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Abstract: 

We present tools that have been developed for the extension of the Sterman-

Weinberg formula in two-loop order, They are the essential ingredients for 

any perturbative two-loop calculation in a massless theory. Introducing di-

mensional regularization we deal with poles up to fourth order in the dimen-

sional parameter. We study virtual two-loop integrations as well as real ones 

over phase space. 
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1. Introduction 

In this work we evaluate various integrals that appeared in the course of the 

calculation of e+e- jet cross sections to order oG 
8

2 . This calculation (1} was 

done in the framework of massless parturbative QCD. Dimensional regularization 

has been used throughout for the regularization of the ultraviolet and the infrared 

divergencies 1 ), In the course of the calculation of the 2-jet cross sections (1], 

which is the one most involved, poles of up to fourth order in the dimen-

sional parameter 2 ) appeared. Thus this is a true two-loop calculation because one­

loop results contain at most poles E -2
• So this work extends earlier papers on 

the techniques [61 of dimensionally regularized massless theories, which all stop 

at the next to leading order level, We hope that the techniques we present will be 

of help in other two-loop QCD calculations for ep and pp processes where at the 

moment the t -2 level is arrived at (9]· 

Some of the methods are described only for the scalar integrals, However, they 

can all be extended to the case where numerators (coming from the Diray traces) 

are involved, We will present also results for this case, e.g. eq. 

(33), The calculation of the total hadronic cross section in e+e- annihilation can 

be reduced to the calculation of the photon 2-point function via the optical theorem. 

Though it is a genuine two-loop prob1em fortunately only poles up to -2 t. appeared 

here and could be handled with the help of the Gegenbauer technique [7]. For com-

pleteness we will review some features of this technique in the beginning of section2. 

However, for the 3-, 4- and 5-point functions with one particle off shell, which are 

needed for jet cross sections, this method is of no advantage as compared to the 

usual technique of introducing Feynman parameters (8]. Then we give an elegant way 

for calculating the ladder diagram (fig. 2a) and use Feynman parameters to calculate 

the crossed diagram (fig, 2b), In section 3 we discuss boxdiagrams, where a one-loop 

virtual integration has to be done and also one real gluon has to be integrated out. 
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This means that one integrates over those parts of phase space where the gluon is 

infrared or collinear with one of the other partons. This adds poles in £ to the 

poles coming from the virtual integrations. 

Sections 4 and 5 give two prescriptions how to handle the tree-level diagrams, 

where a two-gluon Bremsstrahlung has to be integrated out. Again poles of up to 

fourth order in i, emerge. 

In physical applications t11 these cancel against the infrared singularities 

from the virtual integrations. 

2. Integrals for virtual two-loop diagrams 

The Gegenbauer expansion technique in momentum space (111 proves useful for diagrams 

with only two external legs, e.g. for the vacuum polarization of the photon (11. 

In ref. t 4, 11 extensive use is made of it, Here we describe some of its features for 

the sake of Completeness, 

The Gegenbauer polynomials 
,~ 

I , j "' 0, 1, ,, , , >-)-1 form a complete set of 

functions in the interval ( -1, 1) [23]. They are a generalization of the Legendre 

polynomials ().11 ,i) and the Chebyshev polynomials (>. • .f) , The method consists in 

expanding propagators into Gegenbauer polynomials (cf. eq. (2) of ref, [11)). Then 

one does the angular integrations with the help of the orthogonality relation eq. 

(A.l) of ref. [41 and is left with radial integrations in the form of powers of the 

momenta. In simple cases such as the example in [111 this leads to infinite series 

which can be evaluated with the help of standard summation formulas. [14). The method 

works for integrals which depend only on one momentum, i.e. self energy graphs. They 

must fulfill an additional property, namely there must exist a parametrization of 

integration momenta in such a way that not more than two Gegenbauer polynomials 

3 -

appear within one angular integration. For integrals of products of three Gegenba~er 

polynomials no simple closed form exists, 

In the case of the vacuum polarization of the photon in order o( s 
2 (71 all 

graphs are calculable with the Ge'genbauer technique with the exception of the graph 

of fig. 1, which is "irreducible". 

Next we consider the 2-parton contributions of the 2-jet cross section (fig. 2). 

These diagrams can also be thought to define the (singular) electromagnetic form fac­

tor of massless quarks (12). After the Dirac traces are done the dotproducts that 

emerge are transformed into sums of squares of momenta in such a way that as many of 

them as possible cancel against denominator factors, e.g. 

~~ • i .t• -1 IA-pl' I 11 

for p 2 "' 0. In general one is left with relatively complicated scalar integrals, which 

we will calculate in the following, and simple tensorial integrals. For the tensorial 

as well as for some of the scalar integrals (fig. 2c- e) the strategy is to intra-

duce Feynman parameters with the help of 

A 
I 

s [ (./..-p <)']' 

d.x I 21 = 
-4'(A.-pl' 

which holds for p 2 = 0, i.e. one tries to preserve the massless structure of the 

theory, In general one ends up with standard integrals giv@n in appendix A. 

Fig, 2a, b cannot be met with this gener&l strategy. However, planar diagrams 

like fig, 2a can be solved with the help of "partial integration". This method has 

been described in (13]. Fig. 2a can be reduced to the scalar integral J) 

L = $ 
J «'"- d't 

t..• r (t.1', )' {l- r• \1 u..t·r· )' <'·l-,. )' 
i 3 I 
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and some tensorial integrals which can be calculated by using the standard strategy 

(2). To calculate 15 by the method of ref, r3) we need some notation: Let ~ 

mean an additional factor of k 2 in the numerator and _,.__ an additional factor 

of k 2 in the denominator. Define 

l, ~A, .. It, 
~ 21, lA,. S.J 

=. IL +i ,1 I 1 
~,f .Z.J + ... ., .e 

' 

» --1·~--i 
Because of the translational invariance of the integral one has the identity 

f tN.&:t a 

u,... 
U.-l- f'>.~"' 

~ 0 
.1. 'l • a+ t• )'U-r. )' (.l..t.f', l 1 I,/!. l- r.)'" 

