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Volume dependence of the energy spectrum
in massive quantum field theories

II. Scattering states

M. Lischer
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Abstract

The low-lying energy values associated to energy eigenstates
describing two stable particles enclosed in a (space-like) box of
size L are shown to be expandable in an asymptotic power series

of 1/L. The coefficients in these expansions are related to the
appropriate elastic scattering amplitude in a simple and apparently
universal manner. At low energies, the scattering amplitude can
thus be determined, if an accurate calculaticn of two-particle

energy values is pessible (by numerical simulation, for example).

-

1. Introduction

This paper is a continuation of Ref. [1], where I have determined the
size dependence of the stable particle masses in guantum field theories
enclosed in an L x L x L box with periodic boundary conditions. The
objective here is, to find out how the energy eigenstates describing
twe (unbound) stable ﬁarticles behave in finite volume and in particular
how the associated energy values vary with L. The motivation fer this
investigaticon is at least two-fold. First, in numerical simulations

of lattice theories, it is helpful te have some apriori knowledge about
the distribution of the lew-lying energy values to perform the spectral
analysis of correlation functions and to correctly interpret the energy
spectrum so determined. Secondly, the formulae established in this
paper relate the size dependence of the two-particle energies to the
corresponding elsstic scattering amplitudes and thus make the latter
accessible for calculational schemes, which need a finite volume for
technical reasons and which are hence unable to deal with scattering
processes directly. To compute low-energy scattering amplitudes via

the energy spectrum in finite volume appears to be a rather complicated
way to proceed, but in the context of numerical simulations of lattice
gauge theories, for example, no other practical method is presently

available.

In finite volume, the particle momenta are quantized and the spectrum
of energies of two-particle states with zero total momentum is there-
fore discrete. As | - 00 , the spacing between these levels goes to

zero and their density grows proportionally to the volume. An important



point o note is that the level spacing is often not so small in practice.

Consider for example a numerical simulation of QCD on a large lattice
with L 2 3 fermi. As will be shown later, the low-lying energies W of
the zero total momentum KT -states are then approximately equsl to

the free field values

{(1.1) W

1l
Ny

m2+p
" s

where L denotes the physical pion mass and the (relative} pion momentum

E is given by

3
1.2y P = X ne 1°.

Thus, as shown by Fig. 1, the level spacing is sizeable up to very large
volumes, in particular, the lowest energy value is well separated from
the higher ones below (say) L = 10 fermi. These energy values are there-
fore well-defined in a practical sense and their calculation in numerical
simulations should be no more difficult than the calculation of the

pion mass, for example.

Consider now an arbitrary massive guantum field theory describing the
physics of particles ("mescns") with spin O and mass m. As already
mentioned, the possible energy values of two-particle states in finite
volume are given by the free field expressicn W = 2(m2 + 52)1/2 plus

a small correction, which is due to the mescn interactions. There are
two different physical processes, which contribute to this finite size

energy shift. First, there are the polarization effects discussed in

detail in Refs. [1,2}, which involve virtual particle exchange "around
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the world". Secondly, the two mesons enclesed in the box interact
directly, i.e. they are really in a stationary scattering state.

For large L, the energy shift due to polarization effects decreases
exponentially whereas the second process gives rise to corrections,
which decay aonly as a power of 1/L.. This basic fact can easily be under-
stood heuristically by noting that the interacticns in massive quantum
field thecries are short ranged. Since the wave functions of the mesons
are spresd throughout the box, the probability for the particles to

be within interaction distance is inversely proportional to the volume
and the resulting energy shift is hence expected to be proportional

to Lwa. Thus, the leading corrections to the free field ensrgy spsctrum
in the two-particle sector arise from resl (as opposed to virtual}
scattering processes and the situaticn is therefore entirely different
fram the one cansidered in Ref. [i], in particular, new mathematicsl

tools will be required to prove relations such as eg. (1.3) below.

In this paper it is shown that the individual two-particlé energy values
can be expanded in a power series of 1/L with calculable coefficients,
which are simply related to the elastic meson scattering amplitude.

For example, for the lowest level (E = ), the first few terms in the

expansion are given by

4Ra a 82
[} o [} -G
(1.3) W=2m - —3 {1+ o ¢+ oy =3 b+ O(LT),
mbL L
(1.4) ¢, = - 2.837 297,
(1.5) ¢, = 6.375 183,



where a, denotes the S-wave scattering length, i.e. in terms of the
S-wave scattering phase shift 50, we have
2i8

Coiim 1 0

(1.6) 8y = ps0 2ip (e - 1}

{p: magnitude of the meson momentum in the centre of mass system).
Thus, as anticipated above, the leading finite size correction to the
two-particle energy W is inversely proportional te the volume. The sub-
leading terms arise from multiple scattering processes and involve the
coefficients ¢y and €5, which are related to the zeta-function of the
Laplacian on a 3-dimensicnal torus (cl and c, are constants of the
momentum lattice (1.2) in cther words). The higher terms in eq. (1.3)
depend on successively higher derivatives of the scattering amplitude

at zero momentum and can be obtained quite easily if desired.

For the levels with'B # 0 and in mere complicated situations invelving
particles with different masses and particles with spin, the large L
expansions look similar to eq. (1.3}, in particular, the leading non-
trivial! term is always proporticnal to L“3. A remarkable aspect of
these expansions is that the coefficients are determined solely by the

dcattering phase shifts St {and their derivatives) at momentum p, i.e.

there is no reference to the particle interactions at other energies.

In their work on the non-ideal Bose gas almest 30 years ago, Huang and

Yang [3] have already derived eq. (1.3) in the special case of two

-6 -

(non—falativistic) hard sphereé enclosed in a periodic box *). Meore
recently, the existence of the first non-trivial term in eq. (1.3)

has also been menticned in Ref.{4]in the course of a discussion of
statistical errors in guenched hadron mass calculations. The proef

of eq. (1.3) given by Huang and Yang is based on & pseudo-potential
approximation to the Schridinger eguation, which is exact to the order
of aD/L considered. Although this method can probably be generalized
to arbitrary short range potentials, I would not know how to carry

it over tc quantum field theory, because a local two-particle wave

equation is not available in this case.

The large L expansions of the two-particle energy values are established
here to all orders of perturbation theory in arbitrary massive guantum
field theorigs, the philosophy concerning universality and the applica-
bility of this method of proof being the same as in Ref. [1]. Apart

from subsect. 2.7, where we shall briefly discuss the two-dimensional
case, the dimensionality of space-time is always assumed to be 4. While
the methods employed could easily be generalized to higher dimensicns,
they do not apply in dimensions 2 and 3, because the dynamical finite
size energy shifts are not small compared to the free particle level

splitting in these cases.

The organization of the paper is as follows. In sect. 2, the quantum

—
I am indebted to N. Rivier for drawing my attention to this werk.

A small numerical discrepancy between the constants CysCy 85 calculated
in Ref. [3) and the values quoted here is due to an approximation made

by Huang and Yang.
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mechanical case of two {non-relstivistic) hosons interacting throwugh

a potential of finite range is discussed in great deteil. The basic
techrigues to control the volume aependence of two-particle energy
values to all orders of perturbation theory are devleoped here and

the results are illustrated by & simple numerically soluble model.

It is only in ssct. 3, where the quantum field theory case is treated,
that the reader is assumed to be familiar with the results and techniques
of Ref. [1]. As an application of the general formulae, the pion-pion
and pion-nucleon system is considered in subsect. 3.6. The paper ends
with a few concluding remarks in sect. 4 and two appendices, one dis-
cussing the zeta-function of the momentum lattice (1.2) alluded to above
and the other containing the proof of & general summation formula for

singular 3-dimensional momentum sums.

2. Volume dependence of energy values in quantum mechanics

2.1 Summary of notations

In the following subsections, details are only worked out for the case
of two nen-relativistic bosons {"mesons") of mass m and spin 0, which
interact through a potential V of finite range. The methods used are
however more generally applicable and it is not difficult to extend

the resyits in various directions.

In infinite volume, the two-particle states are thus described by scalar
wave functions “V(?,?), where ?,? € ﬁzgare the position space coordinates

of the mesons. Bose statistics requires

2.1 VEH = vEE,

end the scalar product is accordingly defined by

2.2y 91> - L{dy ean” van.

The Hamilton operator M of the system is assumed to be of the form
2.3 H=H,+V,

where the action of “40 and ¥ on wave functions W is given by

.4 H, VR = - (Ax-k-A‘ﬁ)'lU"(SiJQ),

A
2m

il

eo VWIRG) = VIX-) VIZE

(A)(, faY y dencte the Laplace cperators with respect to ¥ and V). The

potential ¥{¥) is required to be sguare integrable,rotationally symmetric

and of finite range, i.e.
(2.8) V(z) = 0 for |%| > R.

This last assumption is made for convenience, but in what follows, a
weaker condition, for example that V(Z)} decays exponentially, would

do just as well.

The eigenfunctions of the free Hamiltonian H*o are the symmetrized

plane waves

ol
&

Lo >y . -
2.3 - LT EN 1Y - B

2.7y ¥



which will be written as [B,§> in Dirac's notation. Thus, we have

(2.8)  H 158> = (e® + @) 15,3,

»2
2.9) e -5,

2100 G EBED - e {SE BvE-YH + S IA DY,

Defining in-going and out-going scattering states as usual through the
*)

Mgller operators, the meson scattering amplitude an is given by

(B4 out 13,8 40> = (BLFUBEY ~
(2.11)
tem)? S 8§ -H 1 3118,

where £ = e(ﬁ} + €(%) is the total energy and 3 = 3 + E the total
*)

*
momentum of the in-going particles

With these coanventions, the partial wave expansion of the scattering

=
amplitude in the center of mass system (P = 0) reads

*)  The subscript "nr" means "non-relativistic" and is written to
distinguish an from the relativistic amplitude T, which is normalized

differently.

