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Abstract 

Volume dependence of the energy spectrum 

in massive quantum field theories 

II. Scattering states 

M, LUscher 

Deutsches Elektronen-Synchrotron DESY, Hamburg 

The low-lying energy values associated to energy eigenstates 

ISSN 0418-9833 

describing two stable particles enclosed in a (space-like) box of 

size L are shown to be expandable in an asymptotic power series 

of 1/L. The coefficients in these expansions are related to the 

appropriate elastic scattering amplitude in a simple and apparently 

universal manner. At low energies, the scattering amplitude can 

thus be determined, if an accurate calculation of two-particle 

energy values is possible (by numerical simulation, for example). 
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1. Introduction 

This paper is a continuation of Ref. [1], where I have determined the 

size dependence of the stable particle masses in quantum field theories 

enclosed in an L x L x L box with periodic boundary conditions, The 

objective here is, to find out how the energy eigenstates describing 

two (unbound) stable particles behave in finite volume and in particular 

how the associated energy values vary with l. The motivation for this 

investigation is at least two-fold. First, in numerical simulations 

of lattice theories, it is helpful to have some apriori knowledge about 

the distribution of the low-lying energy values to perform the spectral 

analysis of correlation functions and to correctly interpret the energy 

spectrum so determined. Secondly, the formulae established in this 

paper relate the size dependence of the two-particle energies to the 

corresponding elastic scattering amplitudes and thus make the latter 

accessible for calculational schemes, which need a finite volume for 

technical reasons and which are hence unable to deal with scattering 

processes directly. To compute low-energy scattering amplitudes via 

the energy spectrum in finite volume appears to be a rather complicated 

way to proceed, but in the context of numerical simulations of lattice 

gauge theories, for example, no other practical method is presently 

available. 

In finite volume, the particle momenta are quantized and the spectrum 

of energies of two-particle states with zero total momentum is there-

fore discrete. As L ~ 00 , the spacing between these levels goes to 

zero and their density grows proportionally to the volume. An important 
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point to note is that the level spacing is often not so small in practice. 

Consider for example a numerical simulation of QCO on a large lattice 

with L ~ 3 fermi. As will be shown later, the low-lying energies W of 

the zero total momentum 1\'ff -states are then approximately equal to 

the free field values 

(1.1) 
r 2 .2 

W 2~m'f{+p, 

where m~ denotes the physical pion mass and the (relative) pion momentum 

P is given by 

(1. 2) 
...,. 2:rr .... 
'P = T n -n e 7/_3 

Thus, as shown by Fig. 1, the level spacing is sizeable up to very large 

volumes, in particular, the lowest energy value is well separated from 

the higher ones below (say) L = 10 fermi. These energy values are there-

fore well-defined in a practical sense and their calculation in numerical 

simulations should be no more difficult than the calculation of the 

pion mass, for example. 

Consider now an arbitrary massive quantum field theory describing the 

physics of particles ("mesons") with spin 0 and mass m. As already 

mentioned, the possible energy values of two-particle states in finite 

volume are given by the free field expression W = 2(m2 
+ p2) 112 plus 

a small correction, 1.;hich is due to the meson interactions. There are 

two different physical processes, which contribute to this finite size 

energy shift. First, there are the polarization effects discussed in 

detail in Refs. (1,2], which involve virtual particle exchange "around 
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the world". Secondly, the two mesons enclosed in the box interact 

directly, i.e. they are really in a stationary scattering state. 

For large L, the energy shift due to polarization effects decreases 

exponentially whereas the second process gives rise to corrections, 

which decay only as a power of 1/L. This basic fact can easily be under-

stood heuristically by noting that the interactions in massive quantum 

field theories are short ranged. Since the wave functions of the mesons 

are spread throughout the box, the probability for the particles to 

be 1-Jithin interaction distance is inversely proportional to the volume 

and the resulting energy shift is hence expected to be proportional 

to L-3 . Thus, the leading corrections to the free field energy spectrum 

ln the two-particle sector arise from real (as opposed to virtual) 

scattering processes and the situation is therefore entirely different 

from the one considered in Ref. [1], in particular, new mathematical 

tools will be required to prove relations such as eq. (1.3) below. 

In this paper it is shown that the individual two-particle energy values 

can be expanded in a pm1er series of 1/L with calculable coefficients, 

which are simply related to the elastic meson scattering amplitude. 

For example, for the lowest level <P 0), the first few terms in the 

expansion are given by 

(1. 3) \' 

(1. 4) cl 

(1. 5) c2 

a 
2m -

41ta
0 

ml 
3 

0 + [ 1 + c1 l 

2.837 297, 

6.375 183, 

a2 
c2 _E.!+ O(L-

6 
L 2 ) , 
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where a
0 

denotes the S-wave scattering length, i.e. in terms of the 

S-wave scattering phase shift 0 , we have 
0 

(1.6) ao 
lim 1 
p~o 2ip 

2iS 
(e 

0 
- 1) 

{p: magnitude of the meson momentum in the centre of mass system). 

Thus, as anticipated above, the leading finite size correction to the 

two-particle energy W is inversely proportional to the volume. The sub-

leading terms arise from multiple scattering processes and involve the 

coefficients c
1 

and c2 , which are related to the zeta-function of the 

Laplacian on a 3~dimensional torus (c1 and c2 are constants of the 

momentum lattice (1.2) in other words). The higher terms in eq. (1.3) 

depend on successively higher derivatives of the scattering amplitude 

at zero momentum and can be obtained quite easily if desired. 

For the levels with P f- 0 and in more complicated s.ituations involving 

particles with different masses and particles with spin, the large L 

expansions look similar to eq. (1.3), in particular, the leading non

trivial term is always proportional to L-3 . A remarkable aspect of 

these expansions is that the coefficients are determined solely by the 

Scattering phase shifts St (and their derivatives) at momentum p, i.e. 

there is no reference to the particle interactions at other energies. 

In their work on the non-ideal Bose gas almost 30 years ago, Huang and 

Yang [3] have already derived eq. (1.3) in the special case of two 
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(non-relativistic} hard spheres enclosed in a periodic box *) More 

recently, the existence of the first non-trivial term in eq. (1.3) 

has also been mentioned in Ref. {4]in the course of a discussion of 

statistical errors in quenched hadron mass calculations. The proof 

of eq. (1.3) given by Huang and Yang is based on a pseudo-potential 

approximation to the SchrOdinger equation, which is exact to the order 

of a
0

/L considered. Aithough this method can probably be generalized 

to arbitrary short range potentials, I would not know how to carry 

it over to quantum field theory, because a local two-particle wave 

equation is not available in this case. 

The large L expansions of the two-particle energy values are established 

here to all orders of perturbation theory in arbitrary massive quantum 

field theories, the philosophy concerning universality and the applica

bility of this method of proof being the same as in Ref. (1]. Apart 

from subsect. 2. 7, where we shall briefly discuss the hm-dimensional 

case, the dimensionality of space-time is always assumed to be 4. l~hile 

the methods employed could easily be generalized to higher dimensions, 

they do not apply in dimensions 2 and 3, because the dynamical finite 

size energy shifts are not small compared to the free particle level 

splitting in these cases. 

The organization of the paper is as follows. In sect. 2, the quantum 

*) I a~ indebted to N. Rivier for drawing my attention to this work. 

A small numerical discrepancy between the constants c1 ,c2 as calculated 

in Ref. r3] and the values quoted here is due to an approximation made 

by Huang and Yang. 
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mechanical case of two (non-relativistic) bosons interacting through 

a potential of finite range is discussed in great detail. The basic 

techniques to control the volume dependence of two-particle energy 

values to all orders of perturbation theory are devleoped here and 

the results are illustrated by a simple numerically soluble model. 

It is only in sect. 3, where the quantum field theory case is treated, 

that the reader is assumed to be familiar with the results and techniques 

of Ref. [1]. As an application of the general formulae, the pion-pion 

and pion-nucleon system is considered in subsect. 3.6. The paper ends 

with a few concluding remarks in sect. 4 and two appendices, one dis-

cussing the zeta-function of the momentum lattice (1.2) alluded to above 

and the other containing the proof of a general summation formula for 

singular 3-dimensional momentum sums. 

2. Volume dependence of energy values in quantum mechanics 

2.1 Summary of notations 

In the following subsections~ details are only worked out for the case 

of two non-relativistic bosons ("mesons") of mass m and spin 0, which 

interact through a potential V of finite range. The methods used are 

however more generally applicable and it is not difficult to extend 

the results in various directions. 

In infinite volume, the two-particle states are thus described by scalar 

wave functions '\jr(k,Y), where "X,Y e 1Rlare the position space coordinates 

of the mesons. Bose statistics requires 
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(2 .1) '\lf(t,y) "¥' cY.t)' 

and the scalar product is accordingly defined by 

(2. 2) <'f'l'\11> 0 Hd3,d3y 'Pit.il. vc~.y). 

The Hamilton operator »i of the system is assumed to be of the form 

(2.3) IH 1Ho + V, 

where the action of \t\
0 

and V on wave functions '\V is given by 

(2. 4) IH,'\Ifc~.ql =- 2:,(tlx+ll~J'\Iflx,ql, 

(2.5) \1 '\If (X, q ) = vn:-~' '\lflx.~l 

( t::..x' 6 y denote the Laplace operators with respect to~ andY). The 

potential V(i) is required to be square integrable~ rotationally symmetric 

and of finite range, i.e, 

(2.6) v(Z) 0 for \1 \ > R. 

This last assumption is made for convenience, but in what follmvs, a 

1r1eaker condition, for example that V(!) decays exponentially, would 

do just as 1vell. 

The eigenfunctions of the free Hamiltonian IH
0 

are the symmetrized 

plane waves 

(2. 7) "if .. ~ (1,y) 
"'q 

i(j)X + qyl iCPY + qXl e + e 
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which will be written as I P, q) in Dirac's notation. Thus, we have 

(2.8) 

(2.9) 

+ +) 1\-1 0\p,q 

+2 
+ !'__ 

E(p)o2m 

(E(M + E(q)) lt.a>. 

(2.10) <P'.1i'lil:~> (21!1 6 { 8 (/i'-ill 'b(il'-<il + o(il'-1il S(;i'-jlJ] 

Defining in-going and out-going scatte~ing states as usual through the 

M~ller operators, the meson scattering amplitude Tnr *) is given by 

(p',q' oot \p,q in) (p' ,q'\p,q) -

(2.11) 

i(21t)
4 

0CE'-E) O(P·-P) Tnrcp·,q·lP.CD, 

where E "' E. <P) + E C~) is the total energy and P = P + q the total 

momentum of the in-going particles**). 

i~ith these conventions, the partial wave expansion of the scattering 
~ 

amplitude in the center of mass system (P 0) reads 

*) The subscript "nr" means "non-relativistic" and is written to 

distinguish Tnr from the relativistic amplitude T, which is normalized 

differently. 

**) The letter W, which is used in sect. 1 to denote the total two-

particle energy, is reserved for relativistic systems. 
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00 

(2.12) Tn•=_g., 
'"' 

L: (2tH) ?e (cos 9) te, 
i=O 

(2.13) t = e 
1 2'b 

Hp ( e ' e _ ~ ) , '!'= i:pl, 

(Pt : .f 'th Legendre pol~nomial I e. scattering angle, 0.(: scattering 

phase shift). Note that t t vanishes for .e odd due to Bose symmetry. 

The threshold parameters at and bt are defined by 

(2.14) Re te = '!'ze { ae + 1'" be + 0 ( 1'' )j' 

which agrees with the definition (1.6) of the S-wave scattering length a
0

. 

