DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY

DESY 86-038
,z::f arci=J]986
57, :
X :

| &1«
\GIHEEE
N

INTEGRALS FOR TWO-LOOP CALCULATIONS IN MASSLESS QCD

by

G. Kramer and B. Lamne

IT. Imstitut fir Theovetische Physik der Universitit Homburg

ISSN 0418-9833

_ NOTKESTRASSE 85 - 2 HAMBURG 52



DESY behilt sich alle Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informationen vor,

DESY: reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of'patents.

To be sure that your preprints are promptly inciuded in the
HIGH ENERGY PHYSICS INDEX ,
send them to the following address ( if possible by air mail ) :

DESY
Bibliothek
Notkestrasse 85
2 Hamburg 52
Germany




DESY 86-038 ISSN 0418-9833
March 1986

Integrals for Two-Loop Calculations in Massless QCD

*)

G. Kramer and B. Lampe

II. Institut fiilr Theoretische Physik der Universitét Hamburg

Abstract:

We present tools that have been develaped for the extension of the Sterman-
Weinberg formula in twc—loop order. They are the essential ingredients for
any perturbative two-loop calculation in a massless theory. Introducing di-
mensional regularization we deal with poles up to fourth order in the dimen-
sional parameter. We study virtual two-loop integrations as well as real ones

over phase space.
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1. Introduction

In this work we evaluate various integrals that appeared in the course of the
caleulation of e+e_ Jet cross sections to order gf 52. This caleulation [l] was
done in the framework of massless parturbative QCD. Dimensional regularization

has been used throughout for the regularization of the ultraviclet and the infrared

1)

divergencies . In the course of the calculation of the 2-jet cross sections [1],

which is the one most involved,poles of up to fourth order in the dimen-

sional parameter 2) appeared. Thus this is a true two-loop caleculation because one-
loop results contsin at most poles £ "2, So this work extends earlier papers on
the technigues [61 of dimensionally regularized massless thecories, which all stop
at the next to leading order level, We hope that the techniques we present will be

of help in other two-loop QCD calculations for ep and Dp processes where at the

moment. the § "2 Jevel is arrived at [9].

Some of the methods ere described only for the scalar integrals. However, they
can all be extended to the case where numerstors {coming from the Diray traces)
are involved, We will present alsc results for this case, e.g. eq.
{33}, The calculation of the total hadronic cross section in e‘e” annihilation can
bte reduced to the calculation of the photon 2-point function via the optical theorem.
Though it is a genuine two-loop problem fortunateiy only poles up to 5'_2 appeared
here and could be handled with the help of the Gegenbauef technique [7]. For com-—
pleteness we will review some features of this technique in the beginning of sectien?2.
However, for the 3-, L- and S-point functions with one particle off shell, which are
needed for jet cross sections, this method is of no advantage as compared tc the
usual technique of introducing Feynman parameters [8]. Then we give an elegqnt way
for calculating the ladder disgrem (fig. 2a) and use Feynman parameters to calculate
the crossed diagram (fig. 2b). In section 3 we discuss boxdiagrams, where a one-loop

virtual integration hes to be done and also one real gluon has to be integrated out.



This means that one integrates over those parts of phese space where the gluon is
infrared or collinear with one of the other partons., This adds poles in g to the

poles coming from the virtusl integrations.

Sections 4 and 5 give two prescriptions how to handle the tree-level diagrams,
where a two-gluon Bremsstrahlung hes to be integrated out. Again poles of up to

fourth order in § emerge.

In physical applications [11 these cancel against the infrared singularities

from the virtual integrations.

2, Integrals for virtuel two-loop disgrams

The Gegenbauer expansion technigue in momentum space [11] proves useful for diagrams
with only two external legs, e.g. for the vacuum polarization of the photon t?].
In ref, [h, T] extensive use is made of it, Here we describe some of its features for

the sake of completeness.

The Cegenbauer polynomiels C; y 3 =0, 1, iy, A’“i form & complete set of
functions in the interval (-7, 1) [23]. They are a generalization of the Legendre
polynomials (A= i) and the Chebyshey polynomials {A=4) . The method consists in
expanding propagators into Gegenbauer polynomisls {cf. eq. {2) of ref. [#1}). Then
one does the angular integraticns with the help of the orthogonality relation eq.
(A.1) of ref. [h} and is left with radiml integrations in the form of powers of the
momenta. In simple cases such as the example in [11] this leads %0 infinite series
which can be evaluated with the help of standard summaticn formulas,[lh]. The method
works for integrals which depend only on one momentum, i.e. self energy graphs. They
must fulfill an additional property, namely there must exist a parametrization of

integration meomente in such & way that not more than two Gegenbauer polynomials

_3_
appear within one angular integration. For integrals of products of three Gegenbauer

polynomials no simple closed form exists.,

. . . 2
In the case of the vacuum polarization of the phaton 1n order n{s [T] all
graphs are calculable with the Gegenbauer technique with the exception of the graph

of fig. 1, which is "irreducible".

Next we consider the 2-parten contributions of the 2-jet cross section {fig. 2).

These disgrams can also be thought to define the (singular) electromagnetic form fac-

tor of massless quarks [12]. After the Dirac traces are done the dotproducts that
a5 many of

emerge are transformed into sums of squares of momenta in such a wsy that

them as possible cancel against denominator facters, e.g.