*
) The letter W, which is used in sect. 1 to denote the total two-

particle energy, is reserved for relativistic systems.
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(2.12)  Tg,= —g—ﬁ EO (2£44) Pe(cosﬂ)’c(Z ,

I

1 218, -

2.13)  t, Zip (e -4), p=1%

(P, : £'th Legendre polynomial, @ : scattering angle, S, scattering
£ (4

phase shift}. Note that te vanishes for £ odd due to Bose symmetry.

The threshold parameters a, and bt are defined by
18y Re £, = pia, + p* b, + 0(p1,

which agrees with the definition (1.6) of the S5-wave scattering length a.

As already mentioned in the introduction, the large L expensions of

the finite volume energy levels will be proved to all orders in perturba-
tion theory, i.e. to all orders of an expansion in powers of the potential
V. For the scattering amplitude an in the centre of mass system, this
expansion coincides with the Bern series

~ 00 11 3 3
Tee= V@, P)+ 2 1) gdh d

2.5 °F w20 ) @ T (am?
x VELEIRBI VR EOR (... ViR, ),
N (R-RIE ik R)E
(2.16) V(k'Jk‘)ﬁSdSZ{el( )E+e‘t(k+h)2}\/(i)
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In particular, for the S-wave scatfering length a,. we have

A o _ﬂ 3 13
Mo - GEm e B OED (LR 2

m o nor 20V Er T (2P
{2.18})
x Y0,k S VR, &2 V(D).
% ks

This concludes the discussion of the meson system in infinite volume
and we now proceed to list the basic properties of the finite volume

system.

The quantum mechanical states of two mesons confined to a pericdic
L x L x L box are also described by wave functicns QV{?,?) = 1V(?;?)
with ;,? € 523 . The boundary conditicons are taken into account by

requiring
iy VX+AL Y)Y = VIET) corall BeE Z

and the scalar product of wave functions is given by eq. (2.2}, but

with integraticns rurning over one periodicity cell only. The action

of the Hamilton operator H on finite volume wave functions is defined
as before (eqs. (2.3) - (2.5)), where in {2.5) the potential V(Z} should

be replaced by
.20y Vi {E)= 2 V(E+AL)

to preserve periodicity.

- 12 -

The plane waves (2.7) are the eigenfunctions of the free Hamiltonian
“40 in finite volume, toc, provided the momenta P and § are restricted
o0 the discrete values (1.2). For the normalization of these states,
cne finds
-»> B
2.21 CELE, = °18 By w+ B4 2 S
@an @D - by 3g g0 Byg 8]

and the matrix elements of ¥ in this basis are given by

(-3,

b |-

.22y <BLFIVIB,g> = L? 5-§,§ Y

3

(#-3),

ral~

where ¥ is defined as before {eq. (2.16)).

In the absence of interactions (V = 8) and for zero total momentum,

the possible energy values of the system are

41‘[’2 - > 3
223y E= 2e(®B)= —& n* (e Z7).

mb
For weakly interacting particles, ordinary perturbation theory can be
applied and the spectrum is hence given by eg. (2.23) plus small correc-
tions. For example, using egs. (2.21) and {(2.22), one finds for the

lowest level

#i-h-v-m- 2
(2.22y E Zl_3\"(0,0)+O(\./’J.

Combining this result with the ‘Born series {2.18}, we have

brwa 2
2oy E= - —=2 4+ (V")
@) m 3 ’



- 13 -
which already proves the large L expansion (1.3) to first order in V.

In what follows, the strategy is to write down the complete perturbation
expansion of the energy levels in a tractable form and to analyze the

L dependence of each term separately. As a resull, one obtains a double
expansion in powers of V and L-l, which is not hard to regroup in the
form of the de;ired large L expansions with coefficients expressed

through the scattering amplitude.

2.2 Perturbation theory to all orders

High order perturbation theory can be formulated in many different ways.
The aim here is to present one such possibility in a compact notation,
which makes the essential structure transparent. Moreover, many of the

formulae derived below will be useful in quantum field theory, too.

Using the cubic rotation symmetry, the degeneracy of the low-lying

energy levels (2.23) can be lifted and it is therefore sufficient for

our purposes o consider the case of non-degenerate perturbation theory.

Thus, let E0 be an eigenvalue of “40 and |%£) the correspending eigen-
state normalized to unity. For small V , one then expects that the full

Hamiltonian M has an isolated eigenvalue E with E = E0 + 0{V). Define
-4
2.26) F(z) = <¥ i (=z-H) 1¥>.

This is a meromorphic function of z with simple poles at the eigenvalues
of ¥, in particular, there is a pole at z = E. Expanding in powers

of V, we have

- 14 -

.27y Fla) = (2- 5" + (2= E,) U1V fo[(z-mor‘w“mm

In this form, the perturbation expansion is however not very useful,
because as z gets close tc E {and hence clese to EO), (z- ﬁ%)_l has

a pole and the series expledes.

To abtain a representation, which is smooth near E, we first separate

the pole at z = EO from the free prepagator:

-1 F% Glo
t-H,) = + }
(2.28) (2~ M, 2- & z2-H,

P, = ¥, 5,1, Q= 1-7,.
Then, using the operator identity

AY [BrOIAT = AT (BA)Y
(2.29) n=0 ne

A= AT (cA),

e}

2R

with A =%, B = P/ (z-E ) and C =0 /(z - }{0), ane gets

(2.30)  F(z) = (z - E, - ez L

PIRVALTIRS

) 2y = (V¥,1
(2.31)  ¥{ A% oL E-H,

HE

Mote that the projector Qo excludes the eigenvalue E0 and r{z) is hence
smooth in a neighborhood of EO. It follows that (2.30) is a valid re-
presentation of F(z) around Eo and the eigenvalue E is thus determined

by the implicit equation
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(2,32) £ = E0 + (k)

{and the condition that E—EO is small).

In principle, eq. (2.32) can be sclved straightforwardly by inserting
the perturbation series for E, expanding all entries in powers of V
and equating coefficients cf the same order. A more elegant way to
proceed is to first expand E in powers cf the function r{z}. Ta this
end, it is helpful to introduce an auxiliary parameter € as a book-
keeping device. Thus, eq. (2.32) and the desired expansion of E are

written as

(2.33)  E=E + & T(E),
*® v

238y E = X € E,,
=

with € set equal to 1 at the end of the derivation. In this way one

generates the‘solution E of eg. (2.32) as a power series of v(z).

To determine the coefficients E,, we now imsert (2.34) into (2.33),

expand in powers of &€ and obtain the recursion

v W
Eyir = '251 v z):ﬂ ...321;31 5£1+gz+,,_+€1‘Jv Eg" Eez... Eej ,

1
where rj is given by

(2.38) Y2 =

- 16 -

For example, for the next to lowest coefficients E,, one finds

(2.37)

and it would not be difficult to continue this list. Setting €= 1,

the resulting expansion of the energy value E thus becomes

[s 4]
E-E + 2 Ey,

V=

e AN e
v Ti1‘=0'.‘ 'jv-':O (11,".)1\)) Ti‘ nrjl.u?j“ *
where C(ji’-'--jv) are some integer cecefficients satisfying

(2.33)  C(ip,--ndy) = 04 3y + Jp+ v+ Jy # V-1

{an explicit expression for these coefficients exists but is not needed

here).

Because r(z) is of order V, only a finite number of terms in the expansion
{2.38) contribute at a fixed order of V and, inserting (2.31), it would
now not be difficult to write down the exact n'th crder expression for
the energy. For our purposes, eq. (2.38) will however turn out to be
sufficiently explicit and this last step is therefore not worked out

here.

In the present approach to perturbation theory, the function r(z) defined

by eq. (2.31) plays a central rdle. For the ground state level already
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discussed at the end of the preceding subsection, we have for example

o] k!
R T  DETD AN L0 R W »
v(z) ZG{V(ma) n=1 2 - R0 Re#0
(2.40)
« UBRIR, (R VR, kO R(E)... V(R T)T,

where the momenta 15 are summed over the lattice (1.2) and ¥ and RZ
are given by (2.16} and (2.17) (omitting i ). Evidently, the Born series
{2.15) and the series above are very similar, the main difference being

that the momentum integrals are here replaced by sums.

To second order, eg. (2.40) leads to

AodE 4 Sox T ST
(2.41) E=2—L3{V(0,6)-2— Y VR VIR, +.T.

B gio k?

Now, at large L the momentum sum on the rhs msy be replaced by an integral

plus an error term of order L71 and, recalling (2.18), the formula

4ma
0]

T 0(V2L‘4) + O(VB)

(2.28") E = -

mL

is cbtained. This example shows that for the derivaticn of the large
L expansion of E to all crders of V and L_l, a complete and explicit

asymptotic formula is needed expressing the mamentum sums encountered

as a sum of divergent terms (in singular cases), integrals and corrections.

Such a formula is presented in the following subsection and proved in

appendix B.

- 18 -

2.3 Summation formulae for 3-dimensional momentum sums

With the help of Poisson's summation formula (e.g. Ref. [5], p. 31)

it is easy to prove the wsll-known result that

> 3 - -
2y L0 hik) = S%ﬁ hik) + 0(LN)

=4

for any continuous function h, which is integrable and which has inte-
grable derivatives up to the N'th order (N21). In this subsection,
eq. {2.42) is generalized to a larger class of momentum sums, involving
singular functions h, such as they occur in the perturbation expansion
of the finite volume energy values. Explicitly, the sums considered

are of the form

(2.43) Sq(ﬂF,’ﬁ) = ® % Gzl

(k*~%
where E—_- 2;—_13 ﬁ s ?L € 13 , is a fixed external momentum, g1 some
integer power and the summation symbol )2l implies a sum over the lattice

{1.2) excluding the points ¥ with 12 :'52. The function f is assumed

to be square integrable and smooth with square integrable partial deri-
vatives of arbitrary order. It is easy to show that these properties

guarantee the absolute convergence of the sum (2.43}.