After differentiation one receives 

.. , __ , ~ -~ . ~ 

• (•-') ~ - z -<tf· 2 -<([ 

'* -<(} ~ '~ ·t-4 

14) 

I 5l 

16) 

17) 

18) 

191 

~ 
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The first integral on the right hand side is very simple and can be done with the 

standard formulas of appendix A. The second integral can be simplified in the same 

way as the original one: 

o~&.-4) -<( ~ ~ 
The result is 

Ls ·- ~ -{)(( !.. 
E£ 

With the help of appendix A one gets 

~ ·,:-~ 
L,. 'lt.•-l• ~·f•->• r(A-~) r(A+-£) r(A+h) 

~ 
A 

+ 
It~'-

t'L 
2t' 

.. ,wf~ 

2~ ~ t ~-I 

I 101 

( 11 I 

( 12) 

Using Feynman parameters Gonsalves (12I has also arrived at this result. Hovever, 

our method is much more elegant. The momentum dependence of L5 could have been 

derived from a simple dimensional analysis. The appearence of 

,. 
~l - .L -It -.s ( 13) 

4-· 

in connection with poles £J·~ is a characteristic feature of the result ( 12). 
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The crossed diagram (fig. 2b) cannot be done with this method because it is not 

planar. (To see this try to apply (8) to it!) The scalar crossed integral 

K, ~ s d.'/o.J."l ( 14) 

can however be calculated with the help of Feynman parameters. 

K • 
$ j d.' J.. d'l ( 15) 

1. 1 ((-,,X l" (.&.-£-,,'a l" I,_ pq>.l l. 

Any further Feynman parameter is accompanied by a "mass term11 in the denominator. 

One gets 

of .., "' .<f 

/($ = ltl·t(~1)-H (3tt)(2H\ fa~ f <L<s f d• f <~.. 
• f 9 ' 

C- 2(A-~)~1 (A·<A) ~..,_(A-«) (q~- x~,-"lp:..\L 

The k-integration can be done with eq, (A,1). 

The y-integration is then straightforward: 

' 

d'l 
..,<+<(A-,.) s (-i.'H. )h< 

( 16) 

( 17) 

K • _ x. •-:<- (. ') -J.-z ... z 
' 9 -£ 

("(A-t\ r'(A• 2t \ 

r(A- 2t\ 
s ct... A.t 2 (A--~o.)',..l!. 

A A 

J lix J 
• • 

rh 

~-· 

• 

~+l•(A-•f'-'<{ {A-M.~ )•A·lt. (A-"'~ ),._1</ ( 18) 
10 -1-l> l 
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The divergence for x = z is an artifact of the y-integration and disappears in the 

difference. The u-integration leads to hypergeometric functions. If one wants their 

series representation to converge.one has to distinguish the regions x < z and x > z, 

Then 

with 

K. = "H• (q'f>-<1. rrA-< lf1(A+hlrr~~e..~ 5. c~ 

' ~ 
1 

J- Jet• f<t• .-•-'< (A-eY'-1' 7' (A- i ~ (~-><)_, 
• • 

~ 5 d< !d• 
• • 

' ' S.._• I {.(• 
• t 

.-•->< (A-! fH~ G (A- !. ) (~-x\·• 
X 

.-•-2•(~-~y·-z~ 7(4- ~-· ) (~-xY' 
4-1: 

1 ' · S 0.~ J d.x (4-><)-t-ll ~-H• 
• • 

r;( ~-~ ( .... A--) ~-x) 
4-• 

7'( .. \• ,T. (A+l«- 1 1<t 1 A-s..,o.) 

G.(~) •• -.::; (A+2l,- 2.<, ~-E-."-) 

We change from x to 1-x and from z to 1-z in the last tva terms of J and get 

A 

'J • 2. ( ~ ... ':1, • ~.) 

--

( 19) 

( 20) 

( 21) 

(22) 

( 23) 
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[ (4-o.Y'- 2~- (4- ·''-'"1 I 1:-x\., 

rfl.,.A+l!e..\ 

J. I (1-Zt) 
( rf- {/I.+A)- '1- (') ~ 

(24) 

is the contribution from the first term in the series expansion of the hypergeometric 

functions. I 1 and I 2 contain the integration of all other terms. Because of absolute 

convergence of the hypergeometric series one can exchange summation and integration. 

The sums that finally appear can be done with the help of standard formulas [14]. 

The final result is 

Ks·,..•·••('l'l_,.,.r(4-~\r(,IH)r(A•2~\{ t>- '1'(, - 2s-t, + A£:(. f 
- '- .L I, &'- • 

(25) 

For completeness we give also the results for the scalar integrals of fig. 2c - e. 

f <N. o:l ~ u, ( -

-~,, (J. r• \"U-r·-r• l' ,t• (l- p.-N 

1 tJ.•l d"l 

1.• !.' (1.-ll' 1!.-p,l'(l-r,Nil.-p,-p. 1' 

