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A systematic discussion of the structure of fermion mass 
matrices in terms of quantum numbers is presented. Small ratios 
between fermion masses and small mixing angles are related to a 
fine structure of scales around the unification scale. We argue 
that in higher dimensional models all small fermion masses 
should be explained from symmetry considerations since no free 
small Yukawa couplings are available. This leads to a scanning 
procedure selecting higher dimensional models consistent with 
realistic fermion mass patterns. 

We present a six dimensional model admitting "compactifica­
tions'' with only SU(3)c x SU(2)L x U(l)y gauge symmetry, a va­
nishing cosmological constant and three generations of quarks 
and leptons. The field equations have solutions with a gauge 
hierarchy for weak symmetry breaking for a large range of model 
parameters without the need of fine tuning. The weak scale Mw 
is a free integration constant and the mechanism determining its 
order of magnitude is not yet identified. These solutions have 
a good chance to be classically stable. For one particular solu­
tion the largest fermion mass is the·top quark mass which is of 
the same order as Mw. At the next level the fermion masses mb, 
mT and me are supressed by a small ratio of symmetry breaking 
scales y. For the mixing between the second and third generation 
one finds 823 "' mb/mt, y, The relation mb(f~) = m,(M)(1+0(y)) is 
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predicted. Corrections of order y 2 induce masses for the strange 
quark and th2 muon with the relation m (M) = 1/3 m (M). This re-

s v 
produces the qualitative order of magnitude m5/mb ~ mc/mt. Un-
fortunately this particular solution fails by predicting maxi-
mal Cabibbo mixing and 8 13 y. The model can be interpreted as 
a subgroup analysis for Ea x E8 superstrings. 

We also give a systematic discussion of higher dimensional 
scalar fields in non trivial representations of the gauge group. 
We describe the higher dimensional Higgs effect which can lead 
to a stabilization of the ground state. 
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1. Introduction 

Models in more than four space-time dimensions 1 ) have at­

tracted much interest as candidates for a unified description 

of nature. However, a realistic model is still missing so far. 

To gain confidence that higher dimensional theories really 

work, we would like to have at least one model which satisfac­

torily reproduces the observed low energy physics. We need the 

existence proof for some prototype models comparable to the 

SU{5) or SO(lO} models for the idea of grand unification 2). 

In recent years, higher dimensional models have made several 

steps towards such a realistic model: We have understood the 

appearance of non abelian gauge symmetries3 ). Higher dimensio­

nal solutions with "spontaneous compactification" (solutions 

with small characteristic length scale of internal space and 

four dimensional Poincare symmetry P .. ) have first been discovereo 
. 4 ) d t . . t in higher dimensional gauge theor1es an la er 1n pure grav1 Y 

using higher derivative terms 5 l or non-compact internal space 6 l. 
Classical stability was established?) for some solutions with 

spontaneous compactification. This opened the way for a rea­

listic Kaluza-Klein cosmology with a Friedmann universe for the 

late history of the universe 8 l. The inflationary univers may 

originate from a higher dimensional world 9 ). Another crucial 

development adressed the problem of chiral fermions 10 l. The 

number of chiral generations in four dimensions was related to 

an index 11 •12 ) of internal space. Massless fermions have first 

been found 13 •7 l in higher dimensional gauge theories and the 

first models 14 •12 •15 } describing quarks and leptons arouse in 

this context. Ten dimensional superstring theories 16 l have be­

come candidates for a unification of all forces. 

What are the next problems we have to solve for realistic 

model building? We have to reproduce the hierarchies of masses 

and mixing angles for quarks and leptons. This is a very re­

strictive requirement for higher dimensional models since they 

do not have free small Yukawa couplings and are therefore ra­

ther predictive. First attempts in this direction have already 

been made 17 •18 •19 ). The second problem concerns the small scale 

of weak symmetry breaking. {In the context of an existence 

4 

proof we only need to establish the existence of solutions 

with a small scale and may postpone the naturalness question 

of the gauge hierarchy problem. This is similar to the cosmo-

logical constant.) So far this problem has mainly been 

dressed in the conteXt of supersymmetric solutions 20 l 
ad­
Beth 

problems are related to an understanding of the origin and 

couplings of the low energy weak Higgs doublet. Finally we are 

still missing compactifications where the low energy gauge group 

is SU(3)C x SU(2)L x U(l)y without further gauge symmetries. 

Although additional U(l) gauge symmetries are not excluded 

experimentally, their symmetry breaking at low energies leads 

to several theoretical problems. (Supersymmetric compactifi­

cations have the additional problem to explain low energy ba-

ryon number conservation, absence of strangeness violating neutral 

currents etc.). There are other problems to be solved for a 

realistic model, but we think that the next most crucial step 

concerns the understanding of the Higgs doublet. 

In this paper we describe a model which admits solutions 

with only SU(3)C x SU(2)L x U(l)y symmetry, vanishing four 

dimensional cosmological constant, an arbitrarily small scale 

of weak symmetry breaking and good chances to be classically 

stable. This is the anomaly free 21 l six dimensional 50(12) mo­

del lS,l?,lB). We determine the structure of the mass matrices 

for quarks and leptons for various solutions. Although no com­

pletely realistic pattern is found so far, we discuss one par­

ticular solution which reproduces many characteristic features 

of the observed fermion mass matrices. It explains the hierar-

chy of masses mt >> mb, 
predicts a mixing angle 

tion in the right order 

mb(Mc) • •riMe) and the 
fortunately, the mixing 

mT, me >> ms' mD >> md, mu, me and 
between the second and third genera­

of magnitude as well as the relation 

order of magnitude ms/mb ~ mc/mt. Un­
angles for the first generation come 

out too large for this particular solution. 
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The main topic of this paper is a systematic discussion 

of the structure of fermion mass matrices in higher dimensio­

nal theories. We want to understand the observed small ratios 

of fermion masses and the smallness of mixing angles between 

different generations. (We do not discuss CP violating phases 

in this paper.) We develop criteria uniquely based on symme­

try properties which determine if a given solution can repro­

duce the observed pattern or not. 

In four dimensions Yukawa couplings are free parameters. 

The fermion mass matrices can easily be reproduced but there 

is very little predictivity. Higher dimensional theories pre­

dict the Yukaw·a couplings after dimensional reduction. They 

are typically of the order of the gauge coupling unless they 

vanish because of some symmetry or topological reason. This 

makes these theories much more predictive and it is not easy 

to reproduce the observed hierarchies of fermion masses and 

mixings. We propose that the structure of the fermion mass 

matrices is entirely determined by their quantum numbers with 

respect to symmetries at the unification scale. We assume that 

the symmetry G left unbroken at the unification scale M (the 

largest mass scale of the model) is larger than SU(3)c x SU(2)L 

x U(l}y x gen 4 . There should be additional continuous or dis­

crete symmetries. These symmetries should be spontaneously 

broken at scales M1 , M2 •• somewhat below M so that the low 

energy gauge group is only SU(3)C x SU(2)L x U(l)y· (Ratios 

M 1 /~1"' 1/4 may sometimes be sufficient.) We call this a fine 

structure of scales at the unification scale since mass levels 

which are degenerate in the limit of unbroken G split by scales 

t·1i, small compared to the characteristic level splitting M. Vie 

propose that this fine structure at the unification scale is 

responsible for the observed structure in fermion mass matri­

ces. Small ratios of quark and lepton masses are induced by 

various powers of M;/M. The appearance of a fine structure may 

either be directly related to small quantities of D dimensional 

internal space like 1/0, the ratio of "radius" to volume L0/V, 

inverse ''monopole numbers'' 1/N etc. or it may result from geo­

metric properties (''the almost round sphere'') of particular 

solutions. 
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How is a fine structure reflected in the fermion mass ma­

trices? The different quarks and leptons in general have dif­

ferent quantum numbers with respect to G. The various fermion 

bilinears appearing as entries in mass matrices must there­

fore couple to colour singlet and electrically neutral compo­

nents of scalars in SU(2)L doublets which have different quan­

tum numbers with respect to G. The appearance of many scalar 

doublets is very nataral in higher dimensional theories. Usu­

ally all scalars which can couple to chiral quarks and lep-

tons are contained in the harmonic expansion of bosonic fields 

unless there is some topological restriction 17 •18 •19 ). Their Yu­

kawa couplings are typically all of the order of the gauge 

coupling g. We assume that there is only one low energy Higgs 

doublet which must be some linear combination of those various 

doublets. The typical mass for the other doublets is the uni­

fication scale M. In the limit of unbroken G, doublets with 

different G quantum numbers cannot mix. Spontaneous symmetry 

breaking induces mixings proportional to various powers of 

M;/M. If the low energy Higgs doublet *L has only a small ad­

mixture Y; of a given doublet di, the vacuum expectation value 

of di 

<d;> :: Yi <¢L> ( 1. 1) 

will be small compared to <$L> and this reflects itself in a 

small entry to the fermion mass matrices. 

As an illustration we give a possible realistic scenario 

for three generations (this is not unique): The low energy 

Higgs scalar should mainly consist of a leading doublet H1 

which couples to the top quark but is forbidden by G symmetry 

to couple to other quarks or charged leptons. There should be 

another doublet which only couples to bottom, tau and charm. 

Its admixture to H1 should be supressed by one or two powers 

of M1 /M. The admixture of the doublet coupling to strange 

quark and muon should be further supressed by higher powers 
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of M1/M or by a still smaller scale ratio M2 /M. Finally, the 
admixture for doublets coupling to the first generation should 
only be around 10-~ Corresponding supressions should hold for 
the off diagonal matrix elements leading to mixing. What appears 
as a small Yukawa coupling in the effective low energy theory 
corresponds to a small admixture of the corresponding doublet 
to the ''leading doublet''. This is in turn dictated by the fine 
structure M;/M! We note that our scenario could also be imple­
mented in a four dimensional framework, but this is not neces­
sary. In contrast, it seems almost unavoidable in higher dimen­
sions where no Yukawa couplings of order 10- 5 is available for 
the electron. If the doublet coupling to the top quark is not 
forbidden by symmetries or topology to couple to the electron 

one ends with the prediction mt ~me! 

In this paper we discuss two aspects of the fermion mass 
problem in parallel. In sections 3 and 7 we give a general 
discription of the above mechanism and propose a systematic 
procedure to select models with a realistic structure of fer­
mion mass matrices. In sections 2 and 6 we develop a given 
model and try to push it to its limits. This demonstrates the 
predictivi~Y of our approach. It also serves as an illustration 
that our mechanism has good prospects to produce realistic fer­
mion masses using only few and relatively modest scale ratios 

M;/M. 

In section 2 we discuss two particular solutions of the six 
dimensional 50(12) model with a scalar in the fifth rank anti­
symmetric tensor representation. They lead to three and four 
generations of quarks and leptons, respectively. We establish 
the quantum numbers for chiral quarks and leptons and for the 
various doublets in the harmonic expansion with respect to 

symmetries beyond SU(3)C x 5U(2)L x U(l)y· Such symmetries are 
subgroups of 50(12) like the abelian symmetries U(l)R, U(l)B-L 
or U(l)q or isometries on two dimensional internal space like 
U(l)G. The fermion mass matrices Mu• M0 and ML are then deter­
mined as functions of vacuum expectation values of the various 
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doublets <d 1>. Treating for a first approach the <d;> as free 

parameters, we show for the three generation solution that there 
exists a possible order of scales for <d;> which leads to reali­

stic patterns for Mu, ~D and ML! This order of scales is almost 
unique (except some ambiguity for the smallest lepton masses). 
It is rather remarkable that this simple model allows for reali­
stic patterns at this stage since for many other models and so­
lutions no real is tic order of scales for di exists at al 1. 

In section 3 we give a systematic discussion which quantum 
numbers can lead to realistic mass matrices. The quantum num­
bers of chiral fermions determine the quantum numbers of the 

various bilinears in entries of ~1U, MD and ML. If two entries 
have the same quantum numbers with respect to the symmetry G 
at the unification scale, these entries will also have the same 
order of magnitude. As our first necessary criterium for real i­
stic mass patterns we require that there must exist at least 
one assignment of scales to entries with different G quantum 
numbers so that realistic mass matrices are reproduced. A 
systematic procedure starts with the heaviest fermions - top 
quark and possible fermions of a fourth or higher generation. 
The quantum numbers of the corresponding entries should not 

appear anywhere else in Mu, MD or ML. Then one assigns the 
next scale to bilinears coupling to bottom, tau and charm and 
so on. An each step one has to check if the doublets needed 
to generate masses do not couple to some other entries in the 
fermion mass matrices violating the observational upper bounds 
on various diagonal and off-diagonal entries. Also the mixing 
angles have to be generated in this procedure. We genera-
lise the procedure to the case where mirror fermions are pre­
sent. A systematic search for viable candidates can be done 
on a computer. Only quantum numbers are needed as an input. If 
a certain solution proves consistent with this first necessary 
criterium, we end after the scanning with an assignement of 
generation quantum numbers (Le, Lv etc.) to the various chiral 
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fermions. A necessary order of scales is established for the 

doublets generating the various fermion masses and mixings and 

upper bounds exist for the vacuum expectation values of all 
other doublets coupling to quarks and leptons. 

In section 6 we turn back to the particular three genera­
tion solution discussed in section 2. We study in detail the 

mixing between the various doublets of the model. This requires 

a calculation of the mass matrix for all scalar doublets. We 
discuss how the problem of mixin~ for infinitely many four di­

~ensional scalars with quantum numbers of the weak doublet can 
be reduced to the diagonal ization problem of a mass matrix for 

a finite number of doublets. In appendix C we give explicit 

expressions for the various contributions to the doublet mass 

matrix for a general class of solutions with SU(3)c x SU(2)L 
x U(l)y symmetry. Our main concern, however, are the symmetry 

properties of this mass matrix and the appearance of various 

powers M1 /M describing the mixing. We show how expectation 

values of SU(3)c x SU(2)L) x U(l)y singlets Si contained in 
the six dimensional scalar indeed lead to a mixing between the 

doublet H1 coupling to the top quark and the doublet H2 coupl­

ing to bottom, tau and charm. For suitable (rather generic) 

model parameters this mixing is indeed supressed by a smal 1 

parameter y = Mf/M 2
• In our model the mixing angle between the 

second and third generation turns out to be of order y as well, 

leading to the successful qualitative relations 

82 3 = 
mb 

mt 

m 
T 

"'t 

me 
mt 

y ( 1. 2) 

There are solutions with a particular direction in group space 

for <S;> for which no other terms of order y appear in Mu, MD 

or ML. There exist, however, additional contributions of order 

y2 in MD and ML. They give mass to muon and strange quark with 
the relation 

ms (Me) 3 m"(Me) ( 1. 3 I 
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Since m
5 

and m"f.l 

tive relation 
are only of order y 2 one predices the qual ita-

ms 
mb ' 

me 
mt - y ( 1. 4) 

Also, the mixing with superheavy fermions due to scalar expec­
tation values gives smal 1 corrections to the relation 

"'b ( ~1 e l mT(Me) ( 1. s I 

Unfortunately the Cabibbo mixing comes out near unity and the 

mixing angle between the first and third generation is of or­

der Y. Our simple model fails at this point. 

Section 7 gives a systematic description which ''ct1ains'' 

of supression factors (M;/M)p appear for various entries in the 
fermion mass matrices. Again these chains can be established 

only in terms of quantum numbers with respect to G. Suppose 

that the symmetry G is spontaneously broken by an operator 0 1 

with given G quantum numbers and an associated scale M1 , Assume 
further that weak symmetry breaking is given by a leading doub­

let H1 in a given representation of G. If the fermion mass ma­
trix element corresponding to the bilinear ~ 1 ~ 2 gets a nonva­

nishing contribution from G symmetry breaking, there must exist 
G-invariants 

~~ 1/!2 HI Ot 01 ... 01 ( 1. 6 I 

involving a certain number of operators 0 1 • If P is the minimal 

number of operators needed to produce an invariant, the supres­

sion factor for the corresponding mass matrix entry is at least 

(M 1 /M)p (compared to the top quark mass). Determination of P is 

a group theoretical problem involving an analysis of subgroups 

of G. We call the sequence of fermion mass matrix entries su­
pressed by M1 /M, (M 1 /M) 2 etc. the ''chain of the operator 0 1 ''. 
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The symmetry breaking effects of 0 1 can appear in various 
chanels which can be represented graphically. We discuss ex­
plicitely doublet rnixings arid mixings involving the non-chi-
ral superheavy fermions from harmonic expansion. This leads 

us to a second necessary criterium for realistic fermion mass 
patterns: For models where an order of scales for fermion 
mass entries with different G quantum numbers has been found 
consistent with our first necessary criterium, there must 
exist a choice of symmetry breaking operators 0 1 , 02 ... whose 
''chains'' can reproduce the required order of scales without 
violating the observational upper bounds on other entries. We 
again describe a systematic scanning procedure (which in prin­
ciple could be done by computer) using only G quantum numbers 
as input. For a three generation mo~el with heaviest top mass 
the leading symmetry breaking operator 0 1 must induce a non­
vanishing bottom mass. One establishes which other fermion mass 
entries are contained in the chain of 0 1 and checks if no upper 
bounds are violated. If not all masses and mixings are generated 
by the chain of 0 1 one needs a second operator Oz to produce 
the largest entry which still needs to be generated and so on. 
All operators 01 should correspond to vacuum expectation values 
of fields contained in the model. In general, there will be only 
a small number of o1 since G should break to SU{3)c x SU{2)l 
x U(l)y x gen 4 in a few steps. We note that models consistent 
with both our necessary criteria need only to establish the re­
quired scales M; for the operators Oi and the identification of 
the leading Goublet H1 as the main component of the low energy 
Higgs doublet. This ensures that all entries in fermion mass 
matrices have an order of magnitude compatible with observation. 
Quantitative fermion mass relations may also follow partly from 
group theoretical considerations. We expect, however, that a 
complete quantitative prediction of all fermion masses will in­
volve details of the model beyond the quantum number analysis 
discussed in this paper. 
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Besides the discussion of fermion mass matrices and the 
{not completely successful) attempt to give an existence proof 
for a realistic higher dimensional model, we are concerned in 
this paper with an investigation of effects of higher dimen­
sional scalar fieldi. So far, most of the attention in dis­
cussions of spontaneous compactification was drawn to the 
graviton and gauge fields {plus certain antisymmetric tensors 
in supersymmetric theories). Many higher dimensional models 
also contain scalar fields. This may be dictated by supersym­
Jnetry. Scalars also arise in a field theory expansion of 
,string theories. Scalar fields necessarily appear if a higher 
dimensional theory is not believed to be the "final" unified 
theory. In this case they reflect effects of a unification in 
still higher dimensions. For example, an embedding of the six 
dimensional SO{l2) model into the ten dimensional E8 x Ea super­
string leads to six dimensional scalars in various representa­
tions of 50(12). 

There is no reason why scalars in non-trivial representa­
tions of the gauge group should not acquire vacuum expectation 
values. In the six dimensional S0(12) model scalar vacuum ex­
pectation values are needed for several purposes: They accom­
plish the symmetry breaking of the gauge group to SU{3)C x SU{2)l 
x U{l)y and can thereby stabilize the ground state. They give 
superheavy masses to the right handed neutrinos which guaran­
tees that left handed neutrino masses are small enoughZZ-ZS). 
Scalars also provide the necessary freedom in the dynamics of 
this model to allow for a gauge hierarchy in weak symmetry 
breaking. Finally they are responsible for the mixing of doub­
lets with different G quantum numbers and therefore needed for 
realistic fermion mass patterns. To simplify the discussion we 
concentrate on only one six dimensional scalar field in the 
792 dimensional fifth rank antisymmetric tensor representation 
of SU{12). Introduction of additional scalars would not lead 
to important qualitative changes at the level of our discus­
sion. 
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In section 4 we derive the field equations in the presence 

of the 792 scalar for an ansatz with SU(3)C x SU(2)L x U(l )y 

x ·u(l)~ symmetry. (Algebraic properties needed for the discus­

sion of antisymmetric tensor representations of SO(l2) are 

collected in appendix A.) We establish the existence of a ten 
parameter family of local solutions (with topology R6 ). Depend­

ing on the choice of the ten integration constants these solu­

tions wi 11 correspond to compact internal geometry or a non­

compact internal space once they are extended to the whole 
range of validity of the coordin·ate system choosen. For non­

compact internal space the four dimensional cosmological con­

stant A0 is a free integration constant and no fine tuning of 

model parameters is needed to obtain 11 0 = 0 6 • 26 ). Similarly 

the scale of weak symmetry breaking can be considered as a 
free integration constant 26 ) and can be arbitrarily small for 

a large range of model parameters without the need of fine 

tuning. These solutions can be interpreted as spontaneous 

symmetry breaking through a higher dimensional Higgs effect. 
In contrast to the algebraic problem of finding symmetry 

breaking minima of the scalar potential in four dimensions, 

the higher dimensional Higgs effect requires to solve a 

coupled system of nonlinear differential equations. This cor­

responds to the existence of infinitely many coupled four di­
mensional scalar modes. We also show that symmetry breaking 

scales Mi somewhat smaller than the highest scale M of the 
model can be obtained rather naturally. 

In section 5 we discuss Yukawa couplings of the chiral 

quarks and leptons to the various doublets contained in the 
six dimensional scalar. These doublets wil 1 mix with the 

doublets from the gauge bosons which play the role of the 

''leading'' doublet. In presence of singlet vacuum expectation 

values from the six dimensional scalars the wave functions for 

the chiral fermions are modified. This corresponds to mixing 
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with the infinitely many superheavy fermions in the harmonic 

expansion. We give explicit expressions for the various Yuka­

wa couplings in terms of integrals over wave functions in 
appendix B. For the particular three generation solution of 

section 2 some of the wave functions are related by G symme­

try. This leads to group theoretical mass relations mT(M) 

= mb(M) and between m~ and ms which hold up to corrections 

of order Mi/M. For oOr particular solution we also have re­

lations between me and mb as well as between mt and Mw. These 
relations depend, however, on the particular form of the wave 
function for a given solution. 

We demonstrate in section 8 how scalar vacuum expectation 

values can stabilize the ground state. The mechanism is under­
stood qualitatively in terms of the six dimensional Higgs ef­

fect. For vanishing scalar fields the harmonic expansion of 
the six dimensional gauge bosons contains several tachyons 17 •27 ). 

As in four dimensions, scalar vacuum expecta~ion values induce 
positive mass terms for the gauge fields. For large enough 

scalar expectation values these contributions are dominant 
and the corresponding mode is stabilized. In our model, a 

gauge hierarchy for weak symmetry breaking can be realized in 

the transition region between stability and instability. Since 

the low energy Higgs doublet is a mixture between doublets in 
various representations of G, none of these representations is 

massless by itself. We argue that our mechanism inducing the 

structure of fermion mass matrices through doublet mixing is 

incompatible with the idea of a scalar doublet in a given re­
presentation of G remaining massless due to some topological· 

reasons. 

We conclude this paper in section 9 with a discussion of 

a possible embedding of the six dimensional 50(12) model into 

the ten dimensional E8 xE 8 model obtained from superstrings. 

Indeed, the six dimensional S0(12) model can be considered as 

a subgroup analysis for the ten dimensional E8 xE 8 model. The 
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ten dimensional model can be formulated as some version of a 

six dimensional S0(12) model with infinitely many modes. Our 

particular quantum number analysis for the structure of fer­

mion mass matrices in the six dimensional 50(12) model will 

be relevant for the EaxE 8 superstring provided the ground 
state after spontaneous compactification is in an appropri­

ate S0(12) x gen5-deformation class which will be specified 

in more detail. (This does not require a topology M6 x K4 or 
M~ x K2 x K~ or a compactification in steps 10 + 6 + 4 

with different scales.) 

16 

2. Fermion Mass Matrices from a Six Dimensional 50(12) Model 

To gain some intuition about typical problems in attempts 
to construct realistic mass matrices from higher dimensions, 

we wil 1 first discuss two simple examples. Both are related to 

cornpactifications of a six dimensional 50{12) theory 17 •
18

). In 

addition to six dimensional Einstein gravity and 50{12) gauge 

fields this model contains a scalar in the 792 dimensional 
fifth rank antisymmetric tensor representation of $0(12) and 

two Majorana-Weyl spinors with opposite six dimensional heli­

city belonging to the inequivalent 50(12) spinor representa­

tions 32t and 32 2 , respectively. This model is anomaly free
12

•
21

) 

The chiral fermion content after dimensional reduction is cha­
racterized by three ''monopole numbers'' n, m and p 17 ) (integers 

with n+p even). The spectrum of chiral fermions has been calcu­

lated17) for solutions with geometry Mqx$ 2 and internal gauge 

fields in a monopole configuration. Due to stability properties 
of the chirality index 11 ) the content of chiral fermions is the 

same for a large class of ''neighbouring'' solutions, including 

vacuum expectation values of the six dimensional scalar field. 