Rpm 34 - m

for p? = 0. In general one is left with relatively complicated scalar integrals, which
we will calculate in the following, snd simple tensorisl integrals. For the tensorial
as well as for some of the scalar integrals (fig. 2c - e} the strastegy is to intro-

duce Feynman parameters with the help of

A _ 3\ dx {23
Rhp Y Tthep 0T

which helds for p? = 0, i.e. one tries to preserve the massless structure of the

theory. In general one ends up with standard integrals given in appendix A.

Fig. 28, b cannct be met with this general strategy. However, planar diagrams
like fig. 2a can be solved with the help of "partial integration”. This method has
been described in [13]. Fig. 2a can be reduced tc the scalar integral 3)

a~& 4 {3)
$ 2 2 2 2
11[1(1*1)4) (!‘Fl\ (‘.*[*P{) (‘."‘[—Fl)




ST

and some tensorial integrals which can be celculated by using the standard strategy
(2]. To calculate LS by the method of ref. (13] we need some notation: Let — e
mean an additional factor of k? in the numerator and —g— an additional factor

of k? in the dencminator. Define

&
rhs o 24, (he k) )

;Q‘*Az.f v& - 4 (5)

SR DR
I | +(6)

Becsuse of the translational invariance of the integral one has the identity

[atae 2 rlopy -0
%, AL (L gV UopY Bl o) e l-p (M

After differentistion one receives

/s
0 = (V\-Z) - ‘{ -
~ \
/ /-
(8)
a (n-h) -2 +2
N \
{(9)
= -4 4
= 3 + ¢

The first integral on the right hand side is very simple and can be done with the

standard formulas of appendix A. The second integral can be simplified in the same
*Q { (10)
‘4 ——-A< (11}

way as the original one:

8 _<&

The result is

4 -

m

With the help of appendix A one gets

L = Th (qz)'“" P{A-e) D{A+ed T4+ 2¢)

4 £, Mo

— s 2

3
gt 22 78 1:!"( (12) .

Using Feynman paremeters Gonsalves [121 has also arrived at this result. However,
our method is much more elegant. The momentum dependence of LS could have been

derived from a simple dimensicnel analysis. The appearence of

”

5 - > A (13)
£=4

-

in connection with poles £%" is & characteristic feature of the result (12).



The crossed diagram (fig. 2b) cannct be done with this method because it is not The divergence for X = z is an artifsct of the y-integration and disappears in the
plenar. (To see this try to apply (8) tc it!] The scalar crossed integral difference. The u-integration leads to hypergeometric functions. If one wants their

series representation to converge one has to distinguish the regions x ¢ 2z and x > z.

S a4~ A 4L (14}
= Then
y A2 (L-p)* (A= 00 (B-L-py)* (R-pa-p2)*
-2 -1-d% . a5 -
can however be calculated with the help of Feynman parameters. K.s = ‘ﬁ“' L(‘il f’(/! ﬁ)n[d-&Zg\r’(;f‘.f_) 3 ‘€ * (19)
K - S d & d"L (15)
s H
‘ ({-—Pﬂ:)" (&-f-’uz'\a)* (A'P"-Fl)‘- A y ¢ -1 42 X 4
= -4 _aY ) - - - \_
Any further Feynman parameter is asccompanied by a "mas_s term” in the denominator, 3 J d2 \Id! ¢ (A 2 F (4 E\ (2-x
Cne gets
4 -
4 4 4 4 -t _ gyttt G A= _i_\ (z:.-x\
" ax x (A- ) (4= %
eyt e gy j d £ + jd‘l‘: I
K, = x et Broneeey Jdx fay [de !a W | )7
4 1 S T 4-x -4
- fdo fax et @ Flam £y on
4-2
(16} * S
C = 2{t-2}gt (A-a) + a0 (A-0) (92 - xp, — W 1 4 4-2¢ . -4-1% -2 -1
(#-2)q 92 - Xpi—*4pr o _ 5‘“ [ dx Uy 1 G- ;__X)(ws (20)
. &
with
The k-integration can be done with eq. (A.1).
Tl 1T Ur2e, 41, 46, (o1
The y-integration is then straightforward:
Glay=,7F, (#+2€,-2¢,4-¢,a)
(22)

b-2e £ z1-d2n 2 HA-eNP(Ar 26N 4 N
Ky = - (‘i ) T Pl 200 jd-u al (-a)

We change from x to 1-x and from z to 1-z in the last two terms of J and get

A . 5-2(9,-:-'3 %) . (23)
J‘d’ j ig E""“(A-e)”""b{{ﬁ-“ doxyeiie (A a0 X-2 )'H"f (18) N
] Z-% F 42
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FC‘.-HH-EE_\
- — % (o d )~ ¥
- 20D 2 Yy (20> (% (st ) (o)

is the contribution from the first term in the series expansion of the hypergeometric
functions. I, and I2 contain the integration of all other terms. Because of absolute
convergence of the hypergeometric seriés cne can exchange summation and integratiom.
The sums that finally appear can be done with the help of standard formulas Eh]

The final result is

~2- ¢, 288,
K,::n."'z" (ql) 2-2¢ C{A-e X {A+E) r"(,f+29,\{ é; - .Z.:._ - T—' + ‘gnf

(25)

For completeness we give also the results for the scalar integrals of fig. 2¢ - e.

drh 4t 3 .
= VU, (— —_— g
J““-m“’“—m-m\‘zl (h-p.-Lr b2 2 %) (26)
S d~k d" L |
B L2 R0 (-p0t (hep 0 Chopyrp,
{21)
- v, { 3 -3 3—4/2!;_6_,;_“@-!“%,“)