~ v. ( _3_ 
~~~ 

-
L 
2t' 

_3_ l 
h' - ~.,. i '(._) ( 26) 

(27) 

J- q12 'f, _ {, _ A_I '!, + q ~. ) 
... & 2. 
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J 
rJ.•A d"( 

t't'(J.-p. )' (1.../. -1'· \ 1(l~p.)' 
( J ... L 

•1), .z~· "'--
+ ~ _, :i"~) 

2 
(28) 

Here 

v, ~ ~H-•(~'J-l-2t.· /"'(4-t.>r'(AH\T'(hh\ ( 29) 

In the case of fig. 2b one cannot reduce all the tensor structure from the Dirac 

trace to the scalar integral K
5 

and the standard integrals of appendix A. In addition 

one needs 

7< -l 

f tt ·A d. ·t (.a,.J 
I. • l •U-p. ~· !4.-l) '(1<-l- I'• l' (JL- p.-p~)' 

for l = 1, 2, 3. 

The denominator in eq, ( 14) is invariant under the two transformations 

and (t,.~··r•·A., l .. p1·l) Using the second invariance one can derive 

11, ~ k:s IZ 

'R.1 ~ - K_,;f'l. .,. 3 11., U. 

R2 can be calculated by the same methods as K
5

: 

11 s "'1,~2.\. ('q.l(2-h. 
r l(A- ~>rcA~ zt \ 

r(4- 3r..\ 
{ < A 

2t'* + ~ ... 

" l' -
S't1 ("· _ 4~ -A;}'(.)/( -rlt& -'2Y

4
-! !':-- + ,.,. )l, 2 J s 3 

261 

( 30) 

(p<"'f'•,(~~-L.) 

( 31) 

( 32) 

f> ~ 
s;: !:'~I (33l 
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3, Discussion of box diagrams 

In section 2 the 11 two-loop 11 calculation consisted in doing two virtual integrations. 

Here we consider diagrams like fig. 3, where one }oop integration has to be done 

and one real particle (namely the gluon) has to be integrated "out" subsequently (i.e. 

a phase space integration over infrared and collinear regions has to be carried out). 

As an example we consider the scalar box integral with three particles on mass shell 

2 2 2 T . 11 t. 1 . . . 't If 
P1 = p2 = p

3 
= 0. he case w1th a four par 1cles on shel lS conta1ned 1n 1 . 

all incoming and outgoing particles are off shell the integral can be done in 4 

dimensions, because no infrared singularity exists. (Box integrals are ultraviolet 

finite anyhow.) Four dimensional box integrals are calculated in the 3rd paper of (61. 

To calculate 

'J • :a .. 
d.•lt 

S ,/,.<(!<+ ~.1' U-p3 )'il<-r.-r/ 
I 34) 

we follow the general strategy described in section 2. Namely we introduce Feynman 

parameters avoiding massterms in the denominator 

' ' ... ,.. 
:1,.. = I o.. I~ f 

• • ({.,,d. (.1>.-p,-t'•))' 

After a shift of variables one can use the standard formula (A.2) for doing the 

virtual integration, The Feynman parameter integrations lead to hypergeometric 

functions 

~ c - .l.'•'l+' ,_, 
'1.)1 {1 Jt 

r• (~·E.lr'(~•t-) 
f... r(4-l•) 

A 

~·· '\111 

I 35 l 

r ""'·-• •·t _ ~ .. 1 _ ..... 7(•-• ._,_ ~ 1 _ _,.,-;: (·-• • __ ""'l 
lt 1'1 l ... , I I d"\ ,&.. f I 1 7 1 ,Jll l "' 'f! 1" (:, C 

~··"l·· ~.. ~~ . 
I 361 
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~ij = 2pip/q~ are dotproducts normalized to the energy, ~ 12 + ~ 23 + ~ 13 = 

is energy conservation, The f. - 2-pole is due to the infrared singularity from the 

virtual integration, The q 2 dependence could also have been derived from a dimensional 

analysis of eq, (34). Note also t_he singularity 
-1 

y13 
-1 . 

y
23 

wh1ch can produce 

another L - 2-pole after the integration over phase space. The hypergeometric func-

tions in eq, (36) have the power series expansion 

., 
~ 'T, (A,-•,4-t, e)· A-£ z_ 

~·· 

al 
j-t 

The series in eq. (37) is the expansion of a logarithm generalized ton 

dimensions. lf expanded in a power series in £ we obtain 

i 
j"" 

~J 

j·t-
--t..U-<l+ 

.. 
z_ 
J•• 

~ J L ~~~ 
J" 

where Ln is the generalized Euler dilogarithm 

- . 
L~ l•l- L. ll lr 

!"' 

I 37) 

4-2t 

(38) 

I 39) 

For further integration over phase space the expansion (38) is not useful, because 

additional singularities may make the inclusion of Ln, n > 2 necessary and at the 

integration boundaries (39) may not be convergent. 

So we first transform the hypergeometric functions in eq, (36) according to 

- " (. ·l ( 0. \ 
l t, (~.-~,4-•,- b)- ~·6) E a.+lo I 

I 4o) 

with E'(l)•,T, (-E.,-f,A·E., ~) . The hypergeometric function E has an everywhere 

convergent series expansion 

£(<,)·A ... £. 
r'(A·t) 

.. 
L 
~ .. 

riA-•) 
'-!(!·t) ~" I 41) 
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r' 2(4-t\r'(bE.\ 

~l r1~-2tl 
""'-4-i:. --f-t. 

"'' ~·· 

f (~•?••'\!!•)'- E ( '<!« ) - (~,.,~,,l t E 
~II 'all +-:J<> 

(~) 
i' .... ~ .. 

- l"a•••"Jt,)• E ( :h_ ll 
~ .. ·:t<· 

I '•21 

One now wants to integrate eq. (42) over the 3-particle phase space drawn in fig. 4 

[15]. One can divide it into a "2-jet" region where (42) has singularties and a 

"3-jet" region where (42) is finite. In the finite region E(>l·~••'L,(•l and 

the integration of the L
2
-term can be done in 4 dimensions. 

The singular region is defined by y 13 ( 1f' or y
23 

<. y. ( 42) has no singu-

lartiy for y
12

-.. 0. So this region which physically is 2-jet can be formally added 

