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Abstract

In this report we investigate the spin-orbit motion of particles 1in storage
rings. Having summarized the fully six-dimensional description of the orbital
motion with coordinates (x, Pxs Z; Pzs Ty N = ég) we introduce the dispersion,
Since the dispersion function is introduced via a canonical transformation,
the symplectic structure of the equations of motion {and thus of all the
transfer matrices) 1in the absence of radiation effects s completely
preserved. In this formulation the coupling between transverse and longitu-

dinal motion only appears in the cavities.

As physical applications of this approach we calculate the damping constants,
the beam emittance matrix and the depolarization time,
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the synchro-betatron coupling



1. Introduction and statement of the problem

In the widely used polarization program SLIMY) coupled Tlinear spin-orbit
motion in the presence of synchrotron radiation is treated using a six-dimen-
sional formalism with the variables x, py, z, Pz, 0, n = S8E/E5. The aim of the
present work is to develop a six dimensional formalism which explicitly in-
volves dispersion and which as a result is simpler and is better suited for
diagnostic purposes. Then, using the same mathematical methods as developed
earlier?) the damping constants, beam emittance matrix and depolarization time
Tp are calculated.

This formalism can then serve as a basis for rewriting the numerical code SLIM
using the dispersion approximation.

2. The equations of motion

We begin the investigation of spin-orbit motion in a storage ring with the
statement of the equations of motion whereby in our quasi linear framework
motion in sextupoles can also be included. '

2.1 Orbital motion

The central eguation for the orbital motion is written in the form ?)

- +

V' = (A SA)Y + Coo T Co ¥ Gy HEC (2.1)

§ is the six-dimensional orbit vector describing the transverse and longitu-
dinal particle motion. In coordinates ;; is given by:

;T = (X, p)(! Zs sz Gs Tl) (202)
py = x' - Hz
py, = z' + Hx
The matrix A
-+ >
B 0, K
>
A= =Ky 0 -X; 0 0 0 (2.3)
eV 2m
0 0 0 0 Ef--k C cosd e+ & 6(s—su) 0

0 b



with

and the

0 1 H
-(Ky +g+H?) 0 N
B =
-H 0 0
! -H ~{KZ - g+H?)
o1
K = (Oa Kxa O, KZ) ]
e [%B
9 [‘5? ;
0 z=0
z 1 e [BBX BBZ]
2 Eqy X 9z x=7=0 i
1l e (o3
H = _— BT
2 kg
matrix A
SA = ((SApn))
SA,, = - §£-51n®° Z8s-sp) s
EO u
Ay = SAg
SAg; = - Cp» [(KZ+KZ)e Ky + 2K+ gl
8Agy = = Cpe [(KF+KE) e K, - 2K+ g
§Ags = =~ 2C; » (Kg+K3)
SAgn = O otherwise

describe the

influence. of the various beam line elements.

(2.3a)

(2.3b)

(2.4a)

(2.4b)

(2.4¢)

(2.5}
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The vector Cgey

o = ZA(s) (0, 25-x%, 0, 2x2, 0, 0) ; (2.6)
e 2%B;
}\(S) = .E—-o s
“fo XN x=z=0

describes the influence of sextupoles and Eo

T -

&= (0,0,0,0,0, %ﬂ sing « £ (s = sy) - €+ (K2+K2)) (2.7)
0 »

describes the energy variation due to photon emission in the bending magnets
and due to particle acceleration in the cavities, where

y

2 Yo
C, = L& g2 2 2.7a
1 3‘3 E, | ( )
The vector El
FI = (Oa 'ABZs Os ABxa O, 0) (208)

describes the influence of field errors caused by misalignments of the
magnets, The quantity ¢

s¢' = (0, 0, 0, 0, 0, §c) (2.9)

describes the influence of the quantum fluctuations with

< d8c(s)+8c(s')> = w(s)*&8(s -s') (2.9a)
<8cfs)> =0 (2.9b)
w(s) = IKX,Z(S)Is' C, 3 (2.10)
C, = 55;8'/3_':- Coohey? (2.10a)
A= ;E— . (2.10b)

MgC



2.2 Spin motion

The equation of motion for the spin 1is given byaﬁ

d & >
—_ = Qo
5= 28 (2.11)
with
€
Pl & ; (2.11a)
§2
0 -0, 2y Qp
-
Q = 25 Q - Qo ; Q= Sy ; (2.11h)
-y QU 0 0y
> o >
Q = - (L+Kgex +K;02) E—Kl+n)'{tl + ayg(1+m)l-8 -
0
o (1+2n)+[1 = —C%—en]e[2, + x'B, + 8, 2'B +
I+ v n 1+, X T z T

FT o (Bp 4 x'eBy+ 2t B, 4

- (1 Yo

+ -
- sn)reclx'ee, -z e, 1} -
_[_,YO 1 +Y0 T z X

- K v 8y * Ky e, 3 (2.11c)

{er= cavity field).

The components $i¢, &,, &, of 2 given in (2.11b) can then be extracted from
(2.11c). For each of the Jens types one finds:

1) For a sextupole

£ B, = A(s)exz

Eq

éL-BZ = -% als) « (x2 - z3)
0 ‘

Ky =K, =0 3



= 0 :

= - ;\(S) ‘(1 + a'Yo)
1 /

= "2")\(5)’\1"' CY 1)
guadrupole

BX:goZ :
BZ-_-Q-( ;

Ky = Kz = 0 3

= 0 :

skew guadrupole

0

Nex

- g(s) < (1l +ay,) +z ;

- g(s) « (1 + ayg) *x

== N(s) + (1 + ayg) +x 3

i

bending magnet

R R R A R C I AT ST R ST T TR LI TR T e

+N(s) = (1 +ay,)rz ;

(2.12a)

(2.12b}

(2.12¢)



) ,
Qp =+ TR zh e Ky o
2y = 0 3 (2.12d)
QZ= ’KX.aYO- (1+aY0).K>2(.X+KX.n ;

(2.12e)

o] ]
> -
| i
+ !
~ —
™~ U
. +5<
[o9) -~
- o
Q
L)
+
>
——— -
— .
+ -~
~N
fu
-
] -
e’
-
=
N
-+
™~
H
s
~N
[ ]
=

5) For a solenoid

m mi m
o |‘D o 17 o {m
jo s lvs] >3
N > A
i f u
1 1 [
.
o -
- - =
L] ]
N = “e
w e FR

-~
>
il
-~
N
|
o
-

e 2H e x' (2.12f)

2
>
1]

Yo
(1 + ayg) «H'*» x + ayo--i "

v
O . e 2H-z'
1+,

=
N
1l

(1 + ayg) *H' =z +avy*

2
1 PYTI & RUl (N,
g:QT = - 2H- [l +avg T YO] tne2H-[1+ i Y0)2] ;

6) For a cavity

fl es) %!-{sin® + o(s)+ k- %;-cos®} « T 8(s - s“) :

0 0 p

Ky = Kz = 0 3



R
Yo eV . :
Q, = (ays, + yez' = sind <« L &(s - sy) ; (2.129)
X ° " Ty, Eg ' H
Yo el .
2, = - (ay, + Jex'e=—=sin¢-Z &(s - s,) ;
‘ 1ty Eo u v
7) For a dipole kicker magnet
a) x-direction
0
> -~
B = 1B, s BBy = MBy e 8(s - s5)
0
Ky =Kz =03
Qr= 0 ;
¢ = - (1 + ayg) -éi-Agx- 6(s - sq) (2.12k)
0
9, = 0 ;
b) z-direction -
0
-+ -~
B = 0 ; ABy, = OBy« 8(s - s54)
4B,
Ky =Kz =0
Qr=0 ;
Q_X=O : (2.121)
Qo= - (1 + ayy) -éi-Aﬁz- S(s - sg)



