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Abstract:

A reparametrization invariant action for string filelds describing non-inter-
acting closed bosonic strings is presented. Its construction is based on
geometric principles motivated by Polyakov's functional integral for sur—
faces. Special care is devoted to the precise definition of singular

operators and to reparametrization snomalies.
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1. Introduction and summary

More than ten years age Kaku and Kikkawa {17 worked out a field theory of
relativistic strings. The basic object is the string field ai[xj, which is

a functicnal of open or closed curves

x=(x”(é)) r.=4,...,4=16, 05é ¢ ar

’j -
In the gquantum theory of string fields a;[x] is an operator creating a string,
which is located on x, from the vacuum. Therefore string field theory is some-
times referred to as "second quantized string theory". Kaku and Kikkawa consider

open bosonic strings and their treatment Is based on the light-cone—gauge

formulation of relativistic strings [2].

On the other hand the importance of having a Lorentz— and gauge-covariant
formulation of string field theory has been pointed out by several authors in

the last years. Gauge covariance means covariance under reparametrizations of

the string. An early attempt in this direction was made by Marshall and Ramond L3].

In their work, however, the Virasoro anomalies (see [H] for a review) are not
taken into account, which spoll the reparametrization invariance of the operators

under consideration.

Recently different groups have obtained covariant actions for free and
interacting string fields [549]. Besides the original string field
they contain supplementary fields, whose number is infinite in the most symme-
tric treatments. Although these approaches satisfy the quest for a covariant

string field thecry, the following gquestions remain open:

1.) What is the geometric meaning of the supplementary fields? As string
theory is supposed to be a theory of geometrical objects, namely strings,

all fields appearing in it should have some geometrical origin,



2.) The local symmetry of the actions, consisting of so-called chordal gauge
transformations [6], is not identical to reparametrization invariance,
It ig only on the subset of string fields satisfying the Virasoro con-

straints
ln & =0 , h>O0 (1.1)

that both symmetry transformations coincide. Therefore, what happened

to reparametrization invariance?

These two guestions motivate a different approach, which is presented in
this paper. The guiding principles are to introduce only fields with a definite
geometric interpretation ané te consider reparametrization invariance as the
basic symmetry. The first requirement is met by the introduction of a one-

dimensional metric
g(g)eﬁll D<é s I

on curves x"{& ). Inspired by the work of Polyakov [10], who considers a two-

dimensional metric gab(z ,T) on string world-sheets, the metric is treated as

an independent variable. Conseguently the string field is a Tunctional § [X,s]

alse depending on g(d ).

Belew we present a free action for the closed bosonic string field § .
which is. local and reparametrization invariant. The kinetic term involving
the string variable x is a generalization of the dual model Hamiltonian
L+ ﬂo - 2. The requirement that Virasoro asnomalies are cancelled leads to

the presence of a kinetie term for the metric g too. Formally the action reads

in d space-time dimensions

- z 2 z S
2 g [ P ae 5Ly ga))* (preplge

+U¢—F g¢2) 3,"(3)] } . C{1.2)

where

s b _ d 1
()= %Z e (L.\'I-L-n ’T{Sn.o ) ) (1.3)

h=z -
*® and P are numerical constants and the prime denotes differentiation with
respect to & . The precise definition of the action S, which has to take care
of znomalies and singularities in the operator K, is subject of the following

sections.

When the string field ;{[x,g] is expanded in terms of oscillation modes
. . . 1{'} . .
of the metric g, an infinite number of flelds T [X] arise, which may be

regarded as supplementary fields like in [5—9].

Many problems remain to be investigated:

- construction of the corresponding aetion for superstrings,
- construction of interactions terms,

~ relation to the actions of [5-9].



T also investigated the case of open strings. It turned out that the action

corresponding to {(1.2) has problems for open strings, which are due to singula-

rities of the operator K at the endsof the string, é::o,1r . These singulari-

ties produce new anomalies which spoil reperametrization invariesnce. Hopefully

some boundary terms might cure this.

2. String fields

Tn this section the framework and notation is fixed. For more details see [h,B, 6}.