to the finite 3-jet region. 

y « is the invariant mass cut defining a jet (15]. It is both an energy and 

an angle cut. f "'"<~, ";!t•"' I is the co.1linear region 413 . f ~·,"~· "1,.<~ I 
is the collinear region .Z/13 and {~<Jt 1 ~t\<')f is the infrared region 3 _. 0. 

Because of the symmetry the 2-jet region of 3-particle phase space can be vritten as 

) •-y, ,. 

J ~ .• 'l!<i' 1 zf- S j <i~" "<l·~· r~- "1,,- "J,,Y'-. . . 
I 431 

As long as one neglects contributions of order y one can restrict oneself to the 

y
13

-pole in (42). So the 2-jet contribution from the scalar box integral is 

"' 
A 

'B r A.. _,_. 
!1 :• j '""d13 ~11 \d-. • 

'll 

l t . 

- 13 -

~'a" "at~' (A-"j,,f' );.~ 
~ ... o 

which can be calculated straightforvardly. The result has an 

"' 1 q.fJ s., 

I 44 I 

-4 £ pole with a 

structure similar to the two-loop virtual results in (12) or (25). In addition one 

hae term' .8-4"'<! ft. ¥·4 • k = a, 1, 2, 3, 4: 

'l~ 
= .. ~. (1'i""'' r'i~·t\ r(-l•L\ 

rr4-2t\ 
{ ~ 

. u• 
3 '!, 
.2!. l 

2 "!, 
£ 

zs 
,- r • 

I 45 I 

+4"!,.t..."~ lf. .. lt"!1 h-a -•'r,k'"d-:zt..~":J'~' + 4.t..•~;f--1k"-:!i 

4. Tree diagrams 

In the case of a diagram like fig, 5 one has to do no virtual integrations. However, 

two gluons have to be integrated "out" here to calculate its 2~jet contribution - the 

3- and 4-jet contributions from such diagrams have been discussed extensively in the 

literature (2]. (3), (16), [1'r), (18). In the 4-jet case no l singularities appear. 

In the 3-jet case one has to deal with £ - 2 
singularities coming from an integration 

measure very similar to (43). 
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There exist two topologically distinct 2-jet configurations here: 

: ?;::>-
" 

1 -------------- ~ 
3~ " 

146) 
.z 

+ permutations + infrared configurations. 

Because of the pole structure of the matrix element squared only the permutations 

1., 2 and/or 3..., 4 are necessary. All other configurations which are physically 

2-jet lead to the o(~) contributions. However, because of the appearance of terms 

~W~/~ they cannot be simply added to the 3- or 4-jet contributions, but must in 

principle be cancelled independently. In section 5 we describe a method where such 

terms are avoided. That method will also provide us with all finite logarithms 

necessary for the 2-jet cross section, whereas the procedure described here is only 

sufficient to cancel the singularities N C...s.t /~ .,.. 4 i~ /£ •-A. 

We have used the representation of 4-particle phase space given in [3]. In the 

2-jet limit (46) the 4-particle phase space reduces to 

'I "3 

2 fa,,, "Jz:' J ~"~•1 "a·~· 
' ' s ~'" "t•~,' (A-"a,,.f' J d.... ... -•(A-< ... Y' 
~ ' 

~ 

J tt9' ~~ _,, () 1 

' N,' 

-r 

Here 
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"3 ' r tt).,., -a.:;·· I d:e .-·c~-·\-· J M' 

"'9' 
<~<~-·· {}' 

A<<~ f' 11~ 
{ z s ~ ... I liM - I 4oa .. J d~·· - ) ~L.a •• S d'j,, - f d~~ 5 ~ •• l 
' ', f Q ~ 0 0 

-t ( ' " ~" A-"!,..)- •<' (4-M. y• 

"J•j·" )j .. "'i• + ~ ·~ ' .... ,. "a•• /(~·· ~ .. )' t - "3<1 i),h')1J 

147) 

and N~, • ~""' I"(A-ltl r·Z(A-t\ is the normalization of the 9'-inte-

gra.tion. The first term in (47) operates on the ~ 
13 
~ 24-poles and the second 

term on the ~ 134-double poles of the matrix elements squared, These double poles 

have a structure much more complicated than any pole structure which appeared so far. 

We will not write down the full expression here but only describe the calculation 

of two characteristic integrals, These integrals stem from poles in 

matrix element squared. 

k.. "3 .. 1"3,._ $ ... (A-·)+. M "J•·- 2 c., f)'{,.... (h ... )H<-~-:;;:;;; 
-:1, ...... 

has a relatively complicated structure (see appendix B). 

We want to calculate 

1r6 
cjo/~ 

' ' s !La "a 1(-• {A-'a)p-H s tl! ~-l(H f" 
' . 

' J d.,.,h (A-,_)1-t 

• 

Y14 in the 

I 48 I 

'JI~. I 49 I 
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to order E. where 

" 
:J~ I 

• 

de' 4-i"'~Z\.e' 
I so) 

..:'3.,.1,-2v .. b'll ~e· 

with a = uz, b = ( 1-u)( 1-z), The '{)'-integration can be done 

':J/N., • («"d+bl-• ,'(, d, A, A-~ ~) • (.'3 ... 6) 
I 51) 

The hypergeometric function can be transformed by a "quadratic transformation" (10) 

so that 

~ /We• - ii )" .,._-'·2• 
s_ 

7. 1-<-2•,4-E., s 2 ., ) + I 52) 

where s*. T,..% ,.._ 1 ..,.t = lA~ :t: b I , We can set 'T. {-• -2< ~-l ~ ) •I 
2. 4 J ' I .S.-

because terms of order '-Z. !: give a contribution 0( £,) in the full result. 

·~ The reason for that is that S_fs+ cancels all singularities which appear (u-
1 ,y- 1

) 

with the exception of the y134-singularity. So the u-, y- and z-integration are 

finite. One has a t~.f from the Y
13

l1-integra.tion but this pole is removed by the 