3. Introduction of a new reference trajectory (closed orbit)

Linear spin-orbit motion in a storage ring can be compietely described by
egs. (2.1) and (2.11) but the equations must be solved in several steps. First
of all it 1is necessary to eliminate the inhomogeneous terms EO and El in
{2.1), This is achieved in the usual way by finding the {(only) periodic solu-
tion ;b of eq. (2.1). Without ¢ we have:

> - - > -+
Yo = (A + 6&)‘\/0 tCy t Cp F Cgex 3
. N {3.1)
y0(50+L) = yO(So)
and the general solution of (2.1) can be written:
.
37: Sf)‘o Ty (3.2)

Putting (3.2} into (2.1) and taking into account (3.1) one obtains in Tinear
&
approximation for y:

" e
4 ¥, F+on).F+al (3.3)
ds - -
with . N
B 0, K
R=1{-k, 0 -k, 0 0 0 | ;
0 0 0 E—\i’-k .20 cosde % §{s-3,) 0
E, L b
u
(3.4)
E: B + Bgex 3 (3.53a)
0 0 0 0
Bsex < A(s) . (3.5b)
0 0 4] 0
Z4 0 Xg 0

[
The vector ¥ describes the synchro-betatron oscillations around the new equi-
librium orbit y, (the “closed orbit").



<

By subdividing y into transverse and longitudinal pieces in the form

1
yr= Sg (3.6)
Ve
one obtains from (3.3) and (3.4)
.5;3;1: (B + 6B) + T+ YooK (3.7a)
d -~ o~ o~
gg}'s:']{x'yl - Kzeys s (3.7b)
d ~ eA 2m ~
oY T T rke TT-'cos®- L &(s-sp) ¥ *
c 2
4 . .
T L SRgytyy t OAgeys + ScC (3.7¢)

3] 1
with

8By = SA5  (i,k = 1,2,3,4) (3.8)
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4. Introduction of dispersion

=
For our further investigation of eq. (3.1) we introduce the dispersion D:

4 5= (+e)+D+K
il (B+&B)+D+K ;3
> e
D(sg+L) = D(sg) (4.1)
with
7

D' = (Dls Dzs Da; Dq)

If we ignore the (small) radiation damping terms, &B, we can write

d 3-F.0+K 4,1
L H:=F. . da
ds - ( )
Using the ansatz
= z - 7
Yi=yt4y- 0 (4.2a)
eq. (3.7¢) takes the form
= 4
d — eV 2T ~ —
= Y= St ekeET ecosd o I S{s-sp)cys + I GAg ity t
6 5 6
ds Ey L " H gl BH
4 ——
+ [8Age + I SAg, *Dl ¥y +8c . (4.3)
~ T
u=1
Taking into account {4.1) and {4.3) eq. (3.7a) can be written as
djl ~ - — ->
Syt B+ aB)-yL -y D
Y (B + 8B) =yl - yg
~ = > i ~
=@ +8) -yt -0k B icosa ¢ I 8(ssy) Yy -
- - Eq L u
> 4 _ > 4 . -
- D+ & éAau-yu-D-[6A66+ ) 6;-\6”-0”]-}/6 - Desc (4.4)
u=l n=1
with
2 = = = =
(YT = (¥1s Vos Yoo Ya)



Furthermore we put

ysz,::yvs'yz.[)l

Ys '3’-2°D1

and using the relations

- 11 -

Vie T tHF, 5 0p 0,4,
yézyu“H'yl s D3 =D, - HDy
one obtains:
yi= - (Ky ¥, + Ky o F5)
4 (-4 ~ ~
- {pél (ng + 6A2p) *Yu t Y6 " Kx} 0,
4 . 5
LI Byt A T ¢ Tt K e 0,

4
O
I
M
i
——
=
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The egs, (4.3), (4.4) and (4.6) can be put in matrix form

=
-D
d = - = =
oY (A +68A)sy + Sc - 0 (4.7)
1
=
yl
= —
with y = Vs (4.8)
Vs
and A= Ay +Ac ; (4.9)
~ -l -
5 0, 04

—[Kx' Dl+ KZ' Dg]

0
o 0 0 0 %‘“’-k-%”l-cos@.m(s-su) 0

0 M {4.9a)
> T - >
DeD «S5 D 0,
A = ev k L 2n «COSHs T 5(S‘Sp) —61- 0 0 (4.9b)
- Eo L u -
rd
-0 .S 0 0
0o -1 0 0
1 0 0 0
S = . (4.10)
- 0 0 0 -1
¢ 0 1 0
as well as
5E = ((Sﬁ-nm)) 5
SAmy = SApn = D SAgp fir mon =1, 2, 3, 4
_ 4
Shmg = - Dne18fes + I SAg Dy} fUrm=1,2,3,4
n=1

6":\51 = Dz '6[—\22
Sisz = - D;*0Ay
§hss = Du * 6wy

6-."-;\_511\ = - D3 SAu
_ 4
Shgs = OShAgs + L SAsu' Dy 3
u=1
SAmn = SAmn otherwise . (4.11)
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The matrix A. describes the coupling between synchrotron and betatron oscil-
Tations. From eq. (4.9b) it is obvious that the coupling terms disappear if
the dispersion vector is zero in the cavity regionsa>:

V(s)+D =0 (4.12)

with V(s) = Vs §(s - Sp)
i

It is worthwhile noting that eqg. (4.7) without the perturbing terms GE:and ¢

d =z = =

— = Ao 4.]_3
P ( )
can be written 1in canonical form with the Hamiltonian

—~ N —e ol =2, 1p .=
(Bx + H-2)% + 2B, - HeT)? + 26, %2 + 26,77 -

=
it
[NCE TS

n# -

[N+A-zo]-7<"z"-—21-[]<x-01 +Kye Dyle

1 eV 2T
- S krmrcoser T 8(s - sy)  x

0 u
x [G+D,+Dy +03°P, - Dp* X = Dy = Z)? (4.14)
with
G; = K; +g+HE+ Aexy
2 (4.15)
G, = Kz =g+ H% - Aexy
= —_— - e = =
YT = (X Pys Z, Pz, Oy M) (4.16)

This can be checked easily by putting (4.14) into the canonical equations of

motion
(x0- 2 5. L3
3Py 99X
(7 X m e L (4.17)
op, 2z
=X w2
an 30
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Remark:

By neglecting the gsrturbing terms &A and Sg‘the starting equation (3.6) for
the orbital vector‘ﬁfcan also be derived from a Hamiltonian

= L@t e 2 B - HeR 4260 % 426,07 -

N+ A0 z] o X7 - (Ko X +Kpe D) o

»

~ 5 EV
G2 s —
E

'
N j—

ke2Te coso £ o8(s - sp) (4.18)
L N

(o]

The Hamiltonian K given in (4.14) can be obtained from ® by applying to (4.18)
a canonical transformation of the form":S)

F. (X, 7.

z(xs 296{3 -B.xs '529 T"]—,S) = 5)(' (;(I 'ﬁ-'Dl) +?{. DZ'X +

~
ag

-%[Dln2 £ D,Dy]e TE 4T . (4.19)

> >
The corresponding transformation equations describe the transition from ¥ to ¥
and they agree with egs. (4.2a), (4.2b) and (4.5).
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5. Description of the spin motion

5.1 Perturbation theory

Using egs. (3.2}, 4.2) and (4.5) the orbit vector ; has the form

7 - ;b +,§, (5.1a)
with

§h = %l*'jk -0 ;

3”5=-}75+yz’D1+Y4'Da'§1‘D2'73'D4 5 (5.1b)

y% = 3% .