As already mentioned in the introduction, the large L expansions of 

the finite volume energy levels will be proved to all orders in perturba-

tion theory, i.e. to all orders of an expansion in powers of the potential 

V. For the scattering amplitude Tnr in the centre of mass system, this 

expansion coincides ~Ji th the Born series 

T -
(2.15) 1lf-

V(p', :p) + E. Hl" ( d~k, 
""1 2." l (2:rr)~ 

i~ _n 
(2'1t)~ 

A_,. ~A-- ~ Ao+ 

X V(?',f<,)RE(I<,) V(l•,,k,)'RE(k,l ... V(t..,.,,:p), 

(2.16) 

A _,. ~ .,;. .,..,_ v' t.. ', ~< r = I d.~., f e- i ( ._ ,_ "'rz + -i(k'+k)! }Veil, e 

(2.171 'RE (~) 
,.. -1 

{2.dld-E-iej . 
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In particular, for the S-wave scattering length a
0

, we have 

(2.18) 

- g,. a 
'm 0 

X 

Vlo,OJ + 
00 

r: 
-tt=-1 

(-1)"' d'~, 
7i I (2,.1' ··· 

d'~., 
(2,- )3 

vlo ~ l ~ 
' < ~ 1!.2 

A~"'")ffl 
V(k1 ,k2 !' . . . v (i~., ' ii ) . 

< 2 

This concludes the discussion of the meson system in infinite volume 

and we now proceed to list the basic properties of the finite volume 

system. 

The quantum mechanical states of two mesons confined to a periodic 

L x L x L box are also described by wave functions 1V(X,Y) = ~CY.Xl 

with t,y E nR 3 . The boundary conditions are taken into account by 

requiring 

(2.19) '\fi'(X+i1L,~l = '\fl'(x,qJ ... 71.' for all -11. E J 

and the scalar product of wave functions is given by eq. (2.2), but 

with integrations running over one periodicity cell only. The action 

of the Hamilton operator R4 on finite volume wave functions is defined 

as before (eqs. (2.3)- (2.5)), where in (2,5) the potential V(~') should 

be replaced by 

(2.20) VL(!) = L.. V(1+nll 
.fie Z 3 

to preserve periodicity. 
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The plane waves (2.7) are the eigenfunctions of the free Hamiltonian 

Q4 in finite volume, too, provided the momenta P and q are restricted 
0 

to the discrete values (1.2). For the normalization of these states, 

one finds 

(2.21) <li' ,q'liUi> L 
6 

{ &. , • s~ .• + s~ .• s~ ... 1 
p,p y,q f.l,q Yd-' 

and the matrix elements of 'V in this basis are given by 

(2.22) <?',q'IVI?,£i> = L
3 bP',:P V(I('fi'-q'l,I('fi-ql), 

where Vis defined as before (eq. (2.16)). 

In the absence of interactions (V = 0) and for zero total momentum, 

the possible energy values of the system are 

(2.23) E= 2.c(rl= 4-1t2 -'~>2 - n 
mL2 

(nEZ.3l. 

For weakly interacting particles, ordinary perturbation theory can be 

applied and the spectrum is hence given by eq. (2. 23) plus small correc-

tions. For eXample, using eqs. (2.21) and (2.22), one finds for the 

lmvest level 

(2.24) E. = 2
1
[} V(O,O) + 0 ( y 2

). 

Combining this result with the -Born series (2 .18), ._.Je have 

12.2s1 E ~ ... a. + 0(V2), 
ml3 
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which already proves the large L expansion (1.3) to first order in V. 

In what follows, the strategy is to write down the complete perturbation 

expansion of the energy levels in a tractable form and to analyze the 

L dependence of each term separately. As a result, one obtains a double 

expansion in pm~ers of V and L -i, 1~hich is not hard to regroup in the 

form of the desired large L expansions with coefficients expressed 

through the scattering amplitude. 

2.2 Perturbation theory to all orders 

High order perturbation theory can be formulated in many different ways. 

The aim here is to present one such possibility in a compact notation, 

which makes the essential structure transparent. Moreover, many of the 

formulae derived below will be useful in quantum field theory, too. 

Using the cubic rotation symmetry, the degeneracy of the low-lying 

energy levels (2.23) can be lifted and it is therefore sufficient for 

our purposes to consider the case of non-degenerate perturbation theory. 

Thus, let E be an eigenvalue of ~ and 1~0 ) the corresponding eigen-
o 0 

state normalized to unity. For small V , one then expects that the full 

Hamiltonian Hi has an isolated eigenvalue E withE= E0 + O(V). Define 

(2.26) F(z) = 
-1 

<'ljfo I ( '-- 11-1) f'ljfo). 

This is a meromorphic function of z with simple poles at the eigenvalues 

of~, in particular, there is a pole at z E. Expanding in powers 

of V, we have 
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(2.271 F(;;J ( 
-< 

= z- E ) + 
-2. 00 -1 t1 

(-..-Eo) ('ljfofV f. [(t.-IH 0
1 Vl f'ljf0 ). 

0 
-tt=O 

In this form, the perturbation expansion is however not very useful, 

IH -1 
because as z gets close to E {and hence close to E

0
), (z- 0

) has 

a pole and the series explodes. 

To obtain a representation, which is smooth near E, we first separate 

the pole at z E
0 

from the free propagator: 

(2.28) 

-< 
(t.-IH) = 

0 
~ 
Z- E0 

P0 = l"''o"><"V0 l, 

Then, using the operator identity 

Qo + -
"l- Ho 

Qo = 1- Po 

00 

[(B+CJA]n = A' Z (BA')n AL: 
(2.29) i't.=O .tt:::O 

A' = 
00 

(CA )"', A r_ 
fl=O 

' 

with A = 'V , 8 = P 0/ (z-E
0

) and C = Q
0

/ (z - \H 0), one gets 

(2.30) F (') 

(2.31) Y(i<) 

-1 
(z - E0 - r(z)) , 

oo Qo ft 

<"Vol'V .,~ 0 [ <--IHo V) i'ljfo)· 

Note that the projector Q0 excludes the eigenvalue E0 and r(z) is hence 

smooth in a neighborhood of E0 . It follows that (2.30) is a valid re

presentation of F(z) around E
0 

and the eigenvalue E is thus determined 

by the implicit equation 

.\. 
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(2.32) E E0 + r(E) 

(and the condition that E-E0 is small). 

In principle, eq. (2.32) can be solved straightforwardly by inserting 

the perturbation series for E, expanding all entries in powers of V 

and equating coefficients of the same order. A more elegant way to 

proceed is to first expand E in powers of the function r(z). To this 

end, it is helpful to introduce an auxiliary parameter e as a book-

keeping device. Thus, eq. (2.32) and the desired expansion of E are 

written as 

(2.33) E E
0 

+ t. "f(E), 

00 

(2.34) E L. £ v Ev J 

V=O 

with € set equal to 1 at the end of the derivation. In this way one 

generates the solution E of eq. (2.32) as a power series of r(z). 

To determine the coefficients Ey, we now insert (2.34) into (2.33), 

expand in powers of e and obtain the recursion 

E = 1 Yo 

(2.35) ., v v 

E.,+1 = .L. Yi E. 
1=1 .i1=~ 

E. Dt +e + ... e. v Ee Ee ... E~. , 
lj ==1 1 2. ••• ~ _) 1 2 3 

where rj is given by 

(2.36) 'l"i 'I j. 

()1 

a~i 'Y"(i!c)l ;c =Eo . 

, 
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For example, for the next to lowest coefficients Ey, one finds 

E2 ror1' 

(2.37) 

2 2 
E3 ror1 + ror2, 

and it would not be difficult to continue this list. Setting €. = 1, 

the resulting expansion of the energy value E thus becomes 

00 

E = E0 + 2::: Ev , 
1):1 

(2.38) 
Ev 

v 
L: 
j-t=O 

\1 

L: 
1v=O 

C (j,, ... , iv) 1"j
1 

'Y"h"" 'Y"iv' 

where C(j 1 , ... ,jv) are some integer coefficients satisfying 

(2.39) C(jl, ... ,jv) 0 if j 1 + j 2 + ... + jv I Y -1 

(an explicit expression for these coefficients exists but is not needed 

here). 

Because r(z) is of order V, only a finite number of terms in the expansion 

(2.38) contribute at a fixed order of V and, inserting (2.31), it would 

now not be difficult to write down the exact n'th order expression for 

the energy. For our purposes, eq. (2.38) will however turn out to be 

sufficiently explicit and this last step is therefore not worked out 

here. 

In the present approach to perturbation theory, the function r(z) defined 

by eq. (2.31) plays a central rOle. For the ground state level already 

I 
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discussed at the end of the preceding subsection, we have for example 

y(..,) 

(2 .40) 

1 
l L' 

!vco,o)+r 
-'t'l.=1 

(-11'' l-~n L 
·--:n kfO 

2 ' 
... .L 

~ +o n 

> v(o.~,lRc(k,)V(k,~,lR.,(~,l ... Y(~"',ol], 

where the momenta kj are summed over the lattice (1.2) and 0 and Rz 

are given by (2. 16) and (2. 17) (omittir)g i e ) . Evidently, the Born series 

(2.15) and the series above are very similar, the main difference being 

that the momentum integrals are here replaced by sums. 

To second order, eq. (2.40) leads to 

(2 .41) E 1 
2.L' 

{v<o.ol- 1 
2.l' 

r_ 
i<+o 

A v (ij J ) ..!':._ 
i' 

v(j;,o) + ... 1. 

Now, at large L the momentum sum on the rhs may be replaced by an integral 

-1 
plus an error term of order L and, recalling (2.18), the formula 

(2.25') E 
4-rta

0 

mL3 
+ O(V2L-4) + O{V3) 

is obtained. This example shows that for the derivation of the large 

L expansion of E to all orders of V and L- 1 , a complete and explicit 

asymptotic formula is needed expressing the momentum sums encountered 

as a sum of divergent terms (in singular cases), integrals and corrections. 

Such a formula is presented in the following subsection and proved in 

appendix B. 
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2.3 Summation formulae for 3-dimensional momentum sums 

With the help of Poisson's summation formula (e.g. Ref. [5], p. 31), 

it is easy to prove the well-known result that 

(2.42) L-~ L. lo(kl = 
k 

d' f< l (2'1<')0 h.(~) + 0 ( l- N) 

for any continuous function h, which is integrable and which has inte-

grable derivatives up to the N'th order (N i;l\1). In this subsection, 

eq. {2.42) is generalized to a larger class of momentum sums, involving 

singular functions h, such as they occur in the perturbation expansion 

of the finite volume energy values. Explicitly, the sums considered 

are of the form 

(2.43) 

where 

S9(f, fil 

+ 'lrr ~ 
t>=Tn, 

L' r:' 
k 

f(~) 
CiF- :r;•)9 

:ti E Z 3 
, is a fixed external momentum, q ~ 1 some 

integer power and the summation symbol ~ 1 implies a sum over the lattice 

( 1. 2) excluding the points k with 12 
= p2 , The function f is assumed 

to be square integrable and smooth with square integrable partial deri-

vatives of arbitrary order. It is easy to show that these properties 

guarantee the absolute convergence of the sum (2.43). 

Due to the singularity, the large L expansion of S~(f,?) does not only 

involve an integral over all k as in eq. (2.42), but also other terms, 

which are proportional to the function f(k) and its derivatives evaluated 
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along the sphere k2 
= P2. These latter terms are multiplied by geometrical 

numbers, analogous to the Bernoulli numbers in Euler's sum formula, 

which are related to the (generalized) zeta function Ztm(s,h2) of the 

momentum lattice defined below. 

