v2
for concrete calculations in order to keep the number of further parameters as low

as possible. In this case we get from (2.8);

4

#oz‘“?” H o= M2 {2.12)

The masses of the weak bosons are essentially determined by vy:

My, = %31 A A Mg = My _—_\/g,‘+g; (2.13)

A A ]
Y



+
whereas m, = causes enhanced couplings for d;, Hl‘ HE; H2 has a pseudoscalar

B Vo
75 coupling to the fermions.

With the definition of the weak mixing angle

= 1k
w B, = L (2.14)

the Feynman rules for the interactiocn between the Higgs and gauge bosons / leptons
can be derived from (2.2). They are listed in appendix D for the model with VSV,

:

as specified above.

The neutral scalar Ho has the same couplings as the standard model Higgs. Also
the behaviour of the unphysical Higgs and ghosts is that of the minimal version.
Consequently, the only place where they become relevant in radiative correcticns are

the 2-point functions of the vector bosons.

Renormalizaticn:

The formal procedure of multiplicative renormelization is similar to that of rer. [12]:

each multiplet of fields achieves a rencrmalization constant 22 via
a W a [L B
W,u- - 22 w/”‘ ) B}* - 22, ‘B/"
f J——f f f [z¢ v}
"PL — Z‘L ‘\PL ) '\P'ﬁ. - z-g 'L}}g (2.13)

da —* J—;Z_;; 9511 553- - V(_éé_;i igz

The coupling constants get renormalization constants ZI:

w w ~ 32
9, — 21,(2‘3 ) 3,
-3/
gzl - 243 (ZZB) - 94 (2.16)
-4/

Here we drop further details of the Higgs renormalization concerred with L/(gﬂ 552)

since we do not need loop corrections ta Higgs propagators and vertices.

Expanding Zi =1+ 4 Z; vields the renormalized Lagrangian X which can now ke
. + +
re-written in terms of the physical fields W', 2, A, ¢, HO 1.2 and the parameter
3 3

set

& ﬁdi#r ﬂ42 / pqiﬁ ) A4o) ﬂ44' A4L i {3

(ol = 1/137.036 is.the usual fine structure constant ) and the counter term Lagran-
gian &} , which can also be expressed by the same fields and parameters. The counter

terms which we need for our caleulation are put together in appendix C.

3, Unrenormelized self energies end vertices.

The masses of the additional scalar and pseuddscalar neutral Higgs H1 p are denoted
3

by M, and M3 M¢ denotes the mass of the charged Higgs particle ¢)"

In the following sections we list only those contributions to the 2- and 3-point
functions {and consequently in the renormalization constants) that go beyond the
standard model set. In exceptional cases where alse the standard contributions are
ineluded this will be mentioned explieitly. All calculations are performed in the

't Hooft-Feynman gauge.

3.1 Vector boson self- and mixing energies

The 2-point functicns for the vector fields can be decomposed into their transverse

and longitudinal parts accerding to



_‘io_

4, 4 o 'é".v «
R B ! (3.1)

Al

.
8,4 = (- 9. +

where o= %W, BZ.

For our purpose of calculabting . radiative corrections to fermionic processes
where at least one fermion pair is light it is sufficient to deal with the trans-

verse parts only, These define the self energies in the following way:

ol 1' 1_'
= - A o= 3’,W,2
B8 ey Yoy 37 e) # =
"2 1:
= - A (3.2)
A = . 5’ ( P _M,_

In particulsr we have as extre Higgs contributions:

Photon self energy (Fig. 1}:

2 Ml ¥ t
Z_‘J(ﬁ.‘)= 4% 4 (A—"&A 7:?‘) + ZF;'M ('{"))

i, My 24"
2, (4)= o 4 @ - 5

+ (42-4/‘1;) F(’{‘Ij Mg, Mg ) J (3.3)

Photon-Z mixing energy (Fig. 2):

z
%, K SE - Cw ~ My LRI
T - g S WM e - 20,

o, _ & Sy - Cw 2 ﬂ_; 24°
I vl S S

s (=4 Mg) F (4 Mg, Mg) ]

7 boson self energy (Fig. 3):

S s S VN SV D S O A S N S

_O(._ 14 (' -

Z(&) 4.'Lc

e 2 (MEm]) g

+ (425 -2m2) (4

s lolosi) [fag My

1

- 11 -

+

Mt

oS, t T3
W-boson self energy (Fig. 4):
sYy = (A- a
2l ésw

KA af, M
ZAMM bR 15;', {'{‘(&“N—“:

+2 (M- Mg )&M‘ + 2MI-ME) &\

4

2 2

+ (M41 "1M¢ )
4

4“‘1‘2}441-2”#)[

NIASY 1~.1M¢)[4

F &M, My)

¢

Mq,‘f-H’i ’&\
M~ Mg

]1
F(&: M, M)

M+ML'&#ML+

+ L

M,

(3.5)

Fl& Md,h,))j

24" L (4L 4my) FUL Mg, M,,)}} .

Y) . Ty (&),

My
M4 Ml

W
ha

{3.8)
My,

7 T 2
+ %ﬂ) FLATM, My)

+ F (4}, mp ]

+ F(&5 M, m40]
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In these formulae Sy and oy are used as abbreviations for

All other quantities in {3. 3-6) are defined in the appendix A.