Our first example has three chiral generations 

racterized by monopole numbers n = 3, m = p = 1. We 
different quarks and leptons by the charge q of the 

subgroup in 50(12) commuting with S0(10) and by the 

and is cha­
classify17) 

abel ian 

SU(1)G "an-

gular momentum'' for the spherically symmetric monopole solution 

as (2i+l)q: 

c c 
UL' dl' UL' el 

c 
d L' el 

~1/2 + 1.-1/2 
( 2. I I 

L1;2 

There are additional chiral neutrinos which are not discussed 

in this paper. A tentative labeling for generations according 

to q and the third component I of SU(2)G-spin is given in 

table 1. Since we are concerned with mass eigenvalues and 
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mixings we require the fields t', b' etc. to be weak eigen­

states. Quarks within the same doublet must therefore have 
the same values of q and IFl). The labeling for leptons and 

antiquarks uc and de is arbitrary. 

In our model there are several colourless SU(2)L doub-
let scalars with electrically neutral components. The low 

energy Higgs doublet is a mixture of these fields. The S0(12) 

gauge fields contain a 10 plet of the SO(lO) subgroup with 
charge q = ±1. We denote the two doublets in the 10 with q = 1 

by Ht and H2. Harmonic expansion of the internal components of 
these gauge fields leads to four series of scalar doublets Hi, 
H!, H~, H;. On·ly Hi and H! can have Yukawa couplings to the 

chiral quarks and leptons. (These fields and their couplings 
have been extensively discussed in ref. 18.) The six dimen­

sional scalar in the fifth rank antisymmetric tensor repre­
sentation of S0{12) contains the S0(10) representations 126, 

170 and 120 with q ~ 0. The 126 and 120 contain four fields 

d1, d2, d3, d~ with the quantum numbers of weak doublets 
(compare table 2). We note that the doublets di and Hj are not 

only distinguished by their different SO(lO) transformation 

properties, but also by a different abelian charge q. Finally, 
the six dimensional scalar also contains a 210 with q ~ ±1. 

There are doublets in the SU(4)c x SU(2)L ·x SU(2)R representa­
tions (10,2,2) + (TU,2,2) with weak hypercharge -3, -1 and +3, 

+1, respectively. Even though the Y ~ ±1 doublets among these 

fields have the appropriate SU(3)C x SU{2)L x U(l)y quantum 
numbers to contribute to the Higgs doublet, these fields cannot 

have Yukawa couplings to the chiral quarks and leptons as a 

consequence of SO(lO) symmetry and U(1)q symmetry. We will omit 

them for the discussion of this section. 

For the spherically symmetric m9nopole solutions the 

SU(2)G representations appearing in the harmonic expansion of 
the doublets have ''angular momentum'' 
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£ I'; I, I A; I + 1 ... ( 2. 2) 

with 

A . 1 n m 
rl1+ z + z 

n m A . 1 - z z H2+ 
( 2 . 3) 

'ct. 
m 
2 

l 

In this paper we go beyond spherical symmetry in internal space 

and we discuss solutions with only internal abelian rotation 

symmetry in addition to SU(3)C x SU(2)L x U{1)y gauge symme­
tries. We, therefore, classify the harmonic expansion accord­

ing to the third component I of SU(2)G spin. For n ~ 3, m = p 
~ 1 the harmonic expansion of H1 and H2 contains only integer 

I, while the expansion of d; leads only to half integer I. 

It is straigthforward quantum number analysis to write 
down the allowed couplings between the scalar doublets Hj and 

di and the chiral fermions. Omitting the explicit Yukawa coup­
lings for a moment, we can schematically write the mass matri­

ces Mu, M0 and ML (for charge 2/3 quarks, charge -1/3 quarks 
and charged leptons, respectively) as functions of vacuum ex­

pectation values Hj and d;: 

Hu ~ 

t<) 

d 
!.-

0) 
~ 

il 

H. 

dt" u ) 

cC' 
) 

I 
G 

d l(z, 

u 

( ii,-· ) ~ 

( H: )~ 

) 

) 

I 
"'-

cl.-'lv 
u 

( w: )* 

(!-I;' y 

(2.4) 
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h' ) dl s 

H -1 

"' I 
(olv';,_ l ) (d,li / 

H'-'0 I (d;'il, (ot/<- Y 
( 1. 5) 

1{+1 
-" I 

(o/b-'4 y 1 (of~~)" 

Tl I I 
/' e 

H,-1 
I 

11;," I 
II, +1 

(d,_'if, ( dL--f'~ )'I (<'(-~ )' ( 1. 6) 

(d~t L I 
( o/, 1!, y 

L I 
( ofL-'{ y 

Here we have indicated I by an upper index and we denote by 

du{d 0 ,dl) the linear combination of d 2 , d 3 and d 4 (d 1 , d 3 and 

d4) coupling to Mu (M 0 ,ML). To derive this mass pattern, we 

use the fact that the states H1 , H2 , d 1 , d 2 , dh d 4 have Y 

and can only couple to Mu whereas the antiparticles with Y = -1 

couple to M0 and ML. The rest follows from I and q conservation 

plus the observation that the 5 plet in 170 couples only to Mu 

whereas the 4'5' in T2l) couples only to M0 . We note that the 

choice of a basis d 1 , d2o d 3 and d 4 for the doublets contained 

in the six dimensional scalar is somewhat arbitrary. We will come 

back to this point in section 5. 

The non vanishing Yukawa couplings of the doublets Hj are 

all of the same order as the four dimensional gauge coupling 

g18 ). All Yukawa couplings of doublets d. are proportional to 
~ 1 

the six dimensional Yukawa coupling f. This is the only free 

parameter appearing in the mass matrices once the ground state 

solution is known. In contrast to four dimensional unification, 

f is not a whole matrix of couplings, but just one real parame­

ter. The model is, therefore, highly predictive! A realistic 

10 

mass and mixing pattern with the observed hierarchy of masses 

and small mixing angles is only possible if the vacuum expec­

tation values for different doublets have different scales. 

This means that the low energy Higgs doublet must mainly con­

sist of only one of the Hj or ct 1 with small admixtures of the 

others. (We do not consider the case of several light Higgs 

doublets with mass of the order of the Fermi scale.) 

It is a necessary condition for a realistic fermion mass 

matrix that some order of scales for doublet vacuum expecta­

tion values exists which reproduces the qualitative features 

of all mass matrices. In our example the leading vacuum expec­

tation value {VEV) must be H1 which only couples to the top 

quark. The next to leading VEV must induce the bottom mass and 

we take it to be Hi. {H! would be equivalent up to a redefini­

tion of fields and quantum numbers, whereas the other candidate 

H~ is excluded since it would lead to a relation mu ~me ~ mb.) 

The VEV H; also induces a mass of the tau lepton and the charm 

quark. Its contribution should be a few GeV. Next we need mix­

ing between the second and third generation of the order of a 

few percent. This either requires d012 of the same order as H; 

or (d~/ 2 )* of the order of a few hundred MeV. The second alter­

native is excluded since (d6/ 2 ) also appears in M0 in the co­

lumn ford' and would lead to a down quark mass of a few hundred 

MeV. The first choice can only work if the seale for d6 12 is 

much smaller than the VEV dG 12 - a few GeV (for example if only 

d2 has a VEV at this high scale). A VEV of a few hundred MeV is 

now required to induce m and m . The only candidate for m5 
s " -3/1 

which does not lead to unacceptable values for md is d0 and 

we also try dl- 312 to generate m . We therefore interchange the 
' ' " definition of sc and de ("f.!' and e'). The next step must induce 

the relatively large Cabibbo angle by an off diagonal element of 

about 30 MeV in M0 . The only candidate is d~ 1 / 2 . This VEV can 

also account for md with the relatively successful relation 

md/ms"' sin 2 ec' (A Cabibbo angle induced by (Hg)*in Mu would 

lead to a very high mass for mu.) The electron mass would be 
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induced 

m/mct "' 

by the off diagonal contribution of 

0(10-
1

) requires for the entries in 

d-1/2 
L ;;:-m- :: 
L 4 

d-1/2 
0 --;;-:-:m-
0 

d-1/2 . M 
l 1 n L and 

ML and M0 

( 2. 7) 

(All our mass relations are predicted at the unification scale 

and we have corrected lepton masses for their different renor­

malization compared to the quark masses.) Finally we need a 

mass for the up quark either by ~! 1 or by off diagonal ele­

ments H~ (or both). 

One sees ·that the order of scales for different VEVs is 

rather constrained. In our example there is an almost unique 

possibility 

Mu ( 

A B 0 ) 
B B 0 M0 
0 0 E 

( 

B 0 0 ) 
0 C D ML 

0 0 0 
( 

B 0 0 ) 
OCD (2.8) 

0 D 0 

with central values 

A , 20 GeV (H.) 

B " 3 GeV (H;'; d~/ 2 ) 

c " 200 MeV (d 03/2; d~3/2) ( 2. 9) 

0 " 30 l~ev (do1/2) 

E " 5 MeV (H~'; d~1/2) 

(For possible modifications for the lower lepton masses compare 

section 6.) The different scales differ by roughly an order of 

magnitude. Instead of zeros there may be non-vanishing entries 

bounded from above to avoid unaccept~bly large contributions 

to masses or mixings: 
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(d1/2. d1/2) 
D ' L " E 

d-1/2 
u < c 

( d3/2. d3/2) < 0 

(2.10) 

D ' L 

Hg " 0 (c) 

(Particularly severe constraints come from the observed small­

ness of the mixing between the first and third generation and 

the small first generation masses.) We conclude that in our 

example there exists a possible order of VEVs with different 

quantum numbers which could produce the mass and mixing pat­

tern of leptons and quarks! 

In the limit of spherically symmetric monopole solutions 

(and also for the generalized solutions of ref. 26) the diffe­

rent scalar doublets do not mix. Is it possible that vacuum 

expectation values of scalar singlet fields induce such mix­

ings? In our model there are four SU(3)c x SU(2)L x U(1)y 

singlets contained in the six dimensional scalar (compare 

table 2): The three singlets Sz, 5 3 and 5~ in 210+
1

have 

5U(4)c x SU(2)L x 5U(2)R transformation properties (1,1,1), 

(15,1,1) and (15,1,3), respectively, and the singlet 5 1 in 

126o transforms as (T0,1,3). On the spherically symmetric mo­

nopole solution the harmonic expansion for the Si contains 

"angular momenta" 9- = IA,-1, IA;I + 1 ... with 

As, m 3 
7 p 

A 
1 

52. s 3. 5" 7 n 

( 2 . 11 ) 

In our example with n = 3, m = p = 1 the harmonic expansion 

for all 5i contains only states with half integer I. Let us 

now assume that some linear combination of 5 2 , S3 and 5,. 

with a given value I = Iz and also S1 with a fixed value 

= l1 acquire vacuum expectation values. Since Sz, 53 and 5,. 

have q = 1, YB-L = 0, I3R = 0 whereas 51 has quantum numbers 
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q = 0, YB-L = 2, 13R = -1, a 1 inear combination of the genera­

tors I, q, YB-L and r3R corresponds to an unbroken abelian sym­

metry U(l)~ (in addition to weak hypercharge). The symmetry 
SU(5) x U(1) x U(1)q x SU(2)G of the monopole solutions is bro­
ken to SU(3)C x SU(2) 1 x U(1)y x U(1)q (unless the linear com­
bination of S2 , S3 and S4 is an SU(5) singlet). We will consi­

der solutions with U(l}q symmetry as a first step of spontan­
neous symmetry breaking and assume that U{l)q gets broken at 

a somewhat lower scale. 

We want to induce a mixing between H1 and (H; 1 )* by this 
first step of symmetry breaking. What are possible values for 
1 1 and 1 2 ? We write the abelian charge 

q 1 
I + a(I3R -I YB-L) + b q ( 2 .12) 

The vacuum expectation 

der U(1)q implying 

I 2 + b 0 

I 1 - 2 a 0 

values of S 1 and S2 , 3 , 4 are neutral un-

(2.13) 

As a consequence b is half integer and a = (2~+1)/4. To allow 
mixing between H1 and (H; 1

)* these fields must have the same 
charge q . (Note that mixings between H1 and H; 1 are not al­
lowed by hypercharge conservation.) This requires 

~H1 
I 

b + "2" a 

and determines 

I ' 
1 
7 

q(H•')* 
1 

1-b+-za ( 2. 14) 

( 2. 15) 

whereas 1 1 remains undetermined. Which other doublets can mix 
with H1 and (H; 1 )*? The charge~ for the doublets d. depends on 

1 

24 

the quantum number I Id of the harmonic expansion: 

<id. 
1 

1 
Id + -z a ( 2. 16) 

Independent of a, the only fields which are allowed to mix with 

H1 have Id = i· Doublets ct 1 with other values of Id as well as 

(HR) and Ht 1 )* can only mix with H1 once U(l)q gets sponta­
neously broken. This has the encouraging feature that a value 
d~/ 2 of the same order as Hi 1 as required for sufficient mix­
ing of the third generation may indeed be generated at the 
first step! On the other hand, a large value for d6/ 2 and dt/ 2 

is not excluded by~ conservation. If there is no other mecha­
nism to suppress these VEVs to the order of a few MeV (2.10) 
the solution with n = 3, m = p = 1 would be ruled out! We will 
come back to this question in section 6. 

For more than three generations or for additional mirror 
fermions (which are chiral with respect to symmetries outside 

SU(3)c x SU(2)L x U(1)y) the discussion becomes somewhat more 
complicated. We give a four generation example with n = 4, 
m = p = 2. The spherically symmetric monopole solutions are 
again SU(5) symmetric and the SU(2)G x U(1)q quantum numbers 

for chiral fermions are 

c c 
ul' dl' ul' el ].1/2 + " -1/2 

c 5 ( 2. 17) d L' el - -1/2 

- c -
d L' el .!. -1/2 

We note the appearance of mirror particles d~ and el in this 
case. Similarly, the lowest harmonics for doublets are 

H 1+ .!_1 

H,+ _s, ( 2. 18) 

d. 3 0 
1 -
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so that both Hj and di have integer I for this case. We give 

a tentative assignement for the quantum numbers I and q to the 

different generations in table 1. The fourth generation lepton 

and quarks are denoted byO, a and z and the labeling for the 

quarks of type de and the leptons e remains to be specified. 

As before, we write the schematic form for the mass matrices. 

'I 
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( 2 .19) 

( 2. 20) 

( 2. 21) 
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Although we have a four generation example, the matrices 

M0 and ML are 5x5 matrices because of the mirror fermions ac 
and ~. In consequence, singlet VEVs s appear in the mass ma­

trices in addition to the doublets. These singlets will couple 

the mirror fermions to a linear combination of the chiral fer­

miens and both will be eliminated from the low energy spec-

trum. This process eliminates from the mass matrices the mir-

ror columns (or rows)· with singlet entries and also a corre­

sponding number of rows (or columns) for those standard ferm­

ions which have the leading coupling to the mirrors. In a 

first look on the model we may not know which standard ferm­

ions should be eliminated from the low energy spectrum. Never­

theless, we have to require that at least one choice of the 

remaining low energy fermions and of scales of VEVs for the 

Higgs doublets leads to a realistic mass and mixing pattern! 

Let us try an example where E4 and 0~ are eliminated by 

coupling to € and ac. The leading doublet VEVs should give 

mass to two up-type quarks, one down-type quark and one 

charged lepton. There are three different possible combina­

tions: i) H1 and H; 2 with a possible addition of dU; ii) dU 

and dQ
3 

and either d~ 3 or d~ 2 or dl with a possible addition 

of H1; iii) dU and dQ 2 and either dl 3 or d~ 2 or d~ with a 

possible addition of H1 • No other fields are allowed to ac­

quire a VEV at this scale. We emphasize that there is no need 

that the mass pattern of the first three generations is re­

peated for the fourth generation. The quarks t and a could have 

degenerate mass, there could be maximal mixing between the 

third and fourth generation or the heaviest quark could have 

charge - 1/3! 

We will not pursue a systematic discussion of possible mass 

patterns for this four generation example, but only briefly dis­

cuss a scenario similar to our first example, where in a first 

step of symmetry breaking some scalar S2 , 3 .~ with a definite 
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value I = 1 gets a VEV. ~Je check from (2.20) and (2.21} that 

E~ and D~ are indeed elmininated from the low energy spectrum. 

We assume the leading doublet to be H1. There remains again 

an unbroken symmetry U(l)q forbidding a mixing with H1 for all 
- 2 1 1 l - 2 other doublets except Hz , ct 0 , dl and ct 0 . The VEVs of H1 , H2 

and ctU would give masses to a, z, a and t and induce mixing 

between the third and fou,rth generation. Large values for dQ 

and dl, however, would induce unacceptable terms in M0 and ML 

and this scenario is ruled out unless other mechanisms forbid 

the mixing between dl, d~ and H1 at this stage. The masses mb 
-' and mt could be induced at a next step from d0 whereas the 

-1 0 -1 +2 
charm quark could get its mass from Hz , du, ct 0 or H2 . It 

becomes apparent that a systematic procedure to check all the 

various possibiliti-es for mass patterns would be useful. 

Our first two examples may be somewhat misleading since 

they may suggest that it is generically possible to find some 

order of scales for different VEVs which lead to a real is tic 

mass pattern. Many models, however, lead to unacceptable mass 

patterns for all arbitrary assignments of scales for the dif­

ferent doublets! 
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3. Generation and Mixing Pattern of Fermion Mass Matrices 

It is the aim of this section to give conditions on the 

quantum numbers of chiral fermions necessary to produce a rea­

listic mass spectrum. Our approach is quite general, based only 

on symmetries and not on detailed dynamics. It applies especial­

ly to higher dimensional models, but also to a wide class of 

four dimensional unifications. 

Our basic assumption states that there are no fundamental 

small coupling constants responsible for the smallness of cer­

tain fermion masses 1 ike the electron mass. The hierarchy of 

entries in the fermion mass matrices Mu• M0 and Ml is uniquely 

explained by symmetries and the scales of their spontaneous 

breaking. We will assume that the detailed dynamics may be re­

sponsible for factors of 3 or 5, but all mass ratios smaller 

than 1/10 have to be explained by symmetries. (Of course, this 

border line is somewhat arbitrary,} Our assumption is almost 

unavoidable in higher dimensional models with only one or two 

(or no!) free parameters in the coupling of fermions to bosons. 

It does not hold in standard grand unification which allows 

smal 1 Yukawa couplings and therefore has neither restrictions 

nor predictivity for the small fermion masses. 

This approach requires that at some unification scale M 

the symmetries acting on quarks and leptons are larger than 

SU(3)c x SU(2)l x U(l)y. (In higher dimensional models M could 

be the scale of spontaneous compactification given by the in­

verse characteristic length of internal space.) These symme­

tries may be an abelian or non-abelian local generation group, 

embedding of SU(3)C x SU(2)L x U(l)y into larger groups 1 ike 

SU(5), 50(10), E, or SU(4)C x SU(2)L x SU(1)R, additional dis­
crete symmetries, global Peccei-Quinn symmetries or some other 

remnant of higher dimensional symmetries. Our basic assumption 

implies that entries to the fermion ·mass matrices which are 

not distinguished by quantum numbers of these additional sym­

metries will have the same order of magnitude. 
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At this level we can distinguish between models which could 

possibly lead to realistic mass patterns and models for which 

~possible mass patterns are in contradiction to observation 

by the following strategy: 

1) Determine the quantum numbers of all chiral fermions 

with respect to~ additional symmetries. 

2) Calculate the quantum numbers of the bilinears appearing 

in the mass matrices Mu, MD and ML. For abelian symmetries the 

charges of fermion bil inears are uniquely determined, whereas 

for non-abelian symmetries the bilinears typically contain se­

veral represe~tations. 

3) Investigate if the model provides scalar fields with the 

same quantum numbers as the fermion bilinears. If there is no 

scalar field with the quantum numbers of a given bilinear, set 

the corresponding entry to the mass matrices zero. (There may, 

however, be radiative corrections.) In higher dimensional models 

possible quantum numbers of scalars may be determined by direct 

inspection of the harmonic expansion. Alternatively, one may use 

topological criteria: Under some conditions the chirality index 

implies that certain fermions cannot get a mass or forbids cer­

tain mixings 18 ). 

4) Label bilinear operators with different quantum numbers 

by X1 , X2 ... Xi ... Assign the same label X; to two operators 

which have identical quantum numbers or are complex conjugate 

to each other. (If a doublet di can couple to a bilinear in Mu, 

its complex conjugate can couple to MD or ML if quantum numbers 

of the additional symmetries match. Note that by this procedure 

we are not sensitive to phases so that CP violation has to be 
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5) Look for arbitrary assignments of seal es to x1 so that 

realistic mass patterns can be produced. If this fails for~ 

possible assignments the model is inconsistent with our assump­

tion and should be excluded. If this search is successful we 

are of course not guaranteed that the model really produces 

realistic mass patterns. However, it fulfills our first neces­

sary criterion and can then be analyzed by the next set of con­

ditions on quantum numbers explained in section 7. 

An ambiguity may arise in this systematic search if a 

given fermion bilinear couples to several X;. (This is possible 

for non-abelian symmetries.) If those X; belong to the same 

higher dimensional field the pattern of spontaneous symmetry 

breaking may choose a direction in field space where the con­

tributions of the different X; to a given entry in a mass ma­

trix cancel. In this case the cancellation has a group theore­

tical origin - some generalized Clebsch Gordon coefficient 

vanishes. No fine tuning of parameters, which would be in con­

tradiction to our assumption, is needed for this cancellation. 

There is no problem if the corresponding X; appear only in one 

entry in the mass matrices - we just may use a collective label 

X. If the same X; appear in other entries of the mass matrices 

with different linear combinations, we have to use different 

colletive labels 1 ike XUj' XDj' XLJ for those l1near combina­

tions which couple to different bilinears. The corresponding 

fields, however, are in general not linearily independent. If 

we find a viable scale assignment with XUj' XDj and XLj treat­

ed as independent labels, we still have to check if this assign­

ment is not in contradiction with the fact that XUj' XDj and 

XLj are formed as different 1 inear combinations of the same X;. 

(For our example we discuss this question in section 5.) 

checked separately.) What are our criteria for realistic mass patterns? Let us 

first discuss the three generation case: We note that there are 

upper bounds on the order of magnitude for the different entries 

in MU, MD and ML: 
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Mu u 
B 

~ ) B ( 3. I) 

B 

( : c 

~ ) c ( 3. 2) 

c 
MD 

( : c c 

) c c ( 3. 3) 

c D 
ML 

with scales 

A ~ a few hundred GeV 
B ~ a few GeV 

c " a few hundred MeV ( 3. 4) 

D " a few ten MeV 

If these bounds are violated, masses or mixings come out too 

largeFZ). We note that the observed smallness of the mixing be­

tween the first and third generations puts severe bounds on the 

entries (Mu) 13 and (M0) 13· We have assumed that all mixing angles, 
including the Cabibbo-angle, are to be explained by symmetries. 
In addition, the smallness of mu and me requires 

(Mu l" (MU) H < DA 

(Mu l" (Mu l" < DB 
( 3. 5) 

(ML)" (ML)" < DC 

( ~IL)" (ML)" < DL 

We have only given a rough upper bound for the first generation 

and one may be more severe restricting M33 -entries by an upper 

bound E ~ a few MeV. Our bounds are rather conservative and one 

could advocate more stringent bounds. 
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For the matrices Mu, M0 and ~~L we have choosen a basis of 
weak eigenstates already adapted to the generation pattern (the 
first column refers to t', b'' T I' the second to c', s ' ' "'' the third to u', d'' e' and similar for the rows and c' 

t ' b c' 

etc. We may have start€d our investigation of bilinears ; n some 
other basis of weak eigenstates. To connect with the basis in 
( 3 . I ) , (3.2) and (3.3) we may arbitrarily exchange rows in a 17 

matrices. The exchange of columns is arbitrary for Ml' whereas 
for Mu and M0 the same columns have to be exchanged in order to 
preserve weak eigenstates. Nothing ; s known about mixing in Ml 
and there could be another pattern where ( 3.3) ; s transposed FJ) 

The search for a realistic mass pattern must first find 

some x~l) which appears only in one column in Mu and neither in 

M0 nor in ML. This will be a candidate for the top mass and sets 

the scale A. The second step at the scale B must provide one (or 

several) x~ 2 ) appearing in M
0 

in the same column as X(l) and pos­

sibly in at most one column in ML and at most one column diffe­

rent from X(l) in t1U, but nowhere else. This entry provides mb. 
If it did not generate m and m , other entries x( 2 ) witl1 scale 

T C J 
B and the same criteria must be identified. The next step at the 

scale C has to provide masses form , m and guarantee enough 
" s mixing between the second and third generation. This mixing 

either requires non diagonal entries to M0 of order C or entries 

to Mu or order B. Finally, the Cabibbo angle and masses of the 

first generation have to be generated. Note that all masses may 

either be generated by diagonal or paired off diagonal entries 28 ) 

(or both). 