To write down the large L expansion of S (f,Pl, some further preparation 
q 

is needed. First, let Ylm. ( 9 , <p) be the spherical harmonics with the 

usual normalization*) and define Qf~through 

(2.44) Q~"" ( t) ~ Re Y (e 'Pl 'I u-+1 !WI ' ' 

where 6, te are the polar angles of k and k = I k I. ot11t is a homogeneous 

polynomial of k of degree l. The expansion of f(~) into spherical 

harmonics can then be written as 

(2.45) f(i::l = 
oo I 
I'. I'. 

£=0 'm=-f 
fe, ( R) Qt.,(~) 

with coefficients f£m(k), which are smooth for k "?0. In particular, 

for all l,m and arbitrary p = IPI "?0, the Taylor coefficients f-,. (p) 
J•m 

defined by 

(2.46) } ~"" ( k) "-' 

1<+1' 

00 

r_ 
j=O 

ljfrn(p) (k'-1"2 )1 

are also smooth and could themselves be expanded, for p _..0, in an 

*) . m+1 ( 9) In parhcular, Y,to ( G , 'f) = '\J ~ 'P,e COS where P.e denotes 

the .f'th Legendre polynomial normalized such that P-t (1) = 1. 
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asymptotic power series of p2. 

The zeta function Zl~alluded to above is defined by 

(2 .47) l£t,Js,n,l = I'.' Qtm (v) ()j2_ n2 f s 
Ve Z.3 

for all ~ e 71. 3 and complex s with Re s ') ~( .f + 3) . As before, the points 

V with V2 
= 7i2 are omitted in the sum and for V2 < 1i2 , the convention 

arg(V 2 - 112) == 'TC' is adopted. Note that Ztm vanishes if£ is odd, because 

Qim(-V) == -Qtm(\)) in this case. Some properties of Z.(m are derived 

in appendix A, in particular, it is shown there that Ztm extends to 

a meromorphic function of s defined in the whole complex plane with 

simple poles at 

(2.48) s 
3 
2 j 'J 0,1,2, .. 

for l := 0 and no poles for .e t- 0. ztm is therefore ... ell-defined for 

integer s and it is found that 

(2 .49) 

(2 .50) 

z.tm(-j ,n2l 

~2 
Zlm(O,n) 

0 for j 1,2,3, ... 

.r. Q~"' (vJ 'V1= :t1_2. 

For positive integers j, Zim(j ,1i2) must be calculated numerically, a 

few values being listed in Table 1 for later use. 

With all the definitions ready, vJe n01.; proceed to discuss the large 

L expansion 
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SlL?l ""' I 9(L?l + 

(2.51) q 

L. 
j ~ 0 

00 

L. 
t~o 

e 
L. 
mo-l 

1 2j+l-2~ 

L3 (
2C) ljlm('P) z~"'(q-i,ti") > 

which is proved in appendix B. For notational convenience, odd i•s 

are included in the sum although they do not contribute (Ztm vanishes). 

The integral I (f,Pl is given by 
q 

(2 .52) Iq(!, j'i l 1i.m 
£-+0 

) t~:l3 l<e\ (P- j)"- i<l-9 jf(kl 

for P f. 0 and by. 

(2.53) Iqlf,ol = 
1 

('l.q-2)! I 
d'k 
(21>:)' 

1 

~· 
(1';._)9-1{(~) 

for P = 0, where ~k denotes the Laplacian with respect to k. It can 

be shown [5] that for the class of functions f considered here, Iq(f,Pl 

is well-defined and smooth for p E ~ 3 , in particular, the Taylor 

expansion 

(2.54) Iq lLfl rv 

holds as expected naively. 

00 

L. 
J~o 

(-1q) (-'fli r 9+i q,ol 

The large L expansion (2.51) is an expansion in powers of 1/L with weakly 

L-dependent coefficients (if P f. 0). It is possible to convert the 

expansion in a pure power series by also expanding the integral Iq(f,Pl 

- 22 -

and the coefficients f.
1 

(p) for small P. The reason this is not done 
l m 

here is that the convergence properties of this power series would be 

rather poor, especially when n is not small. 

Formally, the series (2.51) can be derived by inserting the expansions 

(2.45) and (2.46) in the sum Sq(f,Pl. In each term, a power of 2~/l 

can then be factored out and, taking (2.49) into account, the series 

(2.51) is obtained (without Iq(f,P)). This "proof" involves unregularized 

divergent expressions'· and is therefore invalid, but since it gives the 

right result, it is useful as a mnemonic. 

2. 4 Large L expansion of the lovJest energy value 

As discussed in subsection 2.2, the ground state energy E of the finite 

volume system is given by eq. (2.38), where r. are the Taylor coefficients 
J 

at z ~ 0 of the function r(z) defined by eq. (2.40). In particular, 

we have 

'<o 

(2.55) 

1 
2L' [ vtii,iil + f " Hl L->"' 

2"' 

x V(iik) m 
J 1 ~2. 

1 

m=1 

A~->)"' v ( k,' fl, ~~ 

I: 
it;/oO 

I: 
~H 
" 

A -> ~ 1 ... v ( l<tt' 0 ) . 

The momentum sums occurring here are multiple sums of the typeS (f,Pl 
q 

with q ~ 1, P = 0 and 

t(kl, ... ,kn) 
....... ..,. ... -+_ .......... 
V(O,k 1)V(k1 ,k

2
) ... V(kn,O). 



- 23 -

It follows from the assumed properties of the potential V that f is 

square integrable and smooth with square integrable derivatives. For 

such well-behaved fUnctions f, it is not difficult to show that the 

large L expansion of multiple sums is obtained simply by applying 

eq. (2.51) to each sum individually. Thus, r
0 

can be expanded in a 

power series of 1/L and, recalling the Born series (2.18), the first 

few terms are found to be 

(2.56) 
4.a 

_o {1 a a 2 6 
' Z (1,0) ~L ' (z (1,0) ~L] l• O(l- ) r 

0 
mL

3 00 7( 00 'tC 

(to ~ll orders of V). Similarly, one shows that 

2 

(2.57) ( ao) -3 
r 1 = Z00 (2,0) 1t'L + O(L ), 

and more generally 

(2 .57') rj " O(L2j-4) 

for j ~ 1. 

From the large L expansion of the coefficients rj, we can now easily 

deduce the expansion of the energy value E (cp. eqs. (2.38), (2.39)). 

Noting 

(2.58) O(L-v -3) .f . . . 
r. r .... r. = ~ J 1+J 2+ ... +J-v 
Jl J2 Jy 

\)-1~1. 

it follows that at a given order of L -l, only a finite number of terms 

contribute to the series (2.38), in particular, we have 

(2.59) E 
-6 

r 0 
+ r 0r 1 + O(L ) . 
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Thus, we have shown that E can be expanded in an asymptotic power series 

of 1/L. Moreover, combining eqs. (2.56)-(2.59), one obtains 

(2.60) E 

(2.61) c1 

(2.62) c2 

4M 
__ o {"1 
ml 

3 

~Z00 (1,0) 

ao 
+ c1 L ' c2 

- 2.837297, 

a; 
l2 

1 ;2 (z (1,0)
2 -z (2,oll 

\ 00 00 

J•O(L-6 ), 

6.375183. 

In the ground state, the mesons are moving slowly and it is therefore 

not surprising that the result (2.60) coincides with the relativistic 

formula quoted in sect. 1 (relativistic corrections would however show 

up at order L-6). Using the machinery developed above, the series (2.60) 

could easily be extended by a few more terms. Besides the scattering 

length a
0

, these terms involve derivatives of the scattering amplitude 

at zero momentum such as, for example, the threshold parameter b
0

. 

At this point, the reader may wonder why it is that the coefficients 

in the large L expansion of E are expressible through the scattering 

amplitude and apparently do not depend on the local properties of the 

interaction potential, i.e. on "off-shell" quantities. The reason for 

this remarkable fact is that the boundary conditions are only felt when 

the particles are far apart. Now, within a perodicity cell, the meson 

wave function can be represented by a superposition of infinite volume 

scattering waves with energy E. Since the amplitude of these waves at 

large distances is proportional to the scattering amplitude, there-
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quirement of periodicity leads to an (implicit) eigenvalue equation 

for E in which the dynamics of the system is only represented through 

the scattering amplitude at energy E. Except for the case of 1+1-dimen-

sional quantum mechanics, which will be discussed later, this equation 

is complicated and is therefore not very useful, but it does explain, 

why Eisa function of the scattering amplitude at large L (cf. Ref. [3} 

and subsect. 2.7). 

2.5 Volume dependence of higher energy values 

The analysis which led to the large L expansion (2.60) of the ground 

state energy also applies to the higher lying energy values. For sim-

plicity, the discussion is here restricted to states, which have zero 

total momentum and which are invariant under the action of the full 

cubic rotation group 0C0(3). The subspace of all these states, later 

referred to as the A~ sector, is spanned by the vectors 

(2.63) ifi,A> I: I"Rj'i,-"R'f>, 
"REC1 

where p = l'Tt' fi and fi. runs over all integer vectors with 
L 

n1 ~ n2 ~ n3 ? 0. The normalization of these states is given by 

(2.64) <+ 'I+'> "'+ 6, p',A1 p,A1 o 96 "(p) L op'p 

where J((p) denotes the number of elements of V , which leave P fixed. 

For example, if n1 > 0, n2 = n3 = 0, we have N'CP) = 8. 

Because the potential V is rotationally invariant, the Hamiltonian Q1 
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can be considered an operator acting in the A~ sector. For V = 0, the 

eigenstates of 11-1 in this sector are the basis vectors l P, A~) and the 

corresponding energy values are equal to 2 €(P). From the above, it 

is easy to show that these energy levels are not degenerate for ~ 2~ 8 

(and also for many higher values of 1i2). 

We now choose a fixed P ~ 2r h such that the basis vector I P, A~ ) is 

a non-degenerate eigenvector of ~0 in the A~ sector. The associated 

eigenvalue E of the full Hamiltonian can then be calculated in pertur

bation theory using the formalism developed in subsect. 2.2. With lP,A~) 

as the unperturbed state, the function r(z) defined there is given by 

(2.65) 

Y(e)= (2J'((plL'f
1 L' {V(R:p,:pl 
\<€0 

00 

+I: 
fl: 1 

" Hl L-~, 
2.fl 

r' 
~ 

~. 

r' 
~ ... 

'V(Rj3,~lR.(k)V(f,,k,)"R.lk,l ... y(\~"'?) 1' 

~ 

where the momenta k are summed over the lattice (1.2) omitting the points 

with ! 2 
= p2 . 

As for the ground state, the large L expansion of the energy E is obtained 

by first expanding the Taylor coefficients r. of r(z) defined by eq. (2.36). 
J 

According to the summation formula (2,51), the leading contribution 

to the coefficient r
0 

at large L is simply given by replacing the mo

mentum sums by integrals and using an ie -prescription to integrate 

over the singularities at 12 = p2. Thus, we have 



(2.66) 

(2.67) 
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<0 ~ (21((j5lL'f 1 E M("Rj'i,j5l + 
RE I'J 

0 ( L- ~) 

.H.(1)',?) = 
~ (_... r ~) Yj>,-p + I: (-11" } d'l1 

" _1 
'i\=1 2 (2'1t)' 

' 

d'~ 
(1'1t)3 

A ~ ~ ! m ' ,. ... { tn \ ' (~ ~ 
x V(j>', f<, l"Re ,., ~, , l V(~1 , l>,l'Re .,.,, ,., .... Y l!.,.,?l 

1',--p-t< ~.-'!'-'• 

(here and below, we assume tP'I ~ IPI). It is possible to express the 

matrix element }{(P' ,Pl through the scattering amplitude Tnr at energy 

2 ECPl. To this end, one substitutes 

(2.68) 
~z .... z -1 .. z .... z -1 ~ ~2 _..z 

Re(k - p - ie) = (k - p - ie) - i'Tt o (k - p ) 

and uses the rearrangement identity (2.29) to sum up those terms in 

perturbation series (2.67), \Vhich combine to the scattering amplitude. 

