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Abstract 

We ~onsider models which have no small Yukawa couplings unrelated 

to symmetry. This situation is generic in higher dimensional unifica-

tion where Yukawa couplings are predicted to have strength similar 

to the gauge couplings. Generations have then to be differentiated 

by symmetry properties and the structure of fermion mass matrices 

is given in terms of quantum numbers alone. We scan possible symmetries 

leading to realistic mass matrices. 

+Ere aspirant, N.F.W.O., Belgium 
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Most of the free parameters of the standard SU(3} x SU(2) x U(i) model 

are Yukawa couplings between quarks, leptons and the Higgs scalar. Ideas 

of further unification of all forces aim for an explanation of those 

Yukawa couplings and thereby a resolution of the old puzzle about the 

origin of the difference between muon and electron. In particular, uni-

fication in more than four dimensions relates the number of generations 

to topological properties of internal space l), As a consequence, the 

differentiation between generations should also be explained by symmetries 

and topology of internal space (including ground state configurations 

of other bosonic fields). 2l-4l 

In this letter we describe a computerized search for realistic fermion 

mass matrices whose structure is entirely explained by quantum numbers 

of quarks and leptons. Although motivated by higher dimensional theories, 

the framework of our discussion is in four dimensions. Our central 

assumption is that the theory has no small Yukawa couplings unless they 

are protected by some symmetry. In the limit of unbroken symmetry all 

dimensionless cubic couplings are assumed to be of the same order as 

the gauge coupling g or to vanish for reasons of symmetry or topology. 

(This is the generic situation resulting from higher dimensional uni-

ficat~on). If generations are not distinguished by the order of magnitude 

of their Yukawa couplings, they must be differentiated by some symmetry 

G larger than SU(3) x SU(2) x U(l). Such a symmetry G may consist of 

local or global continuous symmetries or be discrete. 
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In the limit of unbroken G the top quark and the electron must couple 

to scalar doublets di in different representations of G othen1ise 

their mass would be of the same order of magnitude. The Higgs doublet 

responsible for weak symmetry breaking will be some linear combina-

tion of di, f L.: • d . r . 
~ (. t 

<di> = '( < 1> 
< 

The vacuum expectation values (vev) are 

(1) 

Masses of quarks and leptons are given by the product of Yukawa coupl-

ings (of order g) and the vev <d.> 
' 

which couples to them. The apparent 

small Yukawa coupling for the electron originates in a small mixing 

coefficient '( for the corresponding doublet! In the limit of unbroken 

G the various doublets cannot mix and all y i vanish except one <y 
0 

oo 1). 

(This "leading" doublet should only couple to the top quark in the three 

generation case.) Nonvanishing mixings )'i are induced by symmetry break

ing of G. Let us denote by M the typical scale of mass terms for the 

doublets di in the limit of unbroken G and by MG the scale of G symmetry 

breaking. The dimensionless Oi are then of order 

t< ~ ( ~G r (2) 

with Pi some integer calculable from symmetry considerations 4) A small 

ratio MG/M should be responsible for all small quantities in the fermion 

mass matrices. 

For the purpose of this letter the choice of M is arbitrary. It could 

be a very high unification scale - the compactification scale in higher 
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dimensional theories, the string tension for superstrings or the GUT 

scale for some extended version of grand unification/family unification. 

In this case the structure of fermion mass matrices is related to a 

fine structure of scales around the unification scale 3). Only one Higgs 

doublet p survives at low energies. The other extreme case is a "low 

energy" (~TeV} scale M only somewhat above the weak scale Mw~M8 . 

This scenario requires several doublets in the range below a few TeV. 

It may be realized in supersymmetric theories with M the gravitino mass. 

Between these extreme scenarios one can of course consider possible 

combinations or a scale M in some intermediate range. 