In order ‘to utilize the equation of motion (2.8) for the spin it is now neces-
sary to divide the "spin matrix" Q into tws components and to do this in a way
corresponding to the division of the vector §'1n eq, {(5.1)

g = ) = 29wy (5.2)

with

(0) = .S.E_(;.O) . (5.3)

|20

For the matrix o

0 -wy Wy
w= oY) -Q(O) = Wy 0 - (5.4)
-Wy W 0
one obtains using (2.9) and (5.1b):
1) Sextupole:
wr = 0 3
wy = - A(s) (1 + ayg) * {xg* [T + T+ D3] + z5¢ [X + 7+ D, 1} (5.5a)

= Ms) (1 + avg) s fxg e [(X + e Dy] = 25+ [Z + 7+ 031}

=3
N
H



- 16 -

2} Quadrupole:

wy = 9{s) = (I +avy) = (z +n+D3) ; {5.5b)

e
N
1]
=)
g
—
.
[oo
-+
=
=)
—
.
pas
+
=3
.
o
—

3} Skew auadrupole:
we = 0
wy = = N{s) ({1l +avy) = (x+n+Dy) ; (5.5¢)

wy = + N(s) (1 +avy) (z+n-Ds) ;

4) Bending magnet:

2
aYg -
= + 1 . .
W 1+Y0 ( o Dq) Ky s
wy = 0 (5.5d)
Wy = "(1+aY0)'K;'(§+Mﬁ'Dl)+Kx'ﬁ N

£
N
il
o

5) Solenoid:
ay

(1 + To)a

W ne2H-[1+ 1

wy = (L +ayg)«H' «{x+n+D;) +

- ayg . PHe [, +M+D,) +H-(Z+7-05)] 3
Yo
wy = (1 + ayg)«H' «(Z + 1+ Dy) +
Yo — o~ Sl
b avg CPH (B, * WD) - H (R FT0)] 5 (5.5)
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6) Cavity
we = 0
wy = (ayy + To )+ (z" + 7> DQ)--EE sing « » §(s - spy) ;
1+ g Eg n
by = - (ayg + =—2m) (X' + 74 0,) X sine . 1 8(s - 5,) . (5.5¢)
1+YO EO u H

In the following we consider w to be a small perturbation in linear approxi-
mation. Then using the ansatz

W) e
s | - |52+ | &Y ; (5.6)
52 g(o) g(1)
5(0) 5(0)
§% _ §£°) . 8‘0) . g&o) i (5.7)
§£0) ggo)

5
we obtain for the vector E(I)

LR glo) L FD L L R) (5.8)
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5.2 The (0, m, 2)-orthonormal system of the spin motion

In order to further simplify the description of the spin motion we introduce,
>

in the usual way?), a new orthonormal system ﬁ(s), E(s), %(s) defined in terms

of the one turn matrix N(s,+L, so) resulting from (5.7).

§0) (sg+1) = Nso*L, 5005 (s0) (5.9)

With this aim in mind we investigate the eigenvalue spectrum of the matrix N

N(sg*+L, sg) ?“(so) = “u'-?u(so) (5.10)
with
4y = 1 s Falsg) = Nolse) s
. >
ap = e TTE™Y L (sg) = Molse) * it Ro(s) (5.11)
.
ag = e ™ L Rise) = Molsg) - 10 2o(se)
> >
ng(sq) = mg(sg) x %a(sg)
> >
mo(so) J_ 20(50) N (5.12)
s
|_ﬁo(50)[ - I—E‘o(soﬂ |‘Q'0(50)\ =1
and put
nis) = N(s,50) Ng(se) (5.13)
and

)+ i-0(s) = e 1DV YISo)l L nis )i (sg) + 1+ Tolse)i.  (5.14)
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If we vrequire for the phase function ¥ the relation

Wsetl) - Hsg) =2mv (5.15)
then
n(s) = m(s) x L(s) ;
m(s) 1 Es) (5.16)
R(s)] = m(s)| = [E(s)] =1
(B’,E,E)S_SO+L (I—T,Fﬁ,?i)szso (5.17)

i.e. the vectors ﬁ, E, T are actually an orthonormal right-handed vector basis
which transforms into itself after one circuit around the ring.

By differentiating the vectors m and & and considering (5.?) and (5.14):

Edsfa(s) - glo) em(s) + Yi(s)-1(s) ;

_-&dgﬁ(s) = o3y - W) mis) (5.18a)
At the same time using (5.13)

S R N G- T (5.18b)

ds -

Thus m and % depend on the behaviour of the phase function Y which can be
arbitrary except that the phase advance per circuit must be 27v as given 1in
eqg. (5.15).
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6. The complete equations of coupled spin-orbit motion

With the help of egs. (4.7) and (5.7), (5.8), (5.18a,b) we are now in the
position to construct the complete defining equations of the Tinearized
spin-orbit motion. With this aim in mind, following A, Chao we solve the
egs. {5.7) and (5.8) by introducing the ansatz

gO) . % .7 . (6.1a)

9] s

TR
—
—
—t

1l

8 -lafs)-m+B(s)- %] ; (6.1b)

(0 + B2 « 1).

Using egs. (6.1a) and (5.18b) eq. (5.7) is already fulfilled and by substi-
tuting (6.1a,b) in (5.8) and using (5.18) one obtains

a' = (L, Ly, '0“2) Wy +B Y {(6.2a)

B' = - (mg, My, mz) [ Wy I (6.2b)

Furthermore, with eg. (5.5) one can put

W

>
Wy = Foxeyt v (6.3)
wz

where F is extracted from (5.5a-g) for the various lenses.
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In detail one has:

1) Sextupole:

Fay = = afs) (1 +ayy) 2z, 3

Fos = ‘}\(5)‘(1"'3"{0)')(0 s

Fag = Fpp+ Dy + Fpy o Dy ;

Far = Fpy 5

Faa = - Fy

Fag = Fgp oDy + Fyye Dy

Fik = 0 otherwise . (6.4a)

2) Quadrupoie:

(6.4b)

‘l'i
—)
=~
[
o
Q
ot
=
0]
=
z
-ty
%
g

Far = =N(s) = {1 + ay,) ;
Fag = Fop oDy

Fas = - For

Fae = Faa Dy

Fix = O otherwise . (6.4c)
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4) Bending magnet:

a) Ky 20 ;3 K, =0

2
a'YO
F = * Ky 3
1% 1+.YO X
Fie = Fu* Dy 3
Fo, = - (L+ayy) K 3

Fig = Fap* Dy + Ky

0 otherwise . (6.4d)

-
-
~

H

ay

Fi, =~ > *Kz s
1+ v

Fig = Fi2° 0 3

(1+ay) K ;

L
vl
w

n

Fae = Fa3 ¢ 03 -Kz 3

Fik = 0  otherwise . (6.4e)

5) Solenoid:

2
a’YO
Fig = 2H*[1+ - ;
16 \1+Yo)2
Fop = (L + ayy) *H" 3
avq
Fpp = ——m < 2H
1+ v,

Fog = Fap =Dy + Fpp oDy +Fpy oDy 3
Fep = - Faz 3
Fss = Fa 5
Fau = Fop >
Fse = Fap @Dy + Fag ’IDa + Fay o Dy 3

Fig = 0 otherwise . (6.4f)
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6) Cavity:
Yo el . o
Fo = (ayg + 1 + YO) * 'E; sing - i (s - sp)
Fag = Fau » Dy
Fao = = Foy 3
Fas = F3 Dy
Fix = O otherwise . (6.49)

Taking into account (6.3), the spin equation (6.2) takes the form

> > >
—d—5= Gooy-i-DO-‘S : (6.5)
ds = -
N o
E = ) H (6.6a)
3
Gp = R-F (6.6b)
Lq Ly L7
with R = ; (6.6c)
=M. - My -,
0 Y
Dy = W, . ; (6.6d)

where the orbit vector in (6.5) is defined by (4.7).