*
bl 282 £

dhd"t 3 3 .9
TV (T oty —6%)
J B0 (h-p) (R l-p (Rop) <et 2e 2 (28)
Here
Vo = THGY T P g-p A 4 200 (29)

In the case of fig. 2b one cannot reduce all the tensor structure from the Dirac

trace tc the scalar integral Ks and the standard integrals of appendix A, In addition

one needs
drk 4ot QAppt
®, - )
L £ la-f:ﬂl (k- 1) (k- L- P;’l (h-pep” {30)

for 1 =1, 2, 3.
The denominator in eq. (14) is invarient under the two transformations (pﬁpz,("&'z)
and “"'?"Pf‘“!'t“ Pa'l) . Using the second invariance one can derive

’Rf = K‘ /2 (31)

’Rsz" K_,/2,+3722/2. (32)

R2 can be calculated by the same methods as KS:

3.
Tnm"‘“(q’-}""“’ M { 4,4,
A~ 3¢y et gl
b 5% 4y i
B T 4 - B~ Ve vl - -8 gs
pr 2ot +{ 1 2 'rs) £ rhb 42?1 s_i’a_ z rbf (33}



,10_
3, Discussion of box diagrams

In section 2 the "two-locp" celculation consisted in doing two virtual integrations.
P U 4

Here we consider diagrams iike fig. 3, where one locp integration has to be done

L ]

and one real particle (namely the gluon) has to be integrated "out" subsequently {i.e.
a phase space integration over infrared and collinear regions hes to be carried out).
As an example we consider the scalar box integral with three particles on mass shell
p? = pg = pg = 0, The case with all four particles on shell is conteined in 1t. IF
all incoming and outgoing particles are off shell the integral can be done in b
dimensions, because no infrared singularity exists. {Box integrals are ultraviolet
finite anyhow.) Four dimensional box integrals are calculated in the 3rd paper of [6].
To calculate

d-&
.‘-’x. = 5 2 (34)
" A2 (h P2l (#-~py Y (h=pepy

we follow the general strategy described in section 2. Namely we introduce Feynman

parameters avoiding messterms in the denominator

9 . ‘d, ( dk (35)
Box J-. _[d": .[ (é-rp,_x)“(ﬁ-p;-f°c’l35b

After a shift of variables one can use the standard formuls (A.2) for doing the
virtual integration. The Feynmen parameter integretions lead to hypergeometric

funeticns

rEd-grieey

] £ M{4-2¢) ’—g:'bu

-2- -
. -Z(ql) t e

{271’ (Jj-tf ”-E'- % ) - ?’;2&1‘;(4,—5’4-2’_ e Y= ,3;!1;;; (4'__‘,"4_&)__ E)
’?’3 "gﬂ ’

Yahn
{36)

- 11 -

T P 2 17 . + =

?lJ 2plpJ/q are dotproducts normalized to the energy "112 + 4323 4&:13 1

is energy conservation. The E'—zépole is due to the infrared singularity from the
virtual integration. The g° dependence could alsc have been derived from a dimensional

. . . - -1 .
snalysis of eq. (34). Note also the singularity ¥, 4 1 which can produce

Yo3
another § "24p01e after the integration over phase space. The hypergeometric func-

tiens in eq. (36) have the power series expansion

o .
. 21
LJF Ume e, ey =46 2 = (3
Jer 478
The series in agq. (37) is the expansion of e logarithm generalized to n = L-2¢

dimensions. If expanded in a power series in g we obtain

20 . - .
.ET_J__ n =L (4-2) + Z E“’jn {2y (38)
j"* j‘b J'u

where Ln is the generalized Euler dilogarithm

L“(é)‘ i zﬂl/jn. (39)
ERl

For further integration over phase space the expansion (38) is not useful, because
additional singularities may make the inclusicn of Ln, n » 2 necessary and at the

integration boundaries {39]) masy not be convergent.

So we first transform the hypergeometric functions in eq. (36) mccording teo

-~ ' b ot a (L0}
+ e g -2y - . .
Z 1("’1 &, e, 5 (ﬂ.“)) E(o,-&b\

with E(@) =T, (-€,~¢ 4-€, 2)

. The hypergeometric function E has an everywhere

convergent series expansion
o Fh-¢d
2 ﬁ_‘-_ A (1)

£
E(@@ =4+ rae (., *E-9
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C2-eNP (e
M 426D

)

e
.4

e Y

L m- 2 (g e

b E (Y
?f;”blx*’?h.

{ (s tg (B a2

Dne now wants to integrateeq. (42) over the 3-particle phase space drawn in fig. U
PS]. One can divide it into a "2-jet" region where (L2) has singularties and a
"3-jet" region where (42) is Finite. In the finite region

E@=d+e*l, () and

the integration of the L,-term can be done in b dimensicns.

2

The singular regionm is defined by Yo & y. {42) has no singu-

3’13< 4 or

lartiy for Y= 0 So this region which physically is 2-jet can be formally added

to the finite 3-jet region.