As usual the units are chosen such that the Regge slope does not appear in the
equations. We consider Euclidean space-time in 4 dimensions. Closed parametrized

curves are expanded as

ini

o
P 0 -

. PPN f =4y, d

xf(ay = 2o *n e ; ek (2.1)
t* my*
x.—n = ( X“" ) .

The string field is a real velued functional ;[Xl: &LX’A(“J , which
iz assumed to be differentisble with respect to the functional derivative

operator. This operator is expended as

& = .._'l_z -ind ér (2.2)
& xFa ar € 2 X, '
Creation and annihilation operators are defined -by
_a > "
ol = (i T (35 + awnxt)
4,y Py
Boe i (r) & AW X )
ay =il ( 2Ry " {2.3)
qf‘= al*

o (-]

and the oscillator algebra is

Laf arl-lak ar)-n 88,

+m
- (2.4}
Y.mln| mw\] = O
Snt= Sno .
A vacuur string field is defined by
B £ -— §‘ O . ns0 {2.5)
a, o = QA , = /

and is & Gaussian in the variables x. In the following we consider string fields
which are contained in the Fock space generated from I;. The inner product on

this space, formally written as a path integral

(%M ;*)x =SQ)[>(’“(&1] %4[{] %;L"] (2.6)

is uniquely defined by

)

- RN

al . 7). -
, w2 an’, (&, o)x-1 )
In the following we shall write all equaticns cnly for the a-oseillators, if

they look the same for the a-oscillators.

The second derivative operator
2

S
Sxlay SxMm

is singular in the limit €T, The singularity can be removed by & normal

ordering prescription. We define



2
- - S
L (é) . ¢ Far S <P (i + ( X (8 )) with some strictly monotonic function §(23), obeying
LS x

(24 ar) = 6(3) + 2w (3.2)

nd - o (2.8)
- = iZe (LH+L—H—HSH)
: T " ! Infinitesimally we write
: where G(2)= & + ¢ £(3)
(3.3}
~ }
L= £25 a4, 9. 2.9) %2y = %21 + g J@r ' + 6
+ -
1
are the Virasoro operators, obeying the Virasoro algebra The corresponding mepping which is induced eon string fields
~o
d z {2.10) x] = ]
[l bad = Gremd L+ em(m=a) S, Fix] — &[x]= &[]
The central term proportional to d, the Virasoro ancmaly, is due to the normal is infinitesimally given by
ordering. The constent term in L{ & } may also be considered to be an effect of 0 z} (3.8)
~ {E, .
normal ordering [11] EL){] = ;[’(1 + ES‘-“ #“1 Re2) §[X] * J
S 4 ' d d L 4 (2.11) where
. - —_— ~A4) = - —
:L?'atq—a.'LO"'ﬁg() °  ay , ¢
i
- o = (ds o) xT@) —o— (3.5)
and is included for laster convenience. In the light ccone gauge the free string R.t, - Sd‘ ‘P'(“ R( ) ‘P‘ %x“(n

field action is essentially given b . . . .
8 Y is generator of the reparametrization specified by (3 ). Rf is a well defined

operator and does not need normal ordering. When f is expanded as

™ {2.12)
(de Loy = 2(Lo+T.) + comst
—nd
{3.6)
_?,(L) = Z“, C, e
3., Reparametrizations
we have
A reparametrization is a mapping in the space of all curves x, given by R% = -~'\ ?:l, Cw Rn
n

® Shay = xP( s T
«Fy > XPfar= x"( ) (3.1 Ru= Lu-Lon

1
4
2
H
-




The algebra of these operators

]:Km, Rl = (wm-n R, (3.8)

does not contain the Virasoro anomaly. Therefore it is consistent to require that

reparametrizations form a symmetry of string field theory,.

The transformation of operstors under reparametrizations is determined by

their commutators with Be. If an operator Al & } obeys

(3.9)
LRy, Ad] = F Y@ A + Jar N 39

then it is said to have reparametrization-spin (R-spin} J. For example for the

following multiplication operators we find

xlu(n ‘nus }.‘-0 ; K,F(&) lﬂﬂS }=4

and for the derivative

s : = 4
Sxlen §

If A{ 2 ) has R-spin 1 the integral

Scll; AC2)

is reparametrization invariant.