There is a first necessary criterion for these ideas to work: The symmetry 

G must differentiate enough between various quarks and leptons to allow 

for realistic structures of the mass matrices. There should be at least 

one choice of (d~ (the calculation of these vev's is not attempted 

at this stage) which produces correctly all orders of magnitude for 

the various entries to the quark and lepton mass matrices MU, M0 and 

ML. This requirement leads to many restrictions on possible quantum 

numbers with respect to G. Consider a three generation example: The 

doublet responsible for the top quark mass should be forbidden by G 

symmetry to couple to down quarks or leptons. Otherwise the largest 

eigenvalue in MD or ML would generically be of the same order as mt. 

We may illustrate this for G a continuous abelian symmetry U(1)n with 

charges Qk (k = 1, ... ,n). Denoting by Qk (qi) the charges for the i-th 

quark doublet and similarly by Qk (u~), Qk (d~) the charges for uc and 

de, the charges for the doublet responsible for the top quark mass, 



- 5 -

? are c' 
tt 

Qk ( ~ ttc) - o, (t) - Qk (tel (3) 

If for some pair (i,j) one finds for all k 

Qk( f ttc) Qk(d~) + Qk(qj) (4) 

this doublet can also couple to d~qj and the model should be discarded. 

(Note the difference in sign between (2) and (3) which reflects the 

fact that doublets coupling to d~q. or e~L. have the opposite hypercharge 
1 J 1 J 

c c • from doublets coupling to u.q .. If d. couples to u.q., only d. can couple 
1J 1 1J 1 

to d~q. or e~L .. ) For a given symmetry G and given representations 
1 J 1 J 

for quarks and leptons (given Qk(qi) etc.) a computerized scan for accept-

able mass matrices becomes possible. For this we require that all small 

quantities below an order of magnitude in the fermion mass matrices 

should be explained by a symmetry G and different scales <di) This 

concerns small ratios of mass eigenvalues as well as the small mixing 

angles. We allow for the possibility that factors ;j 5 are attributed 

to group theoretical Clebsch Gordan coefficients or other details of 

dynamics. There is of course some arbitrariness in the choice of a boundary 

for small quantities not explained by G. Given the fact that quantities 

-5 as small as 10 (me/mt) appear, this does not change the overall scheme. 

Our scanning program is based on the observation that for the three 

generation case the structure of fermion mass matrices is well described 
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by four (or five) scales. These scales themselves are separated by about 

an order of magnitude. The highest scale is the top quark mass, which 

we assume to be several ten GeV. The second scale is a few GeV at which 

level we have the bottom quark, the charm quark and the tau lepton.*) 

The strange quark and the muon constitute the third level of a few 

hundred MeV. The fourth level consists of the up quark, the down quark 

and the electron. Since the electron mass and the down quark mass differ 

by about **) an order of magnitude it can be argued that we need a fifth 

scale here. The fourth scale is below a few ten MeV. The only other 

information about the mass matrices comes from the measured mixing angles. 

We have (a fairly large) Cabibbo angle and a few percent of mixing between 

the 2nd and 3rd generation. The limit on mixing between the first and 

the third generation is somewhat less than one percent. No information 

about the lepton mass matrix besides its eigenvalues is available. We 
n 

will denote these scales by n , every scale being a few 10 s MeV. So 
s 

the ns are 

') We use a normalization for the quark and lepton mass matrices at 

the weak scale MW. If we assume that these entries are generated a~ 

a very high scale (MGUT or Mp) we multiply the lepton mass matrix by 

a factor of 2.5 - 3 in order to account for different renormalization 

of quarks and leptons. 

**) This ratio is reduced to a factor of five for the case where masses 

get generated at a very high scale. 
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mt 4 

mb,mc,mt 3 
(5) 

m
11

,m
5 

2 

mu,md,me 1 (0) 

Upper bounds on the sizes of entries in the mass matrices are given 

by 

Mu ~ ( 
4 3 2) 
4 3 2 

4 3 1 

(6a) 

( 
3 2 1) 

"o~ 3 21 

3 2 1 

(6b) 

ML ~ (: 2 2 I or 

2 2 

( 

3 3 3 ) 
2 2 2 

2 2 1 (D) 

(6c) 

2 1(0) 

The mass matrices (Sa, b, c) have been ordered here in the standard ~tay. 