After that one is left with a series, which can easily be summed by 

inserting the partial wave expansion (2.12), and the result then is 

(2.69) .K.(~',?l "" 81r I: 
= - tn .t=O 

( 2H 1 l 1'f (cos e l 

where p = \pI and e is the angle between p and P·. 

t2 of ., 

With the matrix }{(P' ,p) at our disposal, it is not hard to calculate 

a few more terms in the large L expanslon of the coefficients rj. For 

the energy E, this leads to the expansion 

(2.70) E 2 E (p) + ro + ror 1 + O(L- 6) 
' 

where r
0 

and r 1 are given by 

(2.71) 'Y" ~ -
0 

~"It 
tn L3 
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00 

[ ( H +1 l < 1't > 
1=0 

t<f 1>e ., 
x{H l. ( 1 -it'lt~S! 

00 ' 1tpl 
+ [l (1 fi. 2 ) ~ 12

] + O(L-•) oo , L , 

(2. 72) '=-1 

"" 
1: ( 21 + 1 ) < 1't) l ( 2 -IF) [ t9 Se ] ' 
l=O 

00 
' 7!'-pl 

+ O(L- 3
). 

The quantities ( 'Pt) appearing in these equations are defined through 

(2.73) (l't > 1 

Nlj5l 
L 1'e(cos9'R)' 

11•V 

9 R being the angle between p and Ri). In particular, 

and (P2) = 0 for all p. 

(Po) 48/ N'(p) 

Eq. (2.70) together with (2.71), (2.72) is the final result for general 

P. It shm~s that away from resonances (where tg bt blows up), the carrec-

tians to the free particle energy spectrum are small and calculable 

for large L, provided the phase shifts are known at the energy 2 E(P) ~ E 

considered. Conversely, if same finite volume energy values have been 

computed by independent means (by a numerical simulation, for example), 

the relation allm~s to determine the phase shifts at these energies 

or at least same combinations of them. 

For small P, the partial ~~ave expansions (2. 71) and (2. 72) are dominated 

by the S-\·Jave contribution so that the large L expanslon of the associated 
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energy values assumes a simple form. For example, for~ (1,0,0), one 

obtains 

(2.74) E = ~"' 
-tnL' 

_ 12t~So { 1 + c' ia S + c' ia"b ] + D(L-") 
-m.Ll. 1 0 o 2. o o J 

(2.75) c' 1 
1 

2:rrl Zoo(1,1) - 0.061367, 

(2.76) c' 
2 

..L,{z (1,1)
2

- 6 z 12,1)l 
~'It 00 00 

(the phase shift 0
0 

is to be evaluated at p 

2.6 Numerical study of a simple model 

- 0. 354156 

21r 
cl· 

The purpose of the present subsection is to test the large L expansions 

(2.60) and (2.74) in a concrete case. An important result will be that 

these formulae are apparently also valid in the presence of bound states, 

although they have only been proved in perturbation theory. 

The model considered is defined by 

(2. 77) V(i) { ~0 
if\1\~R, 

otherwise, 

where V
0 

is a constant. For this potential, the scattering phase shifts 

are known exactly, in particular, 0 is determined through 
0 

(2. 78) 

t9(pR + S ) 
0 

2 2 
q = p - m V

0 

f'_ tg(qR), 
q 
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(p: meson momentum in the centre of mass system). The S-wave scattering 

length is thus given by 

' 0 
R(_!_ tgv - 1) (v ~ 0), 

v 

(2. 79) 

' 0 
R(l:_ tghv - 1) (v ~ 0), v 

where we have introduced the dimensionless parameter 

(2.80) v o sign(V )R~. 
0 0 

In what follows, m and Rare assumed to be fixed whereas the parameter 

v is considered a variable characterizing the strength of the meson 

interaction. 

If v is negative, the potential is attractive and bound states may occur. 

From eq. (2.79), one sees that the scattering length diverges every 

time v passes through a negative odd multiple of ~/2. The number of 

S-wave bound states is therefore equal to n if v is in the interval 

-n-~<v/~ < -n~. This observation also shows that the meson inter

actions should be considered strong unless (say) \v\ <1. 

In finite volume, the scaled energy values 

(2.81) g 2 
ml E 

-2 
41< 
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only depend on v and L/R. For small and moderate values of v, an accurate 

variational calculation of the lm.;-lying levels in the A~ sector is 

possible by truncating the basis (2.63) after the first N
8 

elements 

and diagonalizing the Hamiltonian ii numerically in the subspace spanned 

by these vectors. I have performed such a calculation with N
8 

~ 100, 

which is sufficient to obtain results accurate to several decimal places. 

In Fig. 2 the 3 lowest energy values are plotted versus v at L/R 8, 

i.e. for a box size, which is reasonably large compared to the inter-

action radius. For v>O, the force between the mesons is repulsive and 

the energy values E are therefore slightly larger than the free particle 

values E
0

, which are equal to 0,1 and 2 respectively. The smallness 

of the deviations 6E = E - E
0 

indicates that at this value of the box 

' size, the asymptotic scaling law A E oc 1/ L has already set in. For 

small negative v, the situation is similar, although, of course, the 

energy values are now lowered by the interaction. As v passes through 

~'It, the ground state turns into a bound state and the first ti·JO excited 

levels drop by essentially one unit. These latter states thus become 

the lowest finite volume scattering states in the interval 

When v is further decreased, a second bound state forms at v 

and the picture repeats itself. 

3 
2'IT < v < 

lrc 
2 

In a larger volume, the curves in Fig. 2 change in two respects. First, 

the plateaus away from the transition points get even more pronounced 

!" 2 

and move closer to the integer values E = 0,1,2. Secondly, the transition 

regions near v = ~ 1t ~'IT, ... shrink, i.e. for very large l/R, the 

curves essentially become step functions. 
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The plateaus in Fig. 2 can be understood by noting that a /L and tg 0 /pl 
0 0 

(for small p) are small unless v is close to the transition points. 

The large L expansions established in the preceding subsections therefore 

apply and the calculated energy shifts 6E come out to be small thus 

explaining the plateaus. On the other hand, in the transition regions 

the energy shifts are of order 1 and the large L expansions diverge. 

Further analysis would therefore be required, if a quantitative under-

standing of the energy levels in such a resonant situation is to be 

achieved, too. 

In places 1..rhere they apply, the large l expansions (2. 60) and (2. 74) 

fit the numerically calculated energy values exceedingly well. This 

is shmm in Fig. 3 for v = 11", i.e. for a strongly repulsive potential. 

For smaller values of v, the agreement is even better and extends to 

lower values of L/R. In the presence of bound states, the expansions 

are apparently also valid, if one applies them to the lowest finite 

volume scattering states as explained above. For example, at v = -11.", 

where there is one bound state, the quality of the fit obtained is about 

the same as at v = ~- This confirms the expectation that the large l 

expansions established in this paper are universally valid, even though 

they have only been proved to all orders of perturbation theory. 

2.7 One-dimensional quantum mech~nics 

In a one-dimensional box of size L, the probability for the particles 

to meet is proportional to 1/L and the finite size energy shifts are 
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therefore not small compared to the free particle level splitting. For 

this kinematical reason, the perturbative techniques developed in the 

preceding subsections do not apply in one dimension. The situation is 

however so simple that an exact relation between finite volume energy 

values and the scattering amplitude can be established with little effort. 

The basic observation is that for zero total momentum and fixed energy 

E, the SchrOdinger equation in infinite volume has only one solution 

'VE (respecting Bose statistics). Outside the interaction rangeR, this 

solution is give~ by 

(2.82) "VE (x,'!) "" 
-iplx-<tl 2iS0 iplx-'tl 

e + e e 

where p :~is the meson momentum and 5
0

(p) the scattering phase 

shift. Since ~E is unique, any finite volume eigenfunction of the 

Hamiltonian with energy E and zero total momentum must be proportional 

to 1VE for lx- yl <~ l. For large l, the wave function near the boundary 

of this region is thus given by eq. (2.82) and the requirement of perio-

dicity hence leads to the beautiful formula 

(2.83) 
e2i 80(p) /pl 

1, 

which relates the finite volume energy value E 

phase shift 8 at this energy. 
0 

p2/m to the scattering 

Although no proof will be given in this pap8r, eq. (2.83) is probably 

also true in 1+1-dimensional quantum field theories up to polarization 

terms, which decrease exponentially as l increases. A numerical lattice 
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calculation of the scattering phase shift at low energies should therefore 

be possible in these theories simply by evaluating the lowest t•~o-particle 

energies for a few lattices with variable size (and fixed couplings). 

In particular, it would be interesting to see whether the known exact 

S-matrices of some "integrable" theories such as the non-linear (f -model 

can be reproduced in this \~ay. 

3. Volume dependence of two-particle energies in quantum field theory 

In quantum field theories, large l expansions of the two-particle energy 

values exist as in quantum mechanics, but their proof is slightly more 

complicated because of polarization effects. To keep the presentation 

as simple as possible, we here again restrict the discussion to the 

class of scalar quantum field theories defined at the beginning of 

sect. 2 of Ref. (1}. The reader is thus assumed to have read these in-

trociuctory paragraphs and the notation used there is completely taken 

over without further reference. 

For the derivation of the large l expansions, we shall make two further 

assumptions to avoid unnecessary technical complications, which would 

only obscure the essential parts of the argumentation. The first one 

is that the theory is invariant under the reflection cf>(x) ~ - ~ (x) 

so that correlation functions of an odd number of fields vanish. The 

second requirement is that the theory has a fixed ultra-violet cutoff, 

which is relativistically invariant and which guarantees the convergence 

of unsubtracted Feynman diagrams. These assumptions are not really 
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necessary and, with some effort, the large L expansions could also be 

proved without them. 

In what follows, the strategy is to derive a representation of the 

elastic scattering amplitude and of the perturbation series for finite 

volume energy values, which has the quantum mechanical form with a 

modified Bethe-Salpeter kernel in place of the potential Vck• ,k). The 

techniques developed in sect. 2 can then be carried over and the large 

L expansions are obtained as before. 

3.1 Definition and properties of the Bethe-Salpeter kernel 

The dynamics of t~tto-particle states in the scalar quantum field theories 

considered here is governed by the Bethe-Salpeter (or two-particle irre-

ducible) kernel, which will be denoted by BS(p
1

,p2 ,p3 ,p4) in infinite 

volume (p
1

, ... ,p4 are external euclidean 4-momenta). In perturbation 

theory, BS(p1 ,p2,p3,p4) is equal to the sum of all those Feynman diagrams 

contributing to G(p
1

,p2 ,p3 ,p4), which are two-particle irreducible in 

the (p
1

,p2)-channel, i.e. diagrams with a skeleton as in Fig. 4 are 

excluded. 

The full connected 4-point function G(p
1

,p2 ,p
3 ,p

4) can be expressed 

through the Bethe-Salpeter kernel by iterating the integral equation 

graphically represented by Fig. 5. To write down the resulting geometric 

series in a compact form, \Ve introduce the follmving notation. First, 

define P, p' and p such that 
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p = 1P + p' 1 2 • 

(3.1) 

- 1P I p2 - 2 - p • 

p3 = - ( ~ " + ? ) ' 

(3.2) 

- ( j P4-- TT'-?1. 