Yy <k 1 is the invariant mass cut defining a jet [15]. It is both an energy and

{43'3('3;?13’1? s {“3..374;,-‘:,‘.:41(

is the collinear region 43 and {%(3'%1‘<‘bi is the infrared region 3 -+ 0,

an angle cut. is the collinear region 443

Because of the symmetry the 2-jet region of 3-particle phase space can be written as

2 e (L3)
Jd‘ﬁﬂ Mo * {ZI B 5f d‘ln ‘3;*‘ ("“ir,"‘JhT"

As long as one neglects contributions of order y one can restrict oneself to the

¥,ypole in (42). So the 2-jet contribution from the scalar box integral is

13-
it 4 4

'B.'J." fdﬂu '51;‘1 {2 5 - S_ id"au"a;_;"(;f-qn\"' ,j{w\ Mg 78"
» .‘-'o

. . -1 .
which can be calculated straightforwardly. The result has an § \ pole with a
structure similer to the two-loop virtual results in (12) or (25). In addition one

has terms ,&‘g fevd  x=0,1, 2, 3, bk

3

) = *t (1:.)'2'“ ._.__—--——Pa(d-op(ha { 1_ . 3% 2,

0 (4 26) 26 et T T L

(b5)

FUGy Loang 16+ WS hary = 08, Buatag - 2Ll + hlndyfe - R Loty

L, Tree diagrams

In the case of & diagram like fig. 5 one has to do no virtual integrations. However,
twoe gluons have to be integrated "out" here to calculate its 2-jet contribution - the
3- and b-jet contributicns from such diagrams have been discussed extensively in the
literature {2], [3], (16], [17], [18]. In the b-jet case no & singularities appear.
In the 3-jet case one has to deal with E _Esingul&ritiescoming from an integration

measure very similar to [43).

f
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There exist two topologically distinct 2-jet configurations here:

+ permutations + infrared configurstions.

Because of the pole structure of the matrix element sguared only the permutations
140 2 and/or 34» b are necessary. All cther configurations which are physically
2-jet lead to the O('}) contributions. However, because of the appearance of terms
auhf" they cennot be simply added to the 3- or b-jet contributions, but must in
principle be cancelled independently. In section 5 we describe a method where such
terms are avoided. That method will alsco provide us with all finite logarithms
necessary for the 2-jet cross section, whereas the procedure described here is only

sufficient to cancel the singularities ~ Cowsh ft or A‘,‘: /é [ X

We have used the representation of h-particle phase space given in [3] In the

2-jet limit (LE&) the b-particle phase space reduces to

F]

it ¢ 4
2 f e DI J Ky 3a | A s (g™ | duatfponr
-] ’s 2

C..._ﬁ;g

_9__ . -119:
A

_“5_

+ S“‘gm e _de c-av* j AR

A 4 1 Y 4 ] 4
{2f4n]ee - [ [y - Sd*ah{duu- LS EN

-€ A2t L -t (47}
o CEPPS NP GV
Here ‘g{jlls /3:}‘ *43].1* @;u ) ALE A /(’bu-ﬁ ), t= 43.{3 /’&‘h%u
and Ny = 2% -2 MTEA-6) is the normalization of the £ -inte-
gration. The first term in (LT) operates on the ty 13? s, boles and the second
term on the ??3h—double poles of the matrix elements squared., These double poles
have & structure much more complicated than any pole structure which appeared so far.
We will not write down the full expression here but only describe the caleulation

of two characteristic integrals. These integrals stem from poles in Yiu in the

matrix element squared.

'&""‘ Mo f’yaw’ M(“é)*%M"Jzo." zﬁeifalﬂ—“)é(.(—g)aau

'a,,*-r 0

has a relatively complicated structure (see appendix Bj.

We want to cmlculate

_ -1t - - 3 -t
J.:: = Jdﬂag‘ e(,,-,a)F Jdn Ed-ayt ’jd.m U-a)' & TIN,, o)
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to order § where

.
j dﬂ ' /M-“—Zi.gf

(50)
' Q'g-r‘:—“ak'y o 8’
with a = uz, b = {1-u)(1-2), The @' -integration can be done
by LE (44 4 ‘iﬁh-) {51)
fHN'af = (aﬂr Y2 v 2,%7 i 2
(¢~:+L-.)
The hypergeometric function can be transformed by a "quadratic transformation" [IO]
so that
S 26 =42 £
INg = (3" v F, (26 f-¢ = 5
U Ne (2 2 4 H ! ] 5+ ) (52)
where S__tx'r,,t ""-,"":t:]“"a‘*u . We can set 1'7;(—&,—21)4—5_, i_'.)-.(
because terms of order g% %= give a contribution O{ £) in the full result,

5
The reasen for that is that §_[s_ cancels all gingularities which appear (u—1,y—1)

with the exception of the th—singularity. So the u-, y- and z-integration are
finite. One has a £* from the }.’]31;—integration but this pole is removed by the

€ 2 factor.

Next the z-integration is done, One divides the region of integration into two
regions: 1) 3¢¥ and b) 27§ (h‘“:.v/}s rﬁ;,—_»f-.«(,q-.g\, viosAead}

Then ¢ne has
4 A
g0 2 [y e opltt [t (6 (Hee 1)

where

-7 -

¥
B My = g Jdee“(bef" (v-pay™* pie (1-a)**
o -2

F, (& 4¢3, ¥)
ru-3ey Ce,

- [phl

Yeri-t {5k)

Expending the hypergeometric function in eq. {$4) in powers of § and 4-§ one

gets [20]

Mortey | rrae | t¥e Thorty

—— 1
Fi1-3¢) M) r olayeh

(3(““*“""[ ¥ T Truean

(55)

The terms of order kh;" do not contribute (see the remarks after eq. {52)).