£. 2 factor. 

Next the z-integration is done, One divides the region of integration into two 

regions: 1) l< 'f and b) i>l" ('to.vlf,f'='·-"'iA-<a\V'<A-<.<) 

Then one has 

A A 

..,u 
d"~ 

= s ~ ~ •-t (A- 'a) ~-lt J <(,_. "'S-t (A-.«) h ( M, + /-1.) 

' ' 

where 

I 53) 

- 17 -

r 

~ M,- f J d.H-•(~-~)-< (v-fi)·•-c 'l>'t (A-d' 

r(A-~)r'(-2t.~ __,- (-< A-e A-3£, 1'-) 
- il ,t 'f"4 r;. 1 I = 't r/4-lt.) 

r f ,.\ 1 r .... ,-r 1 5h) 

Expanding the hypergeometric function in eq, (54) in powers of t,. e.nd -4-t one 

gets (20) 

[ 
r'(Hli"'(-2E.\ + r'(tlf'(-U) j 

~ (M•• M•)" r'(H~l r'(-t\ 
A- 't -• (-) .. 
!" 

r(hlf'l-t'l .. o(.") <') 
r'(1-lt\ 

The terms of order ..c...~ I.a. do not contribute (see the remarks after eq. (52)), 

We conclude 

'J Jt ~ r'(H lr'(-f.) 
r/A-lt) 

where 

,u 
··~ 

[ 
r'~-£)1'1-2t) r'(E.lr1(-2s) 

... . 
r'(A-3t.\ r'(-E\ 

] 1': tl 
2 .,. 

I 55) 

156) 
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A ' • 5 d~ J rJ,.. ~ «·•t- (~-"a )~·Z< h $-~t (~-M.) Y·(h) t (A-,.(A-~ ))' 
• • 

can be calculated by expanding (1-u(l-y))- 1 near 1: 

r(~tHt )r(o~+f+A·2t) " ((,1_+ ot+A·v.t\r(~+ r.A- 'II£) 

I 57 I 

-rr~ ,. 
r,.,~ l. r&.. (!>• A- (,.l)t l •.. , J. 1 r tit. t + 6 + .,.,. z- lv..nt 1 (/...,.., •f•A-(vo.•Zlt.) 

I 58 I 

For all combinations of M I~ I r IE 
is convergent. 

that appear in the probl~m the sum in eq. (57) 

As an example we now calculate " ... d _40 • We have 

T •-• : r~ (A-Zd 1 ~t- E~ r•cA-1~-t) 
.Z -.fo 

TA·A .... r• IA-2tlr't-t' r'!A·h\ ~ 
• ... L. 

r'(A-3t\ rt->~' t·• 
• r(f,.t 1 

~_, ra<+A->t\1-'.-~t\ 

I 591 

1601 

One has 

,. 
X. 
~. .. 

r'rl-t\ 
-~t_1 r(h..A-3~:.lllt-3e.\ 

- 19 -

"" rfl<+t\ 

-= L J.t{lt-h)(l.:-<+<) 
~<< 

+ 0 (E. •) 
161 I 

and the sum on the right hand side of (60) can be done with (6.6.2) of ref. [14]. 

In total one gets 

"1 ,_. =-.!... .. A~'!, +48'( + !i. ~ " .. o(~') 
~-.. £3 ~t 3 z • 

An integral closely related to ?:t is 

K 11 

"'~ 

. ' . ·• s 1!.; "J•H (A-~\~-<o f ~u-•·•{4-~\-• J tiM ..._G·• (A-...._{-<-
' . . 

"' 5 a'.QI 

. rv,, 
-2-l«b~ 4nfl' 

"-'a + b - 2 ..r;r;; ~ B' 

1621 

I 63 I 

B ~ . h . . . ,.,t~ 
ecause of y aby 1n t e numerator 1t 1s less d1vergent than u-~ . One can see 

this by writing {see (53)) 

4 A 

K;: ~ J A.a 'a"'" '(A-·d·2t s ~ ... &--,(A-.. ),.,_ ( "'· + v,) 
• • 

1641 

One finds 

f.I,..-IJ1 ~- _z,."ii ( N, _,_I/•)- 2 tv. t -t- £h.' 't +- 2£L, (A·t> .. o (t•.._~) 
1651 

We vrite 

------



So 
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- tv_ 't • ~ ,#.. • 'f • 2 d 
2 

(A- 'tl • .Z ~- 't 
4- ~ 

;:r_,(A,A,Z-~,A-'tl+ O(£•M)) 

Kr' 
~ 

is reduced to 
,.,ta., 

1 
.. 

d t!+.( ~ modu o a thlrd type of lntegral 

I 66) 

n d) ct.. "3 ol+of-£ (1-"3 lf"''-"' ~;H (A-"' l·L 
4-~ 

..... ) 
T_ (A,A,2.-L, 4-"-(A-'6) . ' L II. 

"'~ • • 

which is finite for all combinations of o1., 1 ~,'t1 b 

1--'< (A-"') 
167) 

that appear. Introducing Y 

instead of u as integration variable we can do the y-integration. This leads to 

another hypergeometric function, Expanding the hypergeometric functions into series 

we can calculate J." 
"+ 

in a standard way. 

5. The partial fractioning approach 

To get all finite contributions of the tree diagrams to the 2- and 3-jet cross 

section a representation of the matrix element squared has proved fruitful, which 

has singularities only when a certain y ij, say y 13 , is zero (21, 22]. In contrast 

to eq. (47) the structure of the poles in t can be derived from considering the 

region ~11 (.., solely, Finite contributions from other regions can be easily in-

eluded by numerical integrations [22). In the 3- and 4-jet case they can even be 

calculated so as to include contributions of order y (22]. We will give here some 

typical integrals which appear in the course of the analytical calculation of the 

singular contributions to the two-jet cross section. (In the three-jet case there 

- 21 -

is essentially one complicated integral, see eq. (A. 1) of ref. (3].) 

One can write the matrix element squared in the form 

ME.~ 
A 

'!I•• 
+ (~-.ll • {3-~) • (A-Z,3-1,.) 

Because of symmetry 

(full phase space) 
A 

-a~ - ~ . (full phase space) ME 

So it is enough to consider the term A /~13 • The most interesting region is the 

region ~f),<~ , which is part of the two-jet region, Let us first consider an 

integral which originates from the pole component A/ , namely .... 
A 

'J - (rJ."'' .,...... \.,..•<j , 
'l1'l """' ( ~ ..... "a••) (""" ... ...... ) 

Here 

168) 

169) 

I 701 

( 1"-"" Sf-)')!,.,<~ 
~ ' ' ' 

" j d;,.,."3,-;!• J <i"a-•1 ~''(A-"a,..Y~ J <(~ ~~(H·l"~ J..--~A-v\'1 711 
• 0 0 0 . 

loee 147)). 

From 

"3'>) • A-~"+ 0(~41,) 172) 

:. - ";)"' I "<1'"''!1•u 
I 73 I 

"'.A- v - ";)» /("a,.1"""J,1l 
174) 