Due te the singularity, the large L expansion of Sq({,ﬁ)does not only
involve an integral over all % as in eq. (2.42), but also other terms,

which are proportional to the function f(i) and its derivatives evaluated
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along the sphere T<2 = +pE,. These iatter terms are multiplied by geometrical

numbers, analogous to the Bernculli numbers in Euler's sum formula,
which are related to the (generalized) zeta function Z%’L(s,ﬁz) of the

momentum lattice defined below.

Te write down the large L expansion of Sq(f,'ﬁ), some further preparation
is needed. First, let ¥, m( @,%) be the spherical harmonics with the
*}

uysual normalization and define Qamthrough

" "
(2.49) Qg (k) = ﬁ k® Yo (68,0,

where 8@ are the polar angles of ¥ oand k = 1%L ng is a homogenecus
polynomial of T(v of degreel . The expansion of f('!?) into spherical

harmonics can then be written as

o oo ) -
. k) =
.45y .) 2250 E:J fom (R) @, (k)

with coefficients £ (k), which are smooth for k »0. In particular,

fm
for all & o and arbitrary p = (3120, the Tayler coefficients fﬂm(p)

defined by

[o74]
(2.46) ﬁ,m('ﬂ.) hf‘:p )50 'gjem(P) (hhpi)”-‘

i

are also smooth and could themselves be expanded, for p =0, in an

) In particular, \’_ZO{B ey = '\‘ 2—%%'— Pe {cos B8) where P, denotes

the £'th Legendre polynomial normalized such that Pt (1) = 1.

_ 20 -
. . 2
asymptotic power series of p .

The zeta function ZEmalluded to above is defined by
@an  Zg (s, R = I Q, (V) (3*-7)

for all AeZ° and complex s with Re s)%(f + 3). As before, the points
T with 3% = B° are omitted in the sum and forv° < ?12, the convention
zarg(‘\'J2 - 712) =T is adopted. Note that Z£m vanishes if £ is odd, because
Qem(—v) = Aaim(\)) in this case. Some properties of zlm are derived

in appendix A, in particular, 1t is shown there that sz extends to

a meremorphic function of s defimed in the whole complex plane with

simple poles at
3 .
(2.48) s=5-] , 31 =0,12,...,

for €= 0 ard no poles for £ # 0. Z, is therefore well-defined for

Im

integer s and 1t is found that

2

(2.49) sz(—j,ﬁ y =0 for j = 1,2,3,...,

»? >
(2.50) 7, (0F) = - - le(v).

for positive integers j, sz(j,ﬁg) must be calculated numerically, a

few values being listed in Table 1 for later use.

With all the definitions ready, we now proceed to discuss the large

L expansion
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(2.51) 9 oo ¢ PR 2j+{-19 .
’Zo 5—0 MZ , B fitmP) Zomlq-1,5%)
j=0 =0 m=-

which is proved in appendix B. For notational convenience, odd £'s
are included in the sum although they do not contribute (Eem vanishes).

-

The integral Iq(f,ﬁ) is given by

&k

(2.62) Iq(fﬁ) = lim S (P Re { (R2- 'ﬁz—is)"q} £(k)

£E=>0

for _B £ 0 and by-

3

1 dk 4 =1,

2.53) Ll 3)=—-——S— = (8) (k)

‘ 4.0~ i Ve B2 0 f

for p = 0, where Ak denotes the Laplacian with respect to %. It can
be shown [5] that for the class of functicns f considered here, Iq(f,ﬁ)
is well-defined and smooth for P € WEB, in particulav, the Taylor
expansion

3

sy Lo4,8) ~ EG (F.q) (-3*) IQH(?’E)

holds as expected naively.
The large L expansion (2.51) is an expansion in powers of 1/L with weakly

L-dependent coefficients (if 5 # 0). Tt is possible to convert the

expansion in a pure power series by also expanding the integral Iq(f,ﬁ)

.99

and the coefficients fj?m(p) for small 3. The reason this is not done
here is that the convergence properties of this power series would be

rather poor, especially when T is not small,

Formally, the series (2.51) can be derived by inserting the expansions
(2.45) and (2.46) in the sum Sq(f,ﬁ). In each term, & power of 2m/L

can then be factored uuf and, taking (2.49) into account, the ssries
(2.51) is obtained (without Iq(f,ﬁ)). This "proof" involves unregularized
divergent expressions-and is therefore invalid, but since it gives the

right result, it is useful as a mnemonic.

2.4 Large L expansion of the lowest energy value

As discussed in subsection 2.2, the ground state energy E of the finite

volume system is given by eq. (2.38), where rj are the Taylor coefficients

at z = 0 of the function r({z) defined by eq. (2.40). In particulsr,

we have
oo 41
= S IVBH+ S L r
m=t % R#0 BH0
(2.55)

A

Ve, 003

x V(D& -% V(E,hl)%

a8

The momentum sums occurring here are multiple sums of the type Sq(f,ﬁ)

with g = 1, B = 0 and
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It follows from the assumed properties of the potential V that f is
square integrable and smooth with square integrable derivatives, For
such well-behaved functions f, it.is not difficult to show that the
large L expansion of multiple sums is obtained simply by applying
eq. (2.51) to each sum individually. Thus, r, can be expanded in a
power series of 1/L and, reealling the Born series (2.18),.the first

few terms are found to be

4xa0
(2.56) 1 = - - {1+ Z,,(1.0)

8 a_ 2 B
£+ (200 22 ]} 0t &

{tc all orders of V). Similarly, one shows that

2
ao) -3
(2.57) r, =-Z,(2,0 ('-ET + 0L,

and more generally

(2.57) 1 = o dd

for j 2 1.

From the large L expansion of the coefficients rj, we can now easily
deduce the expansion cf the energy value E (cp. egs. {2.38), {2.39)).

Noting

v

(2.58) =0TV E gy =V -13E

r. T, ...T.
Jq s Jy
it follows that at & given order of Lfl, only a finite number of terms

contribute to the series (2.38), in particulsr, we have

-6
(2.59) E = L N T o(L 7).
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Thus, we have shown that E can be expanded in an esymptotic power series

of 1/L. Moreover, combining eqs. (2.56)}-(2.59), one aobtains

2
Axa a a
o . o] Q -b

(2.60) E=-—"{1+c = +te, 00T,

mlL L

1 _
(2.61) =2, (1,0) = - 2.837297,
(2.62) ¢, =+, {z 1,07 - z_(2,m} = 6.375183
' 2 “2 oot 0ot ' :

In the ground state, the mesons are moving slowly and it is therefore
not surprising that the result (2.80) coincides with the relativistic
formula quoted in sect. 1 (relativistic correcticns would however show
up at order L_B). Using the machinery developed above, the series (2.60)
could easily be extended by @ few more terms. Besides the scattering
length 8y thess terms involve derivatives of the scattering amplitude

at zerc momentum such as, for example, the threshold parameter bo.

At this point, the reader may wonder why it is that the coefficients

in the large L expansion of E are expressible through the scattering
amplitude and apparently do not depend on the local properties of the
interaction potential, i.e. on “"off-shell" guantities. The reason for
this remarkable fact is that the boundary conditions are only felt when
the particles are far apart. Now, within a perodicity cell, the meson
wave function can be represented by a superposition of infinite volume
scattering waves with energy E. Since the amplitude of these waves at

large distances is proporticnal to the scattering amplitude, the re-
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quirement of periodicity leads to an (implicit) eigenvalue eqguation
for E in which the dynamics of the system is only represented through
the scattering amplitude at energy E. Except for the case of l+l-dimen-
sional quantum mechanics, which will be discussed laster, this equation
is complicated and is therefore not very useful, but it does explain,
why E is a function of the scasttering amplitude at large L (cf. Ref.[31

and subsect. 2.7).

2.5 Volume dependence of higher energy values

The analysis which led to the large L expansion (2.80) of the ground
state energy also applies to the higher lying energy values. For sim-
plicity, the discussion is here restricted to states, which have zero
total momentum and which are invariant under the action of the full
cubic rotation group { €c0(3). The subspace cf all these states, later

referred to as the A; sector, is spanned by the vectors

+ = >
@en VB.AIY = Z IRPRED,
ReO
where § = 25??% and i runs over all integer vectors with
ny 2 o 2 Ny ¥ 0. The normalization of these states is given by

> + [ + _ a» 6
(2.64) (P ATIBAD =96 NE) L 83.5 ,

whare ﬁ((ﬁ) denotes the number of elements of Y] , which leave'ﬁ fixed.

For example, if n;>C, n, = ny = 0, we have N(@®) = 8.

Because the potential V is rotationally invariant, the Hamiltorian H
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can be considered an operator acting in the Az sector. For V = 0, the
eigenstates of H in this sector sre the basis vectors lﬁ,AI)’ and the

corresponding energy values are equal to 2 &(P). From the above, it
22

is easy to show that these energy leavels are not degenerate for n £8
(and also for many higher values of 32),
We now choose a fixed § = g%'ﬁ such that the basis vector lE,A; > is

a non-degenerate eigenvector of H{O in the A; sector. The associated
eigenvalue F of the full Hamiltonian can then be calculated in pertur-
bation theory using the formelism developed in subsect. 2.2. With \ﬁ,A;)

as the unperturbed state, the function r(z) defined there is given by

00 n .
te= N e (e vl ot
P P " 2
Rel® n=1 &

(2.65)

=

x VR, BRI VIR, KRB . Uk, 90 T,

-y
where the momenta K are summed over the lsttice (1.2) omitting the points

with ¥° = 32.

As for the ground state, the large L expansion of the energy E is obtained
by first expanding the Taylor coefficients rj of r{z) defined by eq. {2.36).
According to the summation formula (2.51), the leading contribution

to the coefficient r, at large L is simply given by replacing the mo-
mentum sums by integrals and using an ie -prescription to integrate

over the singularities at Iz = EE. Thus, we have



@2.66) T, = (2NHICY L MRS+ 0{L "),
Rre

. og (_4)1’1 dahq i dsth
+ el ar &R
{2.67) ’ ) 4«54 ya S fam® 7 (am)?