We conclude

5, TH-eree) CEOrt2e)  Mer(20 1
= 8 - ¥,
I 'i#-2e> T [ P4-3¢) r-e ] 2<p

(56)

where
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¥-(2w) e

4 y
- -2 d-ne Ny

can be calculated by expanding (1—1,1(1—y))_T near 1:

Rea-2e "t ea-200 & (lh+ 2+ A-n P (s Sed- med

W
?:"F' r'(d+($+ A- e DL

For all combinations of -(.{5, r,s

is convergent.

-4

As an example we now calculate 9_40

. We have

T L T (4-2e) [hed M (h-tee)

FAa P2 (4= 26372 -¢) N r’t(,f-zo 2": r"(&-,)‘

A-te M (4-3¢) P3N oy &1 Plhea=3e) (k- 3¢)

oo AP 48 4 e 2—(W(»DE)(&*-H/!J-A—-(V\(-Z];)

(58)

that appear in the problem the sum in eq. (57}

{60)

- 19 -

One has

~ o 2 Plheo
g £/ (he A-36) (£-38)  £-. A1(k-2¢) (k-te)

+ 0 (%)

(61)

and the sum on the right hand side of (60} can be done with {6.6.2) of ref. [Th].

In total one gets

1t Y M4, kY 0 (¢* (62)
y_‘o = - -Ei + ?Ez—' + A3 !3 -+ :E— ghf; + ( )
An integral closely related to ?I; is
4 4 + "
K.f; = j"‘: s (,f-%xf'“ fdu“'*fd-e\"“ Id.u WS ) e
c dat ~21aby @ g’
s Ny aneb - 2Vaby @8 (63)

s - H
Because of Y aby in the numerator it is less divergent than y‘: . One can see

this by writing {see (53))

4 A
¥
(- foy gt ot ey

One finds

N,.-rM,r-'zMﬂa (N, + M)~ 2n Frglda? r+2£[,1(4—)‘)+0(£‘q»3)
(65)

We write
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—h vt Fe2el (- :—:—g oF M4, 25 4- Y1 O(E uny)

(66)
So K:: is reduced to 7‘:";‘ module & third type of integral
. A‘:
1 4 X T ('41"12-&; )
15 j S’ dy due 43'““"5(4-@#’“/&8“‘&'[4-,;0""' 2’y 1-m (-
" 3] e At Uf 2
] (61}

which is finite for all combinations of a(,ﬁ,f, 5 that appear. Introducing ¥
instead of u as integration variable we can do the y-integration. This leads to
another hypergeometrie function. Expanding the hypergeometric functions into series

we can calculate A" in & standard way.

5. The partial fractioning approach

To get all finite contributions of the tree diagreams to the 2- and 3-Jjet cross

section a representation of the metrix element squared has proved fruitful, which

has singularities only when a certain y.., say Vi3 is zero [21, 2?]. In contrast

i

to eq. (W) the structure of the poles in g can be derived from considering the
region "J,‘O\) solely. Finite contributions from other regions c;a.n be easily in-
cluded by numerical integraticns [22]. In the 3- and U-jet case they can even be
calculated so as to inelude contributions c;f order y [22]. We will give here some
typical integrals which eppear in the course of the analytical calculation of the

singular contributions to the two-jet cross section. (In the three-jet case there

- 21 -

is essentially one complicated integral, see eq. (A.1) of ref. [3].)

One can write the matrix element squared in the form
A (68)
ME= — 4+ (4=2)+ {3~ + (4-2,2~4) /
o '

Because of symmetry

A
(full phase space) — = -'-;; . (full phase space} ME (63)
n

Se it is enough to consider the term AI’&B‘ The most interesting region is the
region ‘:m«cd’ , which is part of the two-jet region. Let us first consider an

integral which originates from the pcle component Al‘ , hamely
=0

A

3? - (P‘ldﬁc ‘P“‘\AJM"'I

YnYn, ('ng- "91;) (’gn + "'3:.0
Here

¢ 1 A £
(Tlu.se sr-n.\g <y = S ta,, "J,;f" Id"&"l 43;;“ (4-"3,.,331]!(1 (4 a-)"tj dov (-5 % 71)
By . ry L 3 ’

{see (47}).

From
My A~ M * o(rbm) {72)

% - Aﬂ‘i /"J‘H’Uus (73}

AL = A-v = "J’n /[ﬂanj""gq)

(14)
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A remark is in ordér: im the scheme described in section U a denominator

twe gebs .
3 ~ emerged. This made the 8' —integration in the region
. B0 Y Y1
%4 4 4 A< 5° tedious. :In the partial fractioning scheme it turns out that one has only
. . ) \ :
- -4-2¢ -1t -eJ kvt Y _ _
JP J’-d‘rqg "3[“ fd.%-? (f‘["i!-\ dv v E- (4-\1 a‘*'}j;;.)\ 1 (75) three of those four ’gij appearing st a time, e.g. Agqy (dfﬂ*?ll)('bls*ﬂh\ (Ty, as
° ¢ .

in eg., (70}, or ﬁ'l(ﬁll'ﬁw)(%‘f’ o) {n . To avoid complicated &' -dependences

in the case IT we change the coordinate frame, Exchanging the role of particles
2 and b the @& -integration is trivial sgein and eq. (76) can be applied. One should

p .
fdgﬂg %;“ZE (A' ?“ )'E (4""134:.; (4“§qu\3—‘

. note that the structure of invarisnts is & little different in the two systems. In
If one neglects terms of order y one can use the appropriate formula

contrast to eg. {48) one has here

4
de x&'“(A-x\"’(hx(me'gm\\“ n [hrA-ae )T (ke d- (@edIE)
° (76)