Because of momentum conservation, the total momentum P flowing through 

the Bethe-Salpeter kernels and the two-particle propagators is ab1ays 

the same so that in v1hat follows, the dependence on P is not explicitly 

indicated. Accordingly, •ve set 

(3.3) K(p' ,p) = BS(p1,p2,p3,p4)' 

(3.4) G2(k) 1 1 
GC? + k) GC?- k), 

and the series alluded to above then reads 

G(p1,p2,p3,p4) 

(3. 5) 

00 

K(p' ,p) + L 
-n"' 1 

2fi 
l• _, 
(1K); 

K(p',k
1

)G2(k
1

)K(k
1

,k
2

) G2(k2) ... K(kn,p). 

J'k., 
(21tl' 

This equation resembles the Born series (2.15) for the non-relativistic 

scattering amplitude, but there are some important differences, in 

particular, the relative energies k? of the intermediate two-particle 
1 

states are not restricted to the mass shell. 
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As a function of the total energy P0 , the 4-point function G(p
1

, .. ,p4) 

has a cut in the complex plane, which stems from the real two-particle 

intermediate states in eq. (3.5). To exhibit this singular structure 

more clearly, we shall later deform the k~ integration contours to pick 
l 

up the contributions of the meson poles in the two-particle propagators. 

That there are no other singularities below the 4-particle threshold 

is guaranteed by 

Theorem 3.1: To all orders of perturbation theory and for arbitrary 

~ ~ + 
real P, p' and p, the Bethe-Salpeter kernel K(p' ,p) extends 

to an analytic function of P
0

, p~ and p
0 

in the domain 

(3.6) lim P
0

1 < 4m, lim p~l < m, [Im p
0

1 < m. 

Proof: *) 

Let 3) be a Feynman diagram contributing to BS(p1 ,p2 ,p3,p
4

) and let ~ 

be the associated abstract graph (cf. subsect. 2.3 of Ref. [1] ) . ~ 

has 4 external vertices, denoted a1 ,a2,a3 and a
4

, where the external 

momenta pi leave the diagram. It is possible that some of these vertices 

coincide. 

*) The analyticity properties of the Bethe-Salpeter kernel are of course 

well-known from axiomatic quantum field theory (e.g. Ref. {121). A proof 

of theorem 3.1 is given here for completeness and as a preparation for 

the proof of theorem 3.2. 

- 38 -

As in the proof of theorem 2. 3 of Ref. (1], we now proceed to construct 

optimally distributed flows of external momentum through 1 . To this 

end, add 2 extra vertices u,v and 8 extra lines to 1 as shown in Fig. 6. 

This augmented graph is 3-particle irreducible between u and v, and, 

in view of theorem 2.2 of Ref. [1], there are therefore 4 disjoint 

paths 'l\,. . , P4 connecting u and v. The orientation of these paths 

is fixed by declaring u to be the initial and v the final point. For 

every line ~ in ~ , define 

[J>i:e)= r 1 if t E 'J', 
t ' 

0 otherwise, 

where the sign is +1, if the orientations of .f and "Pi coincide, and 

-1, if they are opposite. With the help of these orientation numbers, 

an integer valued flow f 1 ( .l ) can be defined through 

~ 

{, (el ~ [ 1'; : eJ . 
t=1 

By construction, f 1 is conserved at every internal vertex and the out

flowing units at a1 , a2 , a3 and a4 are 3, 1, -3 and -1 respectively. 

Furthermore, because the paths Pi are disjoint, we have \'f-1 ( t) [ ~ 1 

for all lines e in 1· 

By permuting a1 with a2 and a3 with a4 in Fig. 6, further integer flows 

t 2 , f 3 and f 4 can be constructed analogously. Consider now the momentum 

flow 

• \del r_ 
i=1 };lei qi' 
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where q1 , ... ,q4 are arbitrary constant 4-momenta. At every internal 

vertex, this flmv is conserved, and at the vertices a
1

, .... , a 
4 

the out

flowing momenta p1 , ... ,p4 are given by eqs. (3.1), (3.2) with 

1 
4 p = q1 + q2 + q3 + q4, 

(3. 7) p' = q1 + q2 - q3 - q4' 

p = -ql + q2- q3 + q4. 

Moreover, we have 

• lim i<(e)/ >, L 
1.=1 

limqil for all e 1 

so that the singularities of the Feynman integrand of the diagram 

are avoided if the bound 

• 
(3. 8) L 

i==1 
lim 9; I < m 

is satisfied. 

For given P, p' and p, the momenta qi are not uniquely determined by 

the linear system (3. 7). ~·Je may thus impose a further constraint, for 

example q1 = 0. The solution of (3.7) then reads 

1 p 1 ' 
q2=8 +2p 

(3.9) 1 1 
q3 = 8 p - 2 p. 

1 1 ' 
q4=2P-2P 
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and the flow k ( e ) is thus completely determined by the external momenta. 

The relations (3.9) and the bound (3.8) define an open complex domain 

[)1 in the space of complex momenta P, p' and p. This domain contains 

the real momentum configurations and is convex. Moreover, by the above, 

[)
1 

is a domain of analyticity of the Feynman integral associated to 

the diagram /J) . 

Instead of choosing q1 = 0, we may just as well set qi = 0 for some 

i ~ 2,3,4 and one then obtains a domain [)i of analyticity for each 

choice. Now we note that U)i n UDj is a convex domain containing the real 

momentum configurations and the analytic continuations of the Feynman 

integral associated to 8J in the domains [) and [) therefore coincide 
l J 

on the overlap D1 () [lj . It follows that the Feynman integral extends 

to a single valued analytic function in the total domain 

" [)BS = u 
:._,1 

[); 

which contains all momenta satisfying the bound 

I~ lm1'+ s' lmt>' I+ I~ lm1'+s[,qol + ls'lmt>'+ s lmt>l < 2.m 

for some choice of signs s', s + 1. With this explicit characterization, 

it is now not difficult to verify that [) 85 includes the domain (3.6). [) 

In finite volume, the Bethe-Salpeter kernel KL(-p~-p) is defined in exactly 

the same way as in infinite volume, i.e. every Feynman diagram contributing 

to K(p' ,p) also contributes to Kl(p' ,p) with all integrals over the 

space components of the loop momenta being replaced by sums over the 

lattice (1.2). It is obvious that theorem 3.1 also applies in finite 
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volume, and at large L the behaviour of KL(p' ,p) is described by 

Theorem 3.2: Suppose P0 ,p~ and p
0 

are complex and satisfy the bounds 

(3.6). Then, to all orders of perturbation theory and for 

arbitrary (real) P, p• and p, we have 

(3.10) KL (p' ,p) ~ K(p' ,p) + O(L-N) 
L+<><> 

for all N ~ 1. 

Proof: 

Let £) be a Feynman diagram contributing to the Bethe-Salpeter kernel 

and let k(t) be the flow of external momentum constructed in the proof 

of theorem 3. 1. \oJith this choice of momentum flow, the Feynman integrand 

associated to 1J is a C00 function of the loop momenta and the regular 

summation theorem (2.42) hence implies (3.10). [] 

Actually, using the techniques of Ref. [1], it is possible to show that 

the difference KL K decays exponentially for large L, but for the 

present purposes, the weaker statement (3.10) is quite sufficient. In 

what follows, terms which vanish more rapidly than any power of 1/L 

are neglected, in particular, KL is set equal to K without further notice. 

3.2 Singularities of the two-particle propagator 

The elastic meson scattering amplitude is obtained from the euclidean 

4-point function G(p 1 ,p2 ,p
3

,p4) by analytic continuation to purely 

-
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imaginary energy components p~ (cf. suu~:oct. 2.1 o~ Re:::. [1)). In view 

' 
of theorem 3.1, this analytic continuation presents no problem for the 

first term in the expansion (3.5) of the 4-point function, but the higher 

terms involve the two-particle propagator G2(k), which gives rise to 

singularities in the elastic region 2m~ ImP
0 

< 4m. We are thus led 

to study the analyticity properties of integrals of the form 

(3.11) 
I dk 

J " J 2; f(k
0

) G2(k), 

where f(k ) is a testfunction analytic in the strip \Im k \< m and k 
0 0 

is real. 

~ 

Lemma 3.3: In the centre of mass system (P = 0), the integral J extends 

(3.12) J 

Proof: 

to an analytic function of P 
0 

in the region 0 ~ Im P 
0 

< 4m 

with a simple pole at P
0 

= i2w(k) (if w(k) <2m)*.) The residue 

of the pole is given by 

f(O) ~ -1 
(2 w(k) + iP 

0
) + 0(1). 

(2..,(k) )2 

It is a well-known consequence of the Kallen-Lehmann representation 

that the single particle propagator G(q) can be written as 

2 2 -1 A 

G(q) (m + q I + G(q), 

where Gtq) is analytic for q2 > -(3m) 2 . It follows from this representation 

that in the centre of mass system and for 0 4, Im P 
0 

< 4m, the only singu

larities of G2(k) in the strip lim k
0

[ < m are simple poles at 

*) recall wckJ = ~m2 
+ t 2 . 



(3.13) k 

~ 

D 
+ cl P 

2 D 
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iw(k)). 

If W{k) ~ 2m, these poles keep away from the real line and the integral 

J is therefore analytic in the whole strip 0' Im P 
0 

< 4m. On the other 
~ 

hand, if W(k) <2m, the poles approach the real axis from above and 

below as Im P0 grows towards 2w(k) and the integral develops a singu

larity. 

To work out the singularity, we first note that (3.11) is a valid re-

presentation of J in the region 0 ~ Im P ~ w (k). Next, for Im P ~ W(k), 
D D 

we shift the k0 integration contour to the line Im k
0 

= m', where m' 

is some mass in the interval ~ W (k) < m' < m. Along the way one picks 

up a contribution from the pole at k0 

J thus becomes 

(3.14) J ~(~.) i 
2 w(itl G ( 2 P - k) + 

where k is given by 

(3 .15) k ~ 

(iw (k) 
1 + 
2 p o' k) · 

+ 

~ P 0 + i w (k) and the integral 

I d~. i(~ l G2(f<J, 
2K r • 

1-m k-0 = m' 

As long as w(k) ~ Im P0 < 2(m+m'), the poles (3.13) do not cross the 

integration path Im k0 = m' and the representation (3.14) hence defines 
+ an analytic function in this domain with a simple pole at P0 = i2W(k) 

coming from the first term. Since m' can be arbitrarily close tom, 

we have thus shown that J is analytic in the total domain 0~ Im P 
0 
< 4m 

\>lith a pole as described by eq. (3 .12). D 
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If we consider G2{k) a distribution on the space of test functions f{k
0

) 

which are analytic for lim k
0

1 < m, the statement of the lemma may be 

summarized by 

(3.16) G2(k) [C2w(k)) 2 (2w(k) + iP )]-12,S(k) +G2(k), 
D D 

where G2(k) is a distribution analytic in the domain 0 ~ ImP
0 

< 4m. 

An explicit representation of G2(k) could easily be extracted from the 

proof of lemma 3. 3 but is not needed in what follm~s. We only note that 

G"2{k) is also a smooth function of k E IR3. 