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0..• g•t• 

~ . ~ 

:Jp • s J;,,,~;:-h f ttH-H(A-~\-• f <iv v-~(A-vf'(~-v(~-t')J,,.lf' 
' . . ITS I 

< 

J d~,.1 ');12' (A- ''J"• r• (A-"3.,1 (A-t ... ,,~)' 
• 

If one neglect_s terms of order y one can use the appropriate formu1R 

< 
5 d.~ x'-~' (A-•Y'(A-~(~-t~,..~Y' • r (i .. A-"t )r(-<l r-•(l.l- (a.+ll<) 
• 1761 

+ r{A-t \r{~) ~-f.,..,;: + 0 ( "3,.,) 

which can be derived from 3. 197( 3) and 9, 131 of ref. (20) , Th~ final formula for 

Jp thus contains terms ""'"3-J',~~Irt. which in section!, appeared only after sub­

traction of ~oubly counted infrared regions (see (41)), 

'J -, -r::L 
-2t-

~-Jt 
-2 r(A-t\r(t\ ( c .. :E, l -· 'B. 

-~· 
C-'8~ ..-

' 

• lfr'(A-tlr'(<l ~· :E -H l 

-a.. • r (A-t 1 r(-~E-) I r (A- r-...Al,) 

c " r(A-2t> rH.\ 1 r(,l-~tl 

(77) 

I ·rsl 

l'r9 I 

- 23 -

A remark is in order:- in the scheme describeD. in section 4 a denominator 

~ '1!., '\1 .. 'll•• "6•· emerged, This made the 8' -integration in the region 

~h<."it so tedious. In the partial fractioning scheme it turns out that one has only 

three of those four ~ij appearing at a time, e.g. ~.,1 ("'1-tt't',l))('}•J'+"~z-) (!) 1 4.1 

in eq. (TO), or "1!•J(~11 •'!f,_l(~, .. ~1,) (T) To avoid complicated 8' -dependences 

in the case II we change the coordinate frame. Exchanging the role of particles 

2 and t. the 8'-integration is trivial again and eq. (76) can be applied. One should 

note that the structure of invariants is a little different in the two systems. In 

contrast to eq. (48) one has here 

J,:. ... "j ... -
~ .. ~· 

"J<tl 
[(~-.... )(A-~) +<A~~'' - 2. c..9' {,..(~--«lH~-~~~,';) 

1- ~ 'lJn\ 

ui,fl.. ""= "<<s. I ('lJ11.- "<l••l 

No~ we turn to some integrals which emerge in the non-pole part A -A I 
i·· 

of eq. (68). A typical example is 

'J. : = (rl.o.u .sr•'~ 111,.,.~ 
"a" 

~ ... ~q, 1~·1J .. ll"d,. + ~ .. ) 

(80) 

(81 I 

To avoid 91-dependences in the denominator we work in the system of eq. (80), The 

f) -dependence in the numerator is removed by anti symmetry. One gets 

') A A 

'J~ • J ~ ... ~:-u J ~ .. ~ ').~~· IJ-~.r S d.H-t(H)-E-1/v 
• • • (82) 
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where 

' 
4 ~ v· 

J ~""-.(11-M.) ..... 
• (.1- A.o.(~- !'lt<•l)) (~- ':l"lA-<"Ju, )) 

A 

J tt... ... -•(A-«Y•(2A<-4) ... ~ 

• (1-~"J..,1)(4-"<(4-'t ~,,)) 

The second integral in eq. (83) can be done after partial fractioninf! 

1 ~ M 
K + 

(.1- t'l!<,,) (A-N. (H"iJ'")) 11- ''11"' 4-M (A-~~,,.) 

One is led to one integral of the type 

' ' 
K,(l<,l, ..... ,VI\=~ I ~"'.l-h(A"""'a\t-•J d.H"'-•(A-·l"·'(A-<~)-< 

and one integral of the type 

< A 

(83) 

(84) 

(85) 

'J (i, 1.,-'"' o., j, )·.-
r(a,.l,-2f.\ 

f"(A-El r(~-E) 
J, ·'>-Z•( (-• r '"":J'\1 A-'l\ .j, d.< ~,--•(A·<)"-• 

' 
J •·N I )i.-A-~ ( ( )-' !),.,. AA c.t·AJ. A-., A- <"3\ 
• ((',f)) 

__ ........---___ _ 

K can be calculated by expanding ( 1-zy)- 1 near 1, I can be calculated by doing 

the n-intcgration with the help of the same formulas that led to eq. (76). In 

contrast tp eq. (76) in eq, (86) no approximation can be made. Instead one in-

traduces (absolutely convergent) hypergeometric series and gets 

'J(A.,l,- .... ~,b)-
IHL-A-2>-. 

r(a.-e) r(A•~-I.lr(f+A-~)r(>t+H) ( crl.- cr,) 

187 I 

where 

"' r(j •a.- 1.-A-2~ 1 rq.J. ~-~• \ r lj• ..... 1.- 2t.) 
o-). ~ L. 

j·· j, r(j•A+l•i.•A-h)rfj•"'•u~>+-r-<•1 
( 88) 

and 

,. r!jra -tl rljt ~ ... 4-2t.) r/j+""+ A-E) 
cr, = L. 

i"" r(jt2H-b1 rtj+l+1+2.-s•) r'l)'w..•"".,.2-ZE..l 
(89) 

IT.__ u,. converges for all values of k, l, m, n, a and b that appear and can be 

calculated by a suitable expansion in f.. . 

Now we come to the first integral in eq. ( 83), Call it H 1. 

~ -' 
r' r{2-t-lr{A-E) .,- ( , 3_2 E A-~"'ml (A-"J.,.(A-l"Ja,) 

1r-., A,lf-~ 1 ' q 
rc~-2~l 

( 90) 

Define H
1 

to be the limit of n 1 for ~ 123 ,.. 0, so that in H
1 

eq. (76) can be used 

and in Hk H 1 - H1 one can put (A- ~oltJ U-l !r•t.,))-4 ,. (~- ~"tJ f" . Then for Ilk one needs 

':1'(1, -1, 0, 0, 1, 2) and for H
1 
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• 
J,iH-ZL(~-~~-<7 (A,A-~,~-.Z(,A-e) ., • 

Both can be evaluated by standard techniques (14, 24, 25]. 

I 91 I 

In section 4 it was very simple to figure out whether a term contributed O(y) 

in the region 11/31,«..., . One simply had to put in the phase space variables z, u 

and ~ 24 and count the power of ") 134 that emerged. Only double poles in ~ 
13

h 

had to be taken into account (see eq. (71)), Here we have an integrand which cannot 

be neglected even though formally it is of order ~ 134- 1, The integrand is 

~ ')n, "J«o. /('),~~_.,)('bl;rf''!$,.,)(~1J,..~&J)(')', .. •"VJ-The contribution arises for ~ 24 _,. 0 as 

be seen by partial fractioning 

can 

A ( _!_ 
"at. .. ~ .. (~,+~){,N+~,.) ~ll-1f .. 