= -
By combining the orbit vector ¥ and the spin vector § we can construct an
8-dimensional vector of the form )

=¥

(6.7)

[
oy
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and then finally the spin eq. (6.5) and the orbit eg. (4.7) can be combined
intc a matrix equation representing the complete equations of motion

- - — _:
3= (R+sh)eu +se (6.8)
ds = =
with
A0 6A 0
A= ;A = : (6.8a)
o Do 9 9
->
-D
0
b
8¢ = &c¢ 1 (6.8b)
0
0

+ .
Since the spin basis (ﬁ,%,&) is periodic (eq. (5.17}), A is also periodic.
This equation serves as the starting point for further developments.,
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/. The unperturbed problem

7.1 The eigenvalue spectrum of the one turn transfer matrix

We now restrict ourselves to the unperturbed spin-orbit probTlem

ad;ﬁ - A% (7.1)
1.2,

42 -z

a_g_y - .’i-y (7.1a)

d > >

E§= 6,7 + 0y S (7.1b)

and investigate the eigenvalue spectrum of the one turn matrix Mexa(So+L,Sg)
which solves for eq. (7.1):

Y

M(BXB)(SO'I'LsSo) ap(so) = A“' q‘u(so) . (7.2)

We then separate the components of the eigenvector aﬁ given in (7.2) into a 6
component orbit part, 3@, and a 2 component spin part, WU:

v
2

ay = R : | (7.3)
!

In addition, we require that the stability condition
Pyl s 1. (7.4)
be satisfied.

The solution to the spin eguation (7.1b) ¥s then given as

S(s) = D(s.59) S(sg) + 6(s,50) T(so) (7.5)
with S
G(s,sg) = [ ds'<D(s,s") Gols') M(s',s5) ; (7.5a)
So
cos[ P(s")-W(s')] sinf(s")-P(s*)]
D(s"s') = (7.5b)

-sin[P(s")-P(s)] cos¥(sm)-%(s1)]
where M(s,s;) is the transfer matrix which solves for the orbit eq. (7.1a):

(s) = M(s,s,) ?(so) .

<y
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The matrix Mg,ga(sq+L,S,) can now be written as:

, M{sg+L,sp) 0
Miaxg){SgtLl,sg) = . (7.6)
G{sy+L,5q) D(sg+L,s5)

where by (7.5b) and (5.20), D(sy+L,5,) is given by

cos2mv sin2mv
D(sy+L,s4) = . (7.7)
~sinZ2mv cos 27w

With {7.3) and (7.6} the eigenvalue eg. (7.2) transforms into

M{sg*+L,sg) 7M(so) = A“-'GH(SO) ; (7.8a)

6(so*L,s) Vp(se) * Dlsg*L,Se) Wylsg) = Aye Wylsg) . (7.8b)
From (7.8a) it is immediately clear that the vectors Vu(so) are simply the

eigenvectors of the one turn matrix M(sy+L,s,) for the orbit motion. This
matrix is symplectic:

MT{SO+L,SO)' SeM(sg*l,sy) = S (7.9)
with

s, 0

S = S2 (7.10a)
4] Sz
0 -1

S, = (7.10b)
1 0

since the matrix A of coefficients given in (4.9) satisfies the condition

ET

-S+ S-A=0, (7.11)
(The symplecticity of the matrix M follows also from the fact that the equa-
tion of motion (7.1a) can be writiten in canonical form using the Hamiltonian
(4.14))°) .



- 27 -

As a result, the eigenvectors Vu(sol occur in pairs
(Vi(sg)s Voglse)) 5 k=1, 11, III (7.12a)

with the reciprocal eigenvalues

A hg =1 (7.12b)

Thus, the stabjlity condition (7.4) can be written as

il = 1 s ohk = A (7.13)

=D V_k(so) = 3k*(so) ;0 Ak = e‘i'zﬂal< , Qg real (7.14)

so that all eigenvalues must Tie on a unit circle and with the normalization
condition for the 3k(so)

VieH(sg) S Vilsg) = i (x = 1, 1I, III).

we obtain the relations

VHse) + S Valse) = - Vhsg) + SeVoplsy) = 8Ky (7.15a)
Ter(se) + S V_glse) = Wi(sg) = S-Vylsg) = 0 (7.15b)

(k,% = 1, II, III)

Once the vectors 3ik(so) have been found by solving {7.8a), then the spin
parts Wik(so) of the complete eigenvectors

I+

-+ :l* k(SO)
qik(so) = >
Wi (sg)

I+

may be obtained (using eq. (7.8b}) as
We(sg) = = [D(sg+L,50) = A » 117 26(so+L,50) Vilsg) 3 (7.16a)
Wi (sg) = w(se) (7.16b)

so that in general we can put

> vk(s ) )

drlse) = | . ° ; (7.17a)
Wi (sg)

d_klse) = a*(sg) ; (k = I, 1I, III) (7.17b)

where Wk(so) is given by (7.16a).
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From (7.17) we already have 6 of the eigenvectors of the 8-dimensional matrix
Mg alsg+L,Sg). In order to find the two remaining eigenvectors we use the

ansatz -
> 05
qiw(so) = - (7.18)
Wi 1y(Sg)
and obtain from (7.7) and (7.8)
Wi (se) = L : e"i¥(so) (7.19a)
° 7\ - ’ '
W_ty(sg) = Wiy(sg) (7.19b)
so that
Aty ® e 12y i Al T AT (7.20)
with
Qpy = v . (7.21)

7.2 Floquet's Theorem

The vectors Eik(so) are the eigenvectors of the one turn matrix Mgya(sg+L,sq)
with the starting point sg. Since the matrix E (eq. (6.8a)) is periodic, the
matrix Mgyg is also periodic so that the eigenvectors of the matrix
Mgya(s+L,s) with starting point s can be obtained by operating with

ESXB(S:'SO):

Ve (s)
Etk(s) = > = ﬂ(BxB)(SsSo) aﬁk(so) 5 (7.22)
Wi (s)
_ N N
Meaxg)(s+L,s) dai(s) = Azye dails) . (7.23)

where the eigenvalues remain unchanged.

>\+k(S) = }\ik(so) = )\+k « (7.24—)
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In particular one finds

.

Vak(s) = M(s,50) Varlsg) 5 (7.25)

- [D{s+L,s) - Ap= 11" G(s+L,s) Vi(s) ;
.. (7.26)

=
~
—
wy
~—
it

Wwith COS 2TV sin 2wy
D(s+L,s) = = D(sg+L,s5) 3 (7.27)
-sin 2nv cos 21V
5 > 1 (1) -iews)
wry(s) = EIS,SO) WIV(SO) = :ﬁ; . e 5 (7.28)
-1 *
vy (s) = Wi(s) .

The vectors 'vik(s) defined by (7.25) also fulfill the same orthogonality
relations (7.15) as Vik(so):

Wt(s) « S Vg (s)

_gls) = v M(s) S~

1]
§

-3 -

.V v ’

N N (7.29)
LY v .

