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Abstract: It is shown that a state carrying an "electric" charge which can be 

determined with the help of Gauss' law cannot be an eigenstate of the mass ope-

rator. 
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There is ample evidence, both from the study of exactly soluble models and 

from more abstract arguments, that particles carrying an electric charge are 

inevitably accompanied by clouds of soft photons, and therefore cannot be des-

cribed by eigenstates of the mass operator. (For a review of this "infraparticle 

problem" cf. [.1],) It is the aim of the present letter to provide a general argu-

ment which traces back this fact to its very origin: Gauss' law. 

1, If one wants to determine the electric charge of a physical state with 

the help of Gauss' law one must be able to measure the spacelike asymptotic electro-

magnetic field of this state with sufficient precision, Let us first discuss how 

this requirement can be expressed in terms of a simple condition which must be 

satisfied by the vectors describing such states, To this end we consider the 

smoothed-out electromagnetic field operators 

Fr-,l'fR) sd\ A 

R' cp (f) F l>l 
!'-' ' 

I 1) 

where ~ is an arbitrary real testfunction which has compact support in the space-

like complement of the origin of Minkowski space, and R > Q is a scaling parameter. 

As R increases, the electromagnetic field in (1) is averaged over regions whose 

diameter and spacelike distance from the origin grows like R , and this average 

is rescaled by the factor R-L according to the engineering dimension of the 

field. 

The class of vectors p describing physical states in which the asymptotic 

electromagnetic field can reliably be determined, can now be characterized by the 

property that, firstly, the expectation values of the operators ~r-~ (tpR) converge 

for all above-mentioned testfunctions ({> , 

l~rn 
R~oo 

(CI>, Fl"~l'fR) {>) " f I"~ l 'f) ' (2a) 
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and, secondly, the mean square deviations of these quantities stay bounded, 

£iN, su.p II ( F 1'-' l 'f R J - t I'' l 'f H) <!> l\
1 

< = . (2b) 

R-oo 

Although these conditions seem to be a minimal requirement if Gauss' law is to 

be verifiable in experiments, it is worth-while to examine whether they are satis-

fied in models of physical interest, such as quantum electrodynamics, There exist 

two theoretical obstructions to these conditions [2]. Firstly, the state ct may 

be packed with a multitude of particles, giving rise to large absolute values of 

the electromagnetic field. But since we are only interested in the elementary 

systems of the theory, we do not have to worry about this possibility here. 

The second theoretical obstruction to be discussed is the possibility that the 

quantum effect of the measuring process described by F,.,l'1'R~ gives rise to 

fluctuations of the electromagnetic field which are in conflict with condition (2b). 

In order to get an idea of the magnitude of this effect let us consider the flue~ 

tuations of F,.... ~ ( Cf R) in the vacuum state Q . It follows from the first 
_,~ 

Maxwell equation 'd F f'-"'J = 0 that the Kiillen-Lehmann representation of the two~ 

point Wightman-function of F,....v has the form ( tt+ -y and no summations involved) 

( F ~'-' lxl Q , Fl", l ~ l Q ) 

" j df-'lml J ~0 (- p~ ~vv ?!~,..,._) 
L plx-y\ 

~ 

(3) 

where p, , 

a discrete part 

( E.2. + m2 )1
12., and dftm) is some positive measure which has 

Scnn~drn due to the intermediate one~photon states contributing 

to (3). Proceeding as in [3 J it is then straight~forward to show that 

~ 
R-> oo 

II F r-• l '1' R J Q II" " 
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(' d'p ( ~"- -2 ' - - l"
.l21EI -pr-'}•·- p_, 'ar-t< I i'flpl ' 

where we have put p" (1~1, ~ J • Thus the fluctuations of F,._.,l'fRJ 

in the vacuum state stay bounded in the limit R -+ oo , Using the spacelike 

(4) 

commutativity of observables, the same result can be established for a dense set 

of vectors in the superselection sector of states carrying the charge quantum 

numbers of the vacuum (cf. the discussion below), But one finds in this sector 

locally already all possible configurations of charged particles (the compensating 

charges sitting "behind the moon"), so this result provides evidence to the effect 

that the quantum fluctuations of F ,..._..J l Cf R) stay bounded also in charged 

sectors. We therefore hold that condition (2) characterizes all states of interest 

here. 