For the case of four generations the upper bounds on en­
tries are 

Mu ! 
A A A' A') 
A A A' C 

A A B C 

A A B D 

( 3. 6) 



MD 

T 
ML or Ml 
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(

A A A' A'J A B C D 

A B C D 

A B C D 

A 
A' A' J 
B B 

c c 

C D 
( ~ B 

B 

B 

( 3 . 7 ) 

( 3. 8) 

Very little is known about mixings of a possible fourth genera­

tion: Only the relative decoupling of the first two generations 

requires A' to be roughly a factor 10 smaller than the largest 

fermion masses. In addition there will be several constraints 

of the type (3.5) guaranteeing that the contributions from 

paired off diagonal elements do not induce too large masses for 

the lower generations. The first step of the search for a rea­

listic mass pattern must now provide masses for two up-type 

quarks, one down-type quark and one lepton (instead of only 

producing mt for NG = 3). The remainder of the analysis remains 

the same. 

Some unification models may contain mirror quarks and lep­

tons in addition to the standard quarks and leptons. These are 

left handed fermions in representations of SU(3)c x SU(2)L 

x U(l)y which are complex conjugate to the standard left handed 

quarks and leptons. A mass term coupling mirror fermions to 

standard fermions is allowed by SU(3)c x SU(2)L x U(l)y symme­

try, but it may be forbidden by additional symmetries. Once 

these symmetries get broken by vacuum expectation values (VEV) 

of SU(3)C x SU(2)L x U(l)y singlets s1 at the scale Me or below, 

those mass terms will be induced. The mirror fermion generations 

and the same number of standard generations disappear from the 
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low energy spectrum, whereas exceeding standard fermions are 

protected from getting a mass by SU(3)C x SU(2)L x U(lly chi­

rality. How do mirror fermions influence our systematic dis­

cussion of fermion mass and mixing patterns? 

To illustrate the problem we take a three generation ex­

ample with four standard quarks and one mirror quark. The 

quark mass matrix contains singlet and doublet entries (~;• ct 1 ): 

ql q2 q3 q~ 

q~ ( d, d" d., d,J 
Q2 d21 d22 d23 dz~ 

M " c (3.9) 
q3 d3l d32 d33 d3't 

q s1 s2 s3 s't 

If only the singlet St acquires a VEV the mirror quark and the 

quark q 1 disappear from the low energy spectrum and we can dis­

cuss the remaining matrix for q~, q;, q~, q 2 , q 3 and q 4 as 

above. Assume that also S2 acquires a VEV somewhat smaller than 

St. The superheavy quark q\ is now mainly q 1 with an admixture 

of q2 of order 52/St. Correspondingly, the 1 ight quark q~ has 

an admixture of Qr of order S2/S 1 . This induces additional en­

tries in the low energy mass matrix: The column for q~ has in 

addition to the entries di 2 other entries of order (S 2/S 1 )di
1 

_F 4 · 

This may influence the analysis for the low energy mass patterns. 

We generalize our strategy for the case of mirrors: First 

one chooses some order of scales for the singlet bilinears Si 

(which are distinguished by quantum numbers of the additional 

symmetries). As before, all arbitrary assignements of scales 

to these operators are allowed at this stage. One eliminates 

consecutively those standard fermions which are coupled by 

the largest operators s 1 to mirrors until only the number of 

SU(3)C x SU(2)L x U(l)y- chiral fermions remains. The mass ma­

trices for these low energy fermions are corrected by additio­

nal entries as described above. Then the analysis of the cor-
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rected mass matrices proceeds as described before by assigning 

arbitrary scales to doublet bilinears. We note that very often 

it may be possible to assig~ scales to s 1 so that the problem 

of additional contributions to the low energy mass matrices is 

avoided. As a simplification for this case we just can try all 

possibilities for low energy mass matrices after eliminating 

arbitrary standard fermions by coupling to mirrors. However, 

new possibilities may be created by generating needed entries 

from mixing with superheavy fermions. We will see in section 7 

that the order of scales for s1 is related to the order of 

scales for doublet bilinears x1 . This wil 1 impose much more 

severe restrictions. 

Obviously, the chances for a model to pass the necessary 

criteria of this section are best if the bilinear operators are 

maximally differentiated by using the maximum amount of symme­

try available. (If all bilinears have different quantum numbers, 

the choices for possible scale assignments become trivial.) It 

is, therefore, important for the search of realistic mass pat­

terns to use~ symmetries of a model. In some cases, however, 

where the maximal symmetry is broken at the scale M to a sub­

group K,all.scalars with the same K transformation properties 

get maximally mixed. (This is not always the case - compare 

section 7). If this happens, only the quantum numbers with re­

spect to K can be used to differentiate between possible states. 

For our example with n = 3, m p = 1, a restriction of the dis­

cussion to the symmetry SU(5) x U(l) x U(l)q x SU(1)G or sub­

groups of it would strengthen our criteria: In fact, this solu­

tion would be ruled out, since enough mixing between the second 

and third generation could not be generated without inducing 

much to high values for mu or md. 

At this point, a comment on the use of higher dimensional 

symmetries is in order. At the compactification scale Me the 

higher dimensional coordinate, Lorentz and gauge transformations 

are broken to some four dimensional symmetry group. There is no 
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small scale ratio due to this symmetry breaking unless Me is 

smaller than the overall characteristic mass scale M of the 

theory. In some respects it does not make sense in our approach 

to treat the higher ~imensional symmetries as approximate sym­

metries acting on the chiral fermions. The chiral fermions can 

only be classified with respect to the four dimensional symme­

try group. In our example, only some part of a given 50(12) re­

presentation contains chiral fermions, whereas the other part 

leads to superheavy particles. Nevertheless, the mixing of ope­

rators with the same transformation properties under the four 

dimensional symmetry is not always maximal. We will see that 

quantum numbers of the higher dimensional symmetry can indeed 

play a role in mass and mixing patterns. Another possible ef­

fect of higher dimensional symmetries concerns compactifica­

tion in steps. For example, some fundamental (string) the­

ory could compactify at a scale M to an intermediate higher 

dimensional model as the six dimensional 50(12) model. In this 

case small Yukawa couplings could appear in the intermediate 

model if the first step involved some small scale ratio. In 

our example, T;g could be smaller than order one. The systema­

tic search for viable mass patterns can easily be generalized 

to such a case. 

To resume this section, we propose a systematic scanning 

procedure deciding if a given fermion content fulfills the 

necessary criteria for a realistic mass pattern consistent with 

our assumption of no small coupling parameters and no acciden­

tal cancellations. The only input are the quantum numbers of 

the chiral fermions with respect to symmetries beyond 5U(3)c 

x 5U(2)L x U(l)y· This concerns only rough properties of the 

theory and is independent of many dynamical details of a uni­

fication model. It seems to us that this is the next phenomeno­

logical step (after establishing the content of chiral fermions 

by index considerations) by which the compatibility with obser­

vation should be tested for higher d'imensional models. A de-
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scription of the logical steps needed to program this scanning 
on a computer will be presented elsewhere 29 ). If the scanning is 

successful, one ends with one or several solutions where 

i) the assignment of generation quantum numbers (like 
Le, Lll etc.) is fixed for the chiral fermions, 

ii) an order of scales is established for the set of 
seal ar vacuum expectation values responsible for masses and 
mixings, 

iii) upper bounds are established for scales of other sca­
lar vacuum exp~ctation values coupling to fermion bil inears. 

In section 7 we will give criteria to decide if this order of 
scales can be realized. 

4. 
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Spontaneous Symmetry Breaking with Higher Dimensional 
Scalar Fields 

To substantiate the discussion of section 2 we will show 
in this section that classical solutions with SU(3)c x SU(2)L 
x U(l)y x U(l)q symmetry indeed exist if a six dimensional sca­
lar in the fifth rank antisymmetric tensor representation of 
50(12) is present. On~ of these solutions should approximate 
the ground state up to effects breaking U(l)q and SU(2)L x U(l)y. 
We will derive the coupled field equations and discuss the gene­
ral existence of solutions as well as some of their properties. 

The action of our six dimensional model is 

5 ~ fa"; A~ r ?J P. 'j. 
I - ....., ....., ... _.., 

~ H 1-r G_;:;; G ?'~ 

-~ -,:,. ( D:.t/J¥17 ¢ > +- v up) 
A 

( 4. 1 ) 

- i .y:; t;l ~ >"" - f -if¢ 'If' J 
A • 

Here~ is the field strength of the SO(l2) gauge boson A_,.; and 
¢is a scalar in the fifth rank antisymmetric tensor representa­
tion of S0(12). Both ~~ and¢ are represented as 64x64 matri­
ces. (Compare appendix A.) Otherwise we use conventions of refs. 
15,17,18, The covariant derivative of 1J is 

I? p = ~ ¢ - ~~ [ ly I ¢] ( 4. 2) 

Neglecting fermionic excitations we obtain the bosonic field 
equations 

A 

ry.-
A 

~ 

I ,.., A 

- R q ~- = 
~ d/'~ 

I 

z& 
_... 
T-­
/'" 

I ...., _...... ~.... I 
611- -r::r Gy<: G P"' JP - /6 w 

A A ' 

G .. G- f /f ., 

- t Ll Df¢XIJ;¢>fp. +- ± L ( 7¢Xl!$ tf) 
A 

,_ vt¢) 'J'r~ 

(4.3) 

( 4. 4) 



]:;- 1 0;8 ( 

~ D_,: rf 

A -' 

D . ,.- -"'"' 7 <.:7 -

+-2 
oV 
ocp 
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g,J [ ¢/]) ~¢]) J 0 ( 4. 5) 

=0 (4.6) 

Here TAB are 50(12) generators in the Dirac basis. Normalization 

and derivative of V are defined so that a mass term reads 

V = * M'- -,:::., p'- -r- .. ( 4. 7) 

c:>V 
N/5 

~ ± 11' ¢ -/- ( 4. 8) 

For independent complex scalar fields <?t· (compare (A49), (A84)) 

the scalar field equation has the standard form 

~ ov 
D"' m +- .. -* lJ; ..,. ' ocr, = 0 ( 4. 9) 

We are interested in solutions with SU(3)C x SU(2)L x U(1)y 

x U(l)q x P4 symmetry. The symmetry U(1)q is a combination of 

isometry- and gauge transformations. Its orbits in internal 

space form circles or fixed points. We parametrize the orbit 

(except for the fixed points) by a coordinate~· whereas the 

other internal coordinate is denoted bYX· The orbits of the 

maximal four dimen:;ional symmetry P~ are the four coordinates 

x~of observable spacetime. The most general local form of the 

metric consistent with these symmetries is 

A 

~;.v 

A. 

( 

c> 1;0 ;;r !x) 

-1 

-''"' ) ( 4. I 0) 

A. 
with ~p..J(x) the maximally symmetric four dimensional metric with 

cosmological constant 11.,. We denote by ~..;ft'). (without a hat) 
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/\., 
the curvature tensor formed from :J/H and one has 

~y 
/lo - ± R '/Jr 

..<o 

"" /1" 'ff ?"' 
( 4. II ) 

The most general gauge field configuration consistent with our 

symmetries is 

A 

A<f = H6 -n{;r)f-/!f,ri-/,.,)-?>Z(X,)r(/13 tf!,t-Hr}p(;x) 
( 4. 12) 

= 1"'-(;{J -2I""'_.,IX.J .-;. y6 _,_ pix) 

" Ail: =o ( 4. 13) 

A 

!l =0 
/" 

with generators H1 specified in appendix A. Finally, we need the 

SU(3)C x SU(2)lx U(l)y singlet scalar fields inrf. There are 

four complex singlets St, 5 2 , S 3 , S4 whose properties are given 

in appendix A and table 2. The symmetry U(1)q requires 

s' ~ ud;O exp(i<t;(Xll exp(im,'f') (4. 14) 

s' u,(x) exp(i«,(r)) exp(im,r) ( 4. 15) 

s' ~ ue{i() exp(i<i,(,J')) exp(iiil,<fl ( 4. 16) 

s, u,(j) exp(io!,{,()) exp(im,9') ( 4. 17) 

The functions ui are real andoCi are phases. The integers mr 

and ffi 2 determine the unbroken_ symmetry U(1)q and will be dis­

cussed in section 6. The ansatz (4.10) - (4.17) has the most 

general local form consistent with the symmetry SU(3)c x SU(2)L 

x U(1)y x U(l)q x P~. In addition it is left form-invariant 

under 

constant translations in X• 
rescaling of xp by a constant factor, 

global U(l)q and U(1)B-L transformations. 

We will use this freedom later to fix some of our integration 
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constants. (We remind that these transfot·mations are symmetries 

of the action which are broken by any given solution of the 

above type provided 5 1 and 5 2 , 5 3 or 5 4 do not vanish.) 

We have to find solutions for the 13 unknown functions 0', 

J• n, m, p, ur, Uz, u 3 , u 4 ,oGt,"'-2>~ 3 and~ 4 • In terms of these 

functions, the scalar field equation (4.9) gives 

• I, _, 1 _, ') 1 H -<1 - _ ,• .~v-A 
"" .,. ;;y f' •2<>,.. «, -«, «,-p ~..,.-~rz,.,+:lpJ;~,-..:~~(4.18) 

q (..!. -1 I -·LJ) I I< -<r- - )< - .J. il.lt'- = 0 
Mz- + 

21 
f ~ + ),6 fi ~~ - ¢~ ,a-t- 9 .-#1~ - 'J/1<1- ~ ~ ~..-..<-" ( 4. 19 ) 

/1 -1 1 -1 ) 1 1~ ~1 - - l.. -L~ -
M

3 
+(f? p-rmo)"<, -<>'3 .&~3 -.1' (,.,.-~~)"<, "'-M<3 -

0 (4.20) 

Q {' -1 I -1~ lu) J< -/{ - - )~ .J. ~ .u, ~ ~f J ;-26"' ,.., -<X• «~ -.1' -.,-;]""' a~-""" ~""r = o 

IJ -t-(.lo_,' ,,_,6", ' -1 I) '-..!.. .,-<-~ 
ct..t 2.-J r T-,y +LJ«,.,#-~ ~ ~ "f ~o<,., =o 

11 {-I) -1) -1 J) If -zdV 
d~ + ff f+2<>cr*2~ ~ et'..z. -~-&z ~ = o 

«.{'+-( t?-15'1+2~>6-'.-za/_u,' )at3'-:}; ..u,-<-~ = o 

a~;' •{ tf'../f 1 <-210-'6 1+2~,..--~u,' )o<~1 -f u.,_-.c ~ = o 
~at,_ 

(4.21) 

( 4. 22) 

( 4. 2 3) 

(4.24) 

(4.25) 

A prime denotes a derivative with re$pect to X· The algebraic 

relations necessary for a derivation of field equations can be 

found in appendix A. The p component of the gauge field equa­

tion (4.5) implies 
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)) ( I -1 I 4 ) ) - - X L < ') 0 
..,_ • - z;f l' +ZG o )"'< +Z~('"'<-'J""' «;or<-<3 ~.u,_ = (4.26) 

--".,. (- ±('J".,. zc>""'6' )-.1+2§ (~- f !2-,dr))u..' = o (4.27) 

p 11
"'" { --};p-f1 

<-26-
16) p1 +~Jf{.;;,, -J (Z-.r3f ))«} = 0 

(4.28) 

.h. 
whereas"}?.: G =0 requires 

cL) = 0 
1 

(4.29) 

Jz_. )~ ).?, 

""• ~ ;- "'' u, + "'~ ~'f- = 0 
( 4. 30) 

Finally, one obtains for the gravitational equations 

R
A _l-'~.-'1 -"" J _ _., -1)) 3 -1)-1) I} 

/""" ~R~/"""- J'rtA.s -l;<> 6 --.="off -:tr-r' 
+ * r-" r'" J = :h f;;.. ( 4. 31) 

A ,., -1 .-'1 { -1 -~ ~~ -1 J -1 I I "' 
Rxr J;Rj;a =~;u Zll.s -:tG" 6 -615" .f f J = 4 TX;r ( 4. 32) 

/\ "" "" .., i .., 11 _, -'-1' -z )"'j 1 " 
I(~- ± R 'lt-r ~ '} '/>1' .v1c 6 - Lo o - ± <> r:r ~ i$ T.rr ( 4 . 3 3 l 

with energy momentum tensor 

A A { I -I ( } t )..2, J.t. 
~~ = ~/"" :;; C? ... ,.z.., .-3, ) +- v .. 

+- ~ [«·nr-u.<-e<}<-+ o-'a. . .lt,c.(.z.]j 
, .. ,., ' ' t J l ~ 

i;a {- i; S'_, ( --.''-+Z ....,>< ~ "Jp"') + V 
A 

Txt 

(4.34) 

\1- - ).(., ~ )1.. -1 
- Z L«· +- -«· <Xi -o C<·<,-«·' ]< 

i ::-t ' ' J l l J 
( 4. 3 5) 

A A 

T rrr = '}'!<r { - i r 1 
( ""'n+Z-, 1

" dpn) .,. v 
v. n ~ '..2... -1 <- ~ 

+ ,t, [ ~~· +«.- vt.,. - f' 4/' ~~· J J 
( 4. 36) 
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Here we have defined the shorthands 

et
4 

~ ...,.
4

- ~ /z-. -r3p) (4.37) 

C<:t = ec3 = a'~ = ,....,.,~ ~.-.,.. (4.38) 

~ 

The component ~'f vanishes 

nonspecified components of 
due 

R-·~ r 
to J4.29), (4.30) and all 
or~.J vanish trivially. 

other 

Equations (4.18) - (4.33) form a complicated system of 
coupled nonlinear second order differential equations. The sca­
lar field equations respond to the gauge field configurations 
n, m and p and other nonl inearities are induced by the potential. 
The gauge fields feel x-dependent mass terms and source terms 
and the gravitational equations are complicated due to the struc­
ture of the energy momentum tensor. In addition, it may seem 
that one has more equations then free functions and that the 
system may be overdetermined and has no (or only a few special) 
solutions. This is, however, not the case si~ce not all of the 
equations are independent. 

Let us- first look at the two equations (4.22) and (4.29) for 

4:1(.....,.. Since the U(1)B-l subgroup of S0(12) acts as a 
in a:..., and the potential is S0(12) invariant one has 

!.\': : 0 
0 .... 

Equ. (4.29) implies conservation of the B-l current 

. 
d J,.. { -"11.[ , • ' 7 ._,_ = 3: 'J• • s, l:>~s, -s, ]),. s,~ Jf ~ 0 

translation 

( 4. 39) 

(4.40) 

and using (4.39) one finds that (4.22) is identically fulfilled. 
Similarity, U(l}q invariance implies that the potential can only 
depend on two independent phase differences for which we may 

take «'3 -~ and c<y.-~· The potential must obey 

~ -+ ~1/ +- ~ 
doC~ doc3 dO/.~ 

"" 0 
( 4. 41) 
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From (4.30) and (4.41) one finds that only two of the equations 

(4.23), (4.24) and {4.25) are linearily independent. Two inte­
grals for the phases are trivially obtained: 

oC., ==- o(Ao (4.42) 

c{<- ..:,_, 
X -r dx 

0 

) ~ ) ~ 
o(3 _.t.(3 +- df- ..US'-

..«" ... 
( 4. 43) 

We may use the form invariance under global U(l)B-L and U(l)q 
transformations to put 

«-4~ = ..::, 0 (4.44) 

What remains are the two equations (4.23) and (4.24) for the two 

phases oc::3 and «1'-. We note that ~3 -«z.'-4=0 or 0(~-«,e.+o indicates 
CP violation for the corresponding solution. 

\~e also have three gravitational equations (4.31), (4.32) 
and (4.33) for two functionsO andf. Again, only two of them 
are independent. This can be seen most easily from the Bianchi 
identity 

( 
A ..;:o - j_ R. A ~~ ) 

R, '-' ~ / 
-0 (4.45) 

which implies 

:l~ ( R'~"- t R §M) r ( t f_f, +-.Z6-~' !( ~'fX -±~j'l'f) 
-1 ) .... ......,,. .... "'' ..j ) A .A A 

+ ±r P ~'f'p 1~ -±R;Jf'f'J+-"f,r>I'S gr(rr'"-:.±R~""') (4.46) 

= 0 

Since the energy momentum is conserved as well 

Tf:O 
/? ""0 

( 4. 4 7) 
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we conclude that we have only two independent equations for GO 

andf. The four dimensional cosmological constant A 0 is a free 

integration constant! As a check of our equations we have veri­

fied that the nontrivial component of energy momentum conser­

vation 

T-~0 =.)X {-i-f-- 1 {?·/"·+~-n--/;;._-t-3pn)-V +7[~/<-+.u,·zc:t/~-f- 1c:t,·~/JJ 

+-f-lf) z_ [(,(/~t-M/"ot/-t-f'-/Ci/4/-] (4.48) 

l h L J:t., J -
-rz~-~rs> { f-'{n-tlt+2~n..+3r''J-+<<-f[<-<t" r«· «i J - o 

indeed follows from the field equations (4.18} - (4.28). 

We are th·us left with 13 independent equations for 13 

functions. This system will always admit local solutions, de­

pending on initial values, i. e. the values of the functions 

and its first derivative at some given /1""X" In fact, due 

to (4.39) and (4.41), only oC3J()((I) and o<t/(Xo) can be given in­

dependently. The most general local solution will, therefore, 

have 24 independent integration constants. One of them, for 

example ~'c~·o) , can be replaced by 1\D. The form invariances of 

our ansatz tell us that not all of them correspond to different 

physical situations since certain solutions are related by six 

dimensional coordinate and gauge transformations. We can elimi­

nate this freedom by the choice (4.44) and fixing arbitrarily 

Xb and O{Yp) , for example 

x. ~ 0 

Glo) =A 
(4.49) 

(care has to be taken if a function becomes singular at Jo or 

iff,cr or ui vanish atX0 .) 

One more integral can be easily obtained by noting that 

the U(l)y gauge field does not couple to the scalar fields Si. 

We write 
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.-.., (H,t-1{)-rp(Hl~H~-tfl,-)=} y ... B 2: 

with 

~ 
3 ,.cp-.-) 

~ - "? ( 3p -r 2-.) 

j ~ -H.- H._ r f { H3 t lly -f'l-/r) 

it: = 1-1, • H,.,. rt; ..-H~ ..-H, 

Equations (4.27) and (4.28) decouple 

:1x(G""f_,;,_'J) )=o 

.:l;r (o-'-y-'1,. e') +- 2ff u•f"<-~.., <-<} - o 

and (4.53) is integrated 

X ~ ;< 

'f ~ "?• r c:t f otx (5"'- J' " 
0 

We remain with 10 equations forV',p. af, a.l-, u..,, uz, 

~3 and~~ which, after some rearrangements, read 

( 4. 50) 

( 4. 51) 

( 4. 51) 

(4.53) 

( 4. 54) 

(4.55) 

uJ , u{o , 

-r J) --l. n -1 ) -1 J .L "'( JJ.- ~ J.l.) 
Zcs cr -G" G' -<5' <r f f' r ~ T 4; -r4; «; =0( 4 . 56 ) 

z.u-'G'JJ + J.. G"-~(;')~- .l.-1\otS'-•_._r 1 ~ G"'-Y.- -'-~ o-' (~c<;z. +Q.n.) -
" 6 'r5~ ) , • 

- ..?..~ 'j- 1[a_,~ .t.t_,~ 1-(!(.l.l..( az"l.+:u:+u:J] + * t-/:it- (u/~ ru,l..«/') eo' 4 . 
57

) 

II I -1 J J -1 > J z., J, 
Cl..- -;;f f' <:>, -rZrso a~ -10j -<-<< «< = o 

( 4. 58) 

a.~..11 -±f-'f>a; +-J..o-lo..Jct} -211.-r.(.{:-t-Mlz+~' )a.t-= c:; 1 4. 59 l 
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V ( 1 -1 I -1 1) ) -1 .Z, I ~ ""' +- :;:;f f+-l.v G <-<1 -f a1 ~. -:;:; ~~. = o (4.60) 

-'<;'•(1: 'i'r',_;_,,-'G'')u/. -( «j «/ """-; «''/M-3_ 0-~ <« _Li!!t = 0 14.61) 
'r A. J Z <.- L ()4.,1, 

"' ( L -1 ) -1 J) J 1<. -I L OV ~3 + ~r f+-,ZS () (,(J -(:1(3 .qJ-f' q..?.. .U3- :f; (?).?£
3 

"'"'O 

u.' ~o(±{~'+-1.<>-'6'')«; -"/'.<£, -f'-~a.,'" «, - :f: ~.,. = o 

1J ( 1 -1 I I I I ':I. 
"'J r :<:S' f+<?r;-r;',_z.,; .«.j l«a -;!; -«,-~ ~ = o 

~"'' 
d.,/+(±f-tpJr-zc--'G1 r2t-tv-~ 1 t:(,/)rX.,._1 -± a;'--~::::. 0 ;;"'• 

(4. 62) 

14.63) 

(4.64) 

(4.65) 

These equations simplify for special cases. For example, if 

SU(S) symmetry remains unbroken, one has ..,..,(X)-::::p{;r) and, there-

fore, ijo-=Cy=O. There is only one SU(S) singlet with q = 1 

and all phases can be set to zero ( ~3 =CI(v- o). The equations 

for u 2 , u 3 and u~ reduce to the corresponding field equation for 

the SU(S) singlet field (compare (A92)) v: @(«,_.{i'q3 .-/6'«,). 