In finite volume, lemma 3.3 holds literally, if we neglect corrections 

vanishing exponentially at large l. This follows from the observation, 

already made in Ref. [1], that the meson self-energy E.l (q) differs 

from the infinite volume self-energy ~(q) by exponentially small terms 

only, provided q is real and I Im q l <3m *). For the derivation of the 
D 

large l expansion of the low-lying two-particle energies, the finite 

volume two-particle propagator G2l(k) may therefore be replaced by G2(k) 

and eq. (3.16) may be applied as long as 0' Im P
0 

< 4m. 

*) Strictly speaking, the proof of Ref. [1] only applies for lim q ~~ m, 
D 

but by distributing the external momentum flowing through the diagram 

considered to 3 disjoint paths instead of only one, the argument can 

easily be extended. 
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3.3 Two-particle singularities of the 4-point function 

We nm1 use the results established in the preceding subsections to 

rearrange the series (3.5) in such a way that the two-particle singula-

rities are clearly exhibited. In the end, we shall only be interested 

in states with zero total momentum and total energy below the 4-particle 

threshold. For the rest of this section, we therefore set 

(3.17) P = (iW,O,O,O) 

and assume 0 ( Re W < 4m. 

According to eq. (3.16), the two-particle propagator can be split into 

a singular and a regular piece as follows: 

(3.18) G2(k) [(2w(k) )2 (2 w(k) - i')] -i 21t S(k
0

)h(k) + R2(k). 

~ 

Here, h{k) ~ 0 denotes a smooth rotationally symmetric cutoff function 

satisfying 

(3.19) h(k) {~ 
if tu(k) < 2m, 

if w(it) '> 3m. 

This auxiliary function is introduced for technical reasons to avoid 

a superficial ultra-violet divergence in eqs. (3.20), (3.21) below. 

If we now insert the decomposition (3.18) into eq. (3.5) and apply the 

rearrangement identity (2.29), the geometric series 

G(p1,p2,p3,p4) 

(3.20) 

A 1 
K(1J',t>l + 2. 

d'k I (21t)' 
~0c0 
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A ft(~) A 

K(.p',l•l,. _,;>"''" ,.,., "l k(~.-pl+ ... 

is obtained, where the new kernel K is given by 

K(t>',-pl 

(3.21) 

00 

k(f>',-pl + L_ 
"ff.:::::-1 Z" 

I d4k 
(2'11')~ 

d.~k, 
... ('l'K)~ 

, K(f>',R1 )R2(~Jk(k"k2 lR2(k,l ... K(i<-n,1Jl. 

The point of this reformulation is that K is an analytic function of 

\d with no singularities in the strip 0 ~ ReW < 4m. The two-particle 

cut of the 4-point function is therefore entirely due to the explicit 

energy denominators in eq. (3.20). Moreover, the relative energies k~ 

of the intermediate two-particle states have disappeared and the series 

(3.20) has a form, which is very similar to the non-relativistic Born 

series (2.15). 

This similarity becomes even more pronounced, if we consider the scattering 

amplitude reP· .-P·IP.-P), which is obtained from the 4-point function 

by setting 

(3.22) w =; 2 w (i)) .+ i€ 

and p' "'p "'0 (cf. subsect. 2.1 of Ref. (1]). Eq. (3.20) then assumes 
0 0 

the form 
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T A 00 

UEW,pl + L 
-tl=1 

HJ" 
2" 

d'k I (2~;, ... d'k -" 
(21>:)' 2tnW 

(3.23) 

, Ctt (~~ ~ I'RE ni, 1 o.En<, ~,1 REni,l ... QE n~.,, :p l, 

+ 
where RE(k) is the non-relativistic resolvent (2.17) and E is defined 

through 

(3.24) 
... 2 2 2 

E = E_ =(W - 4m )/4m. 
m 

• + + 
In contrast to the non-relativistic case, the "potential" UE(k' ,k) 

appearing in eq. (3.23) is energy dependent. It is related to the kernel 

K by 

OE(k' ,k) - .l'ik') S'(k) K(k' ,k) I k~ k = 0 ' 
0 

(3.25) 

S'(~ l 1 
~wn;l 

./h(k)(2wlkl + W) I tn,. 

From the properties of K established above, we thus infer that 

" .... ...... 00 ... ... 
UE(k',k) is an analytic function of E and a C function of k' and k 

with compact support. 

We finally note that if one neglects terms vanishing more rapidly than 

any power of L-1 , eq. (3.20) is also valid in finite volume provided 
+ 

the integrals over the relative momenta k of the intermediate two-particle 

states are replaced by sums over the lattice (1.2). All other entries 

in eq. (3.20), in particular the kernel K, are the same as in infinite 

volume. 
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3.4 Perturbation expansion of two-particle energies in finite volume 

The two-particle energy values in finite volume can be extracted from 

the exponential decay of correlation functions of even composite fields. 

A convenient choice of such operators, suitable for the calculation 

. + . of energy values 1n the A1 sector, lS 

(3.26) 0p(X0 ) = L 
'R.€11 

...... -.. ) 
_ 3 \ 3 '3 -t-p(x-~ -i> .,.. 

L d.xcf~ e 4>(x 0 ,'Rx) 4>(X 0 ,'Rljl, 

where the natation concerning R, V and P is as in subsect. 2.5. Note 

that in the presence of interactions, the relative momentum of the 

mesons is not conserved and Dp therefore couples to all two-particle 

+ states ln the A1 sector. 

Nm1 let C .. (x ) be the (euclidean) two-point correlation function of 
p 0 

Dp in finite volume and consider the Fourier transform 

(3.27) Cp(Po) I 
-iP x 

dx
0 

e o o i:pi'o). 

In the complex P0-plane, Cp(P0) is expected to have a series of poles 

on the ima'ginary axis, which correspond to the energy values we are 

looking for. 

To locate these poles in perturbation theory, v1e first note that in 

terms of the finite volume 4-point function, we have 



c.p t1'ol 
(3.28) 
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'36 N('\'5) l ~ G2.L(-pl + 
21< 

lir 
L

3 
'R• 0 

14h 
lh 

.<i.h 
2rr 

G2Jp'l GLli',,"\',,?,.t>.\ G2Ll-pl, 

~-Jhere p' =: (p~, RPl and p
1

, ... ,p4 are given by eqs. (3.1), (3.2). As 

already mentioned earlier, G2L can be replaced by G2 and the 4-point 

function can be represented by the geometric series 

GL (p1,p2,p3,p4) 

(3.29) 

A ) 1 
1<(?',? + 2L3 

ntkl 
r. fKCi'',l>d c2w(i::Jl'(2w(i::J+iPol it· 

KOt ?ll + ... , 
J ko=O 

if one neglects contributions vanishing more rapidly than any power 

of L- 1 . It follows from this relation and eq. (3.16) that at any finite 

. ~ 

order of perturbation theory, Cp(P 
0

) has (multiple) poles at P 
0 

= i2 w ( k) 

~ 

where k runs through the lattice (1.2). The situation is in fact exactly 

the same as in the non-relativistic perturbation theory discussed in 

subsect. 2.2 with Cp(P
0

) playing the rOle of the function F(z). The 

steps needed to extract the true pole positions to all orders of per

turbation theory can thus be copied from subsect. 2.2, in particular, 

for each state in the A~ sector, which lS non-degenerate in the absence 

of interactions, the energy value P
0 

= iW is determined by an implicit 

equation of the type (2.32). Explicitly, for the state with W = 2 w(Pl 

in lowest order, one finds 

(3.30) W 2 ~2 
+ mE, 
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where E is the solution of 

(3.31) E 2 e(f)') + r(E), 

Y(<) = 
00 " (2JII'(~JL'f1 ~ f Q. (1<~ ~) + £ Hl l-3n I'.' r.' 

t' 'R€(? l: 'PJ'P tt=1 2'\1 I! ... ~ 
"' ~ 

(3.32) 

, u .. ('R?JJR, c ~) o.. n~,, k, nJk, l... u .. ( ~",? J 1 

(the notation is as in subsect. 2.5). 

The similarity of the result (3.31), (3.32) with the corresponding non

relativistic formulae (2.32) and (2.65) is striking, the only difference 

being that the potential here is energy dependent and that the parameter 

E is not the total energy (which is given by eq. (3.30)). To solve the 

implicit equation (3.31), one proceeds in exactly the same way as in 

subsect. 2.2 so that these steps need not be repeated here. We have 

thus obtained the complete perturbation expansion of the non-degenerate 

levels in the A~ sector and it is clear that the method would work just 

as \'Jell in other symmetry sectors. 

3.5 Large L expansion 

The partial wave expansion of the relativistic scattering amplitude 

T in the centre of mass system reads 

(3.33) T 
00 

-tb 'K VJ r c u H l "Pf c cos e J -t ~ , 
~=0 
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where t.t is again given by eq. (2 .13) and 1--J 

The combination 

(3.34) r T 
2riill 

2 w(Pl is the total energy. 

thus has a partial wave expansion which coincides \~ith the expansion 

(2.12) of the non-relativistic amplitude Tnr' Moreover, the perturbation 

expansion (3.23) ofT has exactly the same form as the Born series {2.15) 

with 0 replaced by OE. Finally, if one takes into account that the energy 

values in finite volume are determined by eqs. {3.30) - {3.32), one 

realizes that a complete matching between the relativistic and non-

relativistic formulae has been achieved. In particular, the whole large 

L analysis presented in sect, 2 carries over literally and the following 

remarkably simple result is obtained. 

Theorem 3.4: Suppose W is a non-degenerate energy value in the A~ sector. 

-6 Then, up to terms of order L , the large L expansion of 

't~ is obtained by setting W = 2 ~ m2 
+ mE and substituting 

the corresponding non-relativistic large L expansion for E. 

In particular, noting 

(2.35) W = 2m + E + O{E2) 

and recalling eq. (2.60), one obtains the large L expansion (1.3) of 

the relativistic ground state energy announced in sect. 1. Similarly, 

the expansion of the next to lowest lying energy value derives from 

eq. (2.74) and for the higher levels one refers to eqs. (2.70)-(2.72), 
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Up to the order of L-l stated, the proof of theor8m 3.4 is trivial, 

because it makes no difference whether or not the potential which 

determines the function r(z) is energy dependent. At higher orders, 

the situation is however more complicated and it is not immediately 

clear that the theorem still holds, although this is indicated by an 

explicit calculation of the order L-6 contribution to the ground state 

energy. 

3.6 Application to the '!t"1t- and 'ltN-system 

As an illustration I·Je here consider the case of t~JO pions or a pion 

and a nucleon enclosed in a box of size L. Isospin breaking effects 

are neglected and the masses m'n' and m N of the pion and the nucleon 

are assumed to have their physical values {i.e. m'lt = 139 MeV, 

mN = 938 MeV). In Ref. [2], the finite size mass shifts of these particles 

due to polarization effects were estimated to be less than 1 % and 

exponentially decreasing for L ~ 3 fermi. For the large L expansions 

of the t~JO-particle states to apply, the box size should therefore 

be at least t·his big. 

T~eJo-pion states have isospin I= 0,1 or 2. For even isospin, the lowest 

state is the ground state in the A~ sector and the large L expansion 

of the corresponding energy values W thus reads 

(3.36) \·J 2~m! + m'!'t E, 

' 



(3.37) E- - 41r a~ 
m,L' 

(H c a~ 
1 L 
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I l 
+ c (a.) 1 + 

1 L2 
O(L- 0 ) 

' 

where a1 denotes the S-wave scattering length in the channel with isospin 
0 

I and the coefficients c1
,c2 

are given by eqs. (2.61), (2.62). On the 

other hand, for I 1 the lowest state transforms as a vector under 

the cubic rotation group eJ with the pions carrying one quantum of 

relative momentum (because of Bose statistics, two pions in an I 1 

state cannot be both at rest). The energy VJ of this state is again given 

by eq. (3.36) with 

(3.381 E 
~'11:2 

m1tL'2. 
1~ (" + c' 1:a s; + c~ t~ o~ 1 + 
"" L2 1 o 

~ 

0 ( L- •) 

where &i denotes the scattering phase shift in the I(Jp) = 1(1-) channel 

' 

21< h • • I • (2 
at momentum p = l and t e coefflClents c:i_, c2 are the same as w eq. . 74). 