ﬁ-—- PR, %, )”Refh—_;es..mzﬂ,m

(here and below, we assume |P'l = IB1). It is possible to express the
matrix element M (P°,B) through the scattering amplitude an at energy

2 E(E). To this end, one substitutes
(2.68) FRe(k - B° - ie) b= (R0 -F - iey ' o im B (-39

and uses the rearrangement identity (2.29} to sum up those terms in
perturbation series {(2.67), which combine to the scattering amplitude.
After that one is left with a series, which can easily be summed by

inserting the partisl wave expansion (2.12}, and the result then is

OZG (2441 P, (cos ) —3—‘?

2.6y M(B, ) = —;"1_0

where p = VB and B is the angle between F and B'.

With the matrix M (§5',5) at our disposal, it is not hard to calculate
a few more terms in the large L expansion of the coefficients rj' for

the energy £, this leads to the expansion
- - )
(2.70) E=2€(@) v +rr + gL ™=

where T, and Ty 8re given by
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o0
)
(2.71) T, = —-% ZZO (2£+1) <'Pz) JC—?P—L’

{1+ 2,04, "2)3— + [Z,,(1,72) i‘*—‘ 1T+ 000",
ol

o0 &, 2 -
07 = B 1) (R zm(zﬁn[%—ﬁl + 0L,

=0

L)

The quantities (T}) appearing in these equations ars defined through

1
2.73) (P> = — 'P(COSQ ),
¢ NB) geo ®
QR being the angle between § and RP. In particuler, (P Y = A8/ N(D)

and <P2> = 0 for all B.

Eq. (2.70) together with {2.71), (2.72) is the final result for general
P. It shows that away from resonances (where tg 51 blows up), the correc-
tions to the free particle energy spectrum are small and calculable

for large L, provided the phase shifts are known at the emergy 2 €(ff) ™ E
considered. Conversely, if some finite volume energy values have heen
computed by independent means (by a numerical simulation, for example},
the relation allows to determine the phase shifts at these energies

or at least some combinations of them.

For small 3, the partial wave expansions (2.71) and (2.72) are dominated

by the S-wave contribution so that the large L expansion of the associated



- 29 -

energy values assumes a simple form. For example, for %= (2,0,0), one

cbtains

2 o t ! -b
(2.79) E=i%—L-1—%{4+c1+%80+c1’c%160}+0(1. ),

oA -
(2.75) ci = Tok Zﬂn(l,l) = - 0.061387,

y o4 2 _
(2.76) cz-m{zoo(l,l) 5200(2,1)} = - 0.354156

(the phase shift 50 is to bs evaluated at p = %E).

2.6 Numerical study of a simple model

The purpose of the present subsection is to test the large L expansions
(2.80) and {2.74) in a concrete case. An important result will be that
these formulae are apparently also valid in the presence of bound states,

although they have only been proved in perturbation theory.
The model considered is defined by

v if {71 & R,
277y VB ={ °

0 otherwise,

where VU is a constant. For this potential, the scattering phase shifts

are known exactly, in particular, 50 is determined through
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ta(oR + 8) = & tg(am),
(2.78)
2 2

g =p " -m VO

(p: meson momentum in the centre of mass system). The S-wave scattering

length is thus given by

8, = RC tgv - 1) (v$0),
{(2.79)

a, = R tghv - 1) (v30),
where we have introduced the dimensionless parameter
(2.80y v = sign(VO)H leVJ .

In what follows, m and R are assumed to be fixed whsreas the parameter
v is considered a variable characterizing the strength of the meson

interaction.

If v is negative, the potential is attractive and bound states mey occur.
from eq. {2.79), one sees that the scattering length diverges every
time v passes through a negative odd multiple of T/2. The number of
S-wave bound states is therefore equal to n if v is in the interval

1

—n‘%rcv/ﬂ < - This aobservation also shows that the meson inter-

actions should be considered strong unless (say) jvl<1.

In finite volume, the scaled energy values
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only depend on v and L/R. For small and moderate values of v, an accurate
variaticnal calculation of the low-lying levels in the AI sector is
possible by trunceting the basis i2.63) after the first NB elements
and diagonalizing the Hamiltonian M numerically in the subspace spanned
by these vectors. I have performed such a calculation with NB = 100,

which is sufficient to obtain results accurate to several decimal places.

In Fig. 2 the 3 lowest energy velues are plotted versus v at L/R = 8,
i.e. for a box size, which is reasonably large compared to the inter-
action radius. For v >0, the force between the mesons is repulsive and
the energy values E are thersfore Slightiy larger than the free particie
values ED, which are equal to 0,1 and 2 respectively. The smallness
of the deviations Af - € - Eo indicates that at this value of the box
size, the asymptotic scaling law Aﬁ oc 1/L has already set in. For
small negative v, the sitvation is similar, although, of course, the
energy values are now lowered by the interaction. As v passes through

1

LK the ground state turns into a bound state and the first two excited

levels drop by essentislly one unit. These lstter states thus become

the lowest finite volume scattering states in the interval - %ﬂr< v < - %1T.

When v 1s further decreased, a second bound state forms at v = - g'ﬂ

and the picture repeats itself.

In a larger volume, the curves in Fig. 2 change in two respects. First,
the plateaus away from the transition points get even more pronounced
ang move closer to the integer values E - 0,1,2. Secondly, the transition
regions near v = - %1t, - gﬂw,... shrink, i.e. for very large L/R, the

curves essentially beceme step functions.

- 32 -

The plateaus in Fig. 2 can be understcod by noting that aO/L and tg EU/pL
{for small p) are small unless v is close to the transition points.

The large L expansions established in the preceding subsections therefore
apply and the calculated energy shifts AE come out ta be small thus
explaining the plateaus. On the other hand, in the transiticn regions

the energy shifts are of order 1 and the large L expansions diverge.
Further analysis would therefore be reguired, if a guantitative under-
standing of the emergy levels in such a resonant situation is to be

achieved, too.

In places where they apply, the large L expansions (2.60) and (2.74)

fit the numerically calculated energy values exceedingly well. This

is shown in Fig. 3 for v =m, i.e. for a strongly repulsive potential.
For smaller values of v, the agreement is even better and extends to
lower values of L/8. In the presence of bound states, the expansions

are apparently also valid, if one applies them to the lowest finite
volume scattering states as explained shove. For example, st v = -,
where there is one bound state, the quality of the fit obtained is about
the same as at v = ®. This confirms the expectation that the large L

expansions established in this paper are universally valid, even though

they have only been proved to all orders of perturbation theory.

2.7 One-dimensional quantum mechanics

In a one-dimensional box of size L, the probability for the particles

to meet is proportional to 1/L and the finite size energy shifts are
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therefore not small compared te the free particle level splitting. For
this kinematical reason, the perturbative techniques developed in the
preceding subsections do not apply in one dimensicn. The situetion is

however so simple that an exact relation between finite volume energy

values and the scattering amplitude can be established with little effort.

The basic observaticn is that for zero tetal momentum and fixed snergy
E, the Schrédinger equation in infinite volume has only one solution
NIE {respecting Bose statistics). Outside the interaction range R, this
solution is given by

2 82) WE(X,%) o e—tplx-—%l + 82180 e’l‘P]X-"élJ

where p = {mE is the meson momentum and Bo(p) the scattering phase
shift. Since %% is unique, any finite volume eigenfunction of the
Hamiltcnian with energy E and zero total momentum must be propertional

to ﬂkt for |x - yi< % L, fFor large L, the wave function near the houndary
of this region is thus given by eq. (2.82) and the requirement of perio-
dicity hence leads to the beavtiful formula

2i 8 {p) ipl
28 e % e =

which relates the finite volume energy value E = p2/m to the scattering

phase shift 50 at this energy.

Although no proof will be given in this paper, eq. {2.83) is probably
also true in 1+1-dimensional quantum field thecries up to pelarization

terms, which decrease exponentially as L increases. A numerical lsttice
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calculation of the scattering phase shift at low energies should therefore
be possible in these theories simply by evaluating the lowest two-particle
energies for a few lattices with variable size (and fixed couplings).

In particular, it would be interesting to see whether the known exact
S-matrices of some "integrable® theories such as the non-linear ¢ -model

can be reproduced in this way.

3. Volume dependence of two-particle energies in gquantum field theory

In quantum field theories, large L expansicns of the two-particle energy
values exist as in quantum mechanics, but their proof is slightly more
complicated because of polarization effects. To keep the presentation

as simple as possible, we here again restrict the discussion to the
class of scalar guantum field theories defined at the beginning of

sect. 2 of Ref. [11. The reader is thus assumed to have read these in-
troguctory paragraphs and the notation used there is completely taken

over without further reference.

For the derivation of the large L expansions, we shall make two further
assumptions to avoid unnecessary technical complications, which would
anly obscure the essential parts of the argumentation. The first one

is that the theory is invariant under the refliection ¢(x) - - $(x)

s0 that correlation functions of an odd number of fields vanish. The
gsecond requirement is that the theory has a fixed ultra-violet cutoff,
which is relativistically invariant and which guarantees the convargence

of unsubtracted Feynman disgrams. These assumptions are not really
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necessary and, with some effort, the large L expansions could also be

proved without them.

In what follows, the strategy is to derive a representation of the
elastic scattering amplitude and of the perturbation series for finite
volume energy values, which has the guentum mechanical form with a
modified Bethe-Salpeter kernel in place of the potential ﬁ(i',?). The

techniques developed in sect. 2 can then be carried over and the large

L expansions are cbtained as before,

3.1 Definition and preperties of the Bethe-Salpeter kernel

The dynamics of two-particle stetes in the scalar quantum field theories

considered here is gaverned by the Bethe-Salpeter (or two-particle irre-

ducible) kernel, which will be denoted hy BS(pl,pz,p3,p4) in infinite

volume (pl,...,p4 are external euclidean 4-momenta). In perturbation

theary, BS(pi,pZ,QS,pq) is equal to the sum of sll those Feynman diagrams

contributing to G(pl,pz,ps,pq), which are two-particle irreducible in
thse (pl,pz)-channel, i.e. diagrams with a skeleton as in fig. 4 are

excluded.

