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A reparametrization invariant action for string fields describing non-inter-

acting closed bosonic strings is presented. Its construction is based on 

geometric principles motivated by Polyakov's functional integral for sur-

faces. Special care is devoted to the precise definition of singular 

operators and to reparametrization anomalies. 
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1. Introduction and summary 

More than ten years ago Kaku and Kikkawa (1] worked out a field theory of 

relativistic strings. The basic object is the string field ~[x], which is 

a functional of open or closed curves 

x;(x~'ul) t<•1, ... , d·16 0 ~ 6 ~ :l.T 

In the quantum theory of string fields 'f [x] is an operator creating a string, 

which is located on x, from the vacuum. Therefore string field theory is some-

times referred to as "second quantized string theory". Kaku and Kikkawa consider 

open bosonic strings and their treatment is based on the light-cone-gauge 

formulation of relativistic strings (2]. 

On the other hand the importance of having a Lorentz- and gauge-covariant 

formulation of string field theory has been pointed out by several authors in 

the last years. Gauge covariance means covariance under reparametrizations of 

the string. An early attempt in this direction was made by Marshall and Ramond [3]. 

In their work, however, the Virasoro anomalies (see [4] for a review) are not 

taken into account, which spoil the reparametrization invariance of the operators 

under consideration. 

Recently different groups have obtained covariant actions for free and 

interacting string fields (5-9). Besides the original string field 

they contain supplementary fields, whose number is infinite in the most symme-

tric treatments. Although these approaches satisfy the quest for a covariant 

string field theory, the following questions remain open: 

1.) What is the geometric meaning of the supplementary fields? As string 

theory is supposed to be a theory of geometrical objects, namely strings, 

all fields appearing in it should have some geometrical origin. 
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2.) The local symmetry of the actions, consisting of so-called chordal gauge 

transformations (6), is not identical to reparametrization invariance, 

It is only on the subset of string fields satisfying the Virasoro con-

straints 

L~ ~ ,o h > 0 ( 1.1) 

that both symmetry transformations coincide, Therefore, what happened 

to reparametrization invariance? 

These two questions motivate a different approach, which is presented in 

this paper, The guiding principles are to introduce only fields with a definite 

geometric interpretation and to consider reparametrization invariance as the 

basic symmetry, The first requirement is met by the introduction of a one-

dimensional metric 

~Ul «IR 0 ;; ' ;; :l:tr 

on curves x!J.('b ), Inspired by the work of Polyakov [10], who considers a two-

dimensional metric gab( l, "t') on string world-sheets, the metric is treated as 

an independent variable. Consequently the string field is a functional i [X 1 ~] 

also depending on g(~ ). 

Below we present a free action for the closed bosonic string field ~ , 

which is local and reparametrization invariant. The kinetic term involving 

the string variable x is a generalization of the dual model Hamiltonian 

L
0 

+ L
0 

- 2, The requirement that Virasoro anomalies are cancelled leads to 

the presence of a kinetic term for the metric g too. Formally the action reads 

in d space-time dimensions 

- 3 -

s = (l,K~) 
.1!. .. + { L(6) k= : ~ d' 'a ( ~) 

~ ~<~(1. [ f ~w' ?,,_ 

- ( ~'+'1-~l ~·w" 
f.(loa- ~(l) ) 1 

-\- il-~ ~(61 ~" (6) J } ( 1.2) 

where .. . 
L(6):j_"' '"b 

1r L., e. 
~.,. -QI 

~~ b",o ) ( 1.3) 
( L, + L" I 

~ and ~ are numerical constants and the prime denotes differentiation with 

respect to L , The precise definition of the action S, which has to take care 

of anomalies and singularities in the operator K, is subject of the following 

sections. 

When the string field 3E[x,g] is expanded in terms of oscillation modes 

of the metric g, an infinite nwnber of fields Y:[x) arise, which may be 

regarded as supplementary fields like in [5-9J. 