In equ. (4.56), (4.57) and (4.59) one replaces u~ + u~ + ut by 

v 2 and ' ' u' ' ' + u' ' ' + u, by v 2 

Let us discuss a class of solutions of (4.56) - (4.65) where 

the U(l)q isometry has a fixpoint at X= 0 which is included into 

the manifold. Without further restrictions this corresponds to a 

topology R6
• Regular behaviour of all functions requires that _p(l{) 

vanishes like Y.t- and m(i(). n(;(} and p(i{) vanish like c 0·X~ 11. n ,m, 
for X-) 0. As well, the complex scalar functions Si must be even 

(odd) in for,m
1 

even (odd) and must vanish at X= 0 except for ITi
1 

= 0. Let us discuss solutions with iTI 1 = m2 = 0 (compare section 6). 

Near the fixpoint the different functions are then approximated 

fi;O 

IS"(X I 

x" 
" 1 +- c..,. ?( 
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t<; IX) = c. . i'( '-' 
"' 

«i ( /( ) = -4./o + Cu.i X <-

c(, IX) = c:( 1.0 + Ca;; X <-

and the field equations imply the relations 

c,. 

Cut= 

I 1\ + :;; . -'-('" " <>-&if" 5' Ca, +- Ca,_) + E­u· 

~~ 
g CJ..(..(,-0 

c._/ -Z,~ 
(J(t' - S ~ /o ()c<. •'o 

c:~ 
~ 
[, 

X­
gS 

(4.66) 

14.6 7) 

Here the scalar potential V is treated as a function of u 10 and 

«; 0. 

The requirement of a fixpoint at X= 0 determines half of 

the "initial values" for our system of differential equations. 

We remain with ten free integration constants 1\0 , CY, Cai, Cui, 

C~i. We thus have found a ten parameter family of solutions 

with R6 topology in the neighbourhood of X= 0. (For uio' <l('io' 

Cui' C"'; = 0 one recovers the solutions of ref. 26). This solu­

tion can be continued for growing X either for all ;r or until 

a singularity occurs at)( =X. The fate of a given solution de­

pends on the choice of initial values. Not all choices may cor­

respond to physically acceptable solutions and one may impose re­

strictions by boundary conditions 30 ). If one requires compact in­

ternal space there should be another fixpoint at X =X (which in 

this case corresponds to a coordinate singularity). This would 

imply ten more constraints on the integration constants and fix 

them completely in terms of the model parameters. We expect that 

solutions with compact internal space and nonvanishing scalar fields 

indeed exist. In this case a fine tuning of parameters is needed to 

obtain A
0

= 0. There is, however, no need to require a priori com­

pactness of internal space. Solutions with a genuine singularity 

ati{=x 
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where ~o and other integration constants remain free may offer 

more interesting physics! 

We can interprete our solutions as spontaneous symmetry 

breaking due to a higher dimensional Higgs mechanism. Whereas 

the spherically symmetric monopole solutions with U(l)q and 

U(l)B-L symmetry may correspond to 110 / 0 the vacuum expecta­

tion values of scalars can reduce 1\,. (For the final ground 

state one needs 1\o = 0, whereas the U(l)q symmetric approximate 

ground state may still have a cosmological constant-M~.) Also 

the monopole solutions are classically unstable 17 •27 lqand sa­

tisfactory spontaneous symmetry breaking requires a stable 

ground state. ·We will discuss in section 8 that scalar vacuum 

expectation values can indeed stabilize the ground state. 

The detailed form of spontaneous symmetry breaking depends 

on the scalar potential V(tjJ}, He will assume that the configu­

ration space for the scalar singlets s1 is affine in the range 

where they take expectation values. (This is not necessarily 

the case if the six dimensional model is obtained from a funda­

mental higher dimensional theory17 }.) In this case the chirali­

ty index is the same as for the corresponding monopole solution 

for topologies M~ x compact internal space. We expect the same 

chirality index also for a wide class of solutions with noncom­

pact internal space. Even for affine configuration space there 

are important differences between standard four dimensional 

symmetry breaking and the higher dimensional Higgs effect. In 

four dimensions, the search for symmetry breaking minima of 

the scalar potential is an algebraic problem. In higher dimen­

sions one has to solve instead a coupled system of differential 

equations. This corresponds to the fact that there are infinite­

ly many four dimensional scalars in a given representation of G. 

For any given X the value of Si(X) will in general not corre­

spond to an extremum of the six dimensional potential V. Indeed, 
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the effective four dimensional potential is not only determined 

by V but also by the four dimensional scalars contained in the 

higher dimensional graviton or gauge fields (o, p, a 1}. In 

particular, a positive six dimensional scalar mass term 1/4 r•F 
Tr ¢2 is not a sign for vanishing scalar expectation values. The 

instability of the spherically symmetric solutions in other mo­

des can require Si + 0 even for M2 > 0. 

What about scales of spontaneous symmetry breaking? We may 

denote by i·1a-L = g(fB-L) and r~.w" = g<<pM:J) the scales of spon­

taneous symmetry breaking of U(l)B-L and U(l)q. Here g is the 

four dimensional gauge coupling and(CfB-L)' <Cf:(,~o( are the 

leading vacuum expectation values (in standard normalization) 

in a four dimensional language. The most natural order of mag­

nitude for t~B-L and M210 is the compactification scale Me. 

Larger values are possible if the six dimensional scalar po­

tential has a deep minimum with a higher characteristic scale. 

Smaller values require a tuning of parameters or a special 

choice of ''initial values''. The characteristic mass scale of 

the six dimensional theory is the six dimensional gravitational 

constant and one may assume a typical scalar mass M2 _ $0... 
We note, however, that there are two sorts of natural small 

parameters in the model. One is the ratio of internal charac­

teristic length scale Lo = M; 1 
to the two dimensional volume V2. 

J_ 
\i, 

" Lo 

v~ 
(4.68) 

(For spherical symmetry one has V2 = 4n.) The other is the in­

verse of the generalized monopole number 

J_ 

Fi" 
= 

i>p'".,.z..,_'" .,.""'') ( 4. 69) 
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In terms of these quantities the Planck mass Mp and the com­

pactification scale Me are 

" - ~ H, 'V 16TT v, N,. f, !',_ 14.70) 

He"~ _I ( J',_ 

IV" o 
14. 71 l 

One should not take these relations to seriously since propor­
tionality factors may change an order of magnitude. A scenario 
with M~ smaller than M2

- ~¥.v by an order of magnitude and 

between two and four orders of magnitude below Mp seems, however, 
not unrealistic, 
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5. Yukawa Couplings and Fermion 1>1ass Relations 

How do fermions propagate in the field configuration dis­

cussed in the last section? Fermions are coupled to gauge fields 

and gravity through the covariant kinetic term and to the sca­

lars by a six dimensional Yukawa coupling f (compare appendix 8}: 

--'l.i "'" /\A, 
!fy = ~· -f { I t"" J? +- f 't' J )V 1 s . 1 l 

1f' = ( ~ ) = ( 
3.1., ) 
32~ 

Is. 2 l 

Neglecting all excitations except the ''ground state'' configura­

tion the field equations have the form 

i rM? "~-' r- 11 'f' 0 Is. 3 l 

with mass operator 31 ) 

H = r/"{ 1/'[ r"'b"' ~ r"'c-' do~.<S] + (¢ J 1 s. 4 l 

Left handed (right handed) massless modes obey 

0 • 

( r"' Do< (+' 
,(¢ ){G''%)= 0 1 s. 5 l 

·~ ' (Here r, De(.. and¢ are formed with the ground state configura-

tion of section 4.) 

In general we do not expect a vanishing mass M except for 

those modes protected by chirality, The chiral fermions for 

spherically symmetric monopole solutions are listed in ref. 17 

for arbitrary m, nand p and their wave functions~ (X .Cf) can 

be found in ref. 18. For a large class of ''neighbouring confi­
gurations" without spherical symmetry (including expectation 
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values for scalars s1 ) the spectrum of chiral fermions will re­

main the same. This is due to stability properties of the chi­
rality index

11 l. The wave functions '¥1;{/X.~) for the chiral ferm­

ions, however, will get modified. Deviation from spherical sym­

metry due to<>'(;(},.!'(,\), m(;(), n~) and p(;() amounts to a mixing 
of the massless lowest angular momentum state with superheavy 

higher angular momentum states in the tower of the harmonic ex­

pansion for functions with given SU(3)c x SU(2)l x U(l)y x U(l)R 
x U(l)q transformation properties and given I. (In addition to 
these symmetries the wave functions form SU(5) representations 
form(;{) = p(~) and rfJ an SU(5) singlet.) A vacuum expectation 

value for¢ induces mixings between fermi ens in 1At and~. In­
cluding the s~alars, the wave functions belong to representa­
tions of the unbroken symmetry (SU(3)c x SU(2)L x U(l)y x U(l)q 
for the generic case above). Despite of that mixing, massless 
modes will be found after diagonalization of the mass operator 
in accordance to the index. 

Mass terms for chiral quarks and leptons appear only once 

SU(2)L x U(l)y symmetry is spontaneously broken. They will be 
proportional to the scale t:p'- of this symmetry breaking. One way 
to study the quark and lepton masses would investigate solutions 

of the field equations (4.3) - (4.6) where SU(2)L x U(l)y doub­
let fields have nonvanishing values and to study the mass opera­
tor (5.4) in this background. For small values of the scale <pl­
we can instead calculate the Yukawa couplings of the chiral 
fermions to the various weak doublet scalar fields in the ef­
fective four dimensional theory obtained from dimensional re­
duction on the SU(3)C x SU(2)L x U(l)y symmetric approximate 
ground state solution. We then have to determine how the low 
energy Higgs scalar is composed from these various doublets. 
This approach deviates from the correct result by terms of or­

der<pl/t~c with M~ 1 
the characteristic length scale of sponta­

neous compactification. In a realistlc theory they are negli­

gible. If instead of dimensional reduction on the SU(3)c 
x SU(2)L x U(l)y symmetric approximate ground state solution 
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we use the wave fundtions from an expansion on our solution with 

SU(3)C x SU(2)L x U(l)y x U(l)q symmetry, there will be correc­
tions of order M~/Mc to the Yukawa couplings. (M~ is the scale 
where U(l)~ is spontaneously broken.) We also should remember 
that we calculate the fermion masses from classical solutions 
derived from an effective action assumed to be valid at the 
compactification scale. Our fermion masses therefore correspond 
to a scale M and they have to be rescaled by the standard re-c . 
normalization group procedure before comparison with experiment. 

We denote by ut, u~k the left handed quarks and antiquarks 
with charge 2/3 and -2/3, respectively, and similar for down­
type quarks and charged leptons. Four dimensional mass terms 
are written 

!flv> ~ ::_~y (f1u )·~ 
H '- 1 

u"< 
'-

_,. A.. G. ( 5' 6) 

The mass matrices are proportional to vacuum expectation values 
of the various doublet fields in our model: 

( 11v )j~ Z.i Jt' -<1-17*+-
-'<' (,{ fll ~ 

J ~ 
z i 4_ I~) < 1-/<) 

4j '<4 HA 

t-4 , __ d <d,_> 
"l~ z. 

( 5' 7) 
+-4_,.'u.ot.,<d3>+-A."',~ d <d•> 

·;-.., "j-t'r 

+ 4-.,._u~d,_ <of~ '/<-~., .. ~~d3 <A'3>+-4.__.u~d._<of.,> 
Similar expressions hold for MD and ML. The factor i in the 
first two terms comes from i( in the mass operator (5.4). It 
can be rotated away by a chiral phase rotation, but the rela­
tive phase between the different contributions may play a role 
for CP violation. 

The Yukawa couplings h(l) and h( 2} have been calculated 

in ref. 18. All nonvanishing couplings are found in the same 
order of magnitude as the four dimensional gauge coupling g. 
We have calculated in appendix B the Yukawa couplings for the 
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doublets ct
1 

contained in the six dimensional scalar field. All 

nonvanishing couplings are of order (t/Q) g with t and 9 the 

six dimensional Yukawa and gauge couplings. The Yukawa coup­

lings are given in terms of two dimensional integrals over 

wave functions of chiral fermions and scalar doublets. The de­

finition of the wave functions for the scalar doublets will be 

discussed in the next section. Here we note that for our U(l)q 

symmetric solutions the, integration is performed trivially 

and accounts for conservation of q (or I) in the Yukawa coup-

1 i ng s. 

The choice of a basis d 1 , d2 , d 3 , d4 for the weak doublets 

with q = 0 within the 792 scalar of S0(12) is not necessarily 

the most appropriate for a discussion of fermion masses. Indeed, 

both d 3 and d 4 give a nonvanishing contribution to Mu, but the 

mechanism which determines how the low energy Higgs scalar is 

composed from various doublets may single out a 1 inear combi­

nation of d 2 , d 3 and d 4 which does not couple to up quarks. To 

apply the general analysis of section 3 we have to avoid such 

possible cancellations since they could be caused naturally by 

symmetry reasons. We define linear combinations 

dw ~ 
.1- I ,;( 
13 d~ ... u 3 +- h: d.,. 

oft/:;, ~ _1_ p(~ - _!.__ ol, - ...Lei. 
r3 fb r;; .. 

do1 = k d1 - __!_(?(3 + 
3 f6 &d..- ( 5.8) 

o(/)'0 ~ _L o(1 
r3 +- ko13 - _l_of, 

fT 

"'L=f;ot1 -I' 'otJ - f,gl-d,. 
Ao 10 

ot4 ~ g a1 ..- 1' 'vt3 + 
" 10 

~d,. IO 

In terms of these fields the nonvani shing Yukawa couplings from 

the six dimensional scalar read 
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f.. ' d. 
j__ A [ d~ v~ z- c-+- -

a! «-t v.t = r;;l :f ~· <'> «; ~4 dv• 

I. 'd ";J 4" uz = 
j_ f r ol' "~ ,, + , - d 
r£ 'j 9• UJ "'a '-''-

J:.d;oi~ ao, 

t.d,dj,_ olv, 

-4e)e.t cl;:;:, 

= J_ f ( g{ 'y ~ '4 ,. vi' ... d- d .. 
r£ L J~D-t 

~ r t /f. 2.ci.'T (_- ..J* 
~ /:£ { dJ'Jz'G' 1 v{,_ <A7>2, 

r= ~[ ~ /4 ~ ~ r - # 

~ -!.'f- f d;; 9• o eJ e~ ofu 

W,., l #i.0r-"' -~ r f ol '! 'J· 0 eJ 0 ""''-" 

( 5. 9) 

~eJe~o(.c.t. = 
We note that dli and dLZ depend linearly on dUl' du 2 , d01 and 

d02 . These fields are properly normalized, but not orthogonal 

to each other. 

In our example with n = 3, m = p = 1 only the fields dUl' 

du 2 , d02 and dll are allowed to couple to chiral quarks and lep­

tons in a leading approximation. The fields d~ and el are ob­

tained from the harmonic expansion of1Ji (compare (2.1)) and 

one, therefore, has dj+ = 0 and ej:: 0. This situation may get 

modified due to scalar singlet vacuum expectation values Si. The 

term"' f~ in the mass operator (5.4) can in principle mix fields 

with quantum numbers of de and e in 7h and 11z . It may, there­

fore, induce non-vanishing Yukawa couplings hdJd
4

diU of order 

( <S. >/11 ) • hJ ol' d- . The existence of such couplings depends on 
1 c {/f; ~ £)Z. 

details of the mixing between 1f:, and~ for the chiral modes. 

We will come back to this question later and assume for the mo­

ment d~+ = ej = 0. The discussion of section 2 shows in this 

case that a realistic mass pattern for M0 and ML requires a 

very small admixture of d02 and dll to the Higgs doublet. This 

wil 1 be aiscussed in the next section. 

What can we learn about fermion mass relations at this 

stage of our investigation? First we note that mb' mT and me 

are al 1 generated by Yukawa couplings to H;
1

, leading to the 

relations 18 ) at M : 
c 
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- fdy g;\,-''7:- Tc- H~-4 
- 1 r .,J.t,_ ..... ~~l. J,- I..." ~-~- _, I (5.10) 

f Z. ~ ~ T e +- ( -1)> ~ c = I ,;1 !/ ico 6' c. c H, + _.._,, I 
J d) 'J;'4. 6"'~ h- be- H, -I 

( 5 . 11 ) 

Here we denote by <, c, d, H; 1 the wave functions for the cor­

responding leptons, quarks and scalar doublet. The quantity 

ffi~ix stands for contributions to me from m1x1ng between c' and 

t'. For the first relation we ob~erve that T = be- and Tc- = b 

in the 1 imit of SU(S) symmetry. For m = p one therefore pre­

dicts 

Wl-riHc) 

}'VI b ( 1-f<) 
=--t+o(<s;>) 

He-
(5.12) 

A small ratio s1;Mc would be sufficient to ensure the successful 

relation mb = mT. In contrast, the wave functions for b and c 

are not obviously related. A prediction of mc/mb will depend on 

details of the ground state solution even if a mixing between 

the second and third generation can be neglected. For any given 

solution this ratio is calculable and may serve as a good test 

to distinguish realistic solutions. 

What about relations similar to (5.12) between ms and m~? 

Up to SU(5) violating corrections the wave functions for s and 

~c are again equal, For our example n = 3, m = p = 1 discussed 

in section 2 we can completely neglect mixing effects between 

b' and s' or T' and ~·. The only difference between m and m 
-3/2 ~ v 

comes from the fact that s couples to d02 whereas y couples 
-3/2 -3/2 -3/2 

to dl 1 However, the wave functions for d02 and dl 1 are 

equal up to corrections <S;>/t1c. As a consequence, the ratio 

mylms is mainly given by the ratio how strong d02 and dl 1 contri­

bute to the low energy Higgs doublet. 

I "% ( H~) 
..,, (1-fc.) I = IS I <d.-~> L< I <ot,;;Y'-> { I + 0 { <~: ) ) ( 5. 13) 
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For a given solution, this ratio will be calculable from group 

theoretical factors relevant in the breaking of U(l)q· We ob­

serve that there is no reason to expect m = m and a realistic 
s v 

value m
11 

(Me)"' (2- 3) m
5 

(r~c) could well be obtained. 

Under the assumption that H1 gives the leading contribu­

tion to the Higgs doublet we can calculate the absolute scale 

for the fermion masses and determine the top quark mass. The 

mass of the W-bosons is 

M " I l ,, '-" 
"' ( H~) ~ -;; 1J (n.,) <H. 7 ( 5. 14) 

and the four dimensional gauge coupling g is related to the six 

dimensional gauge coupling g by 

• 'J (1-fc) = 
J d' ~ 'J:/· 

~"' 

One finds the relation 

Wit( H~) 

M,.,iHc) 
=If-( fcl'"{ft:"-c'riyH.)([d''fr '3:~,_)';.. 

and, using the normalization conditions 

~>~,IHc! 

1-t,il<c) 
= )., U-'~~ ""4."/ r t<-H4 )(Jd'y 1~'" )~ · 

(5.15) 

( 5 . 16) 

( 5.17) 

· (Jol) 7:"G'"it-• r t'( (d~'lf4rs-l!.(rttc-f'(rd)'l:._rs-f.l: fl,y'l. 

The model predicts a top quark mass in the same order of mag­

nitude as MW' 
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6. The Low Energy Higgs Doublet 

Our model has many scaiar states with the SU(3)C x SU(2)L 
x U(1}y quantum numbers of the Higgs doublet: There are Hi, Ht, 
H~ and H; from the 50(12) gauge fields and the doublets dt, d2, 

d 3 , d 4 , K1 and K2 from the six dimensional 792-scalar. (We de­
note by K1 and K2 the doublets in 210+ 1 within the SU(4)c x SU(2)l 
x SU(2)R representation (10,2,2) and (TU,2,2).) For every one of 
these states harmonic expansion leads to an infinite tower of 
four dimensional scalars. How to choose the physical Higgs doub­
let? Which linear combination of these infinitely many states 

could correspond to the low energy doublet responsible for spon­
taneous symmetry breaking at a scale o/~ ~170 GeV? This question 
splits into two separate parts.: 

1) How get the different doublets mixed? How is the l igh­
test mass eigenstate composed from the different doublets? This 
is the question relevant for the structure of the fermion mass 

matrices and will be treated in this section. 

2) Why is the mass of the lightest doublet very small? 

What could be the reason for the tiny ratio~L/Mc? This is the 
well known gauge hierarchy problem and we comment on it in 

section 8. 

ing 

For our solutions with U(l)q symmetry one part of the 
problem is easy to treat: Conservation of q forbids any 

mix-

mixing between states with different q. The doublet sector can 
be decomposed into sectors with given q for which the dependence 
on the internal angular coordinate 1 is fixed. However, each 
sector still contains infinitely many states due to the depen­
dence of all functions on the other internal coordinate X. 
States with different X dependence are not distinguished by 
any quantum numbers. We still are left with a mixing problem 
between infinitely many states. 
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The direct method to cope with this problem would solve 

the field equations for Hi(X,~I, Hi(X,rl, ... , di(X,TI etc. 
coupled to all the SU(3)C x SU(Z)L x U(l)y singlet excitations. 
For a given solution with nonzero doublet functions the symme­
try SU(2)l x U(l)y is 'spontaneously broken and the scale o/l 
could be read off directly from the solution. In our example 
the relative~ dependence of the different doublet functions 
would be dictated by U(l)~ symmetry up to effects of order 

Mq/Mc. (M~ is the scale where U(l)~ is spontaneously broken.) 
The remaining equations for the X dependence, however, would 
form a complex system of nonlinear (second order) differential 
equations. Without some more insight into the structure of the 
problem this would be very difficult to solve. 

An important simplification occurs if the low energy Higgs 
doublet consists mainly of an excitation of one of the doublet 
states - for definiteness we may take Hi. Assume the wave func­

tion HiCt·rl is known. Then the field equations for H~(X•'?'), 
di(X,tf) etc. can be linearized in the doublet fields, including 
the field Hi(i{•f) which is treated in these equations as a given 
source term. This source term will be responsible for the admix-

+ ture of Hz, di etc. to the low energy doublet. Its strength com-
pared to the mass term will determine the amount of mixing. 

The mixing problem can be studied by determining the doub­
let mass matrix in the effective four dimensional theory obtain­

ed from dimensional reduction on the SU(3)C x SU(2)l x U(1)y 
symmetric approximate ground state. Expanding on this state, the 
correct mixing (as obtained from the full field equations) is 
reproduced up to corrections of order.pl/~lc. If we use instead 
of the approximate ground state our solutions with U(l)q symme­
try we can still calculate the mixing up to corrections of order 
M~/Mc. We first can study the structure and order of magnitude 
of the doublet mixing by assuming that the final wave functions 
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H!(,:{.f). ct 1 (,r.r) etc. are known. Using these functions for a 

determination of the mass matrix, 1-1e have decoupled all the 

infinitely many modes which do not acquire a vacuum expecta­

tion value. In this basis, only a finite number of fields con­

tributes to the low energy Higgs doublet. The other fields 

correspond to massive doublets which are not mixed to the 

modes H!(i{,tf). ct 1 (;(.f). (Any such mixing would distort the;t 

dependence of the low energy Higgs doublet in contradiction 

to our assumption that H!{x.rl 12_ already the solution of the 

field equations.) We have calculated in appendix C the doublet 

mass matrix for given functions Hi,z.{X.'f), ct 1{X,tf). At this 

stage we can already discuss the general structure. Orders of 

magnitude bein·g known, we then could derive the wave functions 

a posteriori using an expansion in the small mixings to solve 

the field equations. One can proceed by steps and first solve 

the nonlinear field equation for the leading field Hi in the 

approximation that all other doublets vanish. The wave function 

for the next to leading doublet can be calculated in an appro­

ximation linear in this field and Hi (but not linear in the 

singlet fields), neglecting fields with even smaller admixture. 

This process can be repeated, and the structure of the mass 

matrix immediately determines which doublet fields have to be 

included at each step. 