M3
, _ _ _ .
+ (- E"*’Ag,;f- 0 (43' ) Ao Yo = 4""'— [(" WAV rmt - 208 4#(4-412(4—1\.\1.:;\.]
[T A nv® -t Yy (80}
which can be derived from 3.197{3) and 9.131 of ref, [20]. The final formula for
Jp thus contains terms ~4;‘JI'AJ"‘L which in sectien b appeared only after sub- whh = Aa!w/('bf:»‘ 43")

traction of doubly counted infrared regions {see (47)),

Now we turn to some integrals which emerge in the non-pole part A-A Ii
=

-3t -Js . .
L .RL 'H of eq. {68). A typical example is
3= 5 C-BY +2rU-edr(ex(C+3) v B, 4

Yo
-k .
v Py 1 1—-—- 7\,-'-' ( Aau Space) ‘ (81)
e o 8, PRASE PAC My s 0 Uy )l = )

(18) To avoid @ -dependences in the denominator we work in the system of eg. (80). The

B, = [(#e)(-we) [ M (- (wed)e)

@ -dependence in the numerator is removed by antisymmetry. Cne gets

- ? a
C = rit-2e) -1 (4-3¢) (19) , -
| e L L

(82)
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where

A
Ao & (fea)™
”:s i (/’M\ "P&J

o {4- M(,;_é,z,n\)(d- ’gm(/'-i"auﬂ) ’ (4—& Yuay) (A (A2 gmﬂ

A " f-g) E (2 -4)

(83)
The second integral in eq. {83) can be done after partial fractiocning
' 1
1 = + M (8u)
(4‘ 3’?‘“) (A~ (/l—l’ym“ A- *"3411. A= ai {(4- 24ay)
One is led to one integral of the type
4 4
- -t . “-t -
KA Ly = [ gttt [aame - ey
4
(85}

and one integral of the type

P A
Parkto gy it [l

3 (‘,l‘wxl’h, QJL):-
Ma-e3 Pll~e) °

4

Jd...‘ W2 (e T (N (2 enaﬂ"

(6}

. -1 .
K can be calculated by expanding (1-zy) near 1. I can be calculated by doing
the n-integration with the help of the same formulas that led to eq. {76). In
contrast tp eq. (76) in eq, (86) no approximation can be made. Instead one in-

troduces (absolutely convergent) hypergeometric series and gets

are-4-2¢

['(a-€

T8 Lwimab) = Pl e-6) Py 4= ) Moret-e) (0 =0

(87}
where
i r'(j+q+ L-A—-QE.\F’(\]+A+L-3€\|"’[J'+.,“+L_2L\
a (88)
T gmo ;j-' F(‘]’h&\\I+L+d-—‘+£)r’(j+w+m+ls+4-ga)
and
2 Mliea-d (1 A -2 7 +me 4-£Y
o= 2 e A Rl (89)

j>e r'(j+ 2+e-b) r"(j+£+[+2—'3€) F’/j+w\+m+2-25)

Ty - T, converges for all values of k, 1, m, n, a and b that appear and can be

ecalculated by a suitable expansion in g .

Now we come to the first integral in eq. {83). Call it Ho.

(2 P{4-¢)

rli-7¢5 w {90)
H.' = r'(!— 26) ;‘r; [Ar’f'ﬁ, 3‘2 E,d' 2’?413) (A—AJ‘H (J.é,bn.)\

Define H, to be the limit of W, for ,% 1p3* 0y 50 that in H eq. {76} can be used

and in Hk = H1 - Hl one can put {4- ,:7“3 (J“E‘juz,)“-"' (4_4(1‘“)-4 . Then for “k one needs

F1, -1, 0, 0, 1, 2) and for H1
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4

. “26 ()%
Ao -_fd“ -2V F (4, 4-€,3-2€ - 2) o)

Both can be evalusted by standard techniques [114, 2k, 25].

In section 4 it was very simple to figure out whether a term contributed O(y)
in the region 4(,’“4 4; . One simply had to put in the phase space variables z, u
and Aéeh and count the power of 'ﬁle that emerged. Oply deouble ]:)-o;les in ? 120
had to be taken into account (see eq. (71)). Here we have an integrand which cannot
be neglected even though formally it is of order 7 1314-1' The integrand is

Mo Y Yo /(‘Juvg‘,)[w3”)(334.»5“)(’“,%}The contribution arises for 1211 - 0 as can

be seen by partial fractioning

. = 1 d ! {92)
('b'w AJ“) {',',}N'* ﬁlv.‘ Yn~ ‘Hw AJ?JO" Yty Y+ %

Working in the system of eq. {80} one has

3 1 y
'J” s Sd‘a'lv ‘3“;‘.2" 'f""‘au; "3‘1;“ (- %my vt J dv v (-0

#
far e pav (2w oV (e 0V (vl g, W' ()

| — - L]

1~ Yas + 9 -2y 1- S+

_2Tﬁ

In eg. {93) the limit »y 211""0 has been taken whereever it 1s allowed.