The values of the scattering lengths a; suggested by experiment [71 

and chiral perturbation theory (8] are 

(3.39) 

a~ 

2 
ao 

0.3 fermi, 

- 0.06 fermi, 

and for the phase shift Oi, the phenomenological formula 

(3.40) 
1o~ o; 0.04- (~ )'h 

1+V 
1 

1- v /V~ 

)I ,, I""" 
r " ' 

\)9 = 6.56, 
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appears to provide a good fit of the experimental data (cf. Ref. (7], 

p. 96f). With these values as input, the volume dependence of the ground 

state energies for I 0,1 and 2 is as shown in Fig. 7. The dynamical 

finite size effects on the 1\~-system are thus rather small which is 

no surprise in view of the small scattering lengths (3.39). 

The weakness of the pion interactions at low energies is usually 

attributed to the Goldstone nature of these particles and a calcula-

tion of two-particle energies in lattice QCO could therefore provide 

a check on this aspect of the theory. To actually reproduce the curves 

of Fig. 7 •~auld require a calculation of energy values on large lattices 

~~ith an accuracy of about 1 %, which is probably impossible to achieve 

in the near future. However, one does not know apriori whether the lattice 

pions interact weakly indeed, and to obtain at least an upper bound 

on the scattering lengths, a less precise computation may therefore 

be worthwhile. 

Tile large L expansions (3.37) and (3.38) have only been proved for asymp-

totically large L and they do therefore not obviously apply in volumes 

where there are but a fe\<J two-pion levels below the 4-pion threshold 

( cf. Fig. 1) . However, it is quite clear that for L ~ 3 fermi the physics 

of slow pions in the box should not be greatly influenced by virtual 

many-particle states. Moreover, from experience with the simple quantum 

mechanical system studied in subsect. 2.6, one concludes that the large 

L expansions are apparently valid, if the dynamical finite size energy 

shift ~E is small compared to the free particle level splitting and 
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if the higher order terms in the expansion are small corrections to 

the leading term. Both of these criteria are satisfied fpr all curves 

in Fig. 7 over the whole range of L displayed and one may therefore 

be confident that they are close to the true curves (if eqs. (3.39) 

and (3.40) are approximately correct). 

The lowest lying pion-nucleon states in the isospin I = ~. ~ sectors 

have positive parity and transform according to the fundamental 

("spin 1/2") representation of the spin covering of the cubic group. 

Their energies W are given by 

(3. 41) w 

(3.42) E 

~ m~ + 2~E 

I 
21t Uo+ 

p. l~ 

+ ~m~ + 2~E, 

I 
[1+ca'.+ 

' L 

I 1 
c (ao+) ] 

2 L' 
+ 0 ( L-&) 

' 

where ~ is the reduced mass of the system and a~+ denotes the scattering 

length in the channel with isospin I, orbital angular momentum 0 and 

positive parity. The experimental values are (9] 

1/2 
a o+ 0.24 fermi, 

(3.43) 
3/2 

a o+ -0.15 fermi, 

so that a plot of E versus L would look similar to Fig. 7 
• 

We finally note that in all cases considered so far, the low-lying energy 

values are well separated from resonances or bound states in the same 
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channel. For nucleon-nucleon states, the situation would be rather 

different, because of the existence of the deuteron which goes along 

with large scattering lengths [10]. Thus, in this case one is dealing 

with a resonance situation and finite size effects are expected to be 

large as was observed in the simple model of subsect. 2.6. 

4. Concluding remarks 

The relations established in this paper show that the volume dependence 

of the two-particle energy values is determined by the elastic scattering 

amplitude at these energies. An independent calculation of such energy 

values (by numerical simulation, for example) may therefore be expected 

to provide interesting qualitative information on the structure and 

strength of the particle interactions in the quantum field theory con-

sidered. If a very accurate calculation is feasible, one may even be 

able to extract the scattering phase shifts in this way. Note that one 

directly gets the physical scattering amplitude, in particular, no analytic 

continuation is required. 

A study of finite size effects in a simple model such as the lattice 

~ 4-theory would of course be very useful at this stage. In doing so, 

the following points should be taken into account. 

(a) If the basic correlation length is not much bigger than the lattice 

spacing "a", the large L expansions assume a form, which is slightly 

different from the one obtained here, because the lattice theory in 
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infinite volume is not Lorentz invariant. In particular, one must distinguish 

between the rest and inertial masses of the particles. It is however 

not difficult to deduce the lattice large L expansions by adapting the 

arguments of sect. 3 (see also Ref. [11)). 

(b) As long as the parameters in the Lagrangian are kept fixed and only 

the lattice size is varied, one need not worry about the effects of 

the finite ultra-violet cutoff, because these are exactly taken into 

account by the lattice large L expansions. However, if data from different 

points on the same renormalization group trajectory (points of equal 

low energy physics in other words) are included in the anaJysis, one 

must make sure that finite size effects are not confused with O(a2) 

corrections [13]. 

(c) As discussed in subsect. 3.4, the two-particle energies can be 

determined from the exponential decay of the two-point correlation func-

tions 

local 

of the operators Op at large times. It is not advisable to use 

operators such as ~(x) 2 instead of Op, because the amplitude 

for such operators to create a two-particle state from the vacuum is 

proportional to L-3 and is hence small in general. 

An interesting feature of the large L expansions (2.70)-(2.73) of the 

higher energy levels is that they break down for energies near a re-

sonance, because the coefficients in the expansion diverge. Thus, in 

the neighborhood of a resonance, finite size effects are strong and 

an energy level, which passes through a resonance as L increases, is 
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expected to show some unusual behaviour. Eventually, this observation 

may lead to a practical and conceptually satisfactory characterization 

of resonance states in finite volume (as would be required for a meaning-

ful calculation of the masses of unstable particles in lattice QCO, 

for example). 

The proof of the large· L expansions given in this paper does not apply 

in the presence of bound states, although it is quite clear from the 

model solved in subsect. 2.6 that the expansions are valid in this case, 

too. It is difficult to dispense with the framework of Feynman diagrams 

in quantum field theory, but as in sect. 3 of Ref. [1] , bound states 

may be incorporated by introducing independent interpolating fields 

for them. With some modifications, the proof of the large L expansions 

then goes through as before. In quantum mechanics, it is perhaps also 

possible to design a truly non-perturbative proof on the basis of a 

more direct analysis of the SchrOdinger equation in position space 

as in the 1-dimensional case (cf. Ref. [3]). 
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Appendix A: Properties of the zeta function Ztm(s,~2 ) 

We first show that Z.€m(s,~2 ) 

ats=~-j, j =0,1,2, ... , 

is a meromorphic function of s with poles 

for -f = 0 and no singularities for .l f- D. 

Starting from the definition (2 .47), valid for Re s > ~( .e + 3), we 

have 

ltm ( S, iF) 

(A.l) 

where Ftm is given by 

(A.2) Fe.,lt,:tl'l 

E. 
'Y1< .fi1 

1 00 

+-I 
rrsl l 

0 

L. 
va>~2. 

-s 
o.~.,/~l (v'- n'l 

,s-1 ( ... , 
cH' Ft., t,n), 

a£.,..(vl 
-t(iF-:rt') 

e 

Obviously, Ft (t,h
2

) is smooth for t>O and exponentially decaying for 
m 

t o+ oe> . At small t, 1ve use Poisson's summation formula to shm" that 

F ( t ti' l = .em ' E. 
v''~' 

Qi.,(v) et(.fi'-v') 

(A.3) 

( )

3h tn' 1 ~ • 
+ T e r. Q (ii;l.) e-~,(x-hvl I 

::; ~WI ,c. -+ ~ 
X=O 

which implies the asymptotic expansion 

(A.4) F~., (t,.fi'l ,..__ 
t~o 

~ 

L:. 
1~0 

( A1 i j + 
• 3 

Bj t 1- 2 ) , 

(A. 5) 

(A. 6) 

A· 
J 

Bi 

_ _1_ ., 
1· 
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r_ Q (vl (-IF- v' )3 
~2~ .h2. .i.vn .. 

&to 0-mo 
3h 

1t ~ (.fi')j 
1· . 

It follows that 

(A. 7) F N ( t ~') = .em J -n Fe., ( t, 11') -
N • • 3 

L. (A·t1 +1H1-·2) 
j=O J J 

N- l 
is of order t 

2 for small t and the representation 

z.b.,(s,n') L:. Q lvl (v'- t'i'l-s 
...... 2. ...... 2. .tWt v < 1'l 

(A. 8) 

+ _J__ rl d.H5 - 1 F N + T d\ts-1 F + L ( A;. + ~)] 
r(s) 0 .tm. 1 .tm -)=0 S+1 S+l-t 

is hence valid for Re s > ~- N. Since N can be chosen arbitrarily large, 

we have thus proved that Ztm extends to a meromorphic function in the 

"'1hole s-plane \'lith poles as described above (the poles at s = -j are 

cancelled by the zeros of 1/ r (s)). 

For integers~ 0, the integrals in eq. (A.8) do not contribute and 

Ztm(s,n2) can therefore be evaluated algebraically, the result being 

quoted in eqs. (2.49) and (2.50). 

For s ~ 1, Ztm(s,~ 2 ) can be determined numerically by computing the 
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integrals in eq. (A.B) for N 1 using any ordinary integration subroutine 

{rapidly convergent series representations for the integrands of the 

first and the second integral are provided by eqs. {A3) and (A2), re-

spectively). 

Appendix B: Proof of the large L expansion (2.51) 

The proof of eq. (2.51) is rather leng~hy and is therefore divided into 

several steps. In general, the strategy is to first consider simple 

special cases and then to gradually proceed to the more complicated 

cases using the results already established. 

(1) ~Je first set P = 0 and choose 

(8 .1) f(k) 

t2 
... 2 J ... -

(k ) o1m(k) e 

Then, it is easy to work out the rhs of eq. (2.51) and the expansion 

to be proved thus reads 

(-1)q'-1 

S9 (~,o) "' o H o_,o ~'Jrr'(q'-~l 

(8.2) 
q' 

+ L 
i .. o 

..!.... (l")2iH-2q' Hli 
L3 L i! 

where q' = q - j (the sum is void if q' < 0). 

z~.,tq'-i, ol, 

~ 

To establish (8.2), we first rewrite the sumS (f,O) in the form 
q 
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(8.3) 

"" . 
s (f O) = -1- I dH9-' L_, ['_ (~ 2 )1 

9 ' riql o i<+O 
Qtm(~) e- (t+;)~

2 

Next, recalling the definition {A.2) of the function Ftm' setting 

x = (27t /L)
2 and performing a simple substitution, one arrives at 

(8.4) 

q-q' x• 
s9 (f, ol = L' rc91 

"" 9-1 i ai 
\ dt(1;-x) (-1) at\ 
X 

If j ~ q, partial integration now leads to 

Fttn(t,O). 

cs.5J Sq(~,ol = 
1 :!(-q' . 
L3 X, (-1r~ 

aH 
atH F!tn ( t' 0 )It~ X 

and, using the small t expansion (cf. appendix A) 

(B.6) Fttn (-l, 0) = 
( 'Jr )~h 'Jr, 

0to otno I \t - 1 1 + 0 ( e- T ) , 

one recovers (8.2). 