The full connectéd 4-point function G(pi,pz,pa,p4) can be expressed

through the Bethe-Salpeter kernel by iterating the integral equation

graphically represented by Fig. 5. To write down the resulting geometric

series in a compact form, we introduce the following notation. First,

define P, p' and p such that

- 3B -

1 '
py = 5P+ P,
(3.1)
1
PE“?:"P',
A
pa' _(§P+p)>
(3.2}

pq:— (jip—‘?).

Because of momentum conservation, the total momentum P flowing through
the Bethe-Salpeter kernels and the two-particle propagators is always
the same so that in what follows, the dependence cn P is not explicitly

indicated. Accordingly, we set

(3.3) Kip".p) = BS(py,p5,05.0,4).

(3.4) G2k} = G(zP + k) G(zP - k),

and the series alluded to above then reads

b
9 4 ¢ dk ks
5{p Py Py Fg) = Kip'ip) + ﬂ{:{ "‘2';15 ek b

(3.9)

Kip',k )GZ(ki)K(ki’k2) G2(k2)... K(kn,p}.

This equation resembles the Born series (2.15) for the non-relativistic
scattering amplitude, but there are some important differences, in
particular, the relative energies kg of the intermediate two-particle

states are not restricted to the mass shell.
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As a function of the total energy Pc' the 4-point function G(pi,._.,pa)
has a cut in the complex plane, which stems from the real two-particle
intermediate states in eq. (3.5). To exhibit this singular structure
more clearly, we shall later deform the kg integration contours to pick
up the contributions of the meson poles in the two-particle propagators.
That there are no other singularities below the 4-particle threshold

is guaranteed by

Theorem 3.1: To all orders of perturbation theory and for arbitrary
-
real P, B’ and ¥, the Bethe-Salpeter kernel K(p',p) extends

to an analytic function of PD. pé and Py in the domain

< r
(3.8) lIm Pol 4m,  1Im pyl<m, | Im pol < m.

Proof:
Let & be a Feynman diagram contributing to BS(pl,pz,pg,p4) and let %
be the associated abstract graph (cf. subsect. 2.3 of Ref. [1] ). %
has 4 external vertices, denoted 8,,85,8, and 8y where the external

momenta p. leave the diagram. It is possible that some of these vertices

coincide.

me——
) The analyticity properties of the Bethe-Salpeter kernel are of course

well-known from axiomatic quantum field theory (e.g. Ref. (12]). A proof

of thecrem 3.1 is given here for completeness and as s preparation for

the procf of theorem 3.2.
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As in the proof of theorem 2.3 of Ref. [1}, we now proceed to construct
optimally distributed flows cf external momentum through % . To this
end, add 2 extra vertices vu,v and 8 extra lines to % as shown in Fig. 6.
This augmented graph is 3-particle irreducible between u and v, and,
in view of theorem 2.2 of Ref. {1], there are therefore 4 disjoint
paths P,,..., P, connecting u and v. The orientation of these paths
is Fixed by declaring u to be the initial and v the final point. For
every line € in % , defina
+ .
{’.Pi:f]= Tiif £e Py,

0 otherwise,
where the sign is +1, if the orientations of £ and fPi coincide, and
-1, if they are opposite. With the help of these orientation numbers,

an integer valued flow f1(£ ) can be defined through
. .
gﬂtf) = 2: [}%: 2],
1=1

By construction, f1 is conserved at every internal vertex and the out-
flowing units at 81y 8, Ag and a, are 3, 1, -3 and -1 respectively,
Furthermore, becauss the paths TE are disjoint, we have 1§a(€)l £ 4

for all lines € in %

By permuting a, with a, and aq with a, in Fig. 6, further integer flows
f2, f3 and f4 can he constructed analogously. Consider now the momentum

flow

4
kig) = ;; {i(g} qi ,

4
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where Q1. 0, are arbitrary constant 4-momenta. At every internal
vertex, this fleow is conserved, and at the vertices B ey the out-
flowing momenta Pysee- Py aTe given by eqs. (3.1}, (3.2) with

1o
ry —q1+q2+q3+Q4,

(37) pl = q1 + CI2 - q3 - q4|

Moreover, we have

3
“'m k’.(e”é > quiJ for all € ,
i=1

s0 that the singularities of the Feynman integrand of the diagram

are avoided if the bound

4
@e 2 lmgl <m
i=1

is satisfied.

For given P, p' and p, the momenta gq; are not uyniquely determined by

the linear system (3.7). We may thus impose a further constraint, for

exanple Q= 8. The solution of (3.7) then reads
1 1
Gp=gPrzph
(3.9 q3—%P—%p,
i, 1.
9 =3P -3P,
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and the flow k{€) is thus completely detsrmined by the external momenta.
The relations (3.9} and the bound (3.8) define an open complex domain

in the space of complex momenta P, p’ and p. This domain contains
the real momentum configurations and is convex. Moreover, by the above,
ﬁ)i is a domain of analyticity of the Feynman integral associated to

the diagram &0 .

Instead of choosing a, = 0, we may just as well set 4y = 0 for same
i=2,3,4 and one then obtains a domain E)i of analyticity for each
choice. Now we note that H)in [& is a convex domain containing the real
momentum configurations and the analytic continuations of the Feynman
integral associated to & in the domains E)i ang E)J therefore coincide
on the overlap [%l\ E)j . It follows that the Feynman integral extends

to a single valued anslytic function in the total domain

which contains all momenta satisfying the bound
1 i 1 4 ! f
|4 i Pes'tmp' |+ 15 lmP+slmpl+islmp'+simpl < 2Zm

for some choice of signs s', s = f 1. With this explicit characterization,

it is now not difficult to verify that E)BS includes the domain (3.6). O

In finite volume, the Bethe-Salpeter kernel KL(pLP) is defined in exactly
the same way as in infinite volume, i.e. every Feynman diagram centributing
to K{p',p) also contributes to KL(p',p} with all integrals over the

space components of the loop momenta being replaced by sums over the

lattice (1.2). It is obvious that theorem 3.1 also applies in finite
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valume, and at large L the behaviour of KL(p',p) is described by

Theorem 3.2: Suppose Po,pé and p, are complex and satisfy the bounds
(3.6). Then, to all orders of perturbation theory and for

arbitrary {real) P, 3' and §§, we have

(3105 K (p'.p) = K(p'.p) + O™
L+oa

for all N 3 1.

Proof:

Let & be a Feynman diagram ceontributing to the Bethe-Salpeter kernel
and let k(£ ) be the flow of external momentum censtructed in the proof
of theocrem 3.1, With this choice of momentum flow, the Feynman integrand
associated te & is a C® function of the lcop momenta and the reguler

supmation thecrem {2.42) hence implies (3.10). ]

Actually, using the technigues of Ref, [1], it is possible to show that
the difference KL - K decays exponentislly for large L, but for the
present purposes, the weaker statement (3.10) is quite sufficlent. In

what follows, terms which vanish more rapidly than any power of 1/L

are neglected, in particular, KL is set equal to K without further notice.

3.2 Singularities of the two-particle propagator

The elastic meson scattering amplitude is obtained from the euclidean

4-point function G(pl,pg,p3,p4) by analytic continustion tc purely
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imaginary snergy components pg {cf. suvazct. 2.1 of Re?. [11). In view

of theorem 3.1, this analytic continuation presents no problem for the
first term in the expansion {3.5} of the 4-point function, but the higher
terms involve the two-particle propagator G2(k), which gives rise to
singularities in the elastic region 2m £ ImP0 < 4m. We are thus led

to study the analyticity properties of integrals of the form

dk
(3.11)  J = ng-f(ko) G2 (k},

where f(kc) is a testfunction anslytic in the strip |Im k0l< m and ?

is real.

b
Lemma 3.3: In the centre of mass system (P = 0), the integral J extends
to an analytic function of P0 in the region 0 £ Im P0 < Am

)

- *
with a simple pole at PO = iZco(?) (i1f w(k) < 2m)." The residue

of the pole is given by

3.12) 4= O oy et o,

Proof:
Tt is a well-known consequence of the K&llén-Lehmann representation

that the single particle propagator G(q) can be written as

Gla) = % + a9 1+ By,

where ﬁ(q) is analytic for q2 > —(3m)2. It follows from this representation
that in the centre of mass system and for 0 £ Im PO < 4m, the only singu-

larities of G2(k) in the strip |Im k0|< m are simple poles at

) recall w(?} = -'\m2 + ]:2.
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P, - iw(B)),

A

¥
(3.13) kD = -

If tn(?) 2 2m, these poles keep away from the real line énd the integrel
J is therefore analytic in the whole strip 0€ Im Pﬂ <dm. On the other
hand, if w(?} < 2m, the poles approach the real axis from above and
below as Im P0 grows towards 2(0(?) and the integral develops a singu-

larity.

To wark out the singularity, we first note that (3.11) is a valid re-
presentation of J in the regicn 0 € Im POS OJ(E). Next, for Im P0 = bd(?),
we shift the k0 integration contour to the line Im k0 =m', where m'

is some mass in the interval %—m(ﬁ) < m' < m. Along the way one picks

P0 + ieo(?) and the integral

P =

up a contribution from the pole at kU = -

J thus becomes

I(k,)
2 wik)

Gi4P-R) + (2% 200y G20k,

b, =wm

(z.14y 1 =

r
where k is given by

A . > 1 >
(3.15) k= (w(k) - 5P, k).