We will not attempt a calculation of scalar wave functions 

in this paper but rather concentrate on a qualitative analysis 

of the scalar mass matrix. How can the mass terms calculated in 

appenCix C be understood in terms of symmetries? First we note 

that the doublets H1, H2, d1 have all YB-L = 0. The weak hyper­

charge Y is, therefore, given by 2I 3R and Y conservation im­

plies that the only allowed mixings are between H1, d; and (Hz) 0 

(not H1 and H2 , for example). The conserved symmetry U(l)q is 

responsible for the Kronecker symbol~ for the mi which charac­

terize the T dependence of the wave functions: The charge q is 
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given in terms of the third component I of SU(2) 6 spin and the 

abelian charges q, 13R and YB-L (see (2.12), (2.13)): 

qi 
I 

li - l~q - -z 11 (1 3 R 
I 
"Z YB-L) ( 6. I) 

Here 1 1 is composed from the third component 

mentum on internal space and helicity A; 

m1 of angular mo-

I; m1 +A; 

and one has 

9: ~ _,.,, ,. ~ .. ,. 1: ""'t +- {t""' ,_ ~ f Jl r,,- :t Y, __,_ ) 

-#ia-Ln;;(T-L\1) 
~ I ..t 4 3/{ :t- 11.3 -L.. 

In general, all doublets have nonzero (j: 

~ 1 - r - 3 3 1 HA) =- 4+16 -/1'1<1lJ -lj-"""l.t + -1 +- -z;.r-z. + 8 p 

3' { u•) -= /J"'1 .r,:;Yz - l....;:i:i, -A -f- 1. ~ +- ~ p 
I th s- <. If- " '+- 8 

o/ (c() = rl+l;- f_Mt_, + f~ +- tr r-A ... 'f-

( 6. 2) 

( 6. 3) 

(6.4) 

~ 

Mixings between H1 and di or H2 and d; are allowed by q conser-

vation if 

,-n,.." - ~i - ..;;::::;~ + /( - 0 fo· 1-14- 0; 

""'" -~.· _,...,_,:t- -1 = 0 1-- H:-d,-
( 6. 5) 

In our example for n = 3, m = p = 1, we need a mixing between 

H1 and (H; 1
)"' to obtain a realistic bottom mass. This require/ 5) 

m, 1 (6.6) 
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Allowed are mixings between the following groups of doublets: 

• 1-11 dl/~- (H;' )' 

(['lv - (H; )' 

ci _,,_ - (I-I~" )' 

( ""6 ~_..., =_,,- =o) 

( "'<,- = _....,_. = - I ) ( 6. 7) 

( "'"'> = 4>7,' = -<- ) 

The fields d-l/Z, d- 312, ct 312 , (HR)* and (Hi 1 )* cannot mix with 

the leading doublet H1 in the limit of U(l)q conservation. 

No mixing occurs in the limit of vanishing expectation 

values for the six dimensional scalars s1 . For s1 ~ 0 the unbro­

ken symmetry (form = p) is SU(S) x U(1) x U(1)q x U(1) 1. The 
conserved charge q forbids mixing between H1 and H~ or H1 and 

d;. SU(5) symmetry forbids mixing between doublets in the 5 
and 45 representation of SU(5). However, a mixing between d 2 

(d 1 } and the 5 (45) contained in 120 is not forbidden by any of 

the continuous symmetries. The mass terms in L2 break SO(lO) 

symmetry due to nonvanishing gauge configurations m(A), p~). 
Although SO(lO) invariants can be constructed from 120, 126 

and 45 or (45) 2 , these invariants are not present in the six 

dimensional model. Six dimensional gauge invariance only al­

lows the combination 

(1,45 X 120) ''" X (1,45 X 126) ''" ( 6. 68) 

which does not contain a singlet. Compared to generic four di­
mensional theories of spontaneous symmetry breaking, higher 
dimensional symmetries lead to restrictionsF6 ) on allowed in­

variants! At this level, mixing between d 1 , d 2 , d 3 and d~ is 

forbidden by six dimensional symmetry properties. 

Mixing between different doublets is induced by nonvani­

shing scalars s1 + 0. There are mass terms (L 3 and L~) from the 

covariant derivative containing H1 or H2 applied on the six di-
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mensional scalar field. They induce off diagonal elements in 
* the doublet mass matrix between H1 and di and between H2 and 

di of order 

with 

" MHd 

M 2 1 o 

M21o Me ( 6. 9) 

g <S21o> (6.10) 

involving the four dimensional gauge coupling g and the lead­

ing VEV in 210 (calculated in the four dimensional theory by 

using the appropriate normalization for the scalar wave func­

tions). Comparing with the diagonal mass terms 

M' HH 

r~dd 

M~+M; 10 + ... 

M2 + ML 0 + ... 

( 6 . 11 ) 

(6.12) 

we find that any admixture to H1 of doublets di is indeed small 

of M~ 10 << M2
• As we have discussed in section 4 this can easily 

be realized in our model! 

We observe that no direct mixing appears between H1 and H!. 
S0(12) symmetry would allow a term M~ 1 H 1 - MLo and the mass 
term L5 is a candidate to produce such a term. Again, a higher 

dimensional symmetry forbids the appearance of a term M~ 1 H~· 
In this case the relevant quantum number is two dimensional he­

licity on internal space. Although the internal two dimensional 
Lorentzgroup S0(2) U(l) is not a symmetry of the four dimensional 

effective action after compactification (only a linear combina­

tion of this Lorentz group with several other U(l) groups leads 

to the unbroken group U(l)q), its presence in the six dimensio-
nal action influences the pattern of mixings. Whereas six di­

mensional scalars have two dimensional helicity ~~ = 0, the 
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wave functions for Ht and H! correspond to two dimensional gauge 

bosons with At,= 1. (Note that one should distinguish between 

the pure Lorentz-helicity ~~and the generalized helicity A in 

presence of monopole configurations which determines the spec­

trum.) Since the symmetry breaking operator sis~ in Ls has A~ 

= 0 it cannot mix the doublets Hi and {Hi)* which have opposite 

Lorentz-helicity. It only gives to the diagonal terms MHH a po­

sitive contribution of order M~ 10 • On the other hand, the doub­

lets H~. H~ (which have no couplings to chiral fermions) have 

Ax,= -1. It is easy to verify that mixings 

MHi(H;)* MLo 
( 6. 13) 

MH~(H;)* M ~ r o 

indeed occur. Two dimensional derivates d± as well as the mo­

nopole fields As± carry~~= ±1. This explains why the mixings 

(6.g) as well as 

MH~d Mzto Me 

M(H;)*d M 21 0 Me 

can be induced. As another consequence, higher order terms in­

volving ~z = 2 operators could in principle lead to direct 

Hi - (H;)* mixing, but those contributions should be suppressed 

by the large mass scales appearing as coefficients of higher 

order invariants. 

So far al 1 mixings are completely independent on the vacuum 

expectation value of Sr in the 126 of 50(10). The VEV<Sr> is re­

sponsible for U(l)B-L breaking and we denote its scale 

MB-L g<S 1 > ( 6. 15) 
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The field s~ has v8_l = 2. Since all doublets H and d have v8_L 

= 0, B-L conservation implies that all contributions to the mass 
* matrix for H and d must involve the operator StSr. If <5 1 > has 

a definite value of I the operator 5 1 5~ has I = 0 and cannot in­

duce mixings between doublets with different I. It only can con­

tribute diagonal terms for H and induce some mixings between 

different d
1 

of order MB-L through the scalar potential L7 • 

(Since 5 1 is a SU(5) singlet it only can mix d 1 with 345 and d2 

with as. 
duced by 
doublets 

but other mixings between d. of order M~ 10 can 
1 

VEVs 5 2 , 5 3 , 5 4 in the potential L7 .) However, 

K1 and K2 in 210 have YB-L = ±2. Mixing terms 

be in­
the 

MHK MB-L Me (6.16) 

are indeed induced by the mass terms L3 and L4 • 

We schematically summarize the order of magnitude for the 

different mass terms for doublets with a given charge q: 

t w, (1/2' ;' d II; (II;)' /(A Kt 
r t 1 11.. 

I 11,_1-(,., I 
l 

' 1\H".,_ ~ M"~'H.l,: HTH- 1 0 0 I H~IQ / ·o 

(H:l' ' l ' ' 0 1 1{•11,,: 11,.._ ; H"H"o , Hue I 0 I 0 I N< He-L 

d I /-1,/fl/o I /iH,.I!t'.H,.'.i-t,;H;:,_ 1 I.,_JI>Jo 1 IVf>Jo 1 lfwl1a.,_ I Hu,Ho;.. 

' l ·.z. 2.. 
0 1HcHa-. 1 t H~ 0 1 Hw 1 /1cflvo 1 f1.'-11l.thHI 0 

Jt" 
' Hc.H,,. J 

2. l . z. 
0 ~Ho.,_ urd H.,. I 0 I 0 1 /-f.t11.tH ... ; I 

K, 11c.Ha... ; 0 1 ltw ife-t.;- fYfa.,_ ; ' 'u;. I) 1 ft.J{+H,;,.h) 11:;. 

<I 0 I H<lf&-LI 11uo lfe.,_ 1 0 2... l l t 
; ltHn-.. 1 11,, ;11~•11;,,+H,., 
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Here we have used a short hand ''d'' to denote the linear combi­
nation of d1, d2, dJ and ct~ which finally acquires a vacuum ex­
pectation value. The doublets K induce effective mixings be­
tween H1 and H2 by two step processes where first Ht mixes with 
K and this in turn mixes with (Hf)* etc. In the limit M~-L' M~ 

<< M2 the two and three step mixings induce effective mixing 
terms in the mass matrix for H: 

{Kl 1. (t<l t 
( M~~,'!HtJ') - ( 111/;(H;J') ~ 

( 

( K) )'- ( (K J < 11~~.tiH;l' ~ HH;Uit!') ~ 
(1-(l .{.. ( (KJ 4 

( /114 H.,' ) - /1r.HtJ'tH;)') ~ 

L L /1L 
Mo He-< '-" 

H• 

L L z. 
He- He-L H.<.,() 

M• 

Me.,_ H:~a~.­
M" 

(6.18) 

Indeed, we may integrate out 
tion. Some graphs leading to 

the doublets K in tree approxima­
(6.18) are shown in fig. 1. 

The mixing between Hi and (H;)* depends on the ratios 
M~ 10 /M~ or M~ 1 o/MB-L and may be large if M210 is of the same 
order as Me (see the discussion in section 8). For large mix­
ing, the VEV of the leading doublet <Hi> coupling to quarks 
and leptons will be smaller than 170 GeV thereby reducing 
the ratio m~/MW. Many step mixings including H induce an ef­
fective mixing between Hi and (H;)* or order 

(KJJ.r) z 
H H.f(H,')' ) ~ 

< L { ~ L ) He- H2.1o Ms-t. -1- Hu" 

Ml-( Hc,~~l1~~o'~' 118'l.~t.) 
( 6. 19) 

To keep our discussion simple we will concentrate in this sec­
tion on the case of small mixing between H~ and (H;)*. In this 
case the many step contributions to Hi - (Hi)* mixing from H­
and K are small compared to those involving an intermediate d 
and we can neglect them. (For large H; (H;)* mixing both con-

68 

tributions may be of the same order, but the qualitative fea­
tures remain the same.) Integrating out the fields K and H 
the effective mass matrix for Hi, (Hi)* and d reads 

1{, 

11} 
yf(t ~ 

0 

cl o< f1c H,_o 

1{,' 
0 

11~ 

f3HGH1.1o 

,( 

"'11<11,,. J 
fHc/1:uo 

11" 

( 6. 20) 

Here the order of magnitude of Mf and M~ is bound by the maxi­

mum of M~, M~ 10 and M~-L· The coefficients a and B are expected 
of order one and we have neglected corrections of order M210 /M, 
M8 _l/M, Mc/M. As we will discuss in section 8 a gauge hierarchy 
requires Mf ~ a 2 M~ M~ 10 /M 2 and we take both M21 o and M8 _L 
either of the same order of magnitude as Me or smaller. Diago­
nalization of (6.20) is straightforward, and the leading doublet 
H1 induces admixtures 

<a> "' 
ct f1c-f13,;e; 

,...,. <H~ > 
,, . . 

< H: > "' «-;'J ,-,< 11.,. < J../< > 
H• H~ 

.. * 

( 6. 21) 

We therefore expect <d> and <H 2 > of the same order of magni-
tude. Both are suppressed by a factor Me M21o/~1 2 compared to 
<H 1 >. Realistic masses for bottom, charm and tau require this 
factor to be around 1/10 (or smaller for very large mt). This 
is well compatible with our discussion of scales in section 4! 

We next address the question which 1 inear combination of 
d1, d2, d 3 and d" acquires a vacuum expectation value. Remem­
bering the discussion of sections 2 and 5, it is crucial for 
the viability of our example that ct 02 has a very smal 1 VEV. Is 
this possible? The direction of <d> in the space of dr, d2, d1 
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and d~ will depend on the direction of <$ 210 > in the space of 
S 2 , S 3 and s~. We observe that to leading order all ct 1 have 

the same mass M2
• (Diagonal and off diagonal terms in the mass 

matrix ford; induced by the scalar potential L7 are suppressed 

by factors M~ 10 /M 2 or M8-L/M 2
.) The mixing of the different d; 

with H1 is, therefore,determined by the structure of the mass 
terms MHct from l 3 and L4 • The dependence on wave functions in 
M~ 3J in (C43) is the same for all i and the direction in d. 

1 bm; m 6 1 
space is determined by S0(12)-Clebsch-Gordon coefficients. We 
observe that the same coefficients appear in L3 and L4 and we 
can collect the mixing terms (with S; denoting here the group 
theoretical direction rather than wave functions): 

H"·•l -. , -
t ( If I .,f vlt, s, - r;;; s • 

Mt,...,l = vf(," ' I ') 

u 
(- s, - r;: s. 

(6.22) 

H{J+~~oJ = ,, pi(,' (- s: ) 
Mn~J-== 
~ vlf.' ( fi7 s: ) 

Mo~J ~ 
<<" 

.,«,_< (- s, .,. ft 5~ ) 

()t~.~-J .,«,_" (S 3 +i;;S•) M,_,. = (6.23) 

ll"Y-) 

Mw = .n: (- s,.) 

M"'"l = 
~ 

v+r.'" { IF s.._ ) 

* (As in appendix C, 5 and 6 denote H2 and H1 , respectively.) 
Using the definitions (5.8) one finds the following mixings: 

1-/,dv. ~ 

Jl I -itt .(._ ~· s._ - iTs, - -rt:- s,. 
( 6. 24) 

~ I " 
H4 t>lu;.. 

~ -s - r. s, 
'-' 3 

H. d,, ~ 

H4 ofp;_ ~ 

H, o(L1 

HA tiL;. 

" S;;,* + k 53 
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' z ' C)., + L :53 -- s~ - .... ~ 13 t6 

~ ( -< .- r3' 5~ ) 

ff ( s( + 13' s / - 16' s: ) 

Hl.J11 dv, ......, s~ + )r s3 

H,_11 dt/;z ...... -S.tt-r ~sl +- ~ s,... 

H! olb-1 ...... s~ -- IT s3 -4-' ~ sS<-

H{ do~ ~ - s. - k S3 

H: d,., ~ fso- (- s,. -13's3 +- {6's,_) 

11: d,_" ~ )s ( s., -13' s, ) 

(6.24) 

(fi.25) 

As a check of these SO(l2)-Clebsch-Gordon coefficients we may 
use the outer automorphism 111 which changes the sign of the 
eleventh component of the fundamental 12 dimensional vector re­
presentation. This transforms 

I, dur H dU2 

d or H d02 

dll H dl2 ( 6. 26) 

H' H -H! 

si H * si 
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Neither the combination ct 02 nor dll mixes with H1 if 

s; 

s, 

1 

13 

2 

/E> 

s; 

( 6. 27) 

s' 

However, a vanishing of ct 02 and dll mixings with H1 and Hr is 

impossible due to 1 11 (6.26). The combination (6.27) gives 

H~' o1,,_ ~ 

H. K tJ{, ~ 
2 [..A 

'£. s,__ 
3 

1'-
~ s._ 

( 6. 281 

The vanishing of H1ct 02 and H1dll for (6.27) has a group theo­

retical origin. The ''generator" for the combination {6.27) 

(compare appendix A) 
~ 

~ ~ I 5 
5.=-k-5~+(63 

I ~ 

73 5,_ 

:-'-{31' +(1 .,.(7 ,.f1. 
(2_ii' -·H·-t-l,TJ,.+' -~-s-~ -3..,.3'-Yffl' •?+-1-~~+'-

-r -r -r _,+.,-3..,.3 +'- --t-M..Y.+(<.~ .......,""" -!>~s-+6 

(6.291 

- ~+-J- .... 3-I'l+P -J:l-~.-t~-"'~ .. "- r:.l .. ~-~.,.s-.,.1 } 

"' ~ r:6 ( 1,:- r:;_ <-; Ye~L - f + Ye-L I,. ) 
belongs to the representation 110 of the SU(6) subgroup of 

S0(12). The S0(12) spinors 32 1 and 322 decompose differently 

under SU(6). (This is the origin of the different Clebsch-Gor­

don coefficients for d01 and d02 .): 

1 

.50111.)->51-U)/ '1 
32, _____, 

t 15"" 

,,,. 

3<~ {t; 
t-U; 
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5v(6)-"5vt;j 1 ( ..,~ ;'<) 

---· 4 (..Ye.,.:;c) 

o { d~ e; ::J) riO ( 4 1 tt~ d, e<) 

s(d,'e, -v)r-JO{~ 4~d, e') ( 6. 301 

__ _,. 1 ( -v; ::;. ) + ~ { :i; ~ ~ ) 

1 { ?15 v<) /-, ( d~ e, -.1) 

--~~ 40{4,«;ot; ec.)r(O ( ~ ~;~;c) 

The six dimensional scalar decomposes under SU(6) 

T'fZ ~ &-t-6+?>6 +;zo,...zo+ro+ro +81f.+Bif. +vo +z-to ( 6. 31 1 

and the combinations dUl' duz• ct 01 and dl 2 belong to 6, 84 and 

210 whereas d02 and dl 1 only belong to 6 and 84. Similarly, the 
* doublets H1 and H2 belong to the SU(6) representations 35 and 

15, respectively. Since H1 is in the adjoint of SU(6) the co­

variant derivative Dl-l(H 1 )d 02 in l~ belongs to 6+84 and there 

can be no mixing with s* in 210. Similarly D (H 1 )S in l 3 be-
P 

longs to 710 forbidding a mixing term with d02 . This is the 

same mechanism which forbids all doublet mixings for <S> = 0 

and is a consequence of six dimensional gauge invariance. The 

mixings H1d 02 and H1 dll are not forbidden by global SU(6) sym­

metry alone since 84x7TUx35 contains singlets. However, there 

may be a subgroup of SU(6) or some other subgroup of 50(12) ex­

cluding these mixings. We no-te S(7Tii) belongs to a 75 of SU(5). 

* Both H1 and H2 can, therefore only mix with doublets d; in the 

45 representation of SU(5)! 

As another consequence of SU(6) symmetry we can read from 

(6.30) the transformation properties for bil inears involving 

quarks and leptons and mirror fermions: 
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- = c =c (_ =c 
?!4 ..u.t t ol"olz '«..,«2.; e., e<- c. (, .,.. Blf- +ZID 

= {. '='c: c:'""c: 
.tt1, M

11 
~of., 1 «* u~ 1 e~ e-r c. ~ +- Btr +2./0 ( 6. 32) 

cl~ ;; I e..,.~ c. (, +- lllf-

,;_<;ic 
G < ) e.2., e.., c. b +- 8 't-

(The index indicates if a field is contained in 32 1 or 32 2.) 

This has consequences for the wave functions in (5.10) and 

(5.13}: There are no corrections from 5(--zTU) to the wave func­

tions for be and T in 32 2 (as well as sc, 11 , de and e). How­

ever, the fiel~s b and Tc in 322 are contaminated with higher 

modes in 32 1 and their relativ Clebsch-Gordon coefficients for 

the mixing through 5(ITIT) differ by a factor (-3). The rela­

tion mb ~ m indeed gets corrections of order (l/9)(M 210 /M ) 
T C 

(see (5.12)). 

Oo we expect that VEVs for 5 2, 5 3 and 5 4 in the linear 

combination corresponding to the lTU of 5U(6) are exact solu­

tions of the field equations (4.56) to {4.65)? The answer de­

pends on the question if S(7TIT) induces terms linear in the 

orthogonal combinations S(~) and S(O). The only source is the 

scalar potential. For a generic potential we expect invariants 

Ox210x7TOx210 and ~x210x7TITx210 to appear. As a consequence, 

a generic solution has a contamination of S(C) and S(~) to a 

leading S(ZTO): 

< s(6!~ <sci!~>> "" 
z 

H,_,c 
H~ 

< srz.loJ> (6.33) 

This gives 

the mixing 
a contribution to d02 and dll of the same order as 

* with H, (6.28). 

In summary, we have found a natural suppression factor 

M~ 10 /M 2 _for the ratios d02 ;du 1 , 2 , ctl 1/dul,Z' Unfortunately, 

this suppression seems not enough. Indeed, typical entries 

ct 02 or dll are of order 

<: o(~,_ > / <Cot,_~> "' 
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m.,~~ 

m~ 
<: dv4,>. > ( 6. 34) 

Since <du 2> must be responsible for the mixing between the second 

and third generation, there are entries to M0 and ML of order 

it23 x a few GeV::: 50 to 300 Gev.(t?-' 23 is the corresponding mixing 

) -3/1 
angle:::: 4 to 5 %. If m

5 
and m\J are generated by <d > these 

entries contribute directly to md and me (see section 2). Espe­

cially for the electron. this mass is far outside the acceptable 

range even if we account for some suppression due to integrals 

over wave functions. We can consider the alternative that <d~{ 2 > 

is responsible for the ~-mass. Taking renormalization effects 

into account, the muon mass indeed requires an entry of about 

300 MeV. However, there is also an entry 

<C o{~:o > = - j <: o(,_~ > (6.35) 

to M0 of about 100 MeV. (The factor -1/3 is due to the fact that 

dOZ,Ll belong to a 45 of SU{5).) Unfortunately, this entry is in 

the column for the down quark and cannot be used to generate ms 

without inducing an unacceptably large Cabibbo angle. The wave 

functions for the entries to ML and M0 are related by SU(5} sym­

metry (similar to (5.13}} and we remain with a real problem 

either for the down quark mass or the Cabibbo angle! 

~e could try another alternative where both mixings H1d02 
and H2d 02 are forbidden. This is the case for 

s ' ;:r s' 
( 6. 36) 

s, - 16 s2 

There is large mixing between H1 and dll and <dll> could be re­

sponsible for the muon mass. Unfortunately, the mixing H1d 02 
(6.24) vanishes as well. The mixing angle between the second and 

the third generation comes out much too small! (The matrix ele-
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ment (Mu)12 responsible for this mixing is proportional to 
<du 2>.) Once again, a realistic mixing pattern imposes severe 
constraints on model building! 

To conclude this section, we have found that the mixing of 
doublets can indeed give a fermion mass pattern with a hierar­
chy of generations! Our example n = 3, m = p = 1 accounts for a 
large top quark mass of order Mw, masses mb' m, and me of a few 
GeV, the successful relation mb(Mc) = m,(Mc), a mixing angle 
between the second and third generation of a few percent and 
a muon mass in the right order of magnitude. It also could ac­
count for m

5 
~ l/3 my, but unfortunately the Cabibbo angle comes 

out maximal for this case. (Small masses for the first generations 
could be induced by U(1)q breaking effects.) Although it is sur­
prising how wel 1 this example agrees with the observed fermion 
mass pattern for the heavy generations, its problems will be 
difficult to cure. A more realistic model is required. Our ana­
lysis shows that it will not be easy to find a model obeying all 

the restrictions for realistic fermion mass hierarchies and mix­
ings. To facilitate the search, we give in the next section a 
systematic procedure to calculate orders of magnitudes of scalar 
doublet mixings. We find it, nevertheless, encouraging that in 
this simple model a relatively modest scale ratio M21o,M/M:::: 1/3 

to 1/4 not only could explain mb /mt :::: 1/10 to 1/20 and mix-,c,c 
ing between the second and third generation around five percent, 

-' but also m/mt.:: 10 -! 
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7. Scales in Fermion Mass Matrices 

In this section we describe a general mechanism how small 
ratios of fermion masses can be induced. The main idea is that 
a small ratio of symmetry breaking scales at the unification 
scale reproduces itself in the fermion mass matrices. In higher 
dimensional models, the fine structure of scales for spontaneous 
compactification is responsible for the structure in the fermion 
mass matrices 18 ). Since small scale ratios at the unification 
scale are reproduced with various powers in the fermion masses, 
relatively modest ratios (M 1 /M- 1/4 say) may sometimes be suf­
ficient. A small ratio M1 n1 may correspond to an intrinsic sma1l 
parameter of the theory. In higher dimensional models, it may 
alternatively be a property of a given compactification solu­
tion. Examples for small numbers are the inverse of the number 
of internal dimensions, the ratio of "radius" to volume of in­
ternal space, the inverse of ''monopole numbers'' or two diffe­
rent scales in internal geometry (the ''almost round'' sphere). 