The bounds on the M11 elements come from the maximal size of mass eigen

values. This entry is ah1ays required to generate the largest mass. 

The bounds on M
12 

and t\3 come from the observed small values of the 

mixing \dth the third generation. This does not provide a bound on these 

elements in ML though. The bounds on M21 CJnd N31 only come from the 
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size of the largest mass since these elements can always be removed 

by a left multiplication of a unitary matrix which is unobservable. 

The bound on M22 and M32 is from the 2nd eigenvalue and the one on M
23 

comes from the smallness of the Cabibbo angle. *) In the lepton matrix 

limits only come from the eigenvalues. Hence, whenever Ml is acceptable, 

M~ (transposed) is too. Finally the bounds on M33 reflect the smallness 

of first generation masses. These masses could also be generated by 

paired off diagonal elements S) and we have to impose additional 

"quadratic" constraints. In terms of n
5 

they read 

(MU)13 + IMul31 { 5 (?a) 

(MU)23 + (MU)32 ( 4 (7b) 

(MD)23 + (M0)32 ~ 3 (7c) 

(ML)13 + (ML)31 ~ 4 (3) (7d) 

(ML)23 + (ML)32. ~ 3 (2) (?e) 

The sizes in brackets are those where we implement a fifth scale for 

the electron mass. **) 

•) 
This is however a limiting case. If we would allow the Cabibbo angle 

tQ be of order 1 these entries could be an order of magnitude higher. 

) As a limiting case we would allow (ML) 11~(ML) 12 ~(Ml) 21 = 3 in 

the lepton mass matrix. This would require 3 factors of 0(1) to conspire 

to produce a difference in order of magnitude. A similar argument would 

increase all the bounds in eq. (7) by 1. In this case no new information 

(assuming the Cabibbo angle of 0(10- 1)) is contained in the quadratic 

constraints. This however requires a set of 0(1) factors to all go 

in the right direction and we will discard this possibility in this 

letter. 
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We now can describe our scanning procedure: The fermion masses are gene-

rated level by level. At each step we try all possible assignments of 

the required scales n
5 

to suitable entries in the corresponding mass 

matrix. If the same doublet di is allowed to couple to more than one 

entry in MU, M0 or ML we assign the same scale n
5

. Consistency is then 

checked by comparing the scale pattern 1vith the bounds (6a)-(6c). A 

model is rejected if at some level no consistent assignment is found. 

We i'lill use the rather mild consistency vetos discussed above where 

1·1e only require that scale ratios smaller as around an order of magnitude 

are generated by different scales of entries and therefore by doublets 

with different G quantum number. Stronger vetos are easily implemented. 

\~e also note that 1~e arbitrarily can permute all rows in ferr.1ion mass 

matrices as well as columns in Ml in order to bring them to the standard 

form (6a) to (6c). For the quark mass matrices, permutations of columns 

have to be done simultaneously in MU and M0 in order to keep track of 

mixing angles. 

At the first level we look for an entry only appearing in one column 

of Mu and not in M0 or Ml. This defines the top mass with ns 4. At 

level two we first assign a candidate for mb with n
5 

3. \~e veto if 

the label ns = 3 appears in more than one column in M
0 

or ML or if it 

appears in more than one column outside the top column in MU. If m~ 

is not generated by the mb entry, we try additional ns = 3 entries in 

ML. The same procedure then applies to me which can be generated either 

by diagonal or paired off diagonal ns = 3 entries. The combined set 

of all n 
e 

3 entries is subject to the consistency veto described for 

mb. At the third level we first generate m~ by an n
5 

2 entry. We again 
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allow for diagonal or paired off diagonal entries. We veto if this entry 