The A4 1?3—integration can be done with the help of egq. (76]). (One should
convince oneself that it is allob{ed to replace ,{-—x(/f-;,a?m) by A-x * Y, in
the denomonator of eq. {76)). One gets

g .
Oy = M-ore J“*am’a«;"“ Jd@ FE(U-TE fduu"‘-u-w‘*
v L]

(vre ppars-gt) (v (- ¥ (e v (120" (R-v - O

{9k)
Define 5’,} to be the limit of UN for v - 1, sc that in 9,\;"' y”__ 7’\;‘ cne
cam pat ey (4= 2y W Fm =)™
‘ ] ]
7’, = M- sz'ik ,,3‘;:"22 f dz Q-t(d-iY" (za_‘)"f
°
4
((4-25%-27%) Jdv Ve E (v (-2 ' {95)
In U”‘ the y-integration can be done with the help of eq. (76]). One gets
e -3
I, = M-t (e a_ 2, ¢ M-y 4— g
N ~he -3 .
{96)

where
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and

-

vtV e

4
PR AU PR

L

U~ U=t N (A= (-2 {-0))

(98)

Zo may be calculated by expanding in g . Thiz is not possible for 21, because Z1 has
a singulerity for v - 1. By successive partial fractioning one can isolate this
singularity into an elementary integral
A 4 A
= + (99)

23 (A2, (4-V)

(-2, (4 o)) U3, (4-0) 2% (A= 3,(4r )

- {a-24 (A V) (4-22,) (-} #-23) (A~ , (45 ) (100}

vith 8, = {-x.

The result is

- 4
LS E LR A SR LA S S A E A

{101)

Here

_29_

Q-L,(ih%r,z:.z—gnwz««i Lo b2

(102)

is the part of L, (%) proportional to glp which however is only known numerically
{53

’Iz: 40§397 {103)

6. Summsry

We have described the calculation of various integrals which appear in two-loop
caleulations, All integrels can be calculated by analytical means, Properties of
the hypergeometric functions and of the gamma function and its derivatives are the

essential ingredients of the calculstions.
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Footnotes

1)

Ultraviolet and infrared singularities can in principle be disentangled by
examining the low energy and the high energy behaviour of the integrals. We
do not distinguish them in the following, because the ultraviolet singularities

are removed by counter terms which are known a priori.

2) If n is the dimension we define &= (H-wl1

3) The integrations are done in euclidean space. Continuation to Minkowski space

is done in the result of the integration in such a way that the propsgators

are the usual causal propagators w-ﬂ".)“.
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Figure captions

Fig.

Fig.

Fig.

Fig.

Fig.

2
contribution to the vacuum polarization of the photon in O(ecs Y

the symbols in brackets always denote the momenta of the particles,

2
<

two parton contributions to the 2-jet cross section in of e

¢ »olways means a one-1o0p insertion.
a typical box diagram

3 particle phase space for ete - qqg. It is divided into & 2-jet region

which contains the singularities and a 3-jet region free of singularities.

a typical tree level diagram in O(Qose).
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Appendix A: Standard virtual integrals

With the help of [8]

(Zu) (ﬁ," C) 06 )"
F(w—%) M m- - %)
F(n/2) P{w
one gets

(#4)* (k-2

r-e-pyr@e-

Trl-t (ﬁl.)

r'(.n-Fa-g,-—.Z)
PO ()

F4-2e-«-RY
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2-e-
= ‘1/- 2o u- g T s

_ Jd“& »&f

o U ((h-gf

U S lt"‘l‘aerilv
r (£~ ((&-1)"5P

(AL}

(A.1)

- ﬂ/-v(“l y$-<f V, (o, 81 +q,1,(q‘Jz""P Vy(x, )

S drk Ay ko ke

Joop ™ &5 (k-] (8.5)
(n.2 ) 4 F e+ g g9
by (o, B
4 4 Ak, by b
Jpose ™ | (69" (kg™



MY _:«m - .a;\x

(91°¥) nsowttﬂs‘!sm +
{aLy) uso.{eﬂafsk + 260 swkr -frd k»&w\
e wtl e o 5T < (b) 7

,SLAJL\ (h-3+gem
(EL'Y)
ndN..&l._llva J dlﬁdrlg d-NR.e = ﬂ&;ﬁvhz
(3-5-#) (T2 =0)

37-§-»-1 .
@ (M T = WM
ir-y»-t ﬁ
(11y) nQ.GﬁB 3 -m -3 - nt 3 n3
apogomns
- dmn =V
3 -n-4p

- §¢ -

3 Nn&-ilw

(6°v) fﬂ_vogvb - AMTJJ q3

3@~

(ham i (z-3+9+m)J

(g'v)
(3z-§-=-9)J |
Bog-7)J(3-0-4)d 3 te?) gpt¥ = ()T
W0
AM\M.‘.ML_BML
(L)
3z-9-2-9)J2 ?:quf.ai.\,
(F-gf-3)3-»-10d
nQ.l oy m-r,uhnrv bwaréé.? &.3:2
(9°v)
&J.;.?S (k) &.:_m\ - 0y g2 n er.._\x -

!Jm#
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Setting v = -;— {1 - cos & ) one gets

q ' (I'rr.'/q" )u
2048 nS [(2-2e )@ €)

PSE® 2 fd’a‘m d"&m d'“aﬂ (“dds»"am"‘a‘a—t

(B.7)

gyt 4" 6Ly) B Lo 70

4
0 (e A g5, Jdv vy S

»

!