We note that the functional f l. ) in ( 2a), being the scaling limit of a 
r-' 

distribution, is again a distribution which is defined on the region £X : :< '2. .c. 0} 
and which is homogenous of degree ~2, corresponding to the scaling transformation 

in ( 1), Knowing this spacelike asymptotic electromagnetic field of a stJ;tte cp one 

can determine its electric charge by means of Gauss' law 
. ., 
Jr-"'0 F~'., giving 

(i!!,Q~) t..., 
R-oo 

Jd\ ~;i(f) (<P,J,lx\<j)) f, 0 (a'n. (51 

Here 1 is any testfunction whose spatial derivatives (Jl. j.. 
region { )(; X'l.... <: 0} , and which is normalized in such a way 

have support in the 

that Sd\ X:cnS'"t•<.l"1. 
A simple example of such a function is ;{cn~c(U,l~l"'\ where C( > ~ are 

testfunctions with ~lx_l = 1 for l~h 1 o([<,) "0 for !x,!;, 1(~, 

and S d:<
0 

c< (X 
0 

I " 1 , Actually, the expression (5) should not depend on 

the specific choice of }G within the above limitations. This is the case if 

ff'' (\l''l'l 0 0 for all testfunctions lf with support in {x,x 1 <0} 

i.e. if there are no sources of the electromagnetic field in the state q? at 
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spacelike infinity. But we will make no use of this ass~ption here. What will 

be used, however, is the fact that f t'-"" must be different from 0 if <£> carries 

a non-zero electric charge. 

2, Let us now turn to the discussion of the implications of condition (2). 

Of central importance for our argument is the notion of superselection sector [ 4 ], 

whose various aspects are briefly recalled for later reference : according to its 

basic definition, a superselection sector is a closed subspace ~5 of the physical 

Hilbert space, which is stable under the action of the algebra (t generated by all 

local observables of the theory*), and in which the superposition principle holds 

unrestrictedly, i.e. every unit vector in df: 
5 

induces a pure state on lJL Equi-

valently, one can characterize the superselection sectors Je 5 by the fact that for 

every non-zero vector IJ! E 'Je
5 

the set of vectors CJlt±! is dense in J.e',
5 

• Still 

another characterization of superselection sectors is based on Schur 1 s lemma, 

saying that every hermitian (but not necessarily bounded) operator on '&c5 commuting 

with all elements of CX. is necessarily a multiple of the unit operator i 5 on d£
5 

From the latter fact it is obvious that all vectors in :J£5 carry the same charge 

quantum numbers. It should also be noticed that the energy-momentum operators P,..._, 
being the limit of local observables [5], leave each superselection sector invari-

ant. 

Now let Jt
5 

be any superselection sector and let 4? E ~ 
5 

be any unit vector 

satisfying the conditions (2). It then follows that the sequence of vectors 

F '" l tfR) ..f... E- k tp as in ( 1), converge weakly as R tends to !'"' '.±::" s ' 
infinity, and 

*) I ·d · · · · A n order to avo1 dlscuss1ons of domaln questlons we assume that Vl is a 

*-algebra of bounded operators, and that the unbounded local observables, 

such as Ff'-V ( i.flR) , are affiliated with this algebra in the sense that their 

bounded functions are elements of Ct . 

R~= 

Fr-, llf'Rl <P w-b 
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t l 'f) r <P. (6) 

The proof of this statement is based on standard arguments and is given only for 

completeness; according to condition (2b) the norms 1\ F ('f' ) ;, II are uniformly r--..J R. ~ 

bounded in R . Since the unit ball in a Hilbert space is weakly compact, we must 

therefore only show that all weakly convergent subsequences of the sequence 

F ~'-"' l'f ,,_! p have the same limit (6), So let Fr-) lf'R,) tP , L E 1[ ( I being 

some index set) be any such subsequence and let 

w- ew,_ F~'-,l<f•) <j) cp][. (7) 

Because of the localization properties of the operators F }<-v l CflR) and the 

spacelike commutativity of observables we have that for any given A E CJl the 

commutator [F}'-'"'(<.,Dfl..JlA] vanishes for sufficiently large R . Thus it follows 

from ( 7) that for all A f Gt 

w- tum Fr,l~.l) A<ji A ¢][ . 

But, as was discussed, the set of vectors CJt © is dense in d£
5 

, hence 

(8) 

relation (8) shows that the sequence of hermitian operators Fy.-v ( cpR) converges 

weakly on the domain ~q? , the limit being again a hermitian operator, It is 

also clear from the previous remarks that this limit operator commutes with all 

elements of CJl According to Schur's l~mma it must therefore be a multiple of 

the identity 1
5 

, and consequently <Pn. c[ ~ where C ][. is some 

constant. Taking scalar products of the vectors in (7) with qQ and making use of 

condition (2a) it follows that C_n: = f t'-"" l 'P) This shows that the limit in 

(7) does not depend on the specific choice of the subsequence F}'-V CCPRL)4? , and 

thereby proves the assertion (6). 
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In the course of this argument we have seen that all states in a superselection 

sector have the same asymptotic electromagnetic field f fL~ . This result is physi

cally quite plausible since these states.are obtained from a fixed one by the effect 

of local operations. But such operations cannot change the field at spacelike in-

finity according to Einstein's principle of causality. 