appears in the last column of M0 or in (MU) 33 or (ML) 33 or if one of 

the quadratic bounds (7a) (7c) is violated. If m
5 

is not yet generated, 

we assign additional n
5 

= 2 entries in M
0 

with the same veto. At the 

end of level three all generation numbers t,c,u etc. are assigned to 

the various ro~tls and columns. It is now easy to check by inspection 

of the various labels 4, 3 and 2 in the mass matrices if sufficient 

mixings 923 and e12 are already generated. If not, iie have to assign 

for e 23 an appropriate ns = 2 or 3 entry in f'lu or an ns = 1 or 2 entry 

in M
0

• The same holds for 812 1~ith ns = 2 or 1 for Mu and M0, respectively. 

Of course, possible ns = 3 or 2 entries are subject to the appropriate 

consistency vetos of level two_or three, respectively. Finally, we check 

if all first generation masses can be generated by ns = 1 entries. This 

~~ill always be the case unless "topological reasons" enforce the absence 

of certain doublets coupling to the first generation bilinears. ~Je account 

for such topological restrictions by setting appropriate entries to 

zero (ns -10). 

As our first example we take G U(l) x U(1) with two anomaly free abelian 

symmetries in four dimensions. The first U(l) is a linear combination 

of the three generation hypercharges and the second is a linear combination 

of the generation B-L ·sy~metry. A generation hypercharge has zero charges 

for all generations except one for which we have the standard assignment 

of Y. For three generations one has two independent g~neration hypercharges 

Y1 , Y2 in addition to the standard weak hypercharge Y = Y1+Y2+Y2 . The 

same definition applies to generation 8-L symmetry. These symmetries 

have no mixed anomalies 1~ith SU(3) x SU(2) x U(1) or mixed gravitational 



- 11 -

anomalies and are by themselves anomaly free. The fermion quantum numbers 

under G are 

1 1 c 4 
qli(3yi, jbi); uli(- JYi' 

1 c 2 
Jbi); dli (3y i' 

c 
Lli(- Yi'- bi); 8 Li( 2Yi' bi}. 

1c )· -y;i ' 

In this example we assume that every fermion bilinear can couple to 

a scalar doublet. Many four dimensional models are more restricted 

because there will not be a scalar doublet with the right G quantum 

(B) 

numbers to couple to every possible fermion bilinear, but even at this 

level the reduction. in possible solutions is significant. To see this, 

let us estimate the total number of possibilities for assigning scales 

ns to entries in mass matrices for the case of a symmetry G large enough 

to discriminate between all fermion bilinears. We first have all possible 

reorderings of rows and columns. The columns of MU and M0 are linked 

vici the observed mixing angles so this is a factor of (31)
5. For every 

assignment of vev's in Ml the transposed assignment is also valid 

(a factor of 2). The 2nd generation masses can be fed down from the 

3rd generation via off diagonal entries or can be directly generated 

(a factor of 23) and similarly the first generation masses can be ge

nerated directly or fed down from the 2nd or 3rd generation (33). Some 

uncertainty comes from the way how mixing between generations is generated 

and assigning values or not to irrelevant entries (those that do not 
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generate masses or mixings but violate none of the vetos). So the total 

number of possibilities is 

0 sol 0(65 2 23 33) 0(3 106) (9) 

We will not distinguish between the different ways of generating the 

first generation masses so that the maximum number of different assign-

ments is 

0sol = 0(6
5 

2
4

) 0(105). (10) 

It is this latter number that our program calculates and the actual 

number found for maximally differentiated mass matrices is 124416. 