The operator L{& )}, which is naively expected to have R-spin 2, transforms

anomalous?

LRy, L]

2 _g'(a) L{e) + £(a) L'¢2)
(3.10)

- _°\.. . (2)
L .

It is precisely this anomaly which causes difficulties in finding reparametri-

zation invariant acticns. Without the anomaly the action

SHR = (£r Kng E)x

{(3.11)

¥
K = So\z, (') % L)

which has been considered by Marshall and Ramond LB} would be formally repara-

metrization invariant,

4, Reparametrization invariant action

Apart from the Virasoro anomaly another problem with the action SMR is the
appearance of the inverse of x' in it, which would make a treatment with Fock
space methods difficult. Motivated by Polyakov's approach to the first quantized
string theory 110]) we looked for a sclution to both problems through the intro-—
duction of an independent metric g( & ] as a new varisble, Under reparametrizations

it transforms according 1o

%(?.)o\ill = g () dse)* (h.1)

or infinitesimally

c;(&)= g + a{ 14&'(&)3{;1 + f,(:.}%'(g)} . (k.2

The string field E[x,g] now also depends on g{ 2 }]. The generators of repara—

metrizations on ; are extended correspondingly and read

) £ S
R$=8Az{£(4)xr‘*(s\ o +(1$.'(é) %(4)4(.9(;1%!(;))% } . (L.3)
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In order to be able to give precise definitions of operators involving gl ¢ ),
we have to specify the space of string fields and its inner product again.

Formally the imner product would be given by & path integral of the form

(Eq, ;;) = \SJFL{. 3(&’] ( %,. [.xugj; {;\Lxla])x ! (e

where the measure is required to be reparametrization invariant. Arguments

similar to those in [10] suggest
U - 1 I S EYPY (4.5
df""%“)lf T;r %(z} 4

where

P(e) |
%(A) = e . (4.6)

Therefore we use P(8) instead of g(4 ) in the following and define a Fock space

of string fields with respéct to q“(@] . Let

T (L.7)
P = Z ¥, e . ¥Y.= “P“*
and define oscillators analogoué to (2.3)
-4 k)
Bhs HCa X + th(‘Ph)
1 (%.8)
B, ei (S (e + TE)

satisf':ying'

f-L’hll)w-]= [—rhvﬂm]=hgm+h ' [L“,EM]’-O (L.9}

= = ..=. = . = _ _= = = —~ ~ o S SPE S S E P23 = =

- 11 =

The space of string fields and its inner product are defined in the same way
as in sect. 2, including the b-oscillators. Purthermore we introduce the

counterpart of L{ ¢ )}, namely

S 2
K= — ——> 4 (o)
Y)Y § P2

¢
= AT e (KR - S

with

ku\= 4:?’ :[" L:_,_ : {11}

(L.12})

LKkl o) K + Lmgmtem S

The generstors of reparametrization are in terms of ¥
. T 5
Ry = Scla {.@(n '@y ==
¢ (4.13)
| | }

+ (1{; () + Lay @' ) Y -

Ru=Llo-T., +Ko-K.p —idumw ' n (b, + b_u)
and still satisfy the algebra (3.8). The operator XK{ € } transforms as follows

LRy, k@l = 28'a) K@) + fe) K

(L.15)

+HRaee) - ﬁ; e

The last term is the Virasoro anomaly again, whereas the third term is due to
the fact that already classically ("4")1 does not transform like an operator
with R-spin. Trying various possibilities we found thst the simplest modifi-
cation of K( &} .which naively {disregarding the Virasoro anomaly) has R-spin 2,
is

Ky - wo'(2) ey

e L o N S TPV



— 12_
This operator offers the possibility to cancel the Virasoro anomaly of L{é ).
The operator
H(a) = L(2) - = ( k) - wer'ar) (4.17)
obeys
LRy, H = 24'2) HQ) + J@) B'a)
:l_ " {4.18)
- Lfd- =g en] $@)
where the extra L8W —term comes from V"GL For the choice of X
(4.19)

d —2(%3r+1) =0
the anomaly is absent and H( é ) is an operator with R-spin 2.
In order to obtain & reparametrization invariant kinetic term K as in {3.11)

we must define a quantity of the type

K = gdz (3(@))_% H(3)

taking care of singularities of the operator product. The ansatz which we shall

try in the following is to use normal ordering again. Let

P(e) = P_0Q)+ Y03 _
. . {4.20)