3,2 Fermion self energy:

The diagrams of Fig. 5 contain the Higgs scalars with enhanced couplings to the

charged lepton. The self energy Zfr of the fermion f, defined via

\. “ll ¥ 4
= —_—— = P (3.8
S;: (‘k} = ‘f‘."m; »k-m{ 2 (4) Py 3
can be decomposed as
f £ t . £ .
k) = k 2y (&) +4’<B,$ D4 7))+ 2. ). (3.9}

The diagrsms of Fig. 5 give for a charged lepton:

S8 = % G [ B (Mg M)+, (42w, M) + B, (4] 0, Mp)]

5_: = - #_“ﬁ_ Gp B, (4% 0, Mg) (3.10)

t -
2= 7w a [ 8, (43 mg, M) = By (4] g, 10D ]

and for a neutrino:

Ve F o YL
55 = - 2y = o g G Bl M)

Zs"\c - o . _ (3.10")

A13_

In these equations we have used Gf as an "effective” coupling

2

6, - 4:»3 (%ﬁ) (3.17)

that contains the enhancement factor {B .

The functions B_ and BT are given in the appendix A.

3.3 Vertex corrections

We calculate the contributions of the extra Higgs scalar with enhanced couplings
to the leptonic electromagnetic and neutral current vertex. Thereby the fermions

are taken on-shell; %? denotes the momentum transfer at the vertex.

Electromagnetic vertex:

1)

The results from Fig. 6 can be summarized in the form

7 e

p R 7
. ﬁdﬁ} A -
—4‘!3},%6‘1{[‘%(6-/&»;1*E)+A4(£2;M,,m£)]
: Mi A
TAey. -%t- G{ [-%(d",&ﬂp_ 4—;;) + /\A[Ef:“l,_,m‘c)_]

. M3 n
ey, {1+ ) :'71 G-F [%(A'&Eé +%)+ /\z(“&--‘; qu)] (3.12)

The UV-finite functions /\1, /\2 are given in the appendix B.

1)

terms ~ -m> are neglected in {3.12, 14, 17}

f
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Weak neutral current vertex:

With the axial and vector coupling counstants

a:-; ’ vV = a'(/f-.ll-s:;) (3.13)
45, Cw

we write for the sum of the diagrams inFig. T:
2ff 7,2 _ . a _
[ T 4%) vey (v-ay) (3.14)

1 —
—&ey/’ (V*"‘Yr)% G, [—%(ﬂ-&%‘; + %) + A (8] H,,’W‘;)J

ey, (viay) g G, [_g’(d_j“/*ﬂ‘: NEOE A, (&5 My, ) ]

2 1

. Cw =Sy
- W A+ i3
1 £ szSw 3}( Xg) ¥

(300 AM¢+ )+ A (4] M) ]

' ol P IQz 4 —

X ' MML = a2
A ¥ Ys W G [b-b == + 7 +A#(41M4,Hg,v?)]_

ZCMJSHJ

The neutral current neutrino vertex reads (Fig. 8)
Z2vv e .

' DR - -

R (&) ey, S O (A7 ¥s)

rovey, (A'yf){?‘r G#{ Tc fw(d ,&\ ¢ + )

(3,15}

s —

St S A (4 Mg
+ 26 Sw 6 U 1 F)}

P S S SO Y S U W N N S

- 15 -

Finally we give the electromagnetic vertex for the neutrine (Fig. 8):

X'vv . ¥
r—}h (A*%) «eyf_ (4'X5) I-_V, [/k")} (3.16)

.

Y z o L A t
FL&h) = - 2= G [ A&, My m) + A (&M m) ]

Heak charged current vertex:

The leptonic charged current vertex gets contributions from Fig. $:

W f 2, _ . e
r (4°) = 1’_2_"-‘2%5\»3 Yﬂ(/l-h—) {/1 +

M
of . My 4 _ A4 M, My (3.17)
56l 8- e fie o3 R
i 2 i A 2
vr AL M M) A f&,M‘b,MA)]Z
For the invariant functions /L, ‘s /\; again see sppendix B. G is defined in
eq. (3.11).

4. Renormalization
We follow the on-shell renormalization scheme as worked out in detail in ref. E?].

The procedure for cbtaining the renormalized 2- and 3~point functions by adding
counter terms is specified in the appendix C. We restrict ourselves to the rencrma—
lization in the physical seector (without longitudinal vector boson, ghost and Higgs-
ghost self energy renormalization) thst enters the radiative 1-loop corrections of
the fermionic processes (i) - (iii), sect. !. The physical sector can be treated

seperately from the unphysical one by the method of ref. ﬂE}. A complete renormali-
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zation would need the whole informaticn about the 2-doublet Higgs potential.

We denote the renormalized quantities by the same symbol as the unrenormalized

ones in sect. 3 but with an extra ~

The conditions which fix the renormalizaticn constants in the counter terms

of appendix C are:

-

Re 5°(M3) = 2 57md) = e Sfemy) = 0 (h.10)
3" (o) - o v
g&:(a) = 0 (o)

A af .
- Z: (qi’ = (4}
12 ""Tig {k - 1~‘;

(e}

I'A;}ee (0) = deyu

The last condition involves the electrons on-shell. It is only & condition for the
vector part; the vanishing axialvector in the Thomson limit is slready a conse-

quence,

From the set of eguations (L4.1), together with (C.2), (C.3} from appendix C,
the following expressions for the gauge field and gauge coupling renormalization

constants are derived:

i
(Aw.': A._,e‘_v_hiw_)

}&L
¥ ¥ ot Mw
. W
821 = SZ" = - g3 (A.w + ngv Mé )J {4.2)

- 17 -

2 _ T T PRGN 5o b 1 My
SZ‘L §2° = ’HT( AL,k s Aw *3 L hy }

+ CoF-Su (SM§ o sMy

2 b Vb MF
. Cw ( §Ma gMb)
e VR T ey ke
¥? ¥z X  Sw - Cu
‘SEQL (Sii - E:f 65gv,cy, wot
z 1
+ Lw ( §M; § Mw )
Sw M; My /o
with
k) 1 2 ( 1 L P
(ﬂ‘% _ MW) = Qe Zg M) T4 (M) o
M3 MY g, Mgt M .
2z W .
and ZLM s Z““ from eq's (3.5) and {3.6).