Many problems remain to be investigated: 

- construction of the corresponding action for superstrings, 

- construction of interactions terms, 

- relation to the actions of (5-9]. 
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I also investigated the case of open strings. It turned out that the action 

corresponding to (1.2) has problems for open strings, which are due to singula­

rities of the operator Kat the ends of the string, 6=0 1 1t' , These singulari-

ties produce new anomalies which spoil reparametrization invariance, Hopefully 

some boundary. terms might cure this. 

2, String fields 

In this section the framework and notation is fixed. For more details see [4, 5, 6]. 

As usual the units are chosen such that the Regge slope does not appear in the 

equations. We consider Euclidean space-time in d dimensions. Closed parametrized 

curves are expanded as 

.. 
)<.1'\~) :L. 

h=--

X I' in l 
" e. 

x~" 
-n 

: ( x!'l" 

0 S. b ~ 21!" 1 r-=1, ... ,d 

The string field is a real valued functional rex]::: :£Lx,....(6)] 

(2.1) 

, which 

is assumed to be differentiable with respect to the functional derivative 

operator. This operator is expanded as 

_L 
I, xi" (I,) 

= 1 -;:.;;;2:: 
" 

- \YI' 
c. 

d 

~ • 

Creation and annihilation operators are defined-by 

Q I' -
_j. 

C,~" + :l1rnx/:) .(4-1r) a n - -· 
_.i 

( -~" :l1r" x.!; ) Q I' ~ I ( \l-1r) >. + 
• " 

a~'= -I'" 
0 e~. 

(2.2) 

(2.3) 
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and the oscillator algebra is 

L at "1 [-1'- -") OI,WI :. Ci'll'\ I (\ \0'1 "::: " V" f, 
n+wt 

l. "'~ _, J 
~ 0 ~~ 

(2.4) 

s~ ,~ ~,_ 0 

' 
A vacuum string field is defined by 

a..t' I. -"I 0 " )' 0 = "'· . = I 

(2.5) 

and ~s a Gaussian in the variables x. In the following we consider string fields 

which are contained in the Fock space generated from ~0 • The inner product on 

this space, formally written as a path integral 

(!.,I.t = s;)) [><f(61] 

is uniquely defined by 

I' - ( ")+ Ci\.1'1 - (;\~ I 

_,.. 
01 -- : ( qt)+ 

fJx] f.lx] (2.6) 

I G.,I.)x:1 
(2. 7) 

In the following we shall write all equations only for the a-oscillators, if 

they look the same for the a-oscillators. 

The second derivative operator 

~: 
~x~'U,) ~x"<t:J 

is singular in the limit 2~7:. The singularity can be removed by a normal 

ordering prescription. We define 



' 

j 
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LW "' 
1,' 

+ ( x'~'-ul/' 
£,,..I'm & ,.J' r 11 

= ..1..'L, 
1r " 

e ~" 6 
( L~"~ +I_" ol .,. ~" ) 

(2.8) 

where 

L~ = .i.T, 
, l C\••t . G\_l : 

(2.9) 

are the Virasoro operators, obeying the Virasoro algebra 

[L.,,L"1: ("'-"llM•• + _;!.. "'("''- ~) £, 
-12. M.f.l1 

(2.10) 

The central term proportional to d, the Virasoro anomaly, is due to the normal 

ordering. The constant term in L( 6 ) may also be considered to be an effect of 

normal ordering (11] 

"' 1. r: a.· '~-• , t 

1/ 

= L, + ~ t(-1) = L, d 
"'~' 

(2.11) 

and is included for later convenience. In the light cone gauge the free string 

field action is essentially given by 

s Jl L<•l = :J. ( lo + [. ) +- (Oirl d·. ( 2. 12) 

3. Reparametrizations 

A reparametrization is a mapping in the space of all curves x, given by 

:<.fc•l ~ x~"u,) = x~"( f,(l)) ( 3.1) 

t, --------~ 
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with some strictly monotonic function .S(l), obeying 

S(l.+?-1r)= Srl.)t:l.11' (3.2) 

Infinitesimally we write 

SO.l: l. + E. ~(6) 
(3.3) 