- Fime ting
P-4 tiv il &b e wb e )

n=1

Then
{(h.21}

: %mg- = explyf@) exply¥-)

i i
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is well defined. However, it aquires an anomalous dimension such that its

R-spin comes cut to be
31
22" _ (1.22)
We account for this by introducing the rescaled field
4> = qu (4.23)
where
Pt
+ = 1 :
B Ain (4.24)
such that the operator
- 4 b
s :

. -1
- 1, equal to the naive R-spin of g{é } 2 . Furthermore we

has R—spin J =

define the rescaled

2
(4.25)

~r Z 4 8 ! 2
' =R K E-f ————— + Q)
K@ F F S$GY S0 0 '
In products like

-4éa
K(o) -

the normal ordering produces new ancmalies, which change the numerical coeffi-

. e

cients of the Virasoro anomaly. For

1 o~ "
CHa= e “*“‘{L(;)-x[K(u—WHﬁ +A]E: (4.26)

we obtain



~ 14 -

[R{,, Ha]= @ ie + b H')
A_ n --2:4%;)'
-éw(ol-Ll-%Trae)g(z) Pe :

-1
r X (tar2 - ) $' e ’ .

{4.27)

If we choose the constants ® and 1 suitably

< - o (4.28)

2 = ugw ' 221

the ancmaly 1s cancelled and H(2 ) transforms with R-spin J = 1. Note the

difference between (4.19) and (%.28).

Now the way is paved completely for writing down a reparametrization invariant

action for closed string fields.

5=(%,KE)
K= (d2 He

with E(z ) defined in (k.26}.

{(L.29)

If one tries to write down the analogous ection for open string fields,
it turns out that in this case normal ordering introduces some additicnal
anomalies, which would have to be cancelled by some boundary terms in the

action.

o)
. ° . .
‘Returning to the case of closed strings, let Eo [_q!_] be that string field

which is the Fock space vacuum with respect to ¥(2).

b, g - b @ =0 , n3z0 {4.30)

-15_

When &'[K."F} is expanded like

| Tix9l- :z:}, Y¥ixwy §i09]

(k,31)
n A A n-n o R v
= —\_’C: E: +Y: §: +Yo Eo +Y1.4 E4.1 o
with
I=(4l~4,..., ik) ) ’15*--15"'51'5.
gnd J being multiindices, and
) L Aa - Aa Gy ES Ao
Ea = L‘-ot E, ' ‘{o = “’-'\ }:u 1 E»\.a = ‘O-q Eo
(h.32)

o A Lo
E:L = TT E-l §0 f &"‘C.
we obtain an infinite number of string fields Yg [K.QP,]. Since § transforms

trivially under shifts of ‘?; , we may restrict ourselves to string fields

independent of %, and obtain the action in terms of the component fields

-T2 {T AT (T, - (s ) YT,

3.7 (4.33)

-2 Biu (e}, vl }

with coefficients

s my —Eb@ LY
A?:‘=(§z; :Siﬂ-ﬁ’-““a . gi') (4.30)

' n - . 2
R L (31 sfu e (Re-kvw): $1)

which can be evalusted straightforwardly .
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5. Conclusions

We have cbtained a reparametrization invariant sctien for non-interacting closed
string fields, which allows te interpret supplementary fields as stemming from

an extra metric variable on the string,

Our approach is motivated by Polyakov's treatment of the path integral for
gurfaces {10]. Although I believe that there is some relaticn to it, it is not
yet clear what the connection is. In perticular the action itself does not
single out the number of dimensions d = 26 particularly. A possibility would
be that 4 = 26 comes cut as a special case, when the gauge is fixed & la Faddeev—
Popov and the theory is quantized, If this produces additional contributions to
the Virasoro anomaly, the value

a-2¢
Y8

as suggested by Polyakov's calculation could result. This question deserves

X =

further study.

The next step would be to define a proper interaction term. Questions of

spontanecus symmetry breaking ete. could then be investigated.
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