As long as tu(E) £ Im PO < 2{m+m'}, the poles (3.13) do not cross the
integration path Im k0 =m' and the representation (3.14} hence defines
an analytic function in this domain with a simple pole at PO = iE(ﬁ(E}
coming from the first term. Since m’ can be arbitrarily close to m,

we hove thus shown that J is analytic in the total domein 0<£ Im Po< 4m

with a pole as described by eq. (3.12). O
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If we consider G2(k) a distributicn on the space of test functions f(kn)
which are analytic for {Im kol< m, the statement of the lemma may be

summarized by

(3.18)  62(k) = [2w®)? 2w +ir)] ’121:5(k0) + 8200y,

~
where G2(k) is a distribution analytic in the domain O £ ImF‘0 < 4m,
An explicit representation of éb(k) covld easily be extracted from the
proof of lemma 3.3 but is not needed in what follows. We only note that

~
G2(k) is aiso a smooth function of te RS,

In finite volume, lemma 3.3 holds literally, if we neglect corrections
vanishing exponentially at large L. This fcllows from the abservation,
already made in Ref. [1], that the mesan self-energy ZIL(q) differs
from the infinite volume self-energy X (g) by exponentially small terms
only, provided 6 is real and | Im qD]< 3m *}. For the derivation of the
iarge L expansion of the low-lying two-particle energies, the finite

volume two-particle propagator G2L(k) may therefore be replaced by G2(k)

and eq. (3.16) may be applied as long as 0 £ Im P0 < 4m.

*— .

) Strictly speaking, the proof of Ref. [1] only applies for |Im qois m,
but by distributing the external momentum flewing through the diagram
considered to 3 disjoint paths instead of only one, the argument can

easily be extended.
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3.3 Two-particle singularities eof the 4-point function

We now use the results established in the preceding subsections to
rearrsnge the series (3.5) in such a way that the two-particle singula-
rities are clearly exhibited. In the end, we shall only be interested

in states with zero total momentum and total energy below the 4-particle

threshold. For the rest of this section, we therefore set

(3.17) P = (iW,0,0,0)

and assume 0 € Re W < 4m,

According to eq. (3.1B8), the two-particle propagator can be split into
a singular and a regular piece as follows:

2
)

- a -1 .
(3.18)  6G2(k) = [Fw{kNCwE - Hl ™" 2x 5(k0)h(k) + R2(k}.

Here, h(_I:) 2 0 denotes a smooth rotationally symmetric cutoff function

satisfying

e
1 if w(k) < 2m,

(3.19) hik) = [ -
0 if (k) > 3m.

This auxiliary function is introduced for technical reasons to avoid

a superficial ultra-violet divergence in eqs. (3.20), (3.21) balow.

If we now insert the decomposition {3.18) into eg. (3.5) and apply the

rearrangement identity {2.29), the geometric series
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G{py,Py,0q,P,) =
(3.20)
A 10 &k A h(k) o
+ 402k R k) — .
Kt.p) Zsio(w KB, R o 2w P

is obtained, where the new kernel K is given by

N d'e,  d*kn

Klp,p) = Kip,pt+ Z PPt

p=a 2"
(3.21)

« K(p! k) R2{k, Kk, Ry R2(E,)... Klley,p).

The point of this reformulation is that R is an anslytic function of

Vi with no singularities in the strip 0 € ReW < 4m. The two-particle

cut of the 4-point function is therefore entirely due to the explicit
energy dencminsters in eq. (3.20). Moreover, the relative energies kg
of the intermediate two-particie states have disappeared and the series
(3.20) has a form, which is very similar to the non-relstivistic Born

series (2.15).

This similarity becomes even more pronounced, if we consider the scattering
amplitude T(E‘,Aﬁ’iﬁ,—ﬁ), which is obtained from the 4-point function

by setting
(3.22) wW=2w(P) + it

and pl = p_ = 0 (cf. subsect. 2.1 of Ref. [1}). Egq. (3.20} then assumes

the form



{3.23)

where RE(;) is the non-relativistic resolvent (2.17) and E is defined
through

-2
(3.24) E = rﬁ—:(wg - an%y/4m.

A
in contrast to the non-relativistic case, the "potential" UE(ﬁ',43

appearing in eq. (3.23) is energy dependent. It is related to the kernel

“

K by

(3.25)

> 1

= ol 'Jh(z}(?_m(g)-l- W)/ml.

From the properties of k established above, we thus infer that

e

o~ >, . . B o0 . -» -
UE(k ,k) is an analytic function of E and a C*° function of k' and k

with compact support.

We finally note that if cne neglects terms vanishing more rapidly than

any power of Lfi, eq. (3.20) is also valid in finite volume provided

the integrals over the relative momenta t of the intermediate two-particle
stetes are replaced by sums cover the lattice (1.2). All other entries

in eq. {3.20), in particular the kernel K, are the same as in infinite

volume.
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3.4 Perturbation expansion of two-particle energies in finite volume

The two-particle energy values in finite volume can be extracted from
the exponential decay cf correlstion functions of even composite fields.
A convenient choice of such operators, suitable for the calculation

of energy vealues in the AI sector, is

.

3.28) Olx,) = Z@ L7 (d% da\é &Pl
Re

?-I’i)

$(x0, RX) ¢ {x,,RY),

where the notation concerning R, @ and P is as in subsect. 2.5. Note
that in the presence of interactions, the relative momentum cof the
mesons is not conserved and 05 therefore couples to all two-particle

states in the A; sector.

Now let Cﬁ(xo) be the (euclidean) two-point correlation function of
05 in finite volume and consider the Fourier transform
—iPOxO
(3.27) Cﬁ(Po) = deo e Cﬁ(xo)‘
In the complex Po—plane, EE(PO) is expected to have @ series of poles

on the imaginary axis, which correspond to the energy values we are

looking for.

To locate these poles in perturbation theory, we first note that in

terms of the finite volume 4-point function, we have
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% _ oy ¢ dp,
C5(P) = 96 N(B) { EE" G2, (p) +

(3.28)

43 é}ﬁ d

—. ] a 2 T

L?o ‘R},:‘;@ g 7 I G L('p ) GL(p1 P2 {pa spu-\ G?‘L(P)a
wheze p' = (p], RB) and Py - 4Pg aTe given by egs. (3.1), (3.2). As

already mentioned earlier, G2L can be replaced by G2 and the 4-point

functicn can be represented by the geometric series

B {BysPyifgPy) =

{3.29}
. . h(k) -
| 4 ,
Kipip)+ 28 Z{K P QeEN (2w +iP) K(h‘P)}

if one neglects contributions vanishing more rapidly than any power

af UL, Tt follows from this reletion and eq. (3.16) that at any finite
order of perturhation theory, Eﬁ(Pn) has (multiple) poles at PO = iZuJ(E
where % Tuns through the lattice (1.2). The situation is in fact exactly
the same as in the nen-relativistic perturbaticn theory discussed in
subsect. 2.2 with Eﬁ(Po) playing the rdle of the function F{z). The
steps needed to extract the true pole positions to all orders of per-
turbation theory can thus be copied from subsact. 2.2, in particular,
for each state in the A; sector, which is non-degenerate in the absence
of interactions, the energy value PO = il is determined by an implicit
equatien of the type (2.32). Explicitly, for the state with W = 2 w(ﬁ)

in lowest crder, one finds

(3.30) W= 24n° + nE,

t...
ke
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where £ 1s the solution of

(3.31) E=2€{d + (b)),

00 !
- w3y ] ~ Z Y4 (=4} -3n ! !
viz) = (2N@EIP) R%@{UE{Rp,p) ﬂ);‘ e IR

(3.32)

- N hed

L0, R, R R(B) (L (R, RDRL (R . B (R, )

(the notation is as in subsect. 2.5).

The similarity of the result {3.31), (3.32) with the corresponding non-
relativistic formulae (2.32) and (2.B5) is striking, the only difference
being that the potentisl here is energy dependent and that the parameter
E is not the total energy (which is given by eq. {3.30)). To solve the
implicit equation {3.31), cne proceeds in exactly the same way as in
subsect. 2.2 so that these steps need not be repeated here. We have

thus obtained the complete perturbstion expansion of the non-degenerate
levels in the A; sector and it is clear that the methed would work just

as well in other symmetry sectors.

3.5 Large L expansion

The partial wave expansion of the rglativistic scattering amplitude

T in the centre of mass system reads

s o]
333 T = 46mW I (28+44) Pylcos ) 44,
£=0



- Bl -

where t, is again given by eq. (2.13) and W = 2 w(f) is the total energy.

The combination

a T
£3.34) T=-pgm

thus has a partial wave expansion which coincides with the expansion
(2.12) of the non-relativistic amplitude an. Moreover, the perturbaticn
expansion (3.23) of ? has exactly the same form as the Born series {2.1%5)
with U replaced by UE‘ Finally, if cne takes into account that the energy
values in finite volume are determined by egs. (3.30) - (3.32), one
raalizes that a complete matching between the relativistic and non-
relativistic formulae has been achieved. In particular, the whole large

L analysis presented in sect. 2 carries over literally and the following

remarkably simple result is cbtained.

Theorem 3.4: Suppose W is a non-degenerate energy value in the AI sector.
Then, up to terms of order L_G, the large L expansion of
‘W is obtained by setting W = 2 sz + mE and substituting

the corresponding non-relativistic large L expansien for t.
In particuler, noting

(2.35) W=2n+E + O(E))

and recalling eq. (2.60), one obtains the large L expansion (1.3} of
the relativistic ground state energy anncunced in sect. 2. Similarly,
the expansion of the next to lowest lying energy value derives from

eq. (2.74) and for the higher levels one refers to egs. (2.70)-(2.72).

_ 82 _

Up to the order of L'1 stated, the proof of theorom 3.4 is trivial,
because it makes no difference whether or not the potential which
determines the function r{z) is energy dependent. At higher crders,
the situation is however more complicated and it is not immediately
clear that the theorem still holds, although this is indicated by an
explicit calculation of the order L—6 contribution to the ground state

energy .

3.6 Application to the ®K - and % N-system

As an illustration we here consider the case of two pionms or a pion
and a nucleon enclosed in a box of size L. Isospin breaking effects
are neglected and the messes mg, &nd my of the pion and the nucleon
are assumed to have their physical values (i.e. m, = 133 MeV,

My = 938 MeV). In Ref. [2], the finite size mass shifts of these particles
due to polarization effects were estimated to be less than 1 % and
exponentially decreasing for L 2 3 fermi. For the large L expansions

of the two-particle states to apply, the box size should therefore

be at least this big.