For the charged leptons we give the expressions for the vector and sxialvector
renormslization constants which enter the counter terms for the vertices, They

follow from (4.14) and (C.6):

o A M} 4 A ~ M; 1
82y = m & {"I(A_’&‘_‘ rz) -2 (8 e (h.4)
M 1 fian
“%(A'A;f +3) 82,7 ]
1 A fn. g Me o2
S?_A = Gy 2 (A L =2+ l) (4.5)
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$Z ‘fr‘“ in eq. (4.h) denotes the finite part Boson self energies: ,
S3f = B Om o M) b B Loy, M) A . .
. 2 $
*'2”‘;[ 3,"(4«;, 'W\.F,MA) - B (2, g, M, ) (6] iﬂ”‘z) Z;j(&‘) a :s‘cf (% ) %%.:L%'Cﬁ: £k x;:!
+ B, (m} mp, M)+ B (el my, M) | 3704y - 3% - ReZE (MF)
2 1 2 1
For the functions B,, Bf, B_' see appendix A. +(,(.f., Mg)[&%‘ (%—E ) % )F-'w B ;iﬂ' &A % ]J
Two limiting situa'tions are of particular inter?t: iw (eYy = 5 ;J.'“ ( 43 - Re Z.:M (M Wz )
ey wiggs (ML > g ) 2, =0 wimE) ] S (M | SMy “ Ln My
s Cw [4M S M, - X
vight Higes (M, << m;) : 82‘;&"2—34:3&%-&%' ( ‘ [S\:,' ( M: i M., )'F"‘-* a2n Mo ]

The condition {L.1d) ensures that we donot need an external wave function re-

Electromagnetic vertex:

normalizatioﬂ in calenlations of mabtrix elements with external charged leptons on A B,‘r{ ¥ '
- . ‘ - . [—' (&1) - ‘LGX +"ex (F _ r a,) (5.2)
their mass shell, External neutrino lines, however, get & wave function renormali- Vand M A v A 13
zatlon constant
M M -F with the formfactors
4 ol F] z i
4- 1% ¢ (g, . 82 ) (h.7) Y °< Ao(at A (A
Z U343 ‘c Mé v FV ‘_-"‘L_T} G-F{/\“ (‘Fﬂ; Mu W‘.p) + A,« (%’r M)-l %-F)
£ (5.3)
- 1 AN,
~ A, (£ M) = $2y7 |
5. Renormalized self energies and vertices.
Fl - -2 G A (45 M) (5.
. . . = 2 (%, Mgl .
The formulae of appendix C together with the explicit form of the renormelization A U3 'F

constants from the previous section allows us to give the following list of the

relevant boson self and mixing energies and vertex corrections.
A

82 VM' is defined in (4.6}, Gf in (3,11) and the

A -functions in the appendix B.

F vanishes for k? = 0 so that real photons have no axial coupling.
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Heak neutral current vertex:
~2EL . , z 2
f;~ =aey, (v-ay) + 183»/,(1:\, RS ) (5.5)

with the form factors

FE = - 2 G { VAL M) + A M) - 520

- Sw 4 ry H
+ Cu'=Sw A, (A Mg) + s, /\3(4,M¢]}

ACw Sw {5.6)

Fo o 2 Gl a[A WM m) A ] Mg, o)

£,
+ 2 AI. (tk M Mznw{.‘) + SZV ]
Cw-Se % 1 A A ™ (5.7)
¢ s By L M) ¢ g R M)

For the neutrino vertex one finds:

&2 1 N 4 2 ®
F}A v (4%) AeYn (A-X;][m + Fv (45 ];

T o, % M, My frw (5.8)
FE ) = G;{QMW A b S )

IR ST N TR Wit Ay S LR m) |
5 r g £ 2C S g e T T S

Since there is no counter term for the vy x vertex the form (3.16} is identical

vv
to the renormalized r' ¥

. e e i s e m e —
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Weak charged current vertex:

o (- ¥ [ 44 FYaN 1,

Pyt
(5.9)
ol 4 X .
FYUY = 35 6p {3 Ml MomMy)
- frie
v 4 AL M k) v Sy }-

For the functions A we again refer to appendix B.

6. Discussion of leptonic processes.

The results of sect. 5 enable us to discuss the effects of non-standard Higgs
particles on those abservables from which sw2 and the vector boson masses can be

determined, We restrict the investigation to the following electroweak processes:
{i) 1n decay: the lifetime T;“ yields a relation between M, and M;

Loy () . . . . -
(ii) y/u @ scattering, which allows a determination of the weak mixing

angle;

(iii) ete =~ 'y, 'C+t- for PETRA and LEP energies.

6.1 Relation between M, and M,

For a given value of M, the mixing angle resp. My o= oMy is fixed in terms of the

well known p lifetime ‘C'f_ and the theoretical expression

.1 o 1; S -1
e ta) [ A+ PE3 n )] (‘4" Sweak ) (6.1}
-
with
~MA Us
’g‘,o 384 n ‘W\" MW‘SW
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8§ wear depends on M, and sy°s therefore eq. (6.1}, together with M, = My e, can

be solved numerically yielding values s 2, My for a given MZ'

W

3 ; s . -
5 weak 25 the sum of the standard weak corrections sweak (including the

NS

due to the
weak

standard single Higgs contribution) and a non-standard part S

extre scalars. The standard part is specified in ref. {1 3_-! .