ViH(s) - S

. s . . >
Similar relations are also valid for the vectors wipy :

Wiy(s) » Sp e wpy(s) = - wopy(s)=Sp=w_py(s) =1 3
> > (7.30)
Wiy(s) Sz ew_qy(s) = w_gy(s)=Sa-wp(s) =0 ;
as one can see by substitution of (7.8) into the left side of (7.30).
Putting N S
< —je? . >
EU(S) = qp(S)° e my L (7.31)
+ pe _ie2mQy, - 2
1 = (] u .
p(s) = Vy(s) e e L
~+ _: -.'2 "S-
wp(s) = wu(s)- e ! ﬂQ“ L {(uw ==k withk = I,II,III)

[
the factor ap(s)

-

S
a“(S) = EU(S) *e

+1'2ﬂQp'L

is seen to be a periodic function with period L:

+i21Q,"

s+L . S >
-~ + '2 bl -~
Guls+L) = Guls+L) e T = dy(s)ee MW= Gu(s). (7.32)

L-——‘v_'-'/
e-1-2ﬂQ“ ‘EM(S)
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The representation of the eigenvectors E“(s) as a product of a periodic func-

- ; S
tion qp(s) and a harmonic function e Zﬂou7f is an example of "Floquet's
Theorem".

With the derivation of this theorem and the orthogonality relations (7.29) and
(7.30) we now have a connection with the spin-orbit formalism of Report
DESY 83-062. The remaining work on the complete spin-orbit eq. (6.8) can now
be carried through in direct analogy to the methods of DESY 83-062 and thus,
in the following the methods need only be sketched,

For Tater considerations we mention here that the matrix M(s+L,s} has the
simple block diagonal form

(8)

Migxay(s+Lss) O(4x2)
M(s+L,s) = (7.33)
{o
C(axa) Mi2x2) (s TL,s)

if the matrix A. (eq. {4.9b)), describing the coupling between synchrotron
and betatron motion, vanishes. Furthermore, the 2-dimensional one turn matrix

Mjglz)(5'+L’s) which is defined by the equation of synchrotron motion

d — . —
. G = - [Kg*Dy + KpoDyle
(7.34)
d — 8\7 27'[ i _—
5= Eike& . cosp + 5 s{s-sy)e0
ds Eg L u H
(see eq. (7.1a) and (4.9)) can be represented in the form
cos 2mQg+ Gg(s)esin2nQy;  Bgesin2nQy
(@)
MGy (s+L,5) = .
- Yg* sin2nQ, cosZﬂQG-uo(s)-sin 21 Qg
{7.35)

2+l‘

with Byvg = af
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From eq. {7.33) and (7.35) one then sees that for the orbit eigenvectors 3k(s)
one can write

[P
W= | s k=1, 1 ; (7.36a)
0.
3 Bo(s)
L e
_G'III = +{3) » T;(G) = - —1._.._. * € ! LPU(S) (7.36b)
' 7265\ - tagls)+ i1

where, in the case that the betatron oscillations are decoupled:

(x)
M 2x2y (s TL,S) Or2x2)
M(G)

_(axa)(S+L’S) =

(z)
02y Mezxzy(s+L,5)

cosZnQy+ay(s%sin2ﬂQy By(sysinZﬂQy
INE {(s+L,s) =
—{2x2) s

--Yy(s)-sinZwQy cosZwa-ay(s%sinZNQy

By = vy = ayz +1 (y = x, 2) {7.37)

> - .. ->
the vecters vy and vyp take a form similar to vyrr:

F(x) a
I B B O R (7.38a)
I - ] Ii - ® .
02 v
By(s)
v .
e I S cenitys) (7.38b)
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Remark :
An approximate form for the matrix ﬂ(o)(s+L,s) can be established in which in
the eqguation of motion (7.34) the coefficients of n and ¢ are averaged over one

turn: S+L
1 Lad -~ -~ Cad P
[Ky'Dy + Kp*D] = w = = £ 45 TK(3)*D, (3) + K, (8)+D,(3)] (7.39)
(momentum compaction factor)
-~ S+L -~
gi'k'-z—-E'COSCI)-Z (S(S'Sp)'—& _1.. J ds. E—V-'k-g*E-COS(D'Z 5(?.5“)
Eq L " L g Eq L "
s+l Y
=Ly ‘-Z-T—Y-E-(,)—S-?i- | a7+ & sing .z §(S-sp)
L L sing g £y n
92
T
with
U
gz = Mk 20 cap .2 . 7.39b
1 = ctgo F ( )
s+L R '
Up = f d¥-eVesing. £ 8(% - sp) (7.40)
S u

average energy per particle per turn
picked up from the cavities

= Ep [ d¥ . Ce [K(R) + KE(D)]

(average energy lost per particle per turn)

Thus, eq. {7.34) transforms into the differential equation system

45- -uen
ds ’
(7.41)
4d5. 2.5
ds K
with the solution

c(s) cos 2 (s-Sq) - %-sinsz(s-so) a{sg)

- (7.42)

nis) %-sin 2 (s-s¢) cos §1{s-Sy) n(sg)
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Thus, one obtains for the one turn matrix
cosf2 L -~ LsinaL
© i
Miax2y(stL,s) = (7.43)
2
" sinQ L cosf2 L

and by comparison of (7.43) with (7.35) we find (B5 > 0)

21Qg = -Q+ L (7.43a)
Bg = % ; (7.43b)
ag= 0 ; (7.43c)
Yo = % (7.43d)

where the quantities 2 and » are taken from (7.39a,b).In particular by substi-
tuting (7.39) and (7.40) in {(7.43b) one obtains

- kL ZLL (7.)
21T k 1 SO+L
= JoodSe LKL (B) + K3(D) ]
So

Since V(U)(s) must be a solution to (7.41), one sees that the phase function
V. (s) introduced in (7.36b) is given by

Wols) = - Q-(s -s5) . (7.45)
so that with (7.43a), the condition

Tols+L) - Tyls) = 2mQ, (7.46)
is fulfilled.

For our further investigations we assume that the one turn matrix M(sO+L,so)
takes the block diagonal form given by eq. (7.33), i.e, that the coupling of
synchro- betatron motion (approximately) vanishes. By suppression of the dis-
persion D in the cavities this can always be achieved exactly as can be seen
from egs. (4.9b) and (4.12). Of course, one can retain the coupling terms and
one will obtain exactly the same numerical results as given by the normal
fully coupled 6x6-formalism of Refs. (1) and (2). As we shall see later, by
ignoring the coupling terms the formalism becomes simpler and more physically
transparent.
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8. Solution ansatz for the perturbed problem. Bogoliubov averaging

The general solution of the unperturbed equation of motion (7.1} can be repre-
sented (see eg. (7.22)) by

U= Do{Ace O+ A Gl (8.1)
k=I,1I,
11,1V

with the integration constants Ap, A_ (k = I, II, III, IV).

To solve the perturbed problem (7.8) we make the ansatz
(Variation of Constants)

G = } {A(s)* G + Ag(s) qi} (8.2)

k=1,1I,
11,1V

and obtain by substituting (8.2) into (7.8)

-0
oA eV F AL (s)vo = 8A L {ApeVi ® Agevoyt +8cef 0]
K k K k o k* Vi k k
k:I,II, ’ k:I,II, 1
111 111
(8.3a)
Ay {s)eiipy + Al (s)elipy = - )} {AQ(S)'Wk + Alk(s)‘m-k} . (8.3b)
k=1,II
111

With the help of the orthogonality relations (7.29) and (7.30) these equations
can be solved for Ay(s) (k=I,II,III,IV).