\(<•l= ><<ll t <. ~(6) x'r•l +- (Jet') 

The corresponding mapping which is induced on string fields 

"' f [x] ~ i [x] = HxJ 
is infinitesimally given by 

¥ l<1 = ± [><] + £5 ,Jb ,f-(6) R(l) H><J + (J(<.) 
( 3. 4) 

where 

Rt = ~J, t<•l R('l = S J• ~r•l ~·l"rbl ~ (3.5) 

S:.x~"«l 

is generator of the reparametrization specified by f( ~ ). Rf is a well defined 

operator and does not need normal ordering. When f is expanded as 

- ~1'1 ~ 

t<•l = L. c. e. 
" 

(3.6) 

we have 

Ro~-
_, I', c. R" 

" 
R..,~ L"- [_" 

( 3.7) 

_____ .,.__ "---~--'--o __ , __ , _____ _ ,_ _ _.._-
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The algebra of these operators 

[ R~, R. 1 ("'-"1 R ... ~ (3.81 

does not contain the Virasoro anomaly. Therefore it is consistent to require that 

reparametrizations form a symmetry of string field theory. 

The transformation of operators under reparametrizations is determined by 

their commutators with Rf. If an operator A( l ) obeys 

[ R~ 
1 

Aw] * } fo,) Aol + ~lbl A'Ctl 13.91 

then it is said to have reparametrization-spin (R-spin) J. For example for the 

following multiplication operators we find 

)(I'(~) ~.-., J~o I ><
1rw h•s J~1 

and for the derivative 

_L_ J: 1 
<;, xr!ol 

If A( ~ ) has R-spin 1 the integral 

jet• ACll 

is reparametrization invariant. 

The operator 1(6 ), which is naively expected to haveR-spin 2, transforms 

anomalous~ 

[Rf, L(ll) = J.. ~ 1 (t) L(b) +- ~Ol L' (6) 

I 3.101 

...L ,11' 
0 Ill 
t" (b) 
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It is precisely this anomaly which causes difficulties in finding reparametri-

zation invariant actions. Without the anomaly the action 

s~"~" ~ 0~ KH~ I). 
I 3.11 I 

\.< 11~= ~Jt 
- 1. ( x'W~) a L (l,) 

which has been considered by Marshall and Ramond (.3] would be formally repara-

metrization invariant. 

4. Reparametrization invariant action 

Apart from the Virasoro anomaly another problem with the action SMR is the 

appearance of the inverse of x 1 in it, which would make a treatment with Fock 

space methods difficult. Motivated by Polyakov's approach to the first quantized 

string theory [10] we looked for a solution to both problems through the intra-

duction of an independent metric g( 6 ) as a new variable. Under reparametrizations 

it transforms according to 

~(l) J.~ = 'a ( SW) J SCI)~ I 4.1 I 

or infinitesimally 

~u1 ~ ';}r•l +-E. { :q'c•13-ul + ~~~~ !t'w} I 4.21 

The string field f[x,g] now also depends on g( Z ) . The generators of repara­

metrizations on I are extended correspondingly and read 

Rv~d•{ ~C•Ix'"c•J ~"~1, 1 +(:tfC•l~C•l+~l•l~ 1 al)~;;c, 1 } 14.31 



- 10 -

In order to be ~ble to give precise definitions of operators involving g(j ) 1 
we have to specify the space of string fields and its inner product again. 

Formally the inner product would be given by a path integral of the form 

(I,, L) = j dr-l ~c&o ( ;£, [x,al, !,. [x,3J). ( 4. 4) 

where the measure is required to be reparametrization invariant. Arguments 

similar to those in [10] suggest 

't(l) 
lr J'f'(l) 

' 
( 4.5) ~flljHl1 = lr 

• 
d ~(l) 

-- :=. 

where 
'f(o:) 

~(b) = e. 
I 4 .6) 

Therefore we use Cf(~) instead of g(') in the following and define a Fock space 

of string fields with respect to ~( ~ J . Let 

q>(6) = L, '1'. 

"' 

iVt 6 

" 
"f' __ = 

and define oscillators analogous to (2.3) 

" '1'. 