B

4‘\4\""'9'

l

&=

K4 1s defined after eq. (47}
{4}

For integrations over full of phase space a representation of PS is useful, where

all integrations are between O and 1:

‘i,’ (l'; ’qt\ 3
2048 (2-26) 7 (I-E)

Pl o

i 4
. 1-3c -
J“qu&ﬂ“— (A Yo, Id“‘ Mgyt

{(B.8)

4 4 v

- ’
Jd! FH-aY e (- t‘an.)"‘“'f dv v {#-o '“J.‘g- Aln2tg!
L] [] L o’

S 4y (l-—i’hm) /[,f-'am). The invariants ¥y may be ex-

Here 3= Aa'ﬂ/?f;v Aoy and

pressed with the help of variables eppearing in (B.8):

’Uﬂ.' (,(..30”);\; (B.9)

%M’(“"‘ag’) S (4-v} (B.10)
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Appendix B: Phase space formulas

The phase space for J massless [inal state particles in n dimensions is

. Fl . .
PSP <o [T Z_Ei 5 (:2) 8 (4- Zopi)
Jed x)\“" 124

For j = 3 and q%channel processes it can be fully expressed by the invariants

Yi30 3¢

4~b;|

(¢4 ‘iL G 4" * - ‘t »
) id‘aﬂ 43‘3 jdyh "311 (A"‘ah.""&h‘

A28x3 [M(2-2¢)

For j = b two angle variables 8,8 are needed., They are defined as follows.

h t -- = I3 -
chooses & system, where p1 + §3 0 end where Py I eZ [3]

b Va2 (4, ., #n 0408, i g Vo

Pr= (iguigd 205 (A1 00 ) 7

pym Cnf2 (4, Bt~ Vg

Py~ (hﬂv;ﬁﬂ)/l% (":"'-f’“\ﬂﬁ; %[3)&]\‘

(B.1)

(B-E)

One

(B.L)

(B.5)
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Yoo ™ i {#- 2y ) (v (4-X¥) + $ (A=) - 205 @' V(o) Y UA- 7 )

A= Y U-zﬁﬂl’ ((=-NA-Fr+v tr 289 (A=) ¥(4-¢) )

Aai'! = Uy S

\I“\CYG Y’ - E‘aﬂ /("! '34“)(1- e?ﬂb\ ’

In the main text we are concentrating on the region 43“"43 . There the invariants

mey be epproximated by

Y= Yuy v
Yy = Yy U=V

e A o

v = s (VD 2yt ‘Qwe'fv(ﬂ-unu-agu )
3= ey (AN -2 +v 24y, + 200 8'Vu A=) Yy )

The phase space in this limit is

(B.

(B.

(B.

11)

12)

13)

15)

J16)

T

..39ﬁ

@ 4 1
PSP = j T f NI f ds 2 t(-2t

Py

1 o
jd"' V-"(Jf—u)-" j?‘ 4“I-I".--.Zl--g.l
[3 + Vg’

(B.,19)

If one exchanges the role of particles 2 and 4 in {B.7) and evaluates the limit

A’ !314-, 0 one gets back (B.19). However, v now has & different meaning and the

structure of the invariants differs from (B.14} ~ (3,18) (apart from 24+l inter-

change):
?{l' = ’ym (4‘!‘:%413) v

v ™ "3m (4-%4341;5 {(4-v)

My = A= Yny

Y ® s (VU 2 (- Y2~ 2008 Volh-V 2 (12140 )

1-2 Yoy

Aan= :h:l_i_ ((fl-v)(a-é)-r?:vgw\t 2cos B
4‘;%1‘

g VD Z(-0) Yae )

{B.20}

(B.21)

(B.22)

{(B.23)

{B.2W)
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Appendix C: Miscellaneous Series

In this appendix we have selected some series which have proven useful in two-loop

calculations and which are not standard like, for instance, the hypergecmetric series.

Most of them are taken from ref. [1&]. A Tew appear in ref. [gh] in the form of

integrals.

f.d h r"' i)
S llheo) (O ri-e) 2 e
A1 9tk

keo Ay F(’f-c—qi) qI(Qi) !

c< 4

{c.1)

where q(k) is a polynimial of degree n in k and q' its derivative. The roots a8 of

q(k} must be simple.

~
rik+
Z —(‘ﬁ—i _(':(_b_) { %lay - ¥(a-1Y) , arb

bes TN ) Fla)

{c.2)
If is the logarithmic derivative of the [ —function.
hacd F(A-ﬂ- ) S {4-
5 c . FPU-orbia (% (b/amcer) =% (b]a))
SR 177 PO LY S (TR}
{c.3)
»” n+d
2 - Luws =L, (0)
5 e <t - ( = - ,~ALx<d
kor n! A=
(c.h)
m= 4,2,- .

- b1 -

Ln are Euler.s n-logarithms.,
i PLYY 3L/ SRR VR AT (VA AR P DY (c.5)
kma
~
> vk 14 - 24, | (c.6)
k=4 '

2 (- %)/ 4 - %, (c.n)
'

&
2. (bt~ 142 12N (c.8)
ksy

f; (e (hy- e p)) 1R~ 8, /%

o (c.9)
» .
A4 ¥y 85
Z ;z h == ;‘_Y.,"'l”-b(%)"%rsz“z (c.10)
3~
~ G b2 L b2 (.1

S enl 15 1y, 7
Z_ —.'—'(’7"‘(13-4‘(43)2-- ;{5*21—#(23*?;.{3'&‘2

n 3
ie4 {c.12)

~ S hat2/2 + *742 Lo ¥2

Sums with a denomimator (k+a)({k+b)

- ; ﬁ‘; /&Lﬁm‘ 41

. can be calculated by partial fractioning,

. Further sums can be found in [25] .
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