If one then uses the Bogoliubov averaging technique one abtains, using (7.36)

i 2 5Qu(5-50)
Ag(s) = e | L e, {Alsg) -

s 70 2Re8Qu (s'-50)
- i« dst.e b X

50

- fif(st)e Se(s)} (8.4a)

A(s) = [AK(s)] for k=1, 11, 11T ; (8.4b)
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S - -
Apy(s) = Agy(sg) + } Jodste {ff(st) e sc(st) - Wi (s') S, wi(s') -
k=I,II, s
III
- fr(s') = Sc(s") - ﬁfﬁ(s') S, W_k(s’)} : (8.5a)
Alny(s) = Afy(s) (8.5b)
where
3
-b
fif = WS- | o

(B),* (B)* (B)* {B),* .
(Vkl) 'Dz—(sz) .Dl+(vk3) .D"*_(Vkﬂ-) 'D3 fur k:I,II M

By +1 -
- —de“ Yo fiur k=111 ; (8.6)
SO+L ~ ~ " -
SO = gm f GEeVEE) S 6A(E) 0 (3) (8.7)
o SO

As already shown in (7), the quantities 8Qx immediately give the complex
Q-shift of the kth oscillation mode resulting from the perturbation matrix A,

Together with eq. (8.2), which is built from the orbit part

§ = 12H {A(s) = Vie(s) + ALi(s) » Vo)l (8.8a)
k=1,II,
111

and the spin part

T Lo {Ag(s) = w(s) + Als) - wg(s)b
k:I,II,
III

+ Ay(s) swry(s) + A qy(s)* w_py(s) (8.8b)

these equations describe the spin-orbit motion in the presence of the synchro-

tron radiation damping terms in 65}
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9. Influence of synchrotron radiation on orbit motion

9.1 The beam emittance matrix

-
As a result of the stochastic excitation term SC in the equation of motion
(6.8) the only meaningful guantities that can be evaluated are averages of the

form

< F{U(s)) + 9(uls)) >4,

which depend on the statistical properties of the quantum fluctuations dc.

We first consider only the orbital part of the motion which by egs. (8.4) and
(8.82) is independent of the spin behaviour and we determine the moments

< Tnls) * Tnls) >, = ) {AG,2)(8) < vimvgn
k,2=I,II,111

* AG,-2)(8)  vimvagn Ak, R)(S) Ve mVen T
* A(ck,-g)(8) Vo mVag,n} (9.1)

{m,n=1,2, 3, 4, 5, 6)

with

Atk 2y (s) < Ay(s) = Ag(s) > (A k -2 (S)]* (9.2a)
(9) (SC (;)

*

[A(-k, ) (s)] (9.2b)

]
il

Afie,-2)(s) = < Apls) = A gls) >,

which give directly the width of the beam distribution,

Since we are mainly interested in the stationary (or eguilibrium} values of
the beam dimensions at an arbitrary position s in the storage ring we shall
calculate
stat N
A(k,iﬂ,)(s) = Tim A(k,iﬁ)(S+N'L) . (9.3)
lN-—)oo
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From eqg. (8.4), taking into account
< 8c{s)> = 0 ; ' (9.4a)
< 8c(s) * 8c(s')> = w(s)* &{(s - s') (9.4b)

and using the abbreviations

SQ = 80k - 5o o (9.5)
60k = Re {sqy} 5
Qy = —2‘H'Im{6Qk} :

and from now on ignoring integrals over oscillating functionsz), we obtain:

Alk,-k)(s+NeL) & < [Ap{s+NeL)[2 >,
= < IAk(S)I[z >cSC . e-ZOik-N +
«ZOLk'N s+L .l ~
voloe T w2 TS ) e @) )
e2(xk_1 S
(9.6a)
Ak, tg) (SFNeL) = <A(S+NeL) «Asp(s+NeL) >,

= < A(s) @ Aupls) > o-1°27(8Qu+ 6Qel-N | -(o+ag )+

{otherwise) (9.6b)

From (9.6a,b) it is however clear, that stationary egquilibrium values of the
A(k,+e) are only possible if oy in (9.5} satisfy the condition

a > 0 (k = I, II, I1I) . (9.7)

If
Otk<0

the particle motion is, according to (8.8a)} and (9.6), unstable.
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In the following we assume that the stability condition (9.7) is valid.

Thus, finally one obtains for the equilibrium case the stationary values
(Nay > 1):

stat stat
A(k,-k)(s) < |Ag(s)]? > sc

s+L 1,
- LT w2 TS @) - @) (9.8a)

stat

Ak i2)(5) 0 otherwise (9.8b)

and from (9.1) and (9.2) we get:

- — tat
< Vn(s)Tnls) >0 =

2. 1 <IA(s)]? %% Re {vgn(s)evin (s)} (9.9)
k=I,1I, 8¢
II1

which describes the "Beam Emittance Matrix".
Normally, @ <« 1, so that one can replace (9.8a) in good approximation by

» stat _ 1
< s 12550 = 5o

s+l
Cl e w®) . [ (3)1®
S

or using (8.6) by

s+L
LT a8w(3) i D2 v D Vi Dan Vit * For kL 1L
Gk s
, stat
< [Apls)2>5. = o
1 S ~f ~ o~
e [ d¥ew(3) B5(3) for k = III. {9.10)
4&k S
In this case, the integral is periodic and<:{Ak(s){2:fgif is independent of the
position of the start points:
<|Ag(s)| 2575 = const, (9.11)
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Using the same approximation in (9.6a) one obtains (for N = 1)

<HAclstL)]2> 50 - < TA(s)]2> .

d oy

L
B 20[,1( 2 1 S+L ~ -~ ~t 2
= - <A (s) B g = i dS-w (%) - [ (5) 2. (9.12)

From this it is clear that the stationary values given by (9.8a) and (9.10)
arise from an equilibrium between the stochastic excitation caused by quantum
fluctuations in the synchrotron radiation (function w(s) in {(9.6a)) and a
damping of the synchro-betatron oscillations caused by the continuous emission
of synchrotron Tlight, where the quantity & is clearly the damping constant.

From (8.7) and (9.5) the damping constants can be written as

SO+L ~ — =T e *
o = 5 43« v (3) - [S+SA(R) + SA ' (¥)+ STV (%) (9.13)
Sp

and by using {(2.3) as well as (7.15) and (7.38) we get

U : Sp*L »
op = %— £+ I [ d¥ x
0 So
4
X L-vid Dz +vidy *Du- v =Dy v +Dsle B 8Ag - vy, for k=1,11; (9,14a)
p=l
UO 1 SO+L o~ 4 ~ ad
Oi17 = — - = I ds - X SAéu(S)' D, (%) (9.14b)
. 2 - u
0 So p=1

where the quantity U, comes from eq. (7.40),

These results have already been obtained by G. Leteux® and A. Piwinskig) for the

case where H = 0 (no solenoids).
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For the sum
Qp + Gt Gryg

one obtains from eq. (9.14)

Ug 1 4 sgtl | »
Op + 0y + 0 = 2—+ = I J dS'GAsu(S) . {- Dp +
{80+ - {8)
o3 [« G (V7 «SyeD)e vy +
k=1,1I K = ki
* 8
+ i (Tr(f)+-§q-0)-v(kﬁ*1 (9.15)
with
Sa O¢2x2)
Su = -
O¢ax2) Se ‘
The dispersion vector D may now be expanded in terms of the eigenvectors
*
W a2 A (k = 1, II)
D= 2 ey -_\7?(6) + c_k _\75_?2} (9.16)
k=1,11

1

L

-

L
—
<
Mo

-
%)
=

[ ]

o4
o
"

Ck‘

k= ool . (9.17)

It is then clear from (9.16) and (9.17) that the second summand on the right
side of (9.15) vanishes so that finally

U
0.',1 + 01:[]‘ + OLIII = 2 E‘O- ‘ (9.18)
0
results,

This relation is known as thc Robinson Theorem and allows one of the damping
constants to be defined in te-ms of the other two.
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9.2 Special case: decoupled machine

With the help of egs. (9.9), (9.10) and (9.11) we are now in the position to
calculate the damping constants and beam size of an arbitrarily coupled
machine but we continue for now with consideration of the uncoupled case