Two-pion states have isospin T = 0,1 or 2. Fer even iscspin, the lowest

+

state is the ground state in the Al

sector and the large L expansion

af the corresponding energy values W thus reads

(3.36) W=2 mi +m. E,
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i T 7.2
@37 E = ,ﬁ “"'9% + Cz(a”iz) b+ O(LHG},

where az denotes the S-wave scattering length in the channel with isospin
I and the coefficients .G, are given by eqgs. (2.61), {2.62). On the
other hand, for I = 1 the lowest state transforms as a vector under
the cubic rotation group @ with the pions carrying one quantum of
relative momentum (because of Bose statistics, two pions in an T =1
state cannot be both at rest). The energy W of this state is again given
by eq. {3.36) with

bt A2 g3 T TOI -6
(3.38) E = o {4+¢ tg 8, + ¢, 1’3, P+ 0L,

2
m x

where 81 denotes the scattering phase shift in the I(JP) = 1(17) channel
at momentum p = E% and the coefficients ci, cé are the same as in eq. (2.74).
The values of the scattering lengths ag suggested by experiment {71

end chiral perturbation theory {8] are

a_ = 0.3 fermi,

(3.39)

u

a

- 0.06 fermi,
s}

and for the phase shift E%, the phencmenological formula

tq 3] = 0.04 il )%' !

(3.40) A4¥ 4"9/?9

v= p*/aml Vg = 6.56,
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appears to provide a good fit of the experimental data (cf. Ref. {7],
p. 96f). With these values as input, the volume dependence of the ground
state energies for I = 0,1 and 2 is as shown in Fig. 7. The dynamical
finite size effects on the 9IrK-system are thus rather small which is

no surprise in view of the small scattering lengths {3.39).

The weakness of the pion-interactions at low energies is usually
attributed to the Goldstone nature of these particles and a calcula-

tion of two-particle energiss in lattice QCD could therefore provide

a check on this aspect of the theory. To actually reproduce the curves

of Fig. 7 would require a calculation of energy values on large lattices
with an accuracy of about 1 %, which is probably impossible to achieve

in the near future. However, one does not know apriori whether the lattice
pions interact weakly indeed, and to obtain at least an upper hound

on the scattering lengths, a less precise computation may therefore

be worthwhile.

The large L expansions {3.37) and (3.38) have only been proved for asymp-
totically large L and they do therefore not cbviously apply in volumes
where there are but a few two-pion levels below the 4-pion threshold

{cf. fig. 1). However, it is guite clear that for L%3 fermi the physics
of slow pions in the box should not be grestly influenced by virtual
many-particle states. Morecver, from experience with the simple quantum
mechanical system studied in subssct. 2.6, one concludes that the large

L expansicns are apparently valid, if the dynamical finite size energy

shift AE is small compared to the free particle level splitting and
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if the higher order terms in the expansion are small cerrectians to
the leading term. Both of these criteris are satisfied for all curves
in Fig. 7 over the whole range uflL displayed and one may therefore
be confident that they are close to the true curves (if egs. (3.39)

and (3.40) are approximately correct).

The lowest lying pion-nucleon states in the isospin I = %3 %rsectors
have positive pasrity and transform according to the fundamental
("spin 1/2") representation of the spin covering of the cubic group.

Their energies W are given by

2 2
{(3.41) W= ‘\me+ 2UE + JmN + 2uE,

1 L T2
(3.4 E = —%’i“-\-q&fﬁ + Cz(aif) P 00,

where | is the reduced mass of the system and a§+ denctes the scattering

length in the channel with iscspin I, orbital angular momentum O ang

positive parity. The experimental values are [9]

a1/2

o+ 0.24 fermi,
{3.43)
63/2 = -0.15 fermi,
o+

so that a plet of E versus L would look similar to Fig. 7 .
~-

We finally note that in all cases considered so far, the low-lying energy

values are well separated from resonances or bound states in the same
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channel. For nucleon-nuclegon states, the situation would be rather

different, because of the existence of the deuteron which goes along
with large scattering lengths [1C). Thus, in this case cne is dealing
with a resonance situation and finite size effects are expected to be

large as was observed in the simple model of subsect. 2.6.

4. Concluding remarks

The relations established in this paper show that the volume dependence

of the two-particle energy values is determined by the elastic scattering
amplitude at these energies. An independent calculation of such energy
values (by numerical simulation, for example) may therefore be expected

to provide interesting quelitative information on the structure and
strength of the particle interactions in the quantum field theory con-
sidered. If a very accurate calculation is feasible, one mey even be

able to extract the scattering phase shifts in this way. Note that one
directly gets the physical scattering amplitude, in particular, no analytic

continuation is required.

A study of finite size effects in & simple model such as the lattice
¢ 4—theory would of course be very useful at this stage. In doing so,

the following points should be taken intc account.

(a) If the basic correlation length is not much bigger than the lattice
spacing "a", the large L expansions assume a form, which is slightly

different from the one obtained here, because the lattice theory in
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infinite volume is not Lorentz invariant. In particular, one must distinguish

between the rTest and inertial masses of the particles. Tt is however
not difficult to deduce the lattice large L expansions by adapting the

arguments of sect. 3 (see also Ref. [11}).

(b) As long as the parameters in the Lagrangian are kept fixed and only
the lattice size is varied, one need not warry about the effects of

the finite ultra-violet cutoff, because these are exactly taken into

account by the lattice large L expansions. However, if data from different

points on the same Tenormalization group trajectory {points of equal
low energy physics in other words) are included in the analysis, one
must make sure that finite size effects are not confused with O(az)

corrections {13].

{c} As discussed in subsect. 3.4, the two-particle energies can be
determined fram the exponential decay of the two-point correlation func-
tions of the operators 05 at large times. It is nct advisable to use
local operators such as ¢(X)2 instead of Oﬁ’ because the amplitude

for such cperators to create a two-particle state from the vacuum is

proportional to L73 and is hence small in general.

An interesting feature of the large L expansions (2.70)-(2.73) of the
higher energy levels is that they breask down for energies near a re-
sonance, bscause the coefficients in the expansion diverge. Thus, in
the neighberhood of a resonance, finite size effects are strong and

an energy level, which passes through a resonance as L increases, 1s
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expected to show some unusual behaviour. Evéntually, this abservation

may lead to a practical and conceptually satisfactory characterization
of resonance states in finite volume (as would be required for a meaning-
ful calculation of ths masses of unstable particles in lattice GCO,

for example).

The proof of the large L gxpansions given in this paper does not apply
in the presence of bound states, although it is quite clear from the
model solved in subsect. 2.6 that the expansions are valid in this case,
too. It is difficult to dispense with the framework of Feynman disgrams
in guantum field theory, but as in sect. 3 ef Ref. [1], bound states
may be incorporated by introducing independent interpolating fields

for them. With some modifications, the proof of the large L expansions
then goes through as before. In guaptum mechanics, it is perhaps also
possible to design a truly non-perturbative proof on the basis of &
more direct analysis of the Schrédinger equation in position space

as in the 1-dimensional case (cf. Ref. 3.
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Appendix A: Properties of the zeta function Ztm(s'ﬁ2)
We first show that sz(s,ﬁz) is a meromorphic function of s with pcles

st s =3 §.j=01,2,..., for 4= 0 and no singularities for £ ¢ C.

Starting from the definition (2.47), valid for Re s > %( £+ 3), we

have
-8
> 2 — > -bz__.-bz
Z gy, (5. 407) ‘5%;’12 Qg (3) (7= A2)
(A1)

3

s Tae g,
res) ) oM

where th is given by

-4 (=AY
w2 .
(.2 Fp (£,%) e @Ay, (V) e :

Ghvicusly, th(t,ﬁz) is smooth for t >0 and exponentially decaying for

t —» oo, At small t, we yse Poisson’'s summation formula to show thet

’ $§s e Lo

(A.3)

Y%oo4p? T- Y

™ = "1;(
*h{) e %— Qo (iV,) € #

which impliss the asymptotic expansion

rlos
et

() Fpp (1,8 10 EO (A oy B; ¢’

(A.5) A, = ——1.~, a
].
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It follows that

N . i3
(A7) Fon (6,85 = Fp (6,87 = 2 (At + B7T)

=0
N L
1s of order t 2 for small t and the representation
-5
D) = w1 E e
Eopls,n?) = . Ay, (¥) (V2= 8%)
yiin
{A.8)
4 oo N N :
4 §-4 N §-1 Ay By
e + + —5 +
+F‘(s){§,d'%{ F{m Ed{t Ffm i‘éo(s+1 5+j_.%”

is hence valid for Re s > 1 M. Since N can be chosen arbitrarily large,

2

we have thus proved that Zlm extends to a meromorphic function in the

whole s-plane with poles as described abhove (the poles at s = -] are

cancelled by the zeros of 1/ (s)).

For integer s & 0, the integrals in eq. (A.8} do not contribute end

z 5,32) can therefore be evaluated algebraically, the result being

Em(
gquoted in egs. (2.49) and (2.50).

for s 2 1, Ztm(s,ﬁz) can be determined numerically by computing the
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integrals in eg. (A.8) for N = 1 using any ordinary integration subroutine
{repidly convergent series representations for the integrands of the
first and the second integral are provided by egs. (A3) and (A2), re-

spectively}.
Appendix B: Proof of the lsrge L expansicn (2.51)

The proof of eq. (2.51) is rather lengthy and is therefore divided into
several steps. In general, the strategy is to first consider simple
special cases and then to gradually proceed to the more complicated

cases using the results alresdy established.

(1) We first set 3 = 0 and choose

s

e -52-] -
(B.1) f(k)y = (k) Qém(k) e

Then, it is easy to work out the rhs of eq. (2.51) and the expansion

to be proved thus reads

(<1
$4(4.9) ™~ 84 4o b r(q- 1)

q' 214+£-24 i
{(8.2) 1 [or (-1} .
+ [ A5 — =
,;F:O L3[L} il Z p(q'-1, 00,

where q' = q - j (the sum is void if q' < 0).