In the final step of our argwnent we will show that a vector <J2 satisfying 

relation (6) can only be an eigenstate.of the mass-operator P
6 

pr; if fj<.-.,_,~0 · 
, and therefore also P.~ 6 <\)l~l~ m\f>cy), So let us assume that 

c)'P 
where cj)( j) ~ e· cj) 

P.P 6 cj) : m~ <f;> 
~ yd< , Starting from the trivial equation (in the 

sense of distributions) 

(<J)c:Jl, [P.-P 6
, F>'-,c.n] ~I 0 (91 

and taking into account that L [P6 1 FJL-v('i)]::;CJ6 t=;._..:llx), it is obvious that 

2c (P" <J?cy 1 , p
6 

Fr-, cxl <j) I + ( <jJ c ~ 1 , 0 F.r-v ex l ~) ~ 0 • c 1 o 1 

We integrate this expression with testfunctions of the form 1t ~(~),where ~ 
has the properties assumed in (1), giving 

2c (P6
<Pcyl, F>'-)ld/fl.l<l?)~ ~ (cf!ljl, F>'-)lDCf'l.)<!J). ( 11 I 

Proceeding in this equation to the limit of large R and making use of relation 

(6) we thus find that 

(P"<\)cyJ,cP)· fr(<J/1'l 0. ( 121 
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Now if 1:1'-,('6.,4') would be different from 0 it would follow from (12) 

that the Fourier-transform of j- (<lll'Jl, ci:>) has support on the (at 

most) two-dimensional manifold 

b p"p" ~ Yn 
~ 

p6 f}'-_,l'd.'i') ~ 0 } . ( 131 , 

But this is impossible since the joint spectrum of the spatial momentum operators 

Pi. , L ~ 1, 1,3 is Lebesgue-absolutely continuous on the orthogonal complement of 

the vacuum (as a consequence of the locality of observables) [ 5]. Hence f f-V l 'OG' 4') ~ 0, 
and bearing in mind that f y.--v is a homogenous distribution of degree -2, we conclude 

that f }'-' : 0 

We emphasize that one arrives at the same conclusion even if one relaxes the 

assumption that ~ is an element of a particular superselection sector, i.e, if 

"one allows for the possibility of mixed states. The proof is, however, slightly 

more involved: one must first decompose ci? into a direct sum (integral) of vectors 

4? inducing primary states 
p 

affiliated with CJC [5], the 

on 0\., , Since the energy-momentum operator Pt'- is 

components qD appearing in this decomposition are 
p 

again eigenstates of the mass-operator, and they still satisfy condition (2b). The 

latter fact is sufficient to show (using the uniform boundedness principle for 

distributions) that all weak Fr_,ccr.> on limit-points of the 11 central" sequence 
p 

¥}'-", l4') Ol ell, 
p 

f}'-_, ('<I., 'f): 0 

are c-number distributions • Arguing now as before one finds 

, showing that FY.' ((~"'f) R I cP p converges weakly that 

to 0 . Since this holds true for all components ci? of <P it then follows from 
p 

condition (2a) that f }<-...., l 'OG' Cf) "'0 , and hence f J<' : 0 • This completes our 

proof of the statement that particles carrying an electric charge cannot be des-

cribed by eigenstates of the mass operator. 
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3, It is note-worthy that by a sim~lar reasoning one can also establish the 

spontaneous breakdown of the Lorentz symmetry in superselection sectors of states 

carrying an electric charge [6], (For a different argument, which is based on the 

timelike asymptotics of the radiation field, cf, [7].) Namely, if there exist 

unitary operators U(A} on Je.S implementing the Lorentz-transformations 1\ , i.e, 

U(!\) F Vl 
!'-' 

fi-'J' A-'/ F !''''(Ax) · U(l\ 1, I 14) 

one finds, by taking matrix elements of this equation with respect to the dense 

set of vectors ex 4? c !Jes and using equation (6). that the spacelike asymptotic 

field f-}'-v of the states in ~ 5 must satisfy 

f j<-~ lX) 
(\_, y.' 

)'-

A-" ~I 
' fl'''' (Ax). 

I 15 I 

But in view of the antisymmetry of f ~v in y and V this is only possible if 

fy.., 0 

------ --.-------

By the above discussion the well-known infrared problems in quantum electrodynamics 

have been traced back to the fact that the spacelike asymptotic electromagnetic 

field is a superselection rule of the theory. On the other hand it should be noticed 

that, due to the presence of this superselection rule, the physical state space of 

the theory splits into an abundance of superselection sectors [6], which brings its 

structure closer to that of a classical theory, Some aspects of this simplifying 

feature of quantum electrodynamics, which is frequently ignored, well be discussed 

elsewhere. 

~-·---- -- ___,. --v----v-··-v 
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