Suppose that at the unification scale M the symmetry group 
G acting on quarks and leptons is larger than SU(3)C x SU(2)l 
x U(1)y and that the various fermion bil inears in the fermion 
mass terms have different quantum numbers with respect to G 
(compare section 3). Suppose further a vacuum expectation value 
(-170 GeV) for a ''leading'' scalar doublet H1 (the main compo­
nent of the low energy Higgs doublet) in a given representation 
of G. In the limit of unbroken symmetry G the leading doublet 
wil 1 not couple to all fermion bilinears and, therefore, induce 
masses only for a subset of quarks and leptons. (This should be 
the top quark in a realistic three generation example.) Next 
assume that G is spontaneously broken at a scale M1 < M by an 
operator 0 1 (typically a VEV for a scalar field). This operator 
will mix doublets with other quantum numbers to H1 • The amount 
of mixing is suppressed by a factor (M 1 /M)p where P counts the 
power of the operator 0 1 needed to induce the doublet mixing. 
As a consequence, a chain of scales with various suppression 
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factors (Mt/M)p appears in the fermion mass matrices. The order 

of this chain will be determined by the fermion quantum numbers. 

This mechanism also appears in four dimensional unifica­

tion. Indeed, it has first been discussed to explain why neu­

trino masses are naturally sma11 24 • 25 ) and why md differs from 

me in models predicting m, = mb 32 ). It has been usect 33 ) in su­

persymmetric theories to produce a scale ~~W- MUMP. In the 

context of family unification it was applied 34 ) to generation 

splitting. However, in four dimensional theories it may only 

partially be responsible for the structure of fermion mass ma­

trices, since other small parameters (Yukawa couplings) are 

available. In contrast, higher dimensional theories have typi­

cally no small Yukawa couplings in the effective four dimen­

sional theory. In this case, all structure of the fermion mass 

matrices has to be described by this mechanism. As we have 

seen in section 6, this gives severe constraints on model 

building, but also may offer an understanding of the fermion 

mass puzzle! 

For higher dimensional models we will first assume for simp­

licity that the compactification scale Me (the inverse of the 

characteristic length of internal space which may be defined by 

the mass gap of harmonic expansion) equals the largest relevant 

scale Min the model. (See, however, below for a discussion of 

the case Me < M.) One makes a harmonic expansion on a state 

with maximal symmetry G unbroken at Me. This state should ap­

proximate the true ground state up to symmetry breaking effects 

with a scale M. below Me. Different quarks and leptons as well 

as scalar doublets are classified in representations of G ac­

cording to section 3. The appearance of small factors M1 /M in 

the fermion mass matrices is now mainly a group theoretical 

problem. We give a systematic procedu_re in several steps: 

1) Determine the symmetry breaking operator o, with its 

associated scale M1 • Determine the subgroup K of G left un-
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broken by 0 1 • Classify the Higgs doublets in representations 

of K. Since 0 1 cannot mix doublets in different K repre­

sentations, this determines the space Dt of doublets which can 

mix with the ''leading'' doublet H1 through 0 1 • Doublets outside 

Dt get no VEV at this stage. {In our example, K corresponds to 

u ( 1) 1j. ) 

2) The next step involves the analysis of abelian quantum 

numbers. (We treat it ~eparately from the non-abelian case 

(step 3) since it is easier and often sufficient to establish 

upper bounds on mass entries.) One determines all abelian quan­

tum numbers Q(i) (in our example r
3

L, I
3

R, YB-L' q, I) for the 

operator o. and for all doublets in 0 1 , including H 1 • This estab­

lishes an upper bound on the VEV of a doublet d in 0 1 

<d> (
M,)Po 

,;:: 'lf <HI> ( 7 . 1 ) 

The number P::; is determined by 

q(i)(d) ±Q(i)(H.) ±Po q(i)(O.) 0 ( 7. 1) 

• 
(The signs account for mixing with H1 or H1 through Po powers of 

0 1 or TI 1 • Equation (7.2) must hold with the same choice of signs 

for all abelian charges Q(i).) The bound (7. 1) arises since the 

mixi~involves at least a factor M~ 0 • It is then suppressed by 
-P 

a factor M 0 since M is the only other mass scale and mixing 

angles are dimensionless. 

3) More severe bounds can be obtained from a non-abelian 

analysis. One considers various non-abelian subgroups of G and 

determines the representations R(O.), R(H.,), R(d) to which 0 1 

and the various doublets belong. We generalize (7.2) to the non­

abelian case: An upper bound on a doublet <d> is suppressed by 

only one power of M1 /M if the direct product of representations 

for H1 and d contains the representation of 0 1 : 

R(d) x R(H.) R(O•) or R(O.) ( 7. 3) 
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(Inclusion of the complex conjugate R(H 1 ) should be understood.) 
The suppression factor is (M 1 /M) 2 if R(d) x R(H 1 ) contains a re­
presentation which also appears in R(0 1 ) x R(0 1 ), R(0 1 ) x R(0 1 ) 

or R(01) x R(OI) and so on for higher powers of M1 /M. It is ob­
vious that the bounds from non-abel ian symmetries may be stronger 
than those from their abelian subgroups. For an example where 
R(d) x R(Ht) does not contain R(0 1 ), but only a representation 
contained in R(0 1 ) x R(0 1 ) x R(0 1 ), the non-abelian suppression 
factor is (M 1 /M) 3 whereas abelian analysis only gives a bound 
with one power of M1 /M. Jn principle, all subgroups of G (includ­
ing nrn-maximal subgroups) should be analyzed. In practice, most 
restrictions come from sub~roups where 0 1 , H1 or d belong only 
to one irreducible representation, especially if they are sing­
lets. (Instead of a complete subgroup analysis one may establish 
the power of the suppression factor by a direct calculation of 
non vanishing Clebsch-Gordon coefficients for mixings through the 
expected power of 0 1 .) 

4) If doublet mixing with a given power of 0 1 is consistent 
with all subgroups G, this determines the group theoretical value p 
(M 1/M) G for the suppression factor. In the generic case without 
unnatural cancellations, this will not only be an upper bound but 
give the actual order of magnitude of the mlxing, at least if all 
required invariants appear in the action (without scales heavier 
than M), If there is only a restricted set of invariants - for 
example as a consequence of a higher dimensional gauge symmetry -
it is still possible that the relevant Clebsch-Gordon coefficient 
for a doublet mixing vanishes, even if the pure group theoretical 
bound is fulfilled. In this case, an explicit calculation of 
Clebsch-Gordon coefficients for the existing invariants may be 
necessary. It may happen that certain mixings are not induced 
at all or only occur with P > PG. 

5) The doublet mixing described above can be represented 
graphically (see fig. 2). In addition, the symmetry breaking 
operator 0 1 may induce other contributions to the fermion mass 
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matrix. In fig. 3 we have depicted the mixing with superheavy 
fermions which was discussed in the preceding section. Again, 
such contributions are suppressed by an appropriate power of 
M1/M which can be calculated by similar group theoretical argu­
ments as for the doublet mixing. An upper bound for~ contri­
butions to fermion mass matrix entries with given G quantum num­
bers is easily established: Let 1:1 and~ be two left handed 
chiral fermions for which we want to calculate the mass matrix 
element M12 • The direct product of representations for y:, and 
1S, with respect to various subgroups of G will in general contain 
several irreducible representations: 

R('lf;;) x R(~) L_ Ri ( 7. 4) 

The lowest poser ~ of 0 1 for which 

(R(H,) or R(H,J)x(R(O,) or R(D,))x(R(O,) ( 7. 5) 

or R(O,)) x ... (R(O,) or R(O,J) 

p times ) 

contains a representation "Ri (this must hold for all subgroups of 
G) determines the group theoretical suppression factor 

M, < (M,)l' 
gy <H,> lif ( 7. 6) 

for al 1 possible contributions from O,. (Here 9y is the Yukawa 
coupling of H1 • In higher dimensional theories it is typically 
of the order of the gauge coupling.) 

At this point we should comment on the case of a higher di­
mensional theory with compactification scale Me somewhat smaller 
than the largest characteristic scale M of the theory. In this 
case we may consider spo~taneous compactification itself as a 
symmetry breaking operator 0 1 with Me ~ M1. The maximal unbroken 
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symmetry G at the scale M is now a higher dimensional symmetry 

group. We can essentially proceed as before, except one important 

modification: The superheavy fermions and some of the superheavy 

scalar doublets have now a characteristic scale Me rather than 

M and one has to account for this in the suppression factors. 

We are now in a position to combine the results of this 

section with the systematic fermion mass matrix scanning of 

section 3. As a result a realistic model will be subject to more 

severe necessary criteria. After· a successful scanning in sec­
tion 3 we end with candidate mass matrices with a required order 

of scales for the different entries. We now check if this is 

consistent with our operator analysis for spontaneous symmetry 
breaking. For the case of three generations the doublet H1 (with 

VEV - A) is uniquely determined. One now has to find a symmetry 

breaking operator 0 1 which induces the necessary entry for mb of 
order B. For a given operator 0 1 one can now check if the sup­

pression factors are strong enough for the various matrix entries 

to be consistent with the bounds of the scanning process (3.1) to 
(3.5). If this fails for all possible 0 1 , the model should he 

discarded. If successful, one records the other necessary en­

tries (like m , m , m etc.) generated by 0 1 • If not all necessa-
T C " 

ry entries are generated by 0 1 , one has to look for a second ope-

rator 0 2 with scale M2 ~ M1 • The analysis can now be repeated 
with the combined set of operators 0 1 and 0 2 • Some care is needed 

in the discussion of suppression factors since ratios M2 /M 1 may 

appear instead of M2 /M for graphs mediated by particles with mass 

M1 , In this way one has to proceed until all necessary entries 
are generated without ever conflicting with the upper bounds (3. 1) 

to (3.5). The analysis for four generations is similar. If there 

are mirror fermions in the model, there will be additional re­

strictions: The same SU(3)c x SU(2)L x U(l)y singlet operator Oi 
can be responsible for the superheavy masses discarding mirrors 

plus associated quarks and leptons from the low energy spectrum 

82 

as well as for the mixing of various doublets to H1 etc. For gi­
ven quantum numbers of 01 the contribution to superheavy masses 
is easily established and the removal of the "mirror partners" 

from the low energy spectrum no longer arbitrary. 

One may do again a systematic scanning for operator trees 
Oi consistent with the needed hierarchy of scales. Not too many 

models will pass this second test, especially if one allows only 

for a few (two or three) symmetry breaking operators. For suc­
cessful models, however, the problem of structure of the three 

fermion mass matrices (mass hierarchies and small mixing angles) 

will be reduced to the problem of explaining its symmetry break­

ing scales Mi. Also remains the problem of quantitative predic­
tions of fermion masses. Some of them will depend on dynamical 

details of the model. On the other hand, the group theoretical 
content of symmetry breaking of G will be determined to a large 

extent for any model successfully passing the scanning. Several 

fermion masses and mixings may then be predicted from the cor­

responding Clebsch Gordon coefficients and serve as a further 
test for such models. 
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8. Classical Stability and the Gauge Hierarchy Problem 

let us come back to our six dimensional S0(12) model and 

discuss some problems related to the observed smallness of weak 

symmetry breaking. Neglecting the scalar vacuum expectation 

values and expanding on a spherically symmetric monopole solu­

tion, the lowest modes in the harmonic expansion for Hi and Hi 
have negative mass squared 17 ). These tachyons indicate classical 

instability of the corresponding monopole solution. Classical 

instability could be a sign of spontaneous symmetry breaking if 

a less symmetric stable ground state is found. In six dimensio­

nal gauge theories this requires 35 ) either geometries which are 

not a direct product of four dimensional space and internal 

space or additional fields (for example scalars). Both features 

are realized for our solutions in section 4 and we can investi­

gate if they should indeed be interpreted as spontaneous symme­

try breaking (for n = 3, m = p = 1) 

SU(5) x U(l) X U(l)q X SU(2)G 

( 8. I) 

~ SU(3)C X SU(2)l X U(l)y x U(l)q 

For small symmetry breaking scales M21o, MB-L we expect un­

stable solution-s. Indeed, for a wide class of deformations from 

spherical symmetry the diagonal contributions.- M~ in the mass 

matrix for Hi and H! (6.17) will be negative. {All mixings are 

small for Mz1n, MB-L << Me.) On the other hand, the diagonal 

contributions_ ML 0 , M~-L in (6.17) are positive (compare appen­

dix C). For M2
, MB-L >> M~, MLo all mixings are small and all 

eigenvalues of (6.17) are positive. There is no classical insta­

bility in the doublet sector anymore! We expect classical stabi­

lity for the doublet sector for a wide range of solutions with 

MB-L and/or M210 sufficiently large. A similar behaviour is ex­

pected for other modes which would be tachyonic 17 l on spherically 
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symmetric monopole solutions with MB-L = M210 ~ 0. The six di­

mensional Higgs mechanism can stabilize the ''compactifying'' so­

lutions! Stability depends on the scales MB-L and M21o which in 

turn depend on parameters in the six dimensional scalar poten­

tial and on "initial con'ditions" for the solutions in section 4. 

For large enoughM 8 _L and M2 1 a we can indeed interprete these 

solutions as spontaneous symmetry breaking of the higher symme­

tric monopole solutions. 

For some intermediate range of MB-L and M210 there must be a tran­

sition from stability to instability. It is this transition region 

we are most interested in since U(1)q and SU(2)L x U(1)y must 

be spontaneously broken for a realistic theory. There is a class 

of solutions in this transition region where U(l)q is broken at 

a scale M~ << M21o. MB-L' Me. This happens if we choose poten-

tial parameters and initial conditions so that the mass term for 

the lowest mode from six dimensional scalars with q f 0 is nega-

tive and small compared toM~. In this case we can 

dimensional effective theory for the corresponding 

use the four 

scalar mode 

in a good approximation and do not need to discuss the compli­

cated ~dependence of the corresponding higher dimensional so­

lution explicitely. We now want to study the symmetry breaking 

of the weak interaction gauge group SU(2)L x U(l)y· The mass 

matrix for the doublets in Hi, H! and d (after integrating out 

the other doublet modes) will have the form (6.20), up to smal 1 

corrections proportional to some power of Mq. Consider for a 

moment MB-L and M21o as free parameters. Decreasing the overall 

scale for the scalar vacuum expectation values will induce a 

change from positive to negative M! or M~. This corresponds to 

a phase transition where SU(Z)L x U(l)y is spontaneously broken. 

If the quartic coupling for the doublet is not too small (so that 

Coleman-Weinberg symmetry breaking 36 ) is a smal 1 effect) this tran­

sition is essentially second order. There is, therefore, a critical 

scale of singlet VEV's where the lowest doublet mass vanishes. For 

values sufficiently near this critical point the lowest doublet mass 

can be arbitrarily small and a gauge hierarchy is realized! 
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Of course, MB-l and M21o are not free parameters. The ex­

act location of the phase transition depends on the different 

parameters of the model (including the scalar potential) and 

the ''initial values'' for the different solutions. For a wide 

range of model parameters there will be a second order phase 

transition on a hypersurface in the space of ''initial values''. 

(This hypersurface has one dimension less than the total dimen­

sion of that space.) Solutions near this hypersurface realize 

a gauge hierarchy independent on any fine tuning of model para­

meters! This realizes the idea of a continuous spectrum of 

classical solutions where the weak symmetry breaking scale is 

a free integration constant 26 ). Solutions realizing a gauge 

hierarchy cov~r only a very small range within the continuous 

spectrum of solutions. It is a difficult open dynamical question 

to understand why such a particular solution should be preferred 

and what determines the scale of weak symmetry breaking. We only 

note here that a small doublet mass at the 

small in the whole energy range 
compactification scale 

down to 100 GeV even Me remains 
if quantum fluctuations are included. This ''naturalness'' of a 

small quantity is due to the second order character of the phase 

transition 37 ). For generic model parameters the gauge hierarchy 

solutions correspond to non-compact internal space 26 ). Only if 

one insists on compactness of internal space a fine tuning of 

model parameters would be needed for a gauge hierarchy. In this 

respect, the status of the gauge hierarchy problem is now very 

similar to the problem of a vanishing four dimensional cosmolo­

gical constant Ao. The cosmological constant is another free 

integration constant6 •26 ) in a continuous spectrum of classical 

solutions with non-compact internal space. 

Critical solutions with vanishing doublet mass are generi­

cally expected due to the second order character of the phase 

transition. A given model may predict which one of the candi­

date Higgs doublets becomes massless. One has to check if this 

doublet coincides with the leading doublet needed for real is tic 
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fermion mass matrices. This places further restrictions on mo­

dels which fulfill the necessary criteria of sections 3 and 7. 

In our expample (n = 3, m = p = 1) all doublets except the low­

est modes in Hi and H! have positive mass squared in the limit 

of spherical symmetry. The massless doublet will be either Ht 

or H! depending on MT smaller or gereater M~. In our example 

we need a range of solutions for which MT < M~ so that Ht is 

indeed the leading doublet. 

We also can determine the quartic scalar coupling A for 

the doublet Ht. Since H1 is a component of the six dimensional 

gauge field its interactions are determined by six dimensional 

gauge symmetry. We can read from ref. 15 that A is positive. 

For any given solution the quartic coupling is easily calculat­

ed and the physical Higgs mass, therefore, predicted. Details 

depend only on the specific form of the wave function Hi(y). 

One finds A of the order g 2 and the Higgs mass is, therefore, 

expected to be of the order of the W-boson mass and the top 

quark mass. 

One more detail is important for the general setting of the 

gauge hierarchy problem: From the doublet mass matrix (6.20) we 

learn that the phase transition is not at Mf = 0. (We assume MT 

< M~ for definiteness.) Due to doublet mixing, a zero mass eigen­

value rather occurs for 

MT ;;: a. 2 M~ M~1o/M 2 ( 8. 2) 

This situation is generic for all cases of mixing. Even though 

MLo M~/M 2 may be small compared toM~ or M~ 1 it is still enormous 

compared to the weak scale M~. There is no gauge hierarchy for 

Mi = 0! 

This shows a serious dilemma for ideas which want to obtain 

a massless scalar in a certain representation of G at the compac-
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tification scale, for example due to some Betti numberFl), and 

then keep it massless due to supersymmetry. (This idea is popu­

lar in some discussions on string ''phenomenology''.) Since all 

mixings with other doublets would destroy the gauge hierarchy 

they must be forbidden in this case. Preventing mixing due to 

symmetry breaking is by itself not easy, but in addition it also 

creates serious problems for an understanding of realistic ferm­

ion mass matrices. Without doublet mixing, the structure of 

fermion mass matrices must be explained by Yukawa couplings 

which are small without any symmetry reason and all quarks and 

leptons must get their masses from couplings to one massless 

doublet in a given G-representation. 

One first might have thought that doublet mixing could be 

replaced by mixing through heavy fermions as in fig. 3. Fermion 

mixing alone, however, does not lead to realistic mass patterns: 

Assume that in the limit of unbroken G symmetry the massless 

doublet couples only to one up type quark 

£M H l t' tc' ( 8. 3) 

Symmetry breaking of G can induce mixing 

t' a 1 i u i 
( 8. 4) 

tc' b c 
1 i u i 

Here the sum runs over the light quarks u1 , u2 , u3 as well as 

infinitely superheavy many superheavy quarks. The mass matrix 

for the 1 ight quarks uj, u~ has the form 

M(U) 
jk H1 alj blk ( 8. 5) 

This matrix has still two zero eigenvalues and nonzero masses 

for charm and up quark cannot be explained by fermion mixing. 
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Also the small ratios mb/mt and m,Jmt cannot resu1 t from fermion 

mixing. Doublet mixing is needed if small fermion masses and 

mixings are to be understood from G-symmetry breaking effects. 

In conclusion on~ has to choose between our explanation of 

the structure in fermion mass matrices by symmetries and the 

approach with a massless doublet in a given G representation. 

In our opinion, not only the radiative stability of a small 

doublet mass between the scales M and Mw does not need super­

symmetry37l, but also the mechani~m generating a vanishing or 

small doublet mass at the compactification scale is probably 

not related to specific properties of supersymmetric potentials. 

The most important property for both questions seems to be the 

essential second order character of the weak phase transition. 
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9. Conclusions 

In this paper an attempt was made to give a systematic 
discussion of the structure in fermion mass matrices. The hier­
achies of fermion masses and the small mixing angles are ex­
plained by a fine structure of scales near the unification scale. 
With the assumption that all small ratios of entries in fermion 
mass matrices are due to ratios of symmetry breaking scales, we 
have formulated several necessary criteria for possible quantum 
numbers of quarks and leptons with respect to a symmetry G at 
the unification scale (which is larger than SD(3)c x SU{2)l 

x U{1)y)· We propose a systematic scanning procedure (which can 
be done on a iomputer) to select ''viable'' quantum numbers. 

We have demonstrated these ideas for a specific class of 
solutions of the six dimensional 50(12) gauge theory. They can 
reproJuce the hierarchy of fermion masses mt >> mb, mT, me >> ms' 
m~ >> md, mu, me' but tend to predict unacceptably large mixing 
angles for the first generation. The six dimensional 50{12) model 
is the simplest model to discuss the problem of fermion masses 
in a realistic setting. So far we have treated it mainly as an 
illustration. Since this model has proven to be relatively suc­
cessful one may wonder if there could be some real physics in it. 

Our discussion is only based on symmetries and their break­
ing scales and we observe that six dimensional general coordinate 
and Lorentz transformations (genG) plus S0(12) gauge transforma­
tions are a subgroup of the symmetry group for various interest­
ing unification models, as gen1o x Ea x Ea for superstrings or 
gen 18 for the simplest pure gravitational mode1 15 l. The 50(12) 

spinor representations for fermions discussed in this paper 
appear in the decomposition of spinors for such unified models. 
One may ask to what extent our discussion can be considered as 
a subgroup analysis for unified models? 
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Subgroup analysis in higher dimensional unification is much more 

involved than in usual four dimensional "grand unification". 

This is due to the appearance of infinitely many representations 
of the subgroups if they relate to a reduced number of dimen­
sions. Suppose a theory with a symmetry which has gen6 x 50(12) 6 
as a subgroup, as for example the ten dimensional Ea x E8 super­
string or its field theory limit. We always can expand such a 
theory on a state with 'global six dimensional Poincare symmetry 

and 50(12) symmetry (plus possible additional symmetries).(For 

the E8 x E 8 example one may think of some space.A6 x K with an 

appropriate gauge field configuration.) This expansion leads to 

an action with local gen 6 x 50(12) 6 symmetry and the correspond­
ing massless graviton and gauge fields. In addition, there will 
be an infinite tower of other fields which are in general mas­
sive unless protected by some symmetry or topological reason. 
We note that our expansion state is not necessarily a solution 
of the higher dimensional field equations. If it is not, the 
effective action obtained from the expansion will contain terms 
linear in six dimensional scalars which are singlets of 50(12). 

We claim that any arbitrary classical configuration of the 
higher dimensional theory can be represented by appropriate 
values for the infinitely many fields of the six dimensional 
theory. In particular, the (classical) ground state can be ex­
pressed by vacuum expectation vaJues of the six dimensional bo­
sonic fields. This is the generalization of subgroup analysis 
to the higher dimensional case. These statements may at first 
sight look somewhat surprising. How can a ground state like 

vlf.'' x 56 be expressed in terms of expansion on the topologically 
inequivalent statevf(6 x S4 ? Locally, it is obvious that we can 
express U.e metric oLit: 4 x 56 by expectation values of bosonic 
fields in the six dimensional theory obtained from harmonic 

expansion onA6 x 5 4
: 

( : .. 9i~s'J (!' 0 ) <vectors> 
<vectors>,<scalars> 

19 .t l 
0 

<metric>, 
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(In this schematic notation the six dimensional metric has the 

form of spontaneous compactification g( 6 ) 
( 
•· 0 ) ' ') 
0 <metric> 

Such a local region with topology R10 can be extended everywhere 

except the south poles of S6 and 54
, respectively. They appear 

as singularities in a cartesian coordinate system with the north 

poles as origin. The structure of the singularity being different 

forvi{q x 5 6 and~ 6 x S 4
, we conclude that the state,./( 4 x S 6 appears 

as a singular configuration of bosonic fields in the six dimensio­

nal theory obtained fromtlr x S"! (This is another reason why we 

considered in section 4 solutions of the six dimensional field 

equations corresponding to non-compact geometry.) In general, 

such a singular configuration may involve infinitely many harmo­

nics onv( 6 X S~. Higher dimensional ground states 

with topology not admitting genG x S0(12)G will appear as sin­

gular configurations of some six dimensional 50(12) theory (if 

the unification group contains gen 6 x 50(12)&). We, therefore, 

can always formulate a ten dimensional E8xEs theory as a six 

dimenSional 50(12) theory with infinitely many modes. There is 

even an infinite number of such formulations corresponding to 

expansions ~n different states with PG x 50(12) symmetry. The 

question whether such a six dimensional formulation is useful 

depends on the criterium if the ground state can be well appro­

ximated by a finite number of six dimensional fields. 