On the other hand, if j < q, one has 

C8.7J s
9
tf,o) 

i.( -q' 00 

x' \ 

L3 rtq'l ~ 
q'-1 

dt (t-x) Ft,,,(-!:,0), 

and from (8.6) one then infers that 
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il-q' 
x' 

Sg (f,iil"' L' r(g'l 
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\ 810 8'1tl0 
1 I 1 3f 
\ d.t ( t- X )

9 - [ ( ~) 2
- 1 ] 

X 

1 '1 00 '1 
+ \ d\ (1:-x)9

- F,0 (t,O) + \d.\ (t-x)9 - F1,.(t,O) I 
0 ~~ ~ 

up to terms, which vanish more rapidly than any power of 1/L for large 

L. Using the representation (A. B) of the zeta function Z~m' it is now 

a trivial exercise to evaluate all terms in eq. (8.8) exactly. As a 

result, one obtains eq. (8.2), which proves that the large L expansion 

(2.51) is valid in the special case considered. 

(2) In this step, we again set P = 0 and assume that all partial derivatives 

of f(k) up to the N'th order vanish at k = 0 for some even N ~ 2q. 

One then has 

(8.9) fj.em(O) 0 for 2j +-i~N, 

2q- N -4 and, up to terms of order L , the large L expansion (2.51) reads 

(8.101 s9(f,ol = 
1 

(29- 2)! ) "'" (2.1':1' 
; ( 9-1 + ~' ~'>~o.l ~(R) + 0(L29-N-"). 

In order to prove this relation, we note that the function 

(8.11) h(k) = (k2 ) -q f(k) 

is integrable and has integrable derivatives up to the order N - 2q + 4. 

Thus, the ordinary summation theorem (2.42) applies and it follO\-JS that 
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(8 .12) s9 (~,ill 
ik 

l (211")' 
1 

( ~l )1 1 ( ~) + O(LZq-N-'>J_ 

By using the identity 

-q+1 
(8.131 l'lk c'k

2
1 = c2q-21 C2q-31 c'k

2
1 -q (~ +0), 

and partial integration, eq. (8. 12) can be matched with (B. 10) and 

we have thus shown that the large L expansion (2.51) is also valid in 

the present case up to the order of L-i stated. That there are no boundary 

terms from the partial integrations is easy to prove taking (8.9) and 
~ 

the square integrability of f(k) and its derivatives into account. For 

example, if q 2, there is one partial integration needed and tile con-

tribution of the boundary at large k is proportional to 

(8.14) &,_ 
\<+00 

) dn 1< ~· { {(~) v, (~'l- 1 - (~')_, v, ~ (k) 1, 
1~1 ='R 

where fl denotes the solid angle oft. Nov1, using the Cauchy-Sch•-;arz 

inequality for square integrable functions, we have 

ll du ~(kl I= 1<-' II d.'~< l3f(~)+ ~· ild(~l11 
(8.151 liti·'R ~'.;R' 

.G; c /{R 

for some constant C. Similarly, one shows that 

(8.16) I I d..O. ~· v, ~(~)I ,; C' '1/"R' 
tki='R 
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and the boundary term (8.14) is thus seen to vanish. 

(3) We no\~ combine the results of step (1) and (2) to show that the 

large L expansion (2.51) holds for P = 0 and arbitrary functions f(k). 

let N ~ 2q be some even integer. Then, up to order kN , the Taylor ex-

+ + 
pansion around k = 0 of f(k) can be rearranged in the form 

(8.17) 

+ N/2 
f(l•l~ I: 

j~o 

N -2j 
r. 

fcO 

l 
2 

,m, =--i 
cit.,. ( ~· )i ~ -k2 

Qe.,_(kle + ~N(~), 

where the remainder fN (k) is smooth and has vanishing derivatives at 

+ 
k = 0 up to the N'th order, i.e. fN is a function of the type con-

+ 
sidered in step (2). Now we note that the large l expansion of Sq(f,O) 

is an operation linear in f. Since we have already shown in step (1) 

and (2) that (2.51) applies to the functions on the rhs of eq. (8.17) 

up to terms of order L2q- N - 4, it follows that (2.51) is also valid 

for f(k) up to this order. Because N can be chosen arbitrarily large, 

(2.51) is thus completely proved for P = 0. 

( 4) We now proceed to consider the case P f- 0. In this step, the pm~er 

series expansion 

(8.18) 

sq ( t .P l ,.... 

00 00 

+ 2 2 
1=0 ~=0 

00 • 

!=- l-·q) (-.P"l1 Ia.ri q,o) 
1~0 1 I 

£ 
L. 

o\'n=-t 

_i__ ( 2...- )2j H- 2q 
0 L · fJe,(o) Z.Jf.,(~;n"l 
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lS established and in the follmJing step, parts of this series 1~ill 

be resummed to obtain (2.51). The zeta function z. 1 is defined as z~ , 
J m ~m 

but Vtith an extra factor ( V 2)j multiplying Qim ( Y). In other \>lOrds, 

using the binomial expansion, vie have 

(8.19) z.H,(q,ti'l 

\ 

1 • . i .... ( J) +t j- 7 ( • -·) 
.'- i ( f1 ) ~ ltn q- t 0 -n . 
t~O 

To prove (8.18), 1r18 choose an integer N~1 and decompose the sum Sq(f,p) 

as follo\>/S: 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

Sq(f ,p) 

1 
s, ~ L' 

1 
sl = t::> 

1 
s3 = L' 

1 
\ = l! 

51 + 52 + 53 + 54' 

r. 
~2.<1!2. 

f(~) ( ~'- 15' fq' 

L: 
O<~z.s;.pt 

+ N ( ~O<l Hl L -q) (-~')~ (~,,-~-~ 
p.=O p. r ~ 

r. 
O< ~1 

N 

S'~) r. (-ql t-?'ll' '~"f 9 -~, 
\'=0 t' 

I:~ f(~l{l~"-?'l- 9 - ~ 
j3'<1i." f'=O 

(-~q) (-?•t(~·)~-\'1. 
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In all these sums, k runs over the momentum lattice (1.2) subject to 

the restrictions indicated below ~he summation symbol. Since s
1 

and 

s2 arefinite sums, they are trivial to expand and one obtains 

00 00 l 
(8.25) S; ~ r: L 

i·O ~-o 
r. ..., __ f 

1 211" tj + t- 29 i 
l} h:-) hem (0) cit""' , 

' (8.26) cit"'= r. (v')i Qe.,.lvl (v'-1'1'l-\ 
~~<:tl:'-

1 -
(8.27) ci~""'-

• N 
r {\Fl1 Q lvl L. (-q) Hd lv' l-q-~ 

O<Y1" .f!i:t .em p.=O P. 

(here and belo~o-1, V runs over zh. Next, we note that 

(8.28) s
3 

N f -r. (-q) (-j"5'l s 9 +~'tr,ol ~-o I' 

Because we have already proved (2. 51) for P = 0, it follm'ls that 

s3 "- f (-,/) [--j5'l~' Ia+I'(I,o) 
1'=0 r ., 

(8.29) 

oo "" e 
+ L. [ I: 

i=o e=o .... =-~ 
1 (2:rr)2i+e-7.cJ 
l! L !ie..,(O) cjem , 

N 
3 

(8.30) Cjem r. (-q) t-n•J~' z.1.,.r 9+ 14 - L oL 
1'=0 I'" 
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Finally, to expand s
4 

we observe that a pm1er L2q can be factored out 

from the bracket { ... } in eq. (8.24), the remainder being independent 

.... 2 -q- N -1 + ~ 2."Tr + 
of L and of order (V ) for large Y ( l'l"" L V ) , The sum 

is thus well convergent and it is easy to show (e.g. Ref. (6), § 8.6.3) 

2q-2N-4 
that the large l expansion up to terms of order L can be obtained 

~ ~ 

simply by expanding f(k) around k 0. Thus, •~e have 

(8.31) s, 
N lN-lj t 
L'. L: L'. 
1 ... o .e-o -m=-.t 

1 ( 2 )lj + 1- 29 
L' ~ fitm(O)c~ +0(L1

9-lN-•) .,e-m ) 

• N 
(8.32) c

1
\.., = r.~ tY'l1 Qe.,.("Yl{W-n•f9- [ (-~)Hi'{(v'i 9 -l' l 

:t\:t<v2. t""'o \A ' 

where c;tm is only defined for 2j + -l ~ 2N. 

If we now collect the expansions of the four sums si' eq. (8.18) is 

. d 2q-2N-4 . 
obta1ne up to terms of order L , prov1ded we can show that 

(8.33) " i L'. Cjhn 
i=1 

l. ( -2) F-m q, 11 . 

From the explicit expressions given for the coefficients c~~ , this 
j\ffi 

relation is hm~ever eas'y to prove for complex q with Re q > j + ~ t 3 
+ 2• 

and hence, by analyticity, for all q. We finally remark that N can be 

chosen arbitrarily large so that in fact we have established (8.18) 

to all orders of 1/L. 
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(5) We finally note that (8.18) can be obtained from (2.51) by expanding 

I (f,Pl and £. 1 
(p) for small p. Indeed, the first sum in (8.18) is 

q J m 

just the Taylor expansion (2.54) of the integral Iq(f,Pl and the second 

sum is easily derived from the series in {2.51). by substituting 

(8.34) fHm (j::>l "-' Z C?'t ( 1 ;~) fJ+~ t, (ol 
~~o 

and using the identities (2.49) and (8 . .19). It follows that the large 

L expansion (2.51) is equivalent to (8.18) to all orders of 1/L. Since 

(8.18) has already been established in step (4), we have thus proved 

eq. (2.51) for arbitrary f andP. 
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j zoo(j,O) zoo(j,1) 

1 8.91363292 1. 21133568 

2 16.53231596 23.24322188 

3 8.40192397 13.05937675 

4 6.94580793 13.73121437 

Table 1: Values of the zeta function Ztm· The method of 

calculation used is explained in appendix A. 
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Figure captions 

Fig. 1: Energy values of 'lt"'lt -states with zero total momentum as a 

function of the box size L neglecting pion interactions. The 

dashed line indicates the 4-pion threshold. The multiplicity 

of the levels shmm is 1 in the channel with zero spin and 

isospin. 

Fig. 2: Numerically calculated energy values E as a function of the 

parameter v for a fixed box size L = 8R. Only the 3 lowest 

levels are shown. 

Fig. 3: Comparison of the large L expansions (2.60) (curve a) and 

(2.74) (curve b) with numerically calculated energy values 

(dots) for v = 'Tt • The energy shift l:J. E is equal to E - E
0

, 

where E0 = 0 for the ground state and E0 1 for the first 

excited state. 

Fig. 4: Skeleton of a Feynman diagram, which is two-particle reducible 

in the (p1 ,p2)-channel. 

Fig. 5: Integral equation relating the Bethe-Salpeter kernel to the 

full connected 4-paint function. 
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Fig. 6: Arrangement of extra vertices and lines added to the graph 

~. The paths 'P1
,.,., :P4 

start at u and pass through a
3 

or 

a4 via the extra lines connecting these vertices with u. After 

traversing ~, they arrive at a1 or a 2 and end at v. 

Fig. 7: Plot of the lowest ~ff -energy values for isospin I ~ 0,1 and 

2 according to eqs. (3.36) - (3.40). The energy shift AE is 

defined by AE E - 2 E. CP), ~<!here p = 2'1t" /L for I = 1 and 

p = 0 otherwise. 
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