The ron-standard contribution allows the following approximetion: All the Higgs
couplings to the fermions involved in p decay contaln at least & factor (mu/MW)z in
the matrix elements, that suppresses)single Higgs exchange and box diagrams with
Higgs exchange s6 much that even [S ~ 10% would not be sufficient a make their
contribution physically significant. Also the insertion of vertex corrections and

VW wave function renormalization do not give larger effects. Therefore the only

relevant part in S;:ﬁk is the W self energy generated by the extra Higges:
N
s s w
= (o)
) = & - (6.2)
Weak Weak Ma}

A
with Z from eq. (5.1)}.

The results for s.,? and My obtained numerically from (6.1) and {6.2) for a

W
given Mz are listed in table 2 for some values of the extra Eiggs masses, In this
. . s P .
analysis alsc the standard correction & is incorporated with MH = 100 GeV,
wesk o

The results can therefore directly be confronted with experimental data,

. . +
A significant deviation from the standard result is obtained if either Qb or
Hl’ H2 are hesvy. All other cases lead only to small modifications. These results
are in agreement with those of & similar snalysis by Bertolini {3&] performed in

S8irlin's renormalization scheme DS] without field renormalization,
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If the neutral H1, H2 become light the values for SW2 and MW tend to become
insensitive to their actual masses depending only on M¢ {besides MZ}. Precisiocn
measurements of M, and MZ may decide mbout the existence of additional Higgs bosons
with large mass splittings, since a variation of MH in the standard model between
10 and 500 GeV gives only A sw2 = 0,003% resp. A Mw = 0,19 GeV. The value for

in case of M, = 5 M_ is about the A-& 1imit of 16].
¥y z ‘ My

¢

6.2 HNeutrino electron scattering

The determination of sin 2 GW with help of & purely leptonic process has the advan-
tage that it is free of theoretical uncertainties. A sensitive measurement can be

obtained in terms of the ratio of neutrino and antineutrino creoss sections
(v €)
Rv = anlhia , (6.3)
G(v.e)
vhich reads in lowest order:

A *gl 2z

[ + + = - .

2 i1 ! g= A=Wy (6.4)
v A% + g

The standard model corrections to R? have also been discussed in ref. @31 and

turned cut to be very small arcund swz = 0.22. This is agreement with an indepen-—

dent analysis by Bardin and Dokuchaeva DQI. In particular the standard corrections

are nearly insensitive to the mass of the standard Higgs such that R + can be con-

sidered as a functicn of s.? only, also in higher order.

W
Now let us discuss the extra Higgs contributions. They consist of

a) the yZ mixing energy

b) the neutrino charge radius {from the electromagnetic neut;ino vertex)

¢} box diagrams with exchange of one or two Higgses.
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The ‘yvz vertex contributions together with the neutrine wave function renormali-
zation vanishes for k? -+ 0. Moreover, by the same a.rgumeﬁt &5 in 6.1 one can neg-
lect all diagrams where a Higgs couples to the electron (small me/MW factors).

Therefore the only relevant part consists of a) and b) which lead to

qE 72 2
R, - 4+ 84 ¥(1+2877) + % (6.5)

4-8%F - ¢ (1-28%% + %"

where

Ayt
4
S x2 = LI. Cw Sw _g‘..._._-.

LY A=
o ™ 1 H*— 5 ) {6.6)
+ 3 () (*‘“::i s

~

LY
with 2-1 from (5.1)}. The second term is the Vcharge radius ﬁé‘;o Fv /“'-l
where Fj is the electromagnetic v formfactor in {3.16). Fig. 10 shows the
dependence of R, on the mixing angle SW2 for various mass values of the extra Higgs
bosons. In contrast to the standard situation there is now also & significant
dependence on the scalar masses, which means that the extraction of SN2 from a
measured R, value will lead to different SW2 for different masses of the extra
Higgses. Again we encounter the situation that remarkable deviations from the

standard model occur only if either M¢ ar (M1, Ma) are large. R, becomes indepen-

dent of M1 and M, for light neutral scalar/pseudoscalars.

The neutrino charge radius in (6.6) vlays only & subordinate réle, in particular
for heavy cb+ . E.g., qu ~ M, and B = 300 would change R, by less than 0.01.

This is also different from the minimal model, where relatively large contributions

LIS 4 .
from Ix and the y charge radius cancel easch cther, -

..25_

The experimental value for RV ig DQ]

0.k

axp _ +
Ry = 1,26 _ 0.28

This gives in the standard model:

sin 26W = g.227 ¥ o.om

The mean value of R, would give in the two doublet model:

M 1 2
1 M2 be sin ew
10 GeV 10 GeV MZ 0.220
10 GeV 10 GeV 5 MZ 0.203
"z M, 5 M, 0.208
5 MZ 5 MZ MZ 0.208

The present accuracy does not allow to pubt tight restrictions on the possible mass
range of extra scalars, but this will change with the expected improvement in the

R, measurements alming an accuracy of Aswz = 0.005.