We now can compare the number of possible scale assignments for our 

U(1) x U(1} example. Results for several values of (yi,bi) are given 

in table 1. Even some fairly simple restrictions on the mass matrices 

can reduce the number of solutions significantly. The maximal differen-

tiation from a U(l) x U(l) symmetry of this type is that all off diagonal 

elements have different quantum numbers whereas the diagonals are the 

same in the three mass matrices. This general form allows for 18768 

solutions (the exact number is somewhat lower since our program has 

some double counting from always treating Ml and M~ as different solutions. 

But for some simple assignments the reduction is much more dramatic 

as can be seen in table 1. For certain U(l) x U(l) groups no solutions 

are found at all and such models are inconsistent with our assumptions. 
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As our second example we discuss a simple higher dimensional model, 

namely monopole solutions of the six dimensional 50(12) theory 2}. 

(This can be considered as a subgroup analysis for the E8 x E8 super

string for appropriate deformation classes of the ground state 
4

) .) 

Monopole solutions with SU(3) x SU(2) x U(l) symmetry are characterized 

by three integers n, m and p with n+p even. We list 2) the numbers of 

chiral fermions with given charge q ~ ~ 1/2 (corresponding to the abelian 

subgroup of 50(12) corrvnuting with 50(10)): 

ql 

c 
ul 

de 
L 

LL 

c 
el 

( ~(n+pl) 1/2 + ( ~(n-p)) -1/2 

[ ~(n-p+2m)) 
112 

+ [ ~(n+p-2m)] _112 

[~Cn-p-2ml] 112 + ( ~(n+p+2ml] _112 

l~(n-Jp)\1/2 + [ ~(n+3Pl]_1/2 

(~Cn+3p-2ml] 
112 

+ [ ~(n-3p+2m)] _112 
(11) 

Negative integers in the brackets correspond to the corresponding number 

of mirror particles ql,u~··· with charge q opposite to the indicated 

index. Possible mirrors ql have therefore the same U{l)q charge as ql 

and mass terms between standard fermions and mirrors require breaking 

of U(1)q. 

Besides U(l)q and U(1) 8_l within 50{12) there is another possible abelian 

group U(l)G commuting with SU(3}C x SU{2)L x U(1)y. This comes from 
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an isometry of rotations on two dimensional internal space. The charge 

I with respect to U(l)G for ql is _given by (n+p / o, n-p > o) r , , , , (q 0 1/2) 4(n+p) - 2• 4(n+p) - 2• · · ·' - 4(n+p) + 2 

I o (12) 

1 11 3 1 1 
(q 0 - 1/2) 4(n-p) - 2• 4(n-p) - 2• · ·' - 4(n-p) + 2 

and correspondingly for mirrors and the other fermions. {I is the third 

component of 5U{2) 8 spin for SU{2) 8 representations with dimension 

given in the brackets in the list (11)). We want to know if the abelian 

charges q and I can differentiate sufficiently between various quarks 

and leptons to allow for realistic mass matrices. (This is the abelian 

part of a more complete nonabelian analysis as sketched in ref. 4.) 

We restrict ourselves to the three generation case n = 3. 

In the first column of table 2 we give the number of acceptable solutions 

for various values of m and p for n = 3. We observe that no assignments 

of scales produces acceptable mass matrices for low values of m and 

p where we have no mirror particles. For high m and p the number of 

solutions increases rapidly. This is due to a large number of mirror 

particles. In fact, for this first investigation, we have treated the 

mechanism giving mass to mirrors as independent from the mechanism mixing 

the various doublets coupling to the "surviving" chiral fermions. This 

means, for nq quarks and nq-3 mirror quarks we have independently counted 

all solutions picking arbitrarily three "surviving" quarks out of nq 

quarks and assuming that the remaining nq -3 quarks forrol heavy masses 

with the nq-3 mirror quarks. 
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In a more detailed analysis the SU(3) x SU(2) x U(1) singlet operators 

responsible for the heavy masses ?f mirror quarks also lead to the mixing 

between different doublets by G symmetry breaking. (In our case 

G = U(1)q x U(1) 1.) As a first step towards a more detailed scanning 

we have implemented an additional constraint: The leading singlet operator 

responsible for the mixing between the doublets coupling to ttc and 

bbc should not induce a mass term between mirrors and "surviving" fermions. 