N=H=0 . (9.19)

In this case, using the relations

. e , g
KX = E—O— BZ H (9.20&)
e (0)
Ky = =& B, (9.20b)
0
one gets for the guantities GAéu {n=1, 2, 3, 4) appearing in (9,14)
8Agy = = Cyo (K +KS)+Cy
GAgs = - Cy» (sz + Kzz) *C; (9.21)
8Ag, = GAg, = 0 .
with )
2KX2 1 9B,
Cy = Ky #+ . . : {9,222)
kg rk2 B U
2K, 1 [e8,]
C, = K, + . . . {9.22b)
S N T OJ T e

Using (7.38a,b) together with (9.21), the damping constants as given by
(9.14a,b) become '

oy = 'él'E_ ] % [ A8 Cy e [KE + KZT+Cy(R) +D, (%) ; (9.23a)
0 So
U SofL ”
dyp = 12 1 0’[ d¥.C, - [Kxa + KT C,(3) . 0,(3) (9.23b)
28 2 ¢,
UO 1 SO+L ~ z 2 ~ ~ ~ ~
arpp = E; + > J’ ds « Cy« [Ky + K, 1 = [Cu(3)D,(3) + C,(8)D,(%)]. (9.23c)
0
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tat
Furthermore, using these o, the excitation strengths < !Aklz:fsi for the
synchro-betatron oscillations given by (9.10) become

stat 1 s+l " . .
<JAflZ>e. = rrvl i d¥ e w(¥)« {By(3) * D (3) +
+ 20, (3) « Dy (%) = (%) +7x(3) + Dx(B)} (9.24a)
tat 1 s+l ~ o 12 ar
A 2z S = ———— d . - . D_ +
< I III >6C 40-:[1 .i S U‘J(g) {BZ(S) ya (S)
+ 20(%) + D7(3) « D(8) +v2(8)~ D2()} (9.24b)
stat " 1 s+L
A = = . ds « : 9.24
<M g £ o { Sreld) ( ¢)

where the expression for B; given in {7.43b) has been used,

With (9.9) and (9.14), the beam emittance matrix may also be calculated, In
particular one finds for the mean square energy spread:

<7 ? fﬁﬁt = 2 <|AIIﬂ2 >§ﬁt * Ivirn,el® according to (9.9)
tat ~ .
= < |Arp1 |2 ;zc - Yg(3S) according to (7,36b)
1 stL . according to (9.24c)
- 4y g ds'+ w(S) and to (7.43b) (9.25)

and for the average bunch Tlength:

- tat .
<lofz>g. = 20 < [Aml? >%2 * |vpp, 5I®  according to (9.9)
stat .
= < [Ag)? >sc Bg(s) according to (7.36b)
_on? o =y JStat : according to (9.24c)
PR Inl® > s and to (7.43d)  (9:26)
with (see (7.39))
n2 1 L Ug
Bz Lo v ——otge. == . 9.27
RN T T (8.27)

These results (9.24, 9.25, 9.26) will be recognized as being identical to
those obtained by more elementary meansl°).
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10 Spin-depolarization

The expressions for the damping constants, dk, and the beam emittance matrix

<Ymls) *¥a(s) >§E?t obtained in the previous chapter already provide a gene-

ral description of the orbit motion.
In order to investigate the spin-orbit motion, in addition to the quantities
A(k,ig,)(S) = <Ak(s)-Ai‘Q(s)>6c (k,o = I, II, III}
we also require the terms with the factor Apy:
Aqv,-1vy(s) ® < Agy(s) = ATy (s) >se = A,y (s)

- *
Av,y(s) = <A (s) <A (s) >4 = [Acay,anls)]

1]

*
Actv,-k)(s) & < Apy(s) = A (s) > e = LAc, ] ;

*

A(Iv,k)(s) = = [A(_Iu,_k)(s)]

I
A
I=
—
[
-
[ %]
-
.
I
Fay
——
v
g
v
[eg]
]
i

For the term A(ry,_1vy one obtains, using (8.5) together with (7.28) and (7.10b)

<Ary(s)+ ATy(s) >

A(tv,-1v) (s) se

N ‘
= <Apy(sg) = Aty(sg) >sc T

s
+2 [ d¥ew(®)-{[Im I(ff w12 o+
5 k=1,11,
111

Hln gty (R wp)]2 ) (10.1)
III
and for the remaining terms Acrv,1vy and A(ry,:k) one obtains

< AIV(SO-I'N'L) 'AIV(SO+N'L) >(SC = (‘AIV(SO) . AIU(SO)>6C . (10.2)

<AIV(SO+N.L). Aik(SO+N.L) >6C =

e-N-(xk .e-'|-2'lT-(3Qk-N » <Apy(sg)e Aklsy) > se (10.3)
(for k = I, II, III)

if one neglects the integrals over the oscillating terms.
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From eq. (8.8b) we also obtain for the spin components &« and 3 the expressions

<als) >5. = . z {<Ak(5)>5c'wk1 + < AX(s) >6C-wk’1} ;
=1,1I,
Ii1,Iv

< B(s) > = Eo{ah(s)y > mwp, + <AF(sY > mwd s

o k=1.11 oc e
17,1V
<o2(s) + B3(s) >, = 2-Re I A o(s)e Twyy gy + wp wopl +
8¢ k,2=1,II (ko2) b 2
I, IV
* A(k,-i)(s)' [wiy Wiy * Wy UPYLEE (10.4)

Furthermore, we assume that the initial stochastic averages of the spin com-
ponents at an arbitrary starting point s=s,, are given by the relations

a) <hlsg) >g. = 0 for k= LILIILIV (10.5a)

=3 <a(sg) >ec = € B(sg) >se T 0 ; (10.5b)
b) <a?(sq) + B*(sy) >se T 0 (10.6)
c)  Acrv,tvy(se) = 0 . (10.7)

Equations (10.5) and (10.6) express the assumption that at s=s, the beam is
polarized in the direction of the n-axis so that following (6.1) the existing
degree of polarization is given by

P(sg) = g « (10.8)
After N circuits we then obtain (using (9.4a) together with (8.4), (8.5) and
(10.2)):

]
()
we

<A (sg*N L) > s = 0 <afsgtN L) >s¢ ©
=> - (10.9)
for ¥« = I,II,IIT, IV <B(sg+N L) >s¢ =

!
o

.
>

<Ay, tvy(sgtN L) > =0 (10.10)



- 45 -

and if in particular we consider the case when the orbita] motion is in equi-

tibrium:
N-uk » 1

1
Luw)

A(k’g)(SO'FN'L)

Alk,-g){so*NeL) = O for & # k

<ARls) 2552 5 (k # 1V)

Ak,-k){sg+NeL)

and evaluate (20.4), wusing (7.28) and (7.32) together with (9.6a,b),
(10.3) and (10.10), we obtain

1
3 *<a®(sgt N L) + B2(sg+N L)>6c =

= I <5 | T e [lng(5) 12 + [wy,(so) 12 +
k=1,11,
II1

+ < JAgy (sg+NeL)[2 > (10.11)

e

where N must nevertheless be sufficiently small so that the condition given in
(6.1b):
a®f(s) + B*(s) < 1~

is fulfilled; this is necessary for the application of the perturbation theory
given in section 5.1, i.e.