There is alsc & second way to discuss the quantity R

For a fixed ¥, sin 29w can be determined with help of 'l;* as done in 6.1. The
theoretically predicted value for Ry 1s then a function of the extra masses and
can directly be compared with the exprimental result. The theoretical R,, values
obtained in this way are listed in table 3. Again the variation of R,, is within

the experimental uncertainty.
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6.3 ete” > 2™,

The standard electrowesk corrections in the on-shell scheme have already been
presented in ref's [13, 2(]] for the forward-backward ssymmetry, and for the pola-

rization asymmetry in [20, 21],

We want to discuss now the effect of the additional scalars in the 2-doublet

extension of SU(2) x U{71). Some simplifications can be made based on the small

me/MH ratio:

- wvertex corrections with scalars in the e+eH vertices can be neglected because
of the factor { ﬂme/Mw)"’.

- Box diagrams with exchange of one and two scalar bosons can also be heglected

since the Higgs has always to couple to the electron.

- The scalar-vector mixing propagators give also terms of order {[Jmemfluﬁ} in
the matrix element and can therefore also be neglected for (‘I, not essentially

larger than 102,
Consequently 'we have to teke into seccount
= the y and Z self energies
- ¥y % mixing energy
- the final state vertex corrections.

In case of a u+u~ final state the latter one will also give a negligible contribution

due to the factor (mu/Mw)z in the vertex disgrams; for a 7T final state, how-

ever, mt/MW ¢an be (partly) compensated by the enhancement factor £ - This different

magnitude of the vertex corrections can give rise to an apparent violation of the

p- T universality in physical observables.
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Since polarization experiments become feasible around the Z° we include the
case where the electron is longitudinally polarized with polarization degree PL'

The following cbservables are of particular interess:

~ Integrated cross section:

a6 (6.7)

= = fan d o

~ Forward-backwsrd asymmetry AFB:

4 48 ds
Aem = = [da e [da T3 , (6.8)
s @>0 twlBeco

-~ Longitudinal polarization asymmetry AL:

6‘(?1__) - G(" PL] A (6.9)
s (7)) + ¢ (-7

The differential cross section has the form

T
;%’L = I*is_. [G‘u(Q) + P G'L_(Q) ] (6.10)

where s = (pe_ + pe*)a' , 0 = & ( e', /0.') .

With the propagator function

S = (6.11)
s-MF+ TR

% (s) =

G"U and 61 can be specified in the following way:

1) In ]w,i!we include also the standard part; the extra contributions to the

[{(2->v7) .

7 width is < 2
~
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i ! 3 200 .
6J1'=' (AA + Al Qex + A3 J/wy( + A4 l%i ){’“-(AJ)Q)
; 1 : " 6.12)
) 9 2 i 1y, (
+(54 + B Rex + By Jawy + B 1% ) 2w
for j = U and j = L.
The & -independent coefficients A, B are put together in table 1. The form factors
F. and F, in the table are those defined in (5.3 - 7). For the numerical discussion

v A

we have used f: = 50, The quantities ]Tare the relative self energies

(6.13)

A : A T
¥ 2% . S
s ' s !

T

&3, 13
Z ! are the renormalized functions of (5.1).

We divide the discussion into twe parts:

a) PETRA energies:

At energies around 40 GeV the leptonic polarization asymmetry is small ( ~2%);
higher order effects are & 1%. Therefore we concentrate our discussion cn the

unpelarized observables € and AFB'

Fig. 11 shows hovw the relation between AFB and sw"‘ {for fixed MZ) is modified

in case of a heavy ¢+. A heavy H,, H2 pair gives a similar effect. For light H, H2

" Values for swz, if extracted from A;gp for given

MZ, would be lower than in the standard model. This behaviour is just opposite to

Apy becomes independent of M, , M

the tendency of the PETRA experiments [171 . On the other hand, the measured AFB can
be converted to restrict possible extra heévy Higgs states if sw2 is taken from

m nts a 2—1‘MW7M2
MW,Z easureme s 8% = M

Differences between the p and T asymmetry are small in all cases (~ ¢.1%). This
is due to ecancellations of the leading vertex corrections which are different for

u and T .
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The second point of view incorporates the results of 6.1 and relates & and
AFB directly to M1, My, M‘P by means of (6.1 - 2). The results are listed in table h.4
Deviations from the standard model would be hard to detect experimentally (£ 0.3%).
The reason is that the effect of the Z self energy in {6.12}) and of the W self

energy in (6.1) largely compensate each other.

In the cross section, however, there is a violation of the universality in the
case of light neutral particles (1-3% effect). A light pseudoscalar gives a constant

contribution for M, - 0, whereas a light scalar yields a logarithmic increase for

. M1 —» 0. Their contrivutions to © are alweys negative. A 5% effect, which corres-

ponds to the present experimental uncertainty for G_‘t/f; [22] is obtained e.g. for
M1 = M2 = 10 GeV and (& = 200 or M1 = M2 = 5 GeV and (i = 140, This is a tighter
limit for (L as from g-2 for muons [6] in the degenerate H1, H, case.

b) On-resonance:

We consider the experimentally most interesting case E = MZ and include the

longitudinal polarization asymmetry (6.9).

Fig. 12 and 13 display the swzﬂdependence of AFB and A.L for the case of a heavy
charged Higgs. The asymmetries for p and T are only slightly .d:i.f'ferent due to
the Fact that the formfactors largely cancel in the asymnetries. Also a common
limiting curve is reached for light neutral particles, which represents essentially

the lower curve in the figures.

The case of a heavy H1, H2 pair and M¢ ~ My practically coincides with the

. + . . . .
previous one { ¢ heavy, M1 ~ M, ~ MZ) and is not displayed seperately. Deviations

2
from the standard model prediction in all other cases (no large mass splitting) are
less significant { £ 0.7%). Qualitetively, this behaviour is quite similar to that

encountered in a).