What are possible modifications of our six dimensional 

model if it is embedded into a higher dimensional unified the­

ory? First of all we have all the massive modes, in particular 

infinitely many six dimensional scalars instead of only the 

fifth rank antisymmetric tensor representation. The scalar po­

tential will be more complicated. More general, the six dimen­

sional field equations will be modified, but we expect that 

qualitative features of the solutions and scale arguments re­

main unaffected. Only very few modes can couple to bilinears 

of chiral six dimensional fermions and, therefore,influence 

the structure of fermion mass matrices. In our example there 
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will be two more scalars in the vector and third rank antisym­

metric tensor representation of SO(l2) (compare appendices A, 

B). The structure of their contributions to fermion masses is 

essentially the same as for the 792 scalar. 

More important, their may be traces of the higher symmetry 

of the unified theory (for example E8 x E8 ) in form of relations 

between six dimensional couplings. This could explain cancella­

tions between contributions to fermion masses which would look 

unnatural in a purely six dimensional context. In our example, 

a cancellation between contributions from scalars in 12, 210 

and 792 (which may all belong to the same multiplet of the uni­

fied theory) could make the unwanted mixing between d02 and H2 

vanish and, therefore, cure the problem of too large mixings of 

the first generation! 

The content of four dimensional chiral fermions obtained 

from the chiral six dimensional spinors 321 and 32 2 could be 

more complicated than the one given by the monopole numbers m, 

n and p. This is possible if the non-compact solutions deviate 

sufficiently from the compact monopole solutions. Our analysis 

could easily cover this case as well. We note, however, that 

the possible content of four dimensional chiral fermions is 

strongly restricted due to anomaly cancellation (including 

U(l)q' U(1)G and U(1) 8_L). There also could be other massless 

six dimensional chiral fermions. This possibility is restricted 

by the requirements that all six dimensional anomalies must 

cancel and the additional chiral spinors should contain fermions 

with quantum numbers of quarks and leptons. 

There is, however, an even more drastic possible modifica­

tion of the six dimensional theory: This is the case if the four 

dimensional chiral fermions are not obtained from the six dimen­

sional chiral fermions, but rather involve the infinitely many 
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massive fermions of the six dimensional theory. This can happen 

if the four dimensional symmetry group cannot be embedded into 

the unification group G via the chain 

G :J 50(12) 0 x gen, :J SU(3)C X SU(2)l X U(l)y x gen, (9,2) 

or if the ground state does not belong to an appropriate SO( 12) 6 

x gen6-deformation class 17 ). For an appropriate deformation class 

it ~ust be possible to ''blow up'' two dimensions so that in the 

corresponding limit Me+ 0 the massless fermions form a set of 

chiral six dimensional spinors containing the two spinor repre­

sentations of S0(12). Note that the concept of blowing up two 

(arbitrary) dtmensions defines the notion of a 50(12) 6 x gen 6 -

deformation class even for a ground state which has only four 

flat dimensions. One S0(12) 6 x gen 6 -deformation class contains 

many SU(3)c x SU(2)L x U(1)y x gen~-deformation classes. If the 

four dimensional chiral spinors are not contained in six dimen­

sional chiral spinors a subgroup analysis with respect to 

50{12} 6 x gen 6 is meaningless for the chiral fermions and the 

six dimensional S0(12) model is irrelevant for the structure of 

fermion mass matrices. (This is for example the situation for 

the subgroup S0(12)~ x gen 4 • Form, n or p different from zero 

the four dimensional deformation class of the ground state does 

not admit S0(12) symmetry.) The relative success of our simple 

model may indicate that the four dimensional gauge symmetries 

are indeed contained in S0(12)6 x gen6 and the deformation class 

of the ground state admits a six dimensional formulation for the 

chiral spinors. 

We conclude that for a large class of compactifications a 

suitable version of a six dimensional S0(12) theory reflects 

many relevant features of a ten dimensional E8 x E8 theory. For 

our discussion of fermion masses we only have used the symme­

tries S0(12) and U(1)G {isometry of'1'-rotations on internal 

space). It is possible that U(l)G could be replaced by a dis­

crete subgroup. It is also possible and perhaps necessary that 
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other continuous or discrete symmetries play a role for the 

understanding of fermion mass matrices. We find it encouraging 

for higher dimensional theories {in particular for those con­

taining S0(12)6 x gen6 as a subgroup as the E8 x Ee superstring) 

that for a first time we have a model with predictive power about 

the structure of fermion mass matrices. Even a relatively simple 

solution can explain the hierarchies of fermion masses. Unfortu­

nately not all mixings ·come out satisfactory so far. It is our 

hope that a systematic analysis of possible quantum numbers of 

quarks and leptons with respect to symmetries at the unification 

scale will lead to a complete understanding of all small quanti­

ties in the fermion mass matrices in terms of ratios of symmetry 

breaking scales. 
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APPENDIX A 

Totally Antisymmetric Tensor Representations of S0(12) 

a) Scalars in Odd Rank Antisy~metric Tensor Representations 

In this appendix we perform the analysis of the S0(12) 

algebra for the totally antisymmetric tensors appearing in this 

paper. We give a systematic treatment which is easily genera­

lized to orthogonal groups in arbitrary dimensions. Totally 

antisymmetric tensors will be represented in terms of the 
Clifford algebra. We start by defining the usual Dirac matrices 

in 12 dimensions by 

{ ~ 1 [lB! = .("lAB = - Z hA(3 / 
A13 ~ 4 ... 4'2. 

/ 
(A I) 

and their totally antisymmetric products of rank ~ 

,.,~~) 

A, .... A, 
= _r__ r r . 

~,/. [ A1 A, r;;~ J 
(A2) 

The bracketL Jon indices means antisymmetrisation and we will 

often omit the label (4). We are interested in scalars in the 

representations 12, 220 and 792 of S0(12) corresponding to to­
tally antisymmetric tensors of rank one, three and five. We 

represent them by 64x64 matrices 

¢(t) = 

with 

·~ { 

~! (3;/ 

'fA. ... A~ I~) 

('A< ... A~ 

roB<··- R~ - I )p A-,. ··A~ 
, = c- I <f 

(A3) 

(A4) 

and (-l)p the degree of permutation of the indices (134 •.. 8~) 
compared to ( 4, .•. ~ ) . 

96 

This representation is adapted to the fact that the direct 

product of two Dirac spinors contains all totally antisymmetric 

tensors. A SO(l2)-Dirac spinor has 64 components and transforms 

1f/ __, u )'-'. 
u = Peef' ( ~ £ -48 jAB ) 

(A5) 

with 7;48 hermitean generators of S0(12) in the spinor represen­
tations: 

~B = ~ [;;; I f"1 J = ~ {"'AB ( A6) 

Correspondingly, totally antisymmetric tensors transform 

Using 

rj/eJ 
-'> 

u r;. u-l 

u ¢/J)u-1 

B r._ 0 A 
t3 

08 = [ ""'""b ( j_ [.CP T!V) ll B 
A ·--,- .<- c~ A 

(AI) 

(A8) 

. T"' w1th <:..J:> the SO(l2) generators in the vector representation 
given as 12x12 matrices 

( T ~~! ),. = - i bc.s S,>T + ,· :;GT ~~s (A9) 

one obtains 

A, A. .-A~ r:p --'> 
A, 

0 A.: 
04,. 

A' .... 
• 

A< 
O Ai 

I I I 
A, 42 ···A~ 

'f 
(AID) 

We have chosen our normalization (A3) so that the standard 
kinetic term for scalars in antisymmetric tensor representations 
reads 
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r: 6' AU, I ;: t A, 
sli<;.. = Jd X~· ~ Tr ( D <Pl r'+' 

¢ = z: ¢' ($_) 

41 

(All I 

This is easily checked by using the following relations for 

traces of r matrices in even dimensions: 

T.r r:..rJ.,. re = 0 

y::,.. r ~~.J 
A"' ... A ~I 

rr!i"J 
rJ.., ..• B~A. 

=a 

fore odd or at least 
one index appearing an 
odd number of times. 

for ~< ~ -~,., 

r; r'"' r1~ 1 

Ao~···A-4. a., .. ·/3~ 

~~~ r<! (A'. ~A~ ) 
= (-I)~ 6¥- 'f' 13, ... B'~ 

A 
{

+1 for "8-( ··- Bt even permutation of A,..---~ 
._, ... A~ P( ): -1 for 8.-t · ~ Bt odd permutation of A., ·--At 

13.- -·S. 0 otherwise 

( Al2 I 

(A13) 

(Al4) 

(Al5) 

For real cpA.-~ .. .4-4. we note that ¢/ 1
) and ¢tr-) are hermitean 

whereas {J/3) is antihermitean 

( rt'i.) ) +- - ~~~r<) ~~) 
A, ... A~ - (-/) "' r A, .... l'l~ 

cp'') f ~ 
r/J I') ( ~- 161 

(J(J)t G - ¢(3) 

¢ IS')t = rp I>) 

We also define the 50(12) charge conjugation matrix B 1~ by 

/' ~ ~ 
_, 

B~ B1,_ =- I - B,, r'A B 1~ ) A 

f7.' = '(3 ~~ {'A 
-I 

Al7) 

A 
73,,_ 
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The matrices 

(ft-1.) = B,,_ ¢t'-! (AlB) 

obey -( ¢1<1 ) T ~ - tf f<l 

~ 

(ljJ"!)T = ¢(3) (Al9) 
~ 

- ¢"! (¢1s)y ~ 

( j I~) y = B />, ¢[£)8,7 = ¢/'i.i c;,,_ 
(A20) 

( ¢1-8.) y = 73,~ ¢1') 13,;' 

b) 50(12) Gauge Bosons 

The gauge bosons of SO(l2) belong to the totally antisym­

metric tensor representation of rank two. It will be useful in 

our context to represent them in the Dirac representation as 

64x64 matrices 

A . ""AB 'AB 

A· = L.A. r ~ .LA. T;._B 
/"' $<- /"' 4G " /" (A21) 
"AB 

=- A'?" A· 
/' /' 

Their transformation properties are modified by an inhomoge­

nous term 

A· __,., u A· u-' + !_ u :1- u-' 
/' /' 3 / 

The field strength is defined as usual 
A 

G 
... ..., A. ...... 

"=;i·A· -;:),A.-,·<ii[kA·]= 
/" /" 'V y /' (/ /J .,; 

AB 
J_ G-­
"' /'"" 

I AB 

(A22) 

(A23) 
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The normalization (A21} implies that the gauge invariant kinetic 

term in the standard normalization reads 

s = - (/',( Q 1;,_ j_ /.-y G _..'.);;" = - L (c(';; ~If,(/'::; G~~ 
6 j'-' oG 6 yc- /~...; ~ J' ~ Ae. ~-e...; 

(A14) 

c) Weight Basis for Dirac Matrices 

We want to identify physical fields of interest like 

SU(3)C x SU(Z)l x U(l)y singlet scalar fields responsible for 

spontaneous symmetry breaking of the unification group or Higgs 

doublets inducing fermion masses. For this program a change of 

basis for the matrices (1fi) is appropriate. It will also be 

useful to study various subgroups of S0(12) and the projection 

operators for their representations. 

We define the generators of the Cartan subalgebra of S0(12) 

H = 
"" 

T zw-t1 Lw 
l- r r 
..V z.w-'1 .<.W 

I 
w~>f .. ,b (A15) 

They are related to the usual quantum numbers 18) 

H~ ( r,,_ ,_ r,,_ ) 

lj,_, = I,_- I," 

H, T ~~~ +- H,- }_ y ll-1.-
~ 

(A16) 

/-16 = '1 

Q..., = - H, + f ( 1!3 + !1,. -r H, ) 

The weight basis for the Dirac matrices consists of eigenstates 

of Hw: 
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r =_L(rr +i£1') 
t:w r:z .tw-t ~w c- -,~ f"4 (A17) 

[ 1-1,., I """' J £ sw'w rcw (A18) 

( ~w) t = - r:£,w' 
(A19) 

In a metric formulation, we can define the operations of 

raising and lowering indices (cw): 1Ariting 

f: ~ eA f1 
Cw CloV A 

A 1 ( b A . bA ) 
e £W = (1; .ZIII-1 -t'" ( £_ 2-IV 

(A30) 

~ 
Cw C>/ I ( [,'"'_, . bVV) 

~ e"' rcw e-'1 ; r;; A -I£ A 

we note that e~~ and e~v play the role of a vielbein and its 

inverse 

A c'w' 
eew e, ~ s£' sw' 

c ~ 

cw A 1 
e, e,.., ~ s"' A 

The metric which lowers and raises (CW) indices is 

A4 A~ b_ b 
"!etW1'C2W:t_. ::: e[Aw.t e CLIV.t, 7A--1A~ = - W4W.z, '£o-C-?-

~~~A~ ~- ~~~~~- # 
I = eAA' eA2 I -- I c~--1 C.z w~ 

-'IJ C<1W-t C.~W.l. '7 
£~w'.z. C3 !..13 c, "" 

~., sw. 

( A31) 

(A32) 

Lowering and raising indices is related to hermitean conjuga­

tion 

cw c.viW A 
eA = "1 e;;,;v 1A~,. 

l A # 
"' e cw ) 

~ (.;> 
"';A/I (e~w )* 

e<w ~ ~£-w£"",Z eA ...... ~ 

(A33) 

r<"" = cwi:(V 
J ~"'~~ cw 

-r 
-ov 

= (r. ) r 
C<V (A34) 
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In the weight basis the anticommutator is 

{ (1(..f'r11 (1'i:Z,:.,/2., J = z --t;,(-IWA~W:V :=:- z :;MW:~_ f>'f:-r_, -t::z._ (A35) 

implying 

/ { r+r 1 = z_ 
£:IV' 1 £.W j 

(A36) (('_ /= 0 cw 

The adjoint representation is again given by the commuta­
tor of two r matrices 

r = 1- [ r r J ~ r r + !> ~ (A37) (IW'-1i-~W,.t, fi Uw-t1 Czkh. C-IW/f u.w~ M1~ ~-£.;!. 

The generators of the Cartan subalgebra read 

H.., ~ Lf1 
:Q -W' rw 

~ t [ r::..,) r:;_,_, l (A38) 

The ladder operators are obtained for W4 #- W.v 

E =.i_f' 
£:4W4£l.W.V .Z €4W4£..2..W,.t, / 

w_.., :F Wt.- (A39) 

They fulfill simple commutation relations 

[ G"&tk/4 £:~111'~) li3 W3 J::;:: - i SIV3~ ~C3 -~ ~IV'4-rt' ~W:JW/11-tt t;:_..,,z.( A40) 
' ' 

[Hw3 1 E£.1w4c2.w~ J-= ( £."' &.W3w" -re.t-S WJW.t,) Ei,."w..,.o.w~ (A41) 

[E £ ] _ 1-1 u 
C.-fW-1C2.fV2..) -!AW~-£~~ - t;, w4 t""£~ IIW,t. 

(A42) 

Under hermitean conjugation one has 

+-Hw - H.., 

Et 
!Aw-1 c~Wz 

E 
-C-t £0, -t-1- w'z 

(A43) 
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Using the weight basis, all fields are eigenstates of the 
abelian charges in the Cartan subalgebra. The gauge fields 

A l !1, ~;; 
/" 

AA6 
A, I' 
/ AB 

' AVfW4C.VVt< -- ~ 7 r-;. ... , •• 0</'& 

A CI"""'Ct~ Z:,~ £1-w'.t.-A, ~ eA eA 
/' 4 • 

A. A, A,_ 

/ 

( A44) 

can be divided into neutral fields in the Cartan subalgebra 

A u. 
/' 

~ 

Aw u, H = 
/' w 

A -w'-tolo¥ z. .1- A. r 
W Z, / -W~W' 

A W • ....... -W+I.v 

U.• = L ll A = 
/" /' 

A .... zw....,1 :tw 

/' 
and into charged fields 

/\ 

E· 
/" 

A 

A· /' 

z. L: 
1-14 < k/2_, t:" £."' 

A 

Uo 
'/' 

..-'\ 
+ £o 

/"' 

/1 C1kl'1 (z..Wv 

A A £fAWAC>W>.-
/' 

/1_1 .. 1.,-

For example, the field A__A has charges !1,=-1 , H,z; 1, 

(A45) 

(A46) 

(A47) 

H3 =-H~r-fls-=fl6 =o and, therefore_,. the quantum numbers of the 
WZ:boson. For the scalars we define 

r'" 
£-o,u -. ·-C~Iv'-t 

e"-~ 
E,lV-. 

e"' rt~l 
.C.t'"""\, AA-- ~A~ 

-'--r 
4! ['"'""' 

r 
£4"ll (A48) 

(l)CIW/. ··C.."-1. f~t..(, C-ilvt A-~- ... A-t. 
T = eAA .•.• eA.._ Cf (A49) 

'~ 
cpC."« --~~ = (-/ )'P Cfc>~w_, ... Ct.V--t (A 50) 

p ....... ...... ..... ...... with (-1) the degree of permutation of (U~, -Ji.t~) compared 
) 

. £-fW~ • • ·%_W-t_ d to (c..,~J. __ ... 4~ . The f1 el ds Cf have stan ard norma-
lization and 

·--t 
(~) -'-rp =~rr;z 

C-tw>~ . -· e"'-w~ t4,J 

r ~ ... . C-t "--\. (A51) 
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Properties under hermitean conjugation are given by 

! r(~) 
Ctw ... c.!Lw\. 

t- .$.1 ~r<) ( t) 

) = (- I ) u ~"'""- - - -~~ (A52) 

( o/c,w:.- __ c.w.._ /' = 
_,_,.., 

Cf 
-[~ lv.\.. 

(A53) 

d) Projections with~ 

In even dimensions N the totally antisymmetric tensors of 

rank N/2 are reducible. Irreducible representations are obtain­

ed by using the projection operator tll~~) . In our context 

antisymmetric tensors of rank N/2 appear for various subgroups 

SO(N) of 50(12) and we present the relevant properties for arbi­

trary N even. The operator 

r',; = -1J ,./!. r: - r; r(N) 
""' '7N 42··. tV 

(A54) 

= "/w t; A, - • · -"N _ '"'?IV A ...... A.v f"t.v) 
(' - -C 

Nt r;.~ AN /1/f A~·-·A,..... 

"JN : • "7'-t.- ( A5 5) 
I 

Commutes with all SO(N) generators ~8 . It induces a duality 

between totally anti symmetric tensors of rank~ and IV--t-: 

<tl 
rr 
/II A, .. . A.t. 

= "'JN 
{N-%)/ 

-t/1_'"'1 A!., .. Aw r(;;--1.! (A 56) 