1

To establish (B.2), we first rewrite the sum sq(f,ﬁ) in the form

- 62 -
o0 g
-4 . H:-H)h
Eo S4,0)= L=t I L (R B a,, (e
rq) o k0
Next, recalling the definition (A.2) of the function Flm’ setting

X = (21r/L)2 and performing a simple substitution, one arrives at

If j 2 q, partial integration now leads to

atl q

=X

(8.5) Sq(f,a) = % N (—4)1 ! a Fem{’c D)]

and, using the small t expansion (cf. appendix A}

.6 Fp (8,00 = 88, 1 (%) -1}t + Of -I"S)

one recovers (B.2).

On the cther hand, if j<qg, one has

®.7) S,(4,8) = L Td% (-0t Fy(,0)
q7 T g 25200

and from (B.6) one then infers that
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je-9 4 q'-1 3,
sq(g,a)mé—‘—;@ {84840 §db E-0d” T{F) - 1]
(6.8)
{ =1 _g 7 3-1
R0 R R0+ Jd (0T Ry k00 ]

up to terms, which venish more rapidly than any power of 1/t for large

L. Using the representation (A.8) of the zeta function 7, , it is now

Am
a trivial exercise to evaluate all terms in eq. (B.8) exactly. As a
result, one obtains eq. {B.2), which proves thst the large L expansion

(2.51} is valid in the special case considered.

{2) In this step, we again set 3 = 0 and assume that all partial derivatives
of f(Q) up to the N'th order venish at k =0 for some even N 2 2q.

One then has

(B.9)  f5,,(0) =0 for 2j +&<N,

29-N -4

and, up to terms of order L , the large L expansicn (2.51) reads

2

w _ 1 _?_Lg A =1, 7 2q-N- 4
(6.10) 8,14, = [zq_wi(ﬁ = (807 4R + oL,

In order to prove this relation, we note that the function
(B.11) h(k) = (¥3)79 £(¥)

is integrable and has integrable derivatives up to the order N - 2g + 4.

Thus, the ordinary summation theorem (2.42) applies and it follows that
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fk 1 . N-k
(8.12) sq(g,6)= 8“(“51_;)3 T8 £(k) + 0(L™ ).

By using the identity

(8.13) B, @ " L ey en @ (k +0),

and partial integration, eq. (B.12) can be matched with (B.10) and

we have thus shown that the large L expansion (2.51) is also valid in

the present case up te the order of L_1 stated. That there are no boundary
terms from the partial integrations is easy to prove taking (B.9) and

the square integrability of f(t) and its derivatives into account. For
example, if g = 2, there is ane partial integration needed and the con-

tribution of the boundary at large k is proportional to

I - P -4 = -
g1a) dmo (a0 RE{4(R) G (R~ (RY Y, 4R,
R gi-w
where {) denctes the sclid angle of . Now, using the Cauchy-Schwarz

inequality for square integrable functions, we have

| da sl =r? ] deisgiek ¥ 21
(8.15) Ikl=R ks R

< C/ R

for some constant C. Similarly, one shows that

e | ) dQ E-ﬁkg(ﬁ)l < C'R
Ri=R :
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and the boundary term (B.14) is thus seen to vanish.

{3) We now combine the results of step {1) and (2) te show that the

large L expansion (2.51} holds for '5 = 0 and arbitrary functions f(-lz).

Let N 2 2g be some even integer. Then, up to order kM , the Taylor ex-

pansicn arocund Jl: = 0 of f(?:') can be rearranged in the form

- Nf2 N-24 ¢ ._)i ) -
@.17) f(k) = _)::U zgo m%dz Cigm (R?) Qp (k) € " 4 f(k),

where the remainder fN ('1:) is smeoth and has vanishing derivatives at
k=0 up to the N'th order, i.e. £, is a functien of the type con-
sidered in step (2). Now we note that the large L expansion of Sq(f,a}
is an operation linear in £. Since we have already shown in step {1)
and (2) that (2.51) applies to the functions on the rhs of =q. (B.17)

up to terms of order L2a- N -4

, it follows that (2.51) is also valid
for f(_k’) up to this order. Because N can be chesen arbitrarily large,

{?.51) is thus completely proved for D =0.

(4) We now proceed to consider the case 'ﬁ # 0. In this step, the power

series expansion

Ssp ~ L () 3 T (4.0

(8.18)
2§+ £-2g

%(%) . ?jem{o) z—ﬁgm(qéﬁz)
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is established and in the following step, parts of this series will
be resummed to cbtain {2.91). The zeta function Zjim is defined as z-!m‘
but with an extra factor ('\32)3 multiplying Qfm(:ﬁ). In other words,

using the binomial expansion, we have

(757" 2o (q-1, 5.

b}

i
(B.19) Ziam(q,ﬂ)? PN (
$=0

e Ty

\
To prove (B.18), we choose an integer N1 and decompose the sum Sq(f,?}')

as folilows:

-
{B.20) Sq(f,p) =85+ 8yt Syt o5y,

®.21) 8 = , k) (R2- 3271

1 L: E1<$ H
N
= L Ty =9 a2y AF
e 5= D £R) ( 4)3_:_0 ( v)( B2 (kM) T,
N —q-
@ s=75 L 4®) an () e e

P s - N - e
(B.24) 8, = AT ?(h){( z-—ﬁz) i r QJ(_-ﬁz)‘ﬁ(hz)‘i F}
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In all these sums, ¥ runs over the momentum lattice {1.2) subject to Finally, tc expand S, we observe that a power L2CI can be factored out
the restrictions_ indicated below the summaticn symbol. Since 54 and from the bracket {...} in eq. (B.24), the remeinder being independent
. o N
85 arefinite sums, they are trivial to expand and one gbtains of L and of order (vz) a-N-1 for large ] { k = Q% 3 ). The sum
is thus well convargent and it is easy to show (e.g. Ref. {6], § 8.6.3)
1 7_1-\-3 2q 1 . 2q-2N-4 .
~ [‘_ Z. Z 4 (ix . ? that the large L expansicn up to terms of order L can be obtained
6.2 $; ; e (0) €,
1::0 2=0 tm=f % L 1 jem 3 . R .
simply by expanding fi{k) around k = 0. Thus, we have
4 g i e a2 e _q i 2{ b €-2
8.26) Cop = 2 (V1) @, (V) (D*-W*) NoO2N-2) 2 PR q 2a2N-H
i 3"(31 m ? (B.31) Sw = E Z Z 3 [—TL) figm(m C + O(L.':I )
j=0 £=0 m=-£ L 1L

. N
: - - —bz‘l _q __"'i.’.}‘l "'z_q_}‘
®.27) Gy Eéﬁz(v)Qim(ﬁ)}Eo(P)(n}(v)

N -G
(B.32) C;"m=zc‘:_'ﬂ(v‘) Q{3532 - ZO(J)(-ﬁﬁ)v('\”)q P},
<y g=
{here and below, Y runs over 13). Next, we note that

whare lem is only defired far 2j + € € 2N

N
= AT 3
(8.28) s, }EO(H)( P Squplf,0)
- If we now collect the expansions cof the four sums sy, 20 (B.18} is

2g-2M-4

obtained up to terms of order L , provided we can show that

Because we have already proved (Z.51) far 'B = 0, it follows that

N
- o
5 E 9y _x2 B r.1 1 = ) >y
™ L, ( H)( %) Iqﬂ*(f,ﬂ) (B.33) 51 Ciom Zjem(q,n ).
{B.2%)
N oﬁ Df_ é 1 (').'K )?.i-i-f"?-q ( ) 3 From the explicit expressions given for the coefficients c}!m’ this
—_— —_— 0 C 1
§=0 £=0 m=-4 La L fjf‘m jfm ? relation is however easy to prove for complex g with Re gq>j + %8 + %

and hence, by analyticity, for all g. We finally remsrk that N can be

chasen arbitrarily lsrge sc that in fact we have established (8.18)

N
(B.30) Cj-gem = 3 (—q) {-ﬁl)P me(qﬂg- 1,0 to all orders of 1/L.
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(5) We finally note that {B.18) can be obtained from {2.51) by expanding
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Figure captions

J L0t 2,51 . Fig. 1:
1 - B.91363292 - 1.23133568
2 16.53231596 23.24322188
3 8.40192397 13.05937575
4 5.94580793 13.73121437
Fig. 2:

Table 1: Values of the zeta function Z The method of

im’
calculation used is explained in appendix A.

Fig. 3:
Fig. 4:
Fig. &:

Energy values of T -states with zero total momentum as a
function of the box size L neglecting pion interactions. The
dashed line indicates the 4-pion threshold. The multiplicity
of the levels shown is 1 in the channel with zera spin and

isospin.

Numerically calculated energy values E as a function of the
parameter v for a fixed box size L = 8R. Only the 3 lowest

levels are shown.

Comparisan of the large L expansions (2.60) (curve a) and

(2.74) (curve b) with numerically calculated erergy values
(dots) for v = & . The energy shift At is equal to E- Eu’
where Eo = 0 for the ground state and En = 1 for the first

excited state.

Skeleton of a Feynman diagram, which is two-particle reducible

in the (pi,pz)—channel.

Integral eguation relating the Bethe-Salpeter kernel to the

full connected 4-peint function.



Fig. 6:

Fig. 7:
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Arrangement of extra vertices and lines added to the graph

%. The paths P

'TREEE '.P4 start at u and pass through s, or

a. via the extra lines connscting thess vertices with u. After

4
traversing %, they arrive at a, or a, and end at v.

Plot of the lowest W -energy values for isospin I = 0,1 and
2 according to eqs. (3.36) - (3.40). The energy shift AE is
defined by AE = € - 2 €(f), where p = 27w/L for T = 1 and

p = 0 otherwise.
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