D mi_ /s terms included in the Born term
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Now we follow the lines of a) and incorporate the results of 6.1, which means
that sw2 is no longer an independent quantity but already fixed if MZ and the Higgs

masses are specified.

The values of §°, AFB’ AL obtained in this way are put together in table S for

various choicesof the Higgs masses, both for pu gnd T final states,

3 . . T

Let us first have a look at the asymmetries: Differences between A" anda A are
not more than ~ 0.4%; this is again a consequence of cancellation of the lesding
vertex ¢orrections in AFB a5 well as in AL. Consequently, AFB and AL are not very

sensitive to the enhancement factor.

Comparing the results with the standard model it becomes obvious that the on-
resonance asymmetries are sensitive to the extra Higgs contributions, in particular
when either ($+or H], H2 are heavy. This is different from the off-resonance case,
The reason for this is that W and % self energies do not compensate each other for
s = MZ2 {on-shell subtraction of jfz ). One can also learn that a light 0., H2

pair tends to a common limit in the asymmetbries.

The integrated cross sections in table 5 are given a&s ratios Gr/sx, , where G}

measures the lowest crder standard cross section (sW? = 0.2208). The sources for

deviations from 1 are

- different coupling constant resulting from (6.1) and (6.2);

S

I 2 . . .
- contributions from Q. and the formfactors; light neutral Higgs give 2-3%

difference between p and T ;

~ different Im JEE(MZE) in case of light neutral particles.

6" will therefore, in contrast to the asymmetries, shov a dependence on light neutral

particies and to enhancement effects. For & more realistic experimental discussion

also the effect of light scalar bremsstrahlung has to be considered.

-~ - ~ -~ - - T ST AN S U VR S V- NS
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7. Conclusiens

In the framework of a SU(2) x U{1) gauge theory with 2 Higgs doublets and enhanced
Yukawa couplings we have calculated the 1-loop corrections to the leptonic processes
n decay, T;‘ e scattering and e+e_-—9 u+u_, =% €7 . The renormslization is per-
formed in the on-shell scheme; field renormalization leads to finite self energies
and vertex functions. Measurable effects on the M,-M, mass relation, G'Qgc] /€Tie)
and Ao, A in e'e” — £* appear if either the charged Higgs mass or the neutral
Higgs masses are heavy. Effects of light scalars/pseudoscalars and the influence of
the enhancement factor play a subordinate rfle in the asymmetries. They are better
investigated in terms of cross sections. Present limits on 6= (ef e = T*7 ™)
restrict the enhancement factor to ~ 140 for a neutral H1, HE pair at 5 GeV and
200 for 10 GeV, The best place to look for heavy Higgs particles with large mass
splittings will be the on-resonance polarization asymmetry in connection with pre-

cise vector boson mass measurements,
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Appendix A: Invariant functions in 2-point integrals

With A= % -y 4 ,&v 473', &= ‘f'-_D, and the mass scale u intro-

duced in dimensional regularization the functions Bo reads

Bo (A o, amy) = A —@”’;T'L * B (4}, ), (a.1)
g@[/gfrmd,mz) = 4= :z";::j'z&ﬁ + r[&:w m, ). (4.2)

1
An analytie expression for F(k?, Ty, mg) is given in ref. [12]. The integral re-
presentation for EO ig

2 T T T b T
24‘. -X{oll- '\"M"4'“’m‘:.)+4"4 -LE

[azx Lo X o

Bo [A_: o, }

(A.2%)
With help of
t
Alwm) = - aut (d—,ﬁ«% +/1)
one can write for the function B1:
z L3 t
2 i -
8, 64’:'”'4!”"3)'= /m"z ;.:A & B" (A?M”ml)
(A.3)
A‘["’“z} 'A[’“'A)
24

For the fermion renormalization constants we need the specific values

2 1 B S ®
B/lclmﬂ' +l) + B,,("“;'Jm!,)d’"z.}

. 1
nu,m,_)=—;—/{4~,&~f-ﬁ

(a.4)
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A 4“'.'2 oy 4’!11—.246(:' (
B(rm:m»m) ;*m:._m;&,,—“ Y Tt il
2 4 4 +
Furthermore we need the derivatives
/ 980 z_ 2
By (m2 my, m, ) = e {4*= m,, oy )
_ agof 2 2
8 Com 4444,’)‘42) - QZz (,ﬂzm.,“ /mu"“‘f-)
They read:
lr 1 I mz
‘Bi[mﬂ'ma’“'a) B & +'d"‘:m - 8"[4“4"‘“4’4"‘:)
"’
_ 2 M, "‘24“4 ! ]
28, (il omy oy} ¢ T B O, ),
4
B{:[’W’. /ynz) = - —3 + Mz = M1y 1‘.1
¢l " L'g 4'1_’

Jm, [44121—3»11,2)

,,,f * [’M:"' lh'mff

e

{A.T)
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Appendix B: Invariant functions in 3-point integrals

/’1—5(’4.2/‘4%) = 3 -f-z&/L-L—H' - 4 F[»&;Mq,w)

i s . ’ ’ “L? -i"

The finite parts of the aJ and Y 3/ coefficients in sect. 3 are:
G 5
- 2 M- an® ;
A4 [42,M|Mﬂ-) = "% fl/&m—-‘; ¥ 2 [Bo['&'z;m"m) - G" (a’ e M)J
2 M £
P Mg A et MYt M) ] 2y (MEat) 2 '
E[ A}Tif Ml_mq' '—’;-f_ + [ f 1{414 + ’ﬁ.‘l. ] Co ('&, ’HA"W’ Mi 0)}‘

t 2
+ /'%'4?_ Co (434«,%, M;m)i- 1'71’[M - % ) 3 (4{270} (8.1}

R (& M) = 3+ 2 Flhy M, M)
Ay (&2 m) = & v & 1 -Z;;'l) F(4% M, M)+ f; - “Z?‘z [ B, (42, M, M) - 8,(5, . M) ]
- a»(z::J‘ arcmi‘m{W:'“ i (ockicbu) (8.2) +[W1+£A%1wif] G (&7 1M, o),