~ 

= 

Working in the system of eq. (80) one has 

'J = II 

,., 

J d.,_. -A·l~ 
.. ij'l•~ 

• 

A 

• 
Sd.. -••r -• --~"l ')tJ A-~,3 ) 
• 

~ ) 
~ .. ·~ 

' J d.vvt-•(1-vl-~ 
• 

J 1).1 ~-t(A-~r• (~-v (A-~>)Y' ~~~u(A-~;))..., (A-v(~-~"3,1,))"' 
• 

[ A ~ 

1 
A-~">+ u(A-~;)".! 11, 4- 'j.·· + ~~ •• 

(92) 

I 911 
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In eq. (93) the Umit ~ 
24

-0 has been ta.ken whereever it is allowed . 

The 1
123

-integration can be done w:ith the help of eq. (76). (One should 

convince oneself that it is allowed to replace A-x(A- ~~fJ~) by A->c.,. t-1J,t,, 

the denomonator of eq. (76)), One gets 

~ 

'Jw. r(lf-t)r(f..) r "·· -,_,, 
J ..... "a··· • 

1 J ~H-• (A-~)-"- 1 

J c:iv v ,.._(If- vl- • 
0 

( v-• (A-if'-~-·) (A-v (A-l--<a11,))-< ( h v (A-<)Y' (~- v (A- 1,))
4 

in 

Define '1,} to be the limit of :TN for v..,. 1, so that in 7,! • :JAI- j
11
l one 

oan put (A·v (A-l':),..,lr' • (A-•f'· 

-:, ' 
':J11l • r(A-t) r(t) s ~~ .. "a•!tlt J d.H-'(A-i f' ( 2~-Af' 

• • 
' 

((A-~)'- ~-•) J dvv·<(A·v)"' (~-v(A-i"l"')f' 
• 

In 'J,,' the v-integration can be done with the help of eq. (76). One gets 

vhere 

:711 = r'IA-tlr'ltl 

• 

,.,.... ..-•· 
.1.- :1: +r(A-t1r(t\ ..,__ z -it· . -3• • 

1:, = j cl.~ ~,-'• (A-e)-• 
Cl- ~)-·- l-. 

.le-A 
• 

--._r-

(94) 

1951 

(96) 

1971 
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and 

' 4 

l, ~ J ti.H-•(A-<)-~ s dvv>-< (A-vY,_. 
• • 

v--•(4-!Y'--a-'-

(A- (A-<)(Arvl)(lf- (A-~)(A-vl) 

(98) 

Z
0 

may be calculated by expanding in f. . This is not possible for z
1 • because z

1 has 

a singularity for v-. 1. By successive partial fractioning one can isolate this 

singularity into an elementary integral 

4 A _ __:.:...__ _____ = ... ~ 

(A-!, (A+ v)) lA- <, (1-v l) 

A 
v 

(A-v)(A-!,(A+vl) 

with &
1 

• ~-A. 

The result is 

.r~• ~ . - ! '! ... ~ (-
(:;.f ~ 4 

Here 

<.a (lf-~,{A+vl) << (A- i, {A-vl) 

A • 
(4-2l,W-vl Y-2i,) (A-<,(A+vl) 

-?.1 '{ -8 3 
~r,_#l~-!lr 
,2:Z 1''gJ 

.,.1. .z ~,_-6"1. 

(99) 

( 100) 

( 101) 
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"l - ~... ( i) .. 1 '(, t.. 2. - t '(,1.. • .z ... f. .t... z 
( 102) 

is the part of 1
4 

{~) proportional. to '( 4 , which however is only knoW'"!l numerically 

[25] 

"'! • A.OS"BS't ( 103) 

6. Summary 

We have described the calculation of various integrals which appear in two-loop 

calculations, All integrals can be calculated by analytical means, Properties of 

the hypergeometric functions and of the gamma function and its derivatives are the 

essential ingredients of the calculations. 
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Footnotes 

l) Ultraviolet and infrared singularities can in principle be disentangled by 

examining the low energy and the high energy behaviour of the integrals. We 

do not distinguish them in the following, because the ultraviolet singularities 

are removed by counter terms which are known a priori. 

2
) If n is the dimension we define t • ("-"-l/t 

3 ) The integrations are done in euclidean space. Continuation to Minkowski space 

is done in the result of the integration in such a way that the propagators 

are the usual causal propagators f'-'l•4rf", 
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Figure captions 

Fig. 1 

Fig, 2 

Fig. 3 

Fig. 4 

Fig. 5 

0 

contribution to the vacuum polarization of the photon in 0( c:G
8 
'-), 

the symbols in brackets always denote the momenta of the particles, 

two parton contributions to the 2-jet cross section in 0( ~52 ). 

~ always means a one-loop insertion. 

a typical box diagram 

3 particle phase space for e+e-...,. qqg. It is divided into a 2-jet region 

which contains the singularities and a 3-jet region free of singularities. 

a typical tree level diagram in 0( 01'.-
2 ), 

' 
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Appendix A: Standard virtual integrals 

With the help of [81 

one gets 

r 4l".._ 
J ~,.)"' 

(~·)· 

li'-C.)"' 
.. '(-1)~-... ...... M, ... tt~/2. 

c 
tl6 rr')"1~ 

r( ... +-~ l r( .... - T- i) 
.t 

r( ... IJ. > rr-) 

:l:• J tt•4 
(-4_•)"({{-q)')r- i (-~·r'" 

,..z-~. (1')1.-"-f 
rcz-,-~ )r'(2-£.-o(> 

r'(4-Gt- "- ~ \ 

rc"' .. ~ ... £.-.z \ 

r'(oel i"(~) 

(A.1) 

(A.2) 

'J , .. 
'/" 

7-·:. 
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J 
d." A .l...r ,_,_ .. 
(,l_•)o1.((4_-1)')~ :. ~f /;-2~-o(-~ ~ (A.3) 

r d,•! lr "· 
J (··>«(t/..-,)')f 

(A.4) 

L s- oe-~ V • 2 oi .._ • 'r (q > • («,~) .,.~r1•('f J- -,.. v~ Co~,~) 

~ : .. 
'f"'1 

r d.".{ lc J.. l, 
J l.t•)" u•-,>'\~ 

(A.j) 

• z,,,(,) (,.,.- .. -~ LJ,(O(,~)-t-~,~-~, ~·t•·ft 

'Jr-,. : • 
r iJ. , Jt ~a., J., "' ..,_ 
J (.4. '> o( {l!-1 )' \ f 

IJJ. (ot,~) 
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Setting v = ~ (1 -cos 9) one gets 