<a®(sgtNeL) + B2(sy+NeL) Y50 €1 (10.12)

Since on average, the spin components o and B in (10.9) at $=sq*tN L vanish,
the polarization vector continues to peint along the direction n and the left
side of (10.11) immediately gives the relative change in the polarization

P(sg) - P(sg+NsL)
P(sg)

after N circuits (see fig. 1). Thus we may write:

P(sq) - P{sg+NeL) stat

= T < IMso) B TR g (s) 2+

P(So) K=1,11, ki=o0 Sc kit>0
111

ol (so) 121+ < [Apy (sg+NeL) |2 > . (10.13)
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1-%-'(a2+_r52)

Figure 1
For the depolarization time tTp:
Tn~! = - ...].-'.. .q_E. = - .E. ..(.:..I..E,..
D P dt P ds
we then obtain
el ¢ P{sg + (N+1)+ L} - P(sg+NeL)
D P(so* N+L) L
C 1
= e « {P(sq*FNeL) - + (N+1)-
2 S A IP(sy) - P(sg + (N+1)+ L)) = [P(sg) - P(sg*NeL)]}
L P(sg)
c
* T <Ay (sg + (N+1) e L) |2 > =< lAp(sg*NeL)]2 >4 }

and using (20.1) we find

TpTl = 2--[-- I dS'W(S)'{[Im k:Iz‘II III(fk .wkl)]a *
S ridy
T el (0.
k=I,I1,III

where the components wy, and wy, of the vector Wk in (7.26) are to be used.
(10.14) is suitable for a numerical calculation of the depolarization time and
it can also serve as starting point for a systematic optimization of the degree
of polarization in storage rings as shown in (11).
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With the help of this equation we are finally in the position to estimate the
depolarizing effect of the synchrotron radiation on the spin motion.

In discussion of eq. (10.14) it is also useful to make a principal axis trans-
formation of the factor

1

[E(§+L,§) A o+ 117

of eq. (7.26). Thus:

cos 27V sinZ2nwv 1
D(s+L,s) = -UK U
-5inZ2mv cos 2TV
1 1 e1-2nv 0
with U= —A D ok= | RERIN
2 i -1

== [D(E+L,E) - A U7 = [U (K - e 2L 1y gty

= Uk - et 2T, gymt Ly

so that the vector Wk can be written in the form

o T (Q=v) 1
sinm{Q+v)

e'i‘fT(Qk“*“\)) 1
sinm{Qy-v)

K (%) (10.15)

It is then clear that the components of Wk (and thereby according to (10.14)
the guantity tp~') become infinitely Targe, when

Q = v = integer . ' (10.16)

At these resonance positions the polarization is then destroyed.
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By substituting the forms for fj, given in (8.6) into (10.14) and using this
principal axis transformation we see that when the machine is uncoupled as in
section 9.2, 151 has exactly the same form as given by Yokoyalz). In this
case, the depolarizing effect can be written in terms of simple integrals over
the B~functions and the dispersion.

11. Summary

We have investigated the spin-orbit motion of particles in storage rings using
the dispersion formalism. Starting from the fully six-dimensional description
of the orbital motion as described in Ref., (2}, the dispersion function was
introduced via a canonical transformation so that the symplectic structure of
the equations of motion and thus all the transfer matrices are completely pre-
served in the absence of radiation effects. The coupling in the synchro-beta-
tron oscillations now appears in the cavities and vanishes if the dispersion
in the cavities is equal to zero. Neglecting the synchro-betatron coupling,
the transfer matrix of the orbit has block diagonal form. In this case, it is
no longer necessary to construct the eigenvectors of the full 8x8 one turn
matrix. Instead, only 4x4 and 2x2 eigenproblems need to be handled.

Together with the report in Ref. (2), these investigations cover the whole
linear theory of spin-orbit motion.

The formalism developed in this work has been used as a basis for rewriting
the spin part of SLIM in thick lens form neglecting transverse-longitudinal
coupling **), Of course, this formalism can also be reduced to a thin Tlens

form 147,
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APPENDIX

Calculation of the eight-dimensional transfer matrix of a cavity

in the dispersion formalism taking into account the synchro-betatron coupling.

In this appendix we show how the 8x8 transfer matrix of a cavity can be calcu-

lated in the version of the dispersion formalism in which all synchro-betatron

coupling terms are retained (see section 4 , especially eq. (4.9)).

For this purpose one has to investigate the solution of the orbital equation

of motion
d =2 ==z
—_—v = A
ds Y and
and the spin equation
0 1
d & =
_=G + L
s 5 Goy+ 7Y 1 0

for a cavity (see eg. (7.1) and (6.6d).

For a (pointlike) cavity at the position s = sg the matrix E:is given

ding to eq. (4.9) by

with
> > > >
DeDTeS -D 0,
> -
K, = | of 0 0 | + & k.27 oso
= Eq L
o
-DT-s 1 0

EO = S(S - SO)'KZ

with
Ko = (avo + 3 IO }- &Y sing ok ke
Yoo Eo My eMy. =My
and
N 0 0 0
F = 0 1 Dy

-1 0 0 0 -0,

(1)

ACCor-

(3)

(4)
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With these definitions eq. (1) and eq. (2) can be rewritten in the form

L5 = sls =) Kals) ¥ (82)
< > 0 1
L5= ss-so)ekals)V N ) (8b)

In solving egs. (8a, 8b) it is important that the terms
s =
Ki{s) y and Ky(s)vy

-
which multiply the S-functions are continuous functions of s at s, although ¥
changes discontinuously at sy as can be seen from (8a).

>

The continuity can be proven easily if one takes into account the fact that Sﬁ
and T are continuous at s = s, (see eq, (3.4), (3.5), (2.3a)) and that

> > > >

DT .'S— yl - D lé.’yl
Q

F-y = Yy
¥

> >
and if one rewrites K,y and K, ¥ in the form

> > g +
N DeDT-S yt D O R
Kiy = . --‘E—"--k-?-chos@ (9a)
-pT.$ yL to 0
0
4 L '8 L
= Y ) T X z
K, = (avg + —2—) » Tk - &L sing Y.\, (9b)
1+vs By L M -y, -m, -?;

Now, integrating both sides of eq. (8a, b) from s;-& to sg+e one immediately

obtains (& => 0)

?(SO-PO) = {1+ Ky(sg)] ¥(s4-0) (10a)
S(so+o) = 5(50-0) + K a(sq) -3/_:(50-0) (10b)
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From eq. (10a, b) one can then extract the eight-dimensional transfer matrix
of a cavity which reads

Miexs)(Sg+0, Sg-0) 0

IM(BXS)(SO'*'O’ So‘o) = (11)
G(sg*0, sg=-0) Leax2)
with
M(sx6)(So+0, sg=0) = 1+ K,(sq) (11a)
G(sgto, sg-0) = Ka(sg) - (11b)
Ki(sg) is defined by eg. (4) and K,(s,) is given by
o 0 =%, 0 2, 0 (D42 -D,8,)
Y . z X WAy T t2Az
Kalso) = (av *+ 7 ——) E—V- sing (12)
Yo 0 0 wm, 0 -my O -(Dymy-D,m,)

(see eq. (6) and (7)).

Misx6)(Sg+0, sg-0) in eq. (11) is the transfer matrix of the orbital motion
and G(sy,+0, sg-0) is the spin-orbit coupling matrix of a cavity.

ﬂ(sxs)(SO'Fo, SO-o) is symplectic, i.e. it fulfills the condition

.M_(Tsxs)(soﬂ, 50'0) '§_' _M_(6x6)(50+03 So"o) =3 (13)

which can be checked easily by putting (11a) into (13).

Egs. (1la) and (4) also clearly show again that the transverse and longitu-
.

dinal motions are completely decoupled if the dispersion vector D vanishes in

the cavity region (see section 4, especially eq. (4.12)).

When this (fully coupled) version of the cavity matrix is used the dispersion
formalism will give exactly the same results as the usual six-dimensional for-
malism of coupled synchro-betatron oscillations?),
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