Results of this additional veto are shown in the second column of table 

2. We note that form= 3 p = 1 all solutions are eliminated. It becomes 

obvious that it is easy to impose additional requirements in the scanning 

process and thus to select models 1~ith particular properties. As an 

example we give in the third column of table 2 the number of solutions 

where the bottom quark and the tau lepton obtain their mass from the 

same doublet - motivated by the approximate equality of mb and me at 

the unification scale. As an example, we have found the following solution 

for m = 1, p = 3: 

Mu' 

MD; 

(

(1,-1); (1,1); (1,0) ) (4 2 0 

(0,-1/2); (0,3/2); (0,1/2) 1 3 0 

(0,-3/2); (0,1/2); (0,-1/2) ; 1 0 1 

(

(0,-3/2); (0,1/2); (0,-1/2) 

(0,1/2); (0,5/2); (0,3/2) 

(0,-1/2); (0,3/2); (0,1/2) 
( 

3 1 D ) 

1 2 1 

D 1 1 

(12a) 

(12b) 

Ml: 
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l 
(0,-3/2); (0,1/2); (0,-1/2) 

(0,1/2); (0,5/2); (0,3/2) 

(0,-1/2); (0,3/2); (0, 1/2) ),(::~) (12c) 

Here the first matrix exhibits the quantum numbers (q,I) for the various 

bilinears in the mass matrices whereas the second matrix gives the choosen 

assignment of ns. 

~Je conclude that a computerized scan for mass matrices ~those structure 

is only determined by G quantum nu~bers is possible - at least for abelian 

G. This analysis should certainly be extended to a more complete connection 

between the mirror masses and the mass matrices MU' M0 and ML as well 

as to an inclusion of the calculable powers P. in eq. (2) 4) Nevertheless, 
" 

we find that already at this stage of the scanning many models are excluded 

since the symmetry G does not differentiate enough the generations to ... 
account for realistic mass matrices. 



Table 1 

Number of solutions for G2 

y1 y2 y3 b1 

1 0 0 0 

1 -1 0 0 

1 -1 0 0 

0 0 0 1 

0 1 -2 0 

1 3 0 0 

1 6 0 0 

1 1 0 1 

-1 3 0 0 
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U(1) 2 with 

b2 

0 

0 

0 

-1 

0 

0 

0 

1 

0 

3 

Q =[ 4 y 
1 ~"'' J i 't-

b3 nsol 

1 2256 

1. 18768 

0 464 

0 0 

0 822 

0 2256 

0 13118 

0 0 

0 3012 

and Q, 
.3 

_[ b (C-L). 
- < ' i.::l 
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Table 2 

Number of solutions for various compactifications of a six dimensional 

model. 

n sol" number of solutions 

n' . .. .. .. with the partial veto on mixing with mirrors sol· 

{see text) 

n" . .. .. .. with mr and mb generated by the same scalar sol" 

doublet 

n "' . .. .. .. with both requirements sol" 

m p n 'ol 
n' 'ol n" 'ol 

n'" 
'ol 

-3 1 4750 1456 1386 68 

-2 1 0 0 0 0 

-1 1 0 0 0 0 

0 1 0 0 0 0 

1 1 0 0 0 0 

2 1 0 0 0 0 

3 1 72 0 72 0 

-3 3 ;, 100000 ;, 100000 0 0 

-2 3 ";?: 100000 ~ 100000 58724 58724 

-1 3 26856 884 0 0 

0 3 0 0 0 0 

1 3 3132 24 1796 24 

2 3 22636 17280 13324 9272 

3 3 12840 9250 8780 5580 
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