.:I. 'd 
+ 2:11·" '¥'. ) b. s i('tlr). (~ --- -~ ( ~ + 'I.Th "f •• ) \, = i (Y.1r) ~ 

" -
satisfying 

l lo.' \,~ 1 = Lb., b~) = "' £ ..... I [b.,LJ=O 

(4.7) 

14.8) 

I 4.91 
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The space of string fields and its inner product are defined in the same way 

as in sect. 2, including the b-oscillators. Furthermore we introduce the 

counterpart of L( ~ ), namely 

with 

\<(~)=- 1.' 

\,'1'(4) h 'f(l) 

, 
-1- ('I''(&)) 

~ ;. • ( K - .1.... ' ) - L. e.. .... + k~l'l - ...,, 0..., 

11" " 

~~ = } t : b.H b •• 

ll<~, ~-1 = ( ,., .• ) K.,.~ + ...1...,.,( ... '-•l £ -12. M+Y! 

The generators of reparametrization are in terms of tf 

R-1- = ~ dl { -!-C&l x•rc,1 ,!rc•l 

+ (:q'(&) + ~(l) '1''(•1 ) 
/, } (; 'P(~) 

R~ = L..- L. + 1<.- i< .• - ; ..fii.ir'"' ( b.+ 'b .• ) 

I 4.10) 

( 4.11) 

( 4.12) 

( 4.13) 

I 4.14) 

and still satisfy the algebra (3.8). The operator K{ 6) transforms as follows 

L 1\f, \W)] = 2 f<•l KC•l + ~C•l k'r•l 
14.15) 

+ 11- f'O! '1'
1
Ul _j_ f' (l) ,11' 

The last term is the Virasoro anomaly again, whereas the third term is due to , 
the fact that already'classically (~ 1 ) does not transform like an operator 

with R-spin. Trying various possibilities we found that the simplest modifi-

cation of K( h) which naively (disregarding the Virasoro anomaly) has R-spin 2, 

i' 

\((<)- 4-'1'"(1) 
14.16) 
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This operator offers the possibility to cancel the Virasoro anomaly of L( l ). 

The operator 

H c 'l = L{l.)- <Je ( \<(!)- 4-'f"W) (4.11) 

obeys 

U,{, fWI] = 1 fr•> H<•l +- ~r•> ~'r•J 

- ..1..- [ cl - at ( 4-h +1) J f' (6) ,,. 
( 4.18) 

where the extra 481r-term comes from '¥"
11
(,). For the choice of ~ 

d - .le ( 4-h +1) = 0 
(4.19) 

the anomaly is absent and H(' ) is an operator with R-spin 2. 

In order to obtain a reparametrization invariant kinetic term K as in (3.11) 

we must define a quantity of the type 

I<= ~d! ( -ar•1ft H <6) 

taking care of singularities of the operator product. The ansatz which we shall 

try in the following is to use normal ordering again. Let 

Then 

ct>(&) = "1'-r(l) + 'f_ (6) 

'h (!) = f'1'. ± 
.. +i"' 

i ('1-11')-t :L H b_" e. + b_ 
\11 ... 1 + +~'~ 

1 
'a (.) = "'"r ( ~'~' ... <•1) e.xr ( t '~'-r•l) 

(4.20) 

e ±ii'!.L ) 

( 4.21) 
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is well defined. However, it aquires an anomalous dimension such that its 

R-spin comes out to be 

) = 
-z' 

?.. 'l - "li1r 

We account for this by introducing the rescaled field 

.r = r'f 
where 

' 

~ 
_L 

+- ~,,. = 1 

such that the operator 

4- ~(i) 
e. 