Roim - ak s B k) Ay (B3 M, M) = 20 Lo, (4Y M, M)

+(§1)1[& "ﬁ‘: bl £) + Sl-4&)] . +2‘:i [1& Mio o B, (4Y M, M,)J

(g - M M (e R) ] o NN R T NOE NS

241 My ’

A My Moy ) = T By (AT M M) - Bt g 0at b, 00

. _g [,aﬁ Mo B, o M) - B4 M M) ]

. %f[@i": * Gyl Ml;%) = Ry (4 Ha, Hy) ]

Tt
+ &M’ CO (’{jMu Mz,’w‘)"“‘) H
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Co denctes the scalar vertex integral with equal external masses p1? = p22 =

and the momentum transfer k* = (p1 + p2)2

ant lpsp)=mi1lg-0*-m:3 04 M5 ]

In our cases we do not need the full expression containing 12 Spence functicns.

C, (47 M M,,

/IL'rr1

Since we work in the approximaticn m® <€ k? and since the C | functions in
(B.1) and (B.L) appear with coefficients Mi2/k2 we need only their approximate

form for m? << M2, M22:

£5.C (£, M2 [u(B) - T Al B )+ 5 () =)

and
2 1
A% C (AL, My, mmpm ) ?T - fp[/f‘ lﬁf)
A4
s Es) v ()
j* { ? P M., X f (B.5)
with

2 1 1 7,._ 1.1-_ 1 1 '
Xa2 %(le'Hﬁ-'& iJ(MT‘ Mo -4 4M1&+:L}

Sp means the Spence function or Dilogarithm

4 bn (4-x2)
Slz) = - Ldr

X
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Appendix C: Counter terms for self energies and vertices

Here we collect the formulas for the renormalized 2- asnd 3-point functions which

are composed by the unrenromalized quantities and their corresponding counter terms.
We expand the renormalization constants according to

2. = A4+ 82

It is convenient to introduce the following linear combinations of the SU{2) and
W, B
U{1) field renormalization constants 5224 '™ and the geuge coupling renromalization

constants 5"24

w
5§27 Sy Cor 52,
L5 oA 2
= g rEALL . (cl1)
L N
82,:2 Cw Sw 82; '
Denoting with Z ) Z N z ) z,w the unrenormalized boson self energies,
the corresponding renormalized ones are obtained via
S¥ay - SE - s 4
4 2 1 2z 1 k3 2 2 T
T U = TN -8M; 4+ 82, (4% MY)
ol w
SY Y = SNy - M« 82, (41 MW) fe-2)
2%2 2 2 T ¥
STun o= Yy - sz et Ma(se) -2 )
In the last line the combinations
2 Cw & b1 .
g2l . w (52 - §2; )’ =42 (c.3)
A T

have been introduced.
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T -
The mass counter terms Jng {which get fixed by the on-shell conditions) A ;'F'F Z'F‘;
L ) 2 2
o [ = f;_ - '+ﬁeyf; (v~ay5.) (JEA - J'El )

fulfil the important relation

: 2 : 2 2
SMy S S (30", 7). ~ve g, (5277 62,7
ME Mw Cow 2 (c.h)
: +ae (v 82y +a §24)
I %Y A

%
This relation allows to express 5%4 , Si‘ by means of the on-shell values of .
. . ~te ¥ Y (vSQA +ra £2,)
the unrenormalized vector boson self energies. ~
For fermion renormalization & field renormalization constant § ZL is assigned

to the left-handed lepton doublet and a § ZR to the right-handed charged singlet. r'u stands for the corresponding unrenormalized vertex.

We make alsc use of the combinations
The + -Z wertex is given by

2, - 42
Szv M ’ aEA = %___g_ . (C_S) n 2 E
L r;iw = I;_EW'* “-aecwgwwf‘("Ys)(‘QL"'Ji-f -42, )
The rencrmalized fermicn self energy can be written as .
A . £ and the electromagaetic neutrino vertex:
hid YvY . e ¥ ¥
(c.6) [ = I -4y ta-y) (§2 =827 )
fray - _ Sy ” » hoyw o0 ¥ L9 2
+ 'mi(zsu” 52, e, ) W
£
with the unrencrmalized ZV,A 5
Finally we need the renormelized electromsgnetic vertex of the leptons
noptf . 1 1
r;' = D +1,e'xr (SQA -82’_ +62V"5%A3’5)
{c.7)

2z
+1e A (v—ayr) ( 824‘ -~ 82;2)

and the leptonic neutral current vertex:

(c.8)

{¢c.10)
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Feynman rules for gauge—boson Higgs and fermion-Higgs interaction

Appendix D:
{'t Hooft-Feynman gauge)
E . . 1
"I—’ \ ’X denote the unphysical Higgs states, 43 and HO’ H1, HE the charged and

neutral physical states. Charges are always understocd as incoming.
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Loop Integration: J ——7—5
{27)
The matrix element M for atb=+1 + ,.. + N obtained by these rules is related

to the differential cross section in the following way:

(2 iT)'f 8#(FA+“'*PN"P“"P|,) 7 N dsP,"
O{G‘ s ,\/M-l _!l_ -3 -]
b J (Pa'Pb)l - fW\;' M\t 1=a (2’") 1'0"
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Table U : Vs = 34,5 GeV (p=5o
+ - + -
M, L My olt't )lo, Apg(t) oluu )/a, Agpln)
M Ky My 1.003 - 8.52 1.002 - 8.62
10 10 M, 0.999 - 8.57 1.002 - B.63
0.3 0.1 My 0.980 - 8.57 1.002 - 8.63
B My 5 M, 1.003 - 8.69 1.002 - 8.80
10 10 5 Mz 0,999 - 8.79 1,002 ~ 8.86
1 1 5 My 0.9%90 - 8.19% 1.002 - 8.86
0.1 0.1 5 Mz 0.978 - B.T9 1.002 - B.86
5 M, 5 My My 1.002 - 8.69 1.002 - 8.80
M - . -8,
5 M, H, My 1.003 8.59 1.002 8,62
5 M, My 5 My 1.003 - 8.59 1.002 - 8.6
0.1 L My 0.985 - 8.53 1.002 - 8.62
M 0.1 My 0.998 - 8.54 1.002 - B.62
Standard 1,002 - 8.53 1.002 - 8.62
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Table 5, «E:MZ . ((3:50)

T Wi
M, M., Mo afog fpg Ai‘ afo, Ly Ay
M K, M, 0.9989 3.95 22.90 0.9986 3.96 22,90
i} 10 ¥, 0.9L403 5,07 23.29 0.93598 L,09 22.90
1 1 ¥, 0.9287 4,07 23.28 0.9365 L.09 23.29
0,1 0.1 M, 0.9182 L.o7 23.27 0.9395 L.og 23.29
Mz MZ 5 Ml 0.9508 k.92 27.75 0.9506 L.g92 27.79%
10 15 5 My 0.8786 4.83 29.37 0.8783 L.8g 29.36
i i o, 0.68662 4,73 20.2h 0.87LS L, 86 29.38
0.1 0.1t 5 M 0.85L6 k.60 29.03 0.0874L L .88 29.37
*;— L 5 ¥, My 0.9526 b, 86 27.k45 0.9528 L,87 27.45
5 MZ 5 My 5 Mz 0.9982 3.89 22.70 0.9991 3.89 22.70
5 M, M, 58, 0.9972 3.92 22.79 0.9981 3.92 22.97
M, 10 5 M, 0.9k24 L.92 28.45 0.9421 L.g5 28 4L
M, 1 5 M, 0.9399 L.83 28.39 0.9420 L.93 28.u1
¥y 0.1 5w, 0.939% L.88 28.38 0.9420 k.93 28,11
10 ", 5 M, 0.9428 k.92 28,45 0.9421 %.95 28,44
! Hy 5 MZ 0.93T1 L.86 28.35 0.9420 L,93 28.11
0.1 By 5 My 0.9256 L.y 28.19 0.9420 4,91 28.11
54y 5 M, H, 0.9562 L_B6 27.45 0.9528 4,86 27.4s5
5 i, e M, 0.9982 3.89 22.70 0.9991 3.89 22.70
5 LA Hy 5 My - 0.9972 3.62 22.79 0.9981 3.92 22.7%
u, 10 5 M, 0,952k L,92 28,45 0.9423 L, o5 28, Ly
L 1 5 M, 0.9399 L.g8 28.39 0.9420 L.93 28..1
MZ 0.1 5 M, 0.9395 L.B8 28.38 0.9420 L,93 28,11
10 L 5 My 0.9428 k.92 28.45 0.9h21 k.95 28,44
1 M, 5 4, 0.9371 L.86 28.135 0.9420 b,93 28.41
0.1 My 5 M, 0.9256 L. 76 28.1¢8 0.9420 4,93 28,4t
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Figure Captions: - !
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Fig. 1 - 9 Non—standard contributions to self energies and vertices 7 - /)\rhﬂ;ﬂJ -7 I
Fig. 1: photon self energy
Fig. 2: photon-Z mixing energy Tig. 1
Fig. 3: 7 boson self energy — ¢+
¢+ { \
Fig. k: W boson self energy —- )
- ~ \
Fig. 5a: charged lepton self energy 'V\/V\l( }VV\N W\/\M’\N
b neutrine self energy T ™ "¢':/ z r Z
Fig. 6: Electromagnetic vertex of charged leptons
Fig. 2
Fig. T: Weak neutral current vertex for charged leptons 18
Fig. 8: Electromagnetic vertex of neutrinos and neutral current neutrino vertex P __‘\ H ~ = H
Fig. 9: Charged current leptonic vertex : HT { \ ' ( V2
7T \ ’ \ /
Fig. 10: R, , eq. (6.3), in lowest order (—) and for different Higgs rvvv\( A AAAATRAIKAAA AANAATORANA
-
masses with radiative corrections due to additional Higgs bosons, - z S - Z
MZ = 93.2 GeV. H2_
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Fig. 11: Forward backward asymmetry as function of Sy at s 34,5 GeV. AV*MNN{l ’,Kﬁv‘uﬂf
2 g 2 oY, = = = = = - = = = ~ —
MZ 93.2 GeV. M1 M2 MZ’ M¢ 5 MZ ¢._
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Fig. 3
Fig. 12: On-rescnance forward backward asymmetry, swz—dependence,
MZ=93.2GeV. _'"—_M1:M2=MZ’M¢)=5MZ ’\\H /—‘\é‘
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Fig. 13: On-resonance palarization asymmetry AL. Sy dependence. ’w\'\/\'\*\ M’J
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