'PSM ~ 
~· (4,./i'l'· S ~" ~ . ., d'\1 .. c,,.,'<l<,-~ )-~ 

b<tR ... rr2-2e- \ r{-1-e) 

('3<\.,.A·"a<n·"(!<.,y• "a:i• B('a<,l 8(),'1!<••·'\)<,Y 

• 
() ("ao,•A·"a<·•·}.,) J dv v·•(A-vY• 

N•, is defined after eq. (47). 

" r ~, · -><e· j - -11"' 
• No, 

(B, 7) 

F 
. . 11 . (h) . or J.ntegrat:wns over fu of phase space a representat1on of PS J.s useful, where 

all integrations are between 0 and 1: 

A ~ 

'7st•l ~ ql (h ~~·\ Jt. JJ.. •·tL (. &·J~ J 2 ""'~'"' A-)j.,,.) d.«'" '(~-sf• • • lO¥&,.> r(z- Z~\ r ~-£) 

Here 

(8,81 
< A ~ 

J •h~-·(A-c'i• (A-l'~"'f2' 2'f d.vv·•cA-v~-·J~' lli•-il.•e' 
• • • Ale' 

ls~/~!Jo~'-\ and S. ~" (A·i~,,_) /(A·'IJ~.)· The invariants y .. may be ex­
>J 

pressed with the help of variables appearing in (B.8): 

~ ... • (A-~.,,) s v (8.9) 

~tt "(4-hl S (A-v) (B. 10) 
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Appendix B: Phase space formulas 

The phase space for j massless final state particles in n dimensions is 

'l's'i' ~ (2"-)' f } d'p, ,l+(o;'l S' (~- Lp,) 
. '' l''' r ,., , ... ., "-""~ 

For j "' 3 and q?...channel processes it can be fully expressed by the invariants 

y13' y23: 

?s'"= 
'l L (h ~~·) U 

42.1-.• r(z-2~ 1 

' '-~ .. 
r ,~.. -~ S "-- -• < .... J ,.,~, a" "4•• A-"1.,·"}"\ 
' ' 

(B.) I 

(B.2) 

For j = 4 two angle variables B, 91 are needed, They are defined as follows. One 

chooses a system, where P
1 

+ p
3 

= o and where P2 II ez (31 

~,-{1i.,tz (A, . . , ,-.a-B', c.,B) /7ji- (8.3) 

fz• (~,,-~1/.z~., (A,. , o, •l{;f (B.4 I 

1'3" G'..12 (A, .... , -~-e~e', -c.eoelf? (8.5) 

1''r" ("C•:..·~)fl{i. (A, ... 1 Mvo~, ~~) f,ji 
(B,61 
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~ ... • ')to. (~- e~.,,) (v ( ~- '() + 'f(A-vl -2 <os B' {v-(4-v\ r (4- r J ) (B, 11) 

"J~> ~~ ..... (A-~~ ... ) ((A-Jl(~-t> + v t.,. 2 ~&'{ v(A-v\ 'W-tl ) (B.12) 

"ih· - "3• .. s 
(B. 13) 

w4.e •• 't ,. ~"2 .. /(A-~~,.,)(A-<11.,,). 

In the main text we are concentrating on the region ~lilt< "f , There the invariants 

may be approximated by 

'\!<L • "J"l v (B. 14) 

~11 • ~<1.1 (A-vl (B.15) 

"'•·· A-~ (B. 16) 

"3,.• "3\,(v(A-~)-q"a.,(A-vl -2..,e•lv(i-vli(;~el~,,) 
(B.17) 

"a!o. • ~ ((A-vl (A-~)+ v t 1ft• ..- .2 "'"'f>' {v(~·vH{A-1-l"1"' ) 

(B.18) 

The phase space in this limit is 

'PS (o> 
~""''a 

11 

Jd.. ~-2· 
"1: v'qf·h ~4\lt 

• 

~ 

J dv v·t. (A-v )-<.. 

• 
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. ~ 

J ~·•'a•~L (A-"J,/_,. J d.e e-•(A-~l"'-
• . 

rr 

S <ie' . ...z~B' - ~~ 
• N,, 

(B.19) 

If one exchanges the role of particles 2 and 4 in (B.7} and evaluates the limit 

~ 134...., 0 one gets back (8.19). However, v now has a different meaning a.nd the 

structure of the invariants differs from (8.14)- (1.18) (apart from 2-4 inter-

change): 

":!,., • '),. (~-t~n3l v 

"31• -~lY (4-~"Jm) (4-v) 

"31• • A- "anl 

"ln = 

"an= 

~"' ( v (A-t h i!-(A-v)~z. -2 ,.,e• Yv(l-,lHHl~,.') 
1- i "a<t; 

~ ((A-vl(A·tl•i!-v~.,• 2cose'-fv(hll!(4-vl'iJ" \ 
1- ~'atll 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 
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Appendix C: Miscellaneous Series 

In this appendix we have selected some series which have proven useful in two-loop 

calculations and which are not. standard like, for instance, the hypergeometric series. 

Most of them are taken from ref. [14]. A few appear in ref. (24] in the form of 

integrals. 

.. 
~ ,_, 

r(l+G\ 

f,.t 1(/..l 
" ~ rlclr(h)L 

r(-.. ,) 

••• r(A-c -~ i) q' (q;\ 1 
C < A 

(C.1 I 

where q{k) is a polynimial of degree n ink and q 1 its derivative, The roots ai of 

q(k) must be simple, 

,. r(l>.+/,) 

L rr/J...o..) A. k·· 

r(lol ("flo.\-'1'1a.-lo\), 
• rl~\ 

rf is the logarithmic derivative of the r-function. 

o..>b 

.. rrl<+c) • 

z -(1(-I..Atb)' 

r(c) r (A-c) r'(b/a.) (¥(~/a -c+A)- '>' (b/A)) 
AL r'('ot._ -c tA) k•• 

.. 
L. 
k·• 

tf.C•<tl A (-4) .,.., 
<f!.~A) !( • 

>t! 

L.~. (A) -1...,., (x) ,_ )( 1
-A.t.x<A 

(C.21 

(c. 3 I 

~ 

L are Eulers n-logarithms. 
n 
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"" L x:''-/J.(I>f-{/...J-I}t(~l) • t...~(A-><)/Z ,-H~<4 
,l., 

.. 
L IJ''(I>.\ I!.. c u, , .. 
.. 
L- ('1-{/..)- 'Y-(A))jJ..• • ~3 
~.., 

M 

L (t;.(~,.A\- "f{A))'-jJ.> • 47 '(,. /lr ... 
.. 

L. I rt-rl \- ""(All tl. 1 
- 'f. !If ,., 

.. 
L_ 
j•< 

,. 
L. 
i·• 

(--1lj 'Njl' c _ 

f 

(,..A)J ('>'(jl-J)t(4l) 
"l 1 

es , + 
"' 'f., .,. If L• l:i J ,. ~ '1'1 tv. 2 

- 't~t..·z.,. t ~N.•2 

-=- 1 '!~ .. .ZL..(f\ .. t ~3,t...z 

_ ~lt..•z;z ... fz .t... ~2 

(C.51 

(C.61 

(C. 71 

(C.81 

(C.91 

(C.10I 

(C.11 I 

(C.12I 

'11.:. 4,2., ... 

(C.4) Sums with a denominator (k+a)(k+b) ... can be calculated by partial fractioning 1 

e.g. J:. "''~ /l.,fJ.+4l c 4 . Further sums can be found in [25]. 
1 
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