1 

(4.22) 

( 4 .23) 

(4.24) 

has R-spin J ~- 1, equal to the naiveR-spin of g( l )- 2. Furthermore we 

define the rescaled 

- ' \<(•1 = r \<(6\ 
't- ~ t 

"'-~ ~fcl)~.j,(ll + cj>'ll)
4 (4.25) 

In products like 

e. 
_ Hr•l I< Ul 

the normal ordering produces new anomalies, which change the numerical coeffi-

cients of the Virasoro anomaly. For 

-H ( t 1 "" 
,_-H<ll i L(l)- .le[ KCI.i-H"Cli +A1} (4.26) 

we obtain 
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[ Rt-, 'HwJ" fr•l f\u1 
-, 

+ ~<ll H 01 

_ ...1..( a~_ 4-81rle.) rc~~ , .. 
-·Hr~~ 

e. 

+ ~ ( ~211"). - B') ,,.. I 
f (6) 

- t f(•J e. . 
(4.271 

If we choose the constants at and ). suitably 

;)<. = 
_J._ 
1\-8.-

t 

A= L 
14'1r 

(4.281 

the anomaly is cancelled and H(6) transforms with R-spin J 1. Note the 

difference between (4.19) and (4.28). 

Now the way is paved completely for writing down a reparametrization invariant 

action for closed string fields. 

S=CI,Kf) 

\<. = ~ cl• H(•l 
with 'H( 6) defined in (4.26). 

(4.291 

If one tries to write down the analogous action for open string fields, 

it turns out that in this case normal ordering introduces some additional 

anomalies, which would have to be cancelled by some boundary terms in the 

action. 

A 

Returning to the case of closed strings, let I: [tt] be that string field 

which is the Fock space vacuum with respect to ~(l) 

A - A 

6, ¥: = b. I: = o V\~0 (4.30) 
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When f (><, ¥] is expanded like 

f[x,'f) < L., :r: [ X ''l', J i: [_.,.] 
r.J-

• A 

~ y' T' ' ~. 

~ 0 

+ :r: L 
.., T., o 

t-Y, !f, +Y,,, 
~ 0 
T + ••· ~.,,1 

with 

r = ( ~., ... , <~o.l 

and J being multiindices, and 

' ' !. = 

A 

I' 
~ 

A 

io_, I: 
j_b 
..[;' -:>. 

~. 

f. = 'C 
A 

f' 0 

1 .. ~ • .,; ... s. ~ l 

' {..,~.., • 6 :>. _, 
~ 

I: -1 I: 
e-tc 

(4.31 I 

( 4.321 

we obtain an infinite number of string fields ;t: [x,<:V'f]. Since S transforms 

trivially under shifts of ~e , we may restrict ourselves to string fields 

independent of ~o and obtain the action in terms of the component fields 

S=L {~ A"n' 
:t]: ' 

lor:, [L.+L,-C:A+.-)~&.}or~'.). 
~.1,1:\1' 

with coefficients 

I 
n}1 (A} 

Au.= ~1:1 

'il 1 

~ Bx'I' 
l l' ) 

( Y>: , Yx' x } 

~~ 
;., ~ 

e. 
-H<•I 

e. 

- .1.j>(~J 

A 4' ) f l: I 

ldl (A l 
Bx:x' ~ i :r: 1 

)J~ e. .. (K(<I-Itt"W) 

which can be evaluated straightforwardly • 

( 4.331 

(4.341 

f ;1,) ( 4.35 I 
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5. Conclusions 

We have obtained a reparametrization invariant action for non-interacting closed 

string fields, which allows to interpret supplementary fields as stemming from 

an extra metric variable on the string, 

Our approach is motivated by Polyakov's treatment of the path integral for 

surfaces (10]. Although I believe that there is some relation to it, it is not 

yet clear what the connection is. In particular the action itself does not 

single out the number of dimensions d ~ 26 particularly. A possibility would 

be that d ~ 26 comes out as a special case, when the gauge is fixed ala Faddeev-

Popov and the theory is quantized. If this produces additional contributions to 

the Virasoro anomaly, the value 

~" 
d- H 

4-&11" 

as suggested by Polyakov•s calculation could result, This question deserves 

further study. 

The next step would be to define a proper interaction term. Questions of 

spontaneous symmetry breaking etc. could then be investigated. 

Acknowledgement: I thank Peter Weisz for discussions and reading the manuscript. 
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