(-I) <:A, .. A-t ~"'----AN 

The totally anti symmetric tensor l:A~- .... A,v is an SO(N) invariant 

with 6.f2..--·N-=1 and indices raised and lowered with""JA~=-EAe· 

Thus ¢/~)and ¢tN-t) belong to the same representation 

r- Af ~--At (.t) '"'-'A" A (N-t.J ,if' r =if_,., ... ,..r 
A,. ···A-t A~.,., .... A,v 

~~~ if hi· ··AN_ "';?IV lli;:LL 
- (N-~l! (-I) -'- £-II,., 

-AN 

A,-
·A cpA•·· A< (A57) 

• 
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For~:::::- "::':z... the operators ~(It: (v) project out irreducible 

representations 

ri'i! ± 
A-1. -AN;,a, 

- (lot) 
= .L[ 1 -rr;._,)r ~ • 

~ A_f • . rTN/~ (A58) 

""A. .. A¥'< 
'-f±. ~ 

± ( if AA . A~ :t: i .A, . . II"" ) (A 59) 

In the weight basis, relation (A56) reads 

ill-til I r r'~) = ~ r- I! u <- « .......... ",!'!. r'"_. 
Ill CIWA. ··C-t.~ CV-t)! {,W.t·· C-t_W.t !f.,"';t .. ,··CNv,!A60) 

with 

c- 4-tt'"'((..,.. •. . £NIN'N A-r At G.t•"i.~, CNWN A(t-,. ··A..v 

c--£.1'...,..... _ ;; ,.... = e .. e eA . . t' EA A 
. :f.-.._ l11<4 4. ..._. l-H A,v " • · · t 

~ -
t:-1+f ki: .... c~-M w1 +~ 

="? 
(.yiV,v~~,..v 

""'! £<i:.-tw't. ·i.-l!<(~.,.,.;..u· 
~­c::...,w,.... 

(A61) 

a n d £0 ...,.,. .. c...,wN the totally antisymmetric tensor of rank N 

[_-,H.-! -J..~:L •.. -!!f. -rf!! 
~ ~ 

[;-!f"f-1...-f":L -~~~ " ~ 

The matrix~ is 

w,_ 
= (i ) = "/N 

= (- ,· /'/,_ >fj"';?N 
.. 

= "!..v 

(A62) 
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N 

and for 
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r' ("-') 
-.-1+-1-~+2..- ..• -~ ,...~ 

antisymrnetric tensors of rank N/2 one has 

- lit) t!.(Ot+t) p !!'!-) 
r' r " = (- I) 9- ~ (- 1) r7 • v ~ 
N I-- < -C.tW-t . .. £~W~ -&..-% ~- .. ~ ~ ~ 

(A63) 

(A64) 

{ .... "' ""' ""' Here (c_,w:,1 .... · 1 .Cv~w.v4)and C4 t..1' 1 ·-· ,c,.....-iwMi)are two dis-
joint lists of N/2 double iQ.dices £ 1·""'1· (no double index appear­
ing in both lists) and (-l)p is the sign of permutation of the 

""...., "" "" ) set ( c._,w.,_, ... 1 &.v4 w.<t4 J (;"w ... 1 ••. £.#4., wM/.:. compared to (-4+4 ... -!:! .r¥) 
.I J '/ ~} ~ • 

e) Subgroups of 50(12) 

For a classification of states we use various subgroups 
of 50(12). Let us first consider the maximal subgroup 50(10) 
x U(1)q. The S0(10) generators are given by ~NiH,N=f ... Jo/and 

the U(1)q generator is Tu
11

,_, • In the weight basis S0(10) labels 
correspond to W=4 ... J and U(1)q labels to w:q:;; . The anti symme-
tric tensors considered in this paper decompose as follows 

12 ---" 100 + 1 ±-f 

66 __,., 45., + 10t;.1 + 1., 

(A65) 
220 ~ 120., + 45:t1 + lOa 

792 -'"? 126C) +126.:> +210:t-1 + 120., 

The fifth rank antisymmetric tensor of S0(10) consists of two 
irreducible representations complex conjugate to each other 

( 
IZ6 )~ 1.{1±0 Jcp'>) = ¢''.!1-( I:;: 0) 
126 z, I() ~ lo 

(A66) 
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The irreducible complex spinor representations 16 and TO obey 

F ( '" ) ~ ( ,_ ,., ) 
I() ii - J6 (A67) 

With 

have 

respect to U(l)q, tensor fields with charge q ~ 1 (q = -1) 
one label r ... f-6 (17 .. -6) whereas fields with no label -6 

or +6 or both labels -6 and +6 have q = 0. Spinors with charge 
q = 1/2 (-1/2} are eigenstates ofif with eigenvalue +1 (-1). 

The group S0(10) can be further reduced to various sub­
groups. (For useful tables on S0(10) representations and their 
decomposition see ref. 38, although our conventions differ from 
this author. For a systematic treatment and additional material 
compare ref. 39.) The subgroup S0(4) = SU(2)L x SU{2)R is spanned 
by the labels w = 1,2 (M,N = 1 ... 4). The spinor representations 
of SU(2)l x SU(2)R obey 

r'./~,1) 

rf_/1,~) 

{ <-, 1 ) 

T-it,~) 
(A68) 

The singlets (1,1} have either no label w = 1 or w = 2 or labels 
I -1+1-2+2). The S0(4) vector (2,2) has states with labels 

/-17. /+1"7. /-~>. 1+2> 
/ ' ' (A69) 

or 

-/+4 -<+~). /-1,-~.+:C). -/-1,r-1,+2..)./-<,M,-<) J / _, ~ J (A70) 

The antisymmetric tensor of rank two gives the adjoint repre­
sentations of SU(2)L and 5U(2)R: 

( 1
1 
3) ; j-4,-l); ft{l-1+4)+1-<.+2)}; /+4t-:<) 

{3, I) /-<, +2>; ~ {/-4+4)-t-Z+z>}; I +1,-<-> 
(All) 
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and fulfills 

( 13, 1))= l( I- r ),-t,<<J~ A-YiL( 1 :;: T') 
(1

1
3) L +"it'-( f.{" J.J ~t-

(A72) 

The subgroup 50(6) = SU(4)c is spanned by the labels w = 
3,4,5 (M,N=5,6 ... 10). The 4 component complex spinor represen­

tations obey 

r;, '!:: 't 
(A73) 

r;, 't = +- !!: 

Singlets of 50(6) have no label w = 3,4 or 5 or are labelled 
/-3,+3,-4,+4,-5,+5,>. The vector (§.) has states 

1-3). /d).,_,_.,_ i+<r>. 1-s->. ,.,.,-> 
/ " / / / 

(A74) 

or the corresponding dual states with five 50(6) labels obtained 

by applying~ . The adjoint (~) has two (or four) labels with 
w = 3,4,5. The antisyrnmetric tensor of rank 3 decomposes into 

two complex representations 1~ and TIT with 

( ~ ) ~ t I I ;. r; ) cp <J}: ¢"1 ±- c I t F. ) (A75) 

The colour interactions correspond to the subgroup SU(3)c of 
SU(4)c. The Octet within the 15 of SU(4)c is spanned by the ge­

nerators 

E_3+l.f J 
E E 

-3r~- ) -~rs- ) 

£+3-<r / 6:+'3- !>- ,) 1:::-#-lf- -s- ) (A76) 

- G(H3-H~) , - ~( H3 +H,_ -<.H,-) 

(The generator .!.:-( H-rH -rH) corresponds to the abel ian group 
'3 3 • < 
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U(l)B-L commuting with SU(J)c.) Singlets of SU(3)c occur in 
various SU(4)c representations. The trivial one in the singlet 

of SU(4)c has no labels w = 3,4,5 and YB-L = 0. Other singlets 
with YB-L = 0 are i~ the 15 of SU(4)c and correspond to the 
states 

~ { 1-3+>> rl-4-•4-> .,_ 1-'>+s-> J 
( A77) 

~ { /-3+-3 -'t-+!f) r- /-3-r~-s-+~) "t-/-4-rt,.--s--rs->J 

Finally, there are singlets with YB-L = -2 (+2) in the repre­

sentations 10 (TO): 

/-3-<,--s-> ( Ya-~.- ~-<.) 
(A78) 

I +3 '"" +s-> ( Yo-~.- ~ '-' ) 

Triplets are contained in the 6, 10, TU and 15 of SU(4)c as for 

example 

3' 1-3/. 1-<r>. 1-s-> I YB-1- - - ~ ) ' ' 

3 I+-,>, f +"'+ >~- I+ s--> ( YB-t- ~ ~ ) 
(A79) 

3: I+Y-+>>; /-r>+3>,· l+"l+ij.) C Y. -~.- ~ "13 ) 

3 I -~->>, 1-s--;,>. /-3 -Y> I y ~ - ~'.< ) 
' 

ll -L. J 

We finally note that the SU(5) embedding in 50(10) is complete­
ly parallel to the SU(3)c embedding in 50(6). SU(S) labels run 

from w ~ 1 to w ~ 5 instead of w ~ 3,4,5 for SU(3)c. Among the 

SU(5) singlets are the following states 

no label w ~ 1,2,3,4,5 

/+1+.Z.-f<S+I.f--t-S.-> 

J-1-<.->- <r -'> > 
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)s. { ( -~ .,__, > + 1-U-</ -rl-> ·>> -t-1- ~ +o- /-t-1 -s-+s-> l 
(A80) 

~ {l-1 +4 -z -r<_) -r /-4+4 -;,+--s/ rJ--t+-t -l.f+!t-/ -1 J-.-f-rt-'>-_,..s- > r I-:Z+2. -5 +3) 

"f'/-l +~ -lf+'r) f-/ -<- r.!, -<_,-.....-!:,.-) t-/-7, + 3 -V...r't--> 'T /-3 I 3 -s-....s-) +}-lp-<,- -s'"""t-~'-> J 
and some 5-plets are given by 

f) 

1--<?, 1-~ > 1 1->>, 1-<+-,, 1-s-> . 

( r 2.. + 3 +it+ s- >; t-r-r T-3 +t.r+s->; I +1 +-:t +if +s./, 1 +-.f+l.. + s .,._s-> ... 1+1+<..,. J +-If'> . 

.I 

+l /-4-<..+z>+- 1-4-'3+-3>' + 1--1-lf-+lf-> + 1-4-~+~->r) 

-j;{f-< -~ +4 "7 + l--i:-3+"3/+ 1--i: -H•>+I-J ->+5 > J) ... ; 
(A81) 

~ f /-4-2 +z-3+3> +- 1 _, -z +.z. -<t+tr > + 1- -1 -,z +<..- s-+s-> 

~ f-4- 3+-;1 -'+'- y. ';> + f-4- 3 +~- s--+s-> + 1--1 -~.t-+q -s-.,. s-> J 
.I 

_j___ { ( -~ -4'1'4- 3 + 3. > + /-2.. --1+-f -y. +4- '> + !-<. --f-t--1-~+ 5"' > 
16 

T 1-2 -3 +3 -V+'f':> + t-<.- 3+"3 -s-+s-> + 1 -z •9-+lf.-s-rs.-->] J 

Physical States 

We are now at a point where the classification of ''physi­
cal states'' in the various antisymmetric tensor representations 
becomes an easy task. Let us first study the adjoint of SO(l2). 
In table 3 we give a 1 ist of the abelian quantum numbers Hw and 
the labelling for all states in the 66. A similar analysis can 
be done for the other totally antisymmetric tensors. As an ex­
ample, we discuss the electrically neutral colour singlets in 
the fifth rank tensor 792. We have given in table 2 a list of 
these fields with their quantum numbers. For the weak doublets, 
we have omitted the neutral doublet components in the 210 of 

SO(lO) (with SU(4)c x SU(2)L x SU(2)R transformation properties 

11 0 

(10,2,2) + (TIT,2,2)) since they do not admit Yukawa couplings 

to the chiral quarks and leptons. To specify the labelling, we 

write this neutral part of q;r<r) explicitely 

¢ <<) i { " ~--- ,. + 
0 ~ 3~ j 5'1 +-f+Z.+3+1J .... ,.. s~ C-~.,._,-),. +~.,.., 

+L- s (r> +,., r ) f3" 3 -H~r-r+~+(. -l+3-S'"rr+" r -3+3-tr+lt-+~ 

~.L s ( r r r (6' If --f+-1-l+'!; +6 + --1+-f-lt-+Y.+, + -4+-t-S"+S +'-

t-1:},+'<.-l+l+'- +-f':l..~?,-'t+IJ-+1. + r:.il.+)..-'!"'i''l>+" ) 

+Ld(-r -r r f6 "' -~-!f-+-Y.-'S'+'S' -~-'3of-l-S'"+S""- -Z-3.+-'3-11-+t.;-

+ c...,N-.Z.-l-t-3 -~-r:...,+-f-l.-lr+4- + r!...,,....,_<-_,,..s-) (A82) 

( " ( +-d r rr' .,.;-r fi:" ~ +2-l,l.+t,..--r+s- +~-3r'3-s-+!>- +.1,.-31"3:-Y.+Y. 

+ 1:4+-1+~-~-+"3 + r--:...4+-1+~-<t-+Y...,. c...,-r--f+).. -s-+S"" ) 

+-k.ol (r' .. r r/' ) 
f3 · 3 -Z.-3-t'"J-6+~ -Z-<r+'+-il>+~ -~->-r5.--~+{. 

or,. r 
-1'1'4 -.(.. -'" + 6 

t-1 r_,+?,.-"l-11--~ 

+ 76-/:4. ( r:...,+<1-'3+3+b -t r:.,,.._,_Y.+,..+6 t- r:..,.,..,_~-.r:-.,.6 
-r /-r -~ -t+4- -"3-+'3 .,.., -.a.,.lo-fr+~+6 ,_-z.,.<..-r.,..-r-r6 )] + .J',. c. 

To proceed further, we note the following identities 

('I~) 

A.., ... A-,A...,~ ·-·A~ 
r l"") '"'""') ~ r. 
~ ... A,... Alffft . ··A-4 

if A, .... A, .. --+At (A83) 

1~-2.) 
~ 

(~) 

rzWA) --· ) - i,.,. r., . l-t ki-t 
r''-) 

-1"+ i r' if 
c.,~ ... c_.w1' "-"··~,oi(A84) 

I<) 
r:_,-,,- = Z H,-
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/~) 
(' ~ f' f' ... (' if w., ifW, "'I'··· W-4. 

C.,w''jt ... ~, . . 4~ C.tw.t ~~ ,,.IV'~ 
(A85) 

rl~-<) 
In equ. (A82) the list of indices of is the same as the 

one of rttl with indices -i. +i taken away. Using (A26) one 

finds 

¢:•"! ~ fi: t:.,_ { s_/ s:.,. D., o~, ..- D" ""• + i2, o~, .,. D• "'~ .,. T:/ t: J 
+ }r rt.2. { 5.., s.., + D.., d/ r TJ,_ t>~; + D3at/ r D,.d./.,.. T;, t., J 

+;. r:... { s. ·~.,. s, ., .,. s~ •• .,. r. t~ J 

+ -Jx {}_~ [ 5 ~ s: + 51 s; + S"" s: -t- T;: t: J 
With 

S t~r. -.Lr'f"'r'f"' 
" ..., ~ _.., -3 -~ --;-

5, = 7;, r - t (',., q_, (',, !.;?,. 

D."" 

D, ~ 

J_ { _ s x'"' .,. 3 
({;" g 8-L. 8 

k I f y,.<:.,_- ; 

D 3f3Ye-~.."f 3 :v 

)) = 
~ 

! r, • .,. r.,.. )1 

5 ~ 
~ 

- l.. TL 
L~- ~3L.. 

'(' '-"_3) 53 = 13 T Ya-.. T 

s~ = - ~ Ya-~.- T,,. 
T.= - l?;- Y,. .... I,,_ 

~ y,_,_er,~-~-r,, )( 

f Ya-~..cr,,_ ... r,,)l 

(A86) 

(A87) 
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The fields dl. and tJI1 belong to a 5 and a 45 of SU(5) and 

to T20 and 126 of SO(lO), respectively. The neutral fields in 

the 5 and 45 within the 120 of SO(lO) are linear combinations 

of d3 and d.,. We write the corresponding contribution to ¢>fr-J 

as 

;71, -D, + o{~ i5, 
...... """ .., ""' 
d, D, + d"' "I>vs- (A88) 

with 

""' ~ -D ~ .Lf3'V - .L D 
5" k 3 <.. If 

~ .L [ (' ,.(7 ,.(7 d"' "I 
~ -2,.-"3+3~+4 -.t.->+,..Jo--.;+--4 --l-S".,.S-~+1; -;_-..,_.....;,.,.~ ) (A89) 

D., ~ f 13 D: + i i), 

""' ol, t f3 of, - ±of.,. 

""' t?/. ~ 1.. d
3 

.,. L (3 ;7(,. 
~r ~ .t. T 

(A90) 

Similarly, the singlets 5~, S3 and Ss-- in 210 of SO(lO) belong to 

SU(5) representations 1, 24 and 75 

~ ....,. ...._, A .-"' -'\ ...-. 

s, s, ... s, s, .,. s, s. = s:, 5~ + $,_, s, + s.,. s,.,. 

with 
A 

s, -
A 

s, 

I ·~ 

fiO ( s, + {3 53 .,. f6 s;. ) 
)ro ( s, .,. l!'s, .,.fi's.) 

(A9l) 

(A92) 

We may use the explicit basis for the matrices~ in ref.l8 

to work out the matricesr;'w. One finds 
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l-r 1'£ _ _, :=. l ~ «>~ e ~ e ~ 11 ~ ~ -r;; + L ~ G~ ~~0~~'"S,®'r1 
~(}~ ~ f: ""t" &--r-_,e"'l" ¢IT e "'7:" - '7: t'P"C IZI'T C>'t" IZ"t' IZJ'"t:" 
•Z "" t> o , ~ - A 6 o -" o + -t 

~C :::: 7: Cl'l:" fl1'7: e>T~T ci'"'L t- "L 41T eT 111-L err a>'T 
fk '3 ~ - l,. t- -t .., - - .t,. - A -t 

-L&"l:'"&"t"CI'"t'«<loi''T -'7:11'7:&T/O!I'l:"87:111'7: 
t-+.t-"'"' -+4+-"'.., 

~ (1 = T.J 4P "'C II"L 3"1: db"T taJ '7: - 'T • '7: .z L Cl'L e"L ez> T 
')., -(1- ~ ~ 1, - "' "" '" ..t. ,e. + .., .., 

J_ f1 ;:::: - "Z'"' I>T tilT C>T0'T *T ~ 'L f1 'L" CI-T" 4> "T e'L <r> T 
('£ -s- l. - t. + ..., .., ~ p( .t. - "" ..., 

i rr: c, = 
'T tfi.T ~T 41T•'T<e --z.-- 'r IE'>Te7<a'L"G!!J"L<21 'L 

c:> oOt!J..(-<>~""o--1-

Here we used the following combinations of Pauli 

( -z;. ~ 1} : 

"+- = ±1-r.-1-r.._) e (~~) 

T_ = ± ( "f:A + I''T.t.) =::: (~n 

-r_ 1. ( -r., ..,... 'T'! ) ., 
"Lp( - t {'TO - '"'T"J) 

In this basis one finds 

c;; ~ ) 
( ~ ~ ) 

matrices 

(A93) 

(A94} 

s-r = l..f7 f7 r r =- -r ""-r .. -c -z-c '"<=" ... --c- (A95) 
" If -.., -~ -so -s- d « -4. - o o 

trace 
ne n ts 

¢;, 

To derive the field equations in section 4, we need a few 
relations for the SU(3)C x SU(2)L x U(l)y singlet campo­
of q;~n. Writing 

""' ""' """ .,_.. 
= s, 5, .,. s, S._ .,. s, S~ .,. s~ s. .,. -'f. c.. (A96} 
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one has the following relations fori ,j 

~ ~ 

s,. s1 
= 0 

~ ~ t 
[ 5( I SJ ] = 

rs. g-+z= 
Z I J ~ J 

z s, SJ- H, 

s,. s :f' 

We use the identities 

1:., J-/ ," e 0 

7::.- H,-H1 = 16 $," 

2. 3,4; 

-r::.,. H,. H,.,_ ... H,.~ = o fc~-" t'..t :F t~ ..P • • '-t 

to derive the trace relations 

7:­

L 

~ -
5· s = 0 
' J 
~ ~+ s,. s, = z $,;. 

~ 

1-.r EiAW4C4w~ [ S:) 
/.....,... E C4W-t'£.t."-'.V [ Si I 

5; 1 = 0 

st1 = o 
J 

t~ H~t [ s~ 1 s1 1 = o 
~ ~+ { :(_ 7:- H..._ [ s, I 54 ] = 0 

fot- ~ = -1, ~, 3, "' s­
for ~=6 

(A97) 

(A98) 

(A99} 

(A100} 

- ~t 
T-v- H~ [ s, I SJ ] = rs~-1- {<>r 

for 
I~ :f = Z.1 3, \'- """" ~ ~6 

'i ;f = Z, 3, 'f (A 10 1 } 
001d 4.::: 1;.(/ ~ ~ s-
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A P P E N D I X B 

Yukawa Couplings of Scalars in Totally Antisymmetric Tensor 

Representations of $0{12) 

In this appendix we perform the $0(1,5} and 50{12) algebra 

necessary for a calculation of Yukawa couplings in the six di­
mensional S0(12) model. The analysis is completely parallel to 
ref. 18. We represent the two irreducible Majorana-Weyl spinors 
~and 1t in the form of a Dirac spinor with 64x8 components 

-Jf= (~) 

obeying the Weyl and Majorana constraints 

r -,. d" --y=,V 

B -1 13 -I " = = 
''- • ')t-" I 

I B 1) 

(B2) 

( B 3) 

In six dime·nsions, Yukawa couplings of this spinor are possible 

to scalars in totally antisymmetric tensor representations of 

rank one, three and five. The action involves at most three in-
~ ~ A 

dependent real Yukawa couplings f.,, .fJ and f, and can be written 

in the form 

s,.... = f d' ~ ;.~ { 2 -if'¢")"¥'.,. ;, )'-' r/:>'" r=:, '1f 

+/,f' ¢<<)'7{' } ( 841 

All terms are hermitean and -yiis defined by 

t • ~ .,-13 l3 • rc. '1f = "f' 'J' = )1-' = '1f I~ <:; y = )1-' • !3,,_ I B 5) 

- ,j,l<)- - ,j,llJ - ,;,IHH 
Terms like1f'r f7J.1f' ,'tf'!f" o/"or'?Pr ,,~'¥-'are excluded by Fermi 

statistics. The matrix c, fulfills 
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.... r ... _, 
( y'" ) = - C 6 ;("' C,; 

( B6) 

and can be written 

c, = c,_ 13"" 

(J"'")T - C v"' C _, 
1'- 0 .,. ,.,.., = 0 ... '3 

( B 7) 

c r4 ) r =' - 73<- ra. B;, = - ~ )~~" ; ~ = --t, <--

We use index conventions of ref 18. 

We are mainly interested in the Yukawa couplings of SU(3)c 

x U(l)em singlet scalar fields to chiral quarks and leptons. The 
harmonic expansion of the chiral fermions reads 

Vi 'lf"l 'J1 x) = 'lf'v I '1! )'-' I x) 
1 

(BB) 

whereas the electrically neutral colour singlets in the scalars 

rptf) are expanded 

A.,<'! Si 
'Po I'J1 x) = Cf's; (~) 'f (x) (B9) 

Here the indices Vand Srefer to the quantum numbers of S0(12) or 

its subgroups with V" u.;-, e, vt:. ___ etc. and S-= S-1, St., sl, sS>, 

d.A, dt.., d3 , dl', t..,, t~ for¢:>) (compare appendix A) and similar 

for ¢~') and ¢~3J • The index j counts the number of chira1 u-

quarks etc. and i labels infinitely many scalar fields with gi­

ven 50(12) quantum numbers. 

The action (B4) for any given (.{) is then written 

v. ""'v· s· '·' 5-€ = J d"x ;J,/Ix! y )ix) <p 'tx! "j/Vt!x) 

"' .t !I T -. -M oL''f ro11!~:1'JHf'v/'l! B,_ 5,"' CfJs;I'J) r;:._ 1 ~v'j,r'J) 
(BIO) 

with 
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-v v< ( v,· )TC 
')1/ '(x) = <7f' 'lx) 't-

- {"' I' = 
I~) F 

I~ 

r~ ~~ -;;s­
t,., ~ = 3 

-"''~ 
~' = 

&t < /;{ 
'/h· (X) 0 f'J) '?:o / 'J J 

( 8 11) 

812) 

( B 13 ) 

Using the Weyl-constraint (B2) and the following definitions 

( 1:J acts on two dimensional spinor ir,dices ~lith ~-,;~3 ,1's-) 

( "K_Ix)) "' .\.(I:!: v') "f'lx) 
71-',lxJ -" 0 

+ 
~I 'f) t (I+;;;,){ /+7',) ~('J) 

7f..-I'J) = -};(! +f,_)t!-'<3 )'/f"f'[J 

'1/-j,+ f'J) = t ( I - i,i ) { I+ T,) 'l{"f~) 

7f<_-/~) = -£; {I - 'i )( I- Tj) '1f'{'j) 

one has 

S = ( dlf 14 vv; S£ ..,,~ v
1-j'. 

~ J X 'J¥ \{'L Cf -r,_ 

(814) 

"<'tt~.,.,. -rB fi(+ -) ·/t[dJ-G''J~ (1/-;,vj +1fi.vj) f3~ ,,'1',; !4! 'kv'j'+1/<v'j' 

-t r ,.(I X iJ :i .;;: :j o/ 5 ,· "'f' ~J I • 
B15) 

"" z. ;;, + - r - t- -{., J ot'y 6' '?•' ('I'~., Vj +- '1:, vj ) B, B,, ~i -%! ( 'l:iv]' .,. ~ v'{ ) 

Using the Majorana constraint (83) one can show that the second 
term is the hermitean conjugate of the first term (compare ref.l8). 

Using the explicit form Bt- =(:";d)and noting that B 1<.CfJs; fZ-t> is 
an antisymmetric 64x64 matrix we write the Yukawa couplings 
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~ ,....,V. Si v''' 
5~ = f a•x 9> '- "f'L ; ,4Vj v 1-j'S i o/ ?f/L J +- ~-c. ( 816) 

J, ~ (,j< 4 <.( • r fi 
V)'V'j'>' =2{~)' }~> 0 '¥:fv;1) G,<'f'si I•J ~v'j' 

( 817) 

For a calculation of h we have to specify the normalization of 
?f.'vj and Cf'si. The standard kinetic terms for the fermi ens is ob­

tained for 

r' ti ~{r .. Jt + +( -yt-- }-J..[ ,b .. , 
J d J 1]_. 6" 'lf.,vi ?f:<vJ' J:ivi 1'> VJ' --" vv ;/J ( 818) 

Correspondingly, we obtain the standard kinetic term for scalar 
fields (p<'tx) if 

f _/, <i - r ,.. c 
"':?J• " l-r 1'si Cfs';' = Z "'ss' 0 ii' (819) 

Note that in our formalism a complex scalar field and its com­
plex conjugate are treated as different qf''. The normalization 
(819) takes care of the necessary identifications. 

To perform the necessary S0(12) algebra we need the matrix 
elements of {4l-\)= B1.z. ¢>~~) in a physical basis. We decompose --y.-­
with respect to 50(10) x U(l)q 

( 

16,;,. ) 
1f~l~:) = 16,. (820) 

I(,_,, 

ib-~ 

The scalars ¢t~J give 
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I~ --'? fo. + 1 t4 

2<-0 ---'> 1.<.o. + ~s-.,, + ¢0c 
(B11) 

t"YJ. -? tu. + 1.<.6. + 210~" + -1Z00 

In an obvious notation we can write ~(~) as blocks of 16xl6 

matrices 

"' )( ~ 0 " 

Cf'1D 0 CJ (') 0 ~ 

¢/-f)= ¢{-41 + ¢/-tl = 0 0 
j1} t 

CJ 7 11, r o 0 tp4 o 1 1 s11 l 
./t; _, f/J.H) 

o o 0 -~:Jroo - -4(1 0 

0 -~(~' 0 0 - (q>,-y 0 "0 

" 

"" .;:. t 0 •?;; •• .:''· 
..... b 0 0 (l} 0 .,. 0 0 CJ 0 0) ¢"1,.¢."~¢"~ ¢")={ X,. + 0 9'" t- x,. I (B13) 

"" "" •• -ri'"o o o o l(f,'fo o q!'1o o o 
llo liS' -{() 

o -x:: o o vr;,Y o o o o t,: o o 

0 0 if'.- 0 

'"' () " ., o " rew o IJP 

¢'>1 ~ ¢:>~,. ¢.'". J'c>,( 0 0 0 'f. 0 " rt 0 D DX~I(B14) + bt> () f 
IU. 1J:o l?o 11/. , 

-P;u 0 0 D o -<r,;}'o o tP..'>)o o o 

'"' 0 -tp,u. 0 0 -fp~)'o "o tJ x'"} o o 
)/P 

It is checked easily that 

matrices whereas q:;;:) and 
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") (~) 
o/,0 , ;(10 , Cf1u. and o/,u; 
X,~> are antisymmetric. 

are symmetric 

let us now concentrate on the electrically neutral colour 

singlets in the fifth 'rank anti symmetric tensor representation 

~<~. These fields are given explicitely in (A80) where we write 

now explicitely 

d_, = o/_,,1'; )d_,' I X) (B15) 

[ < ~ * (" t1 :~if~ ~> cr,,. «.;.,, == o ,,, (B16) 

and similar for the other fields. Using (A84), A(85), the expli­

cit representation (A 93) for the matrices 'i.w and 

B I~ = l -r;, ~ ~ tJ} 'Lo ® 'l.., (2> "["'4 ~ "1::"'3 

one has 

~ B, r = ,,._ .... -.t. 

;;; 73,J',.;;.. = 

'7:: @ 'L 1;0 'T: ~ 'T (l!)'L «<("'"r: 
0 Q 4 "" .co. .t. 

'z; 8 ~"' ~~ 'S, 8 ~ tEtJiT..t. 

'?; ~ '"t;, @ 'T~ da T..., ® 'LA~ t' "L~ 

+ ?: ~ 'L <!> -c, OJ 'T, <!> T "' i ?: 
t:> b "" ... ~ .<.-

(B17) 

(B28) 

We now can give explicitely the Yukawa couplings for the doub­

lets d~, d~, d3 and d~. The non-vanishing couplings for the 

quarks, antiquarks, leptons and antileptons are (we omit coup­

lings to mirror particles here): 

D • -
"t-fi}o/14/J(..fi -

A. olp?t).o4( 

.L r· fel-t l4. "'JC-t" - " 
16 ? 3· " "'i- ""'~ ,r,, 
.J_ ; fcl'" " <1. ~ o( + tJ(' - -/ * 

• J{ e; ~.t o-<,, 
76-1 .I 1;1. J ..t l/1.-fr 

=- > t" ro(t-," 1/·~eo+e - _/ • 7i:" } ~ tf (/L I .{ vr. -tt' 

~~e4_ ol-1: 
= -2- P fcl'e," <!>. "~ .,,+ e' - d · • 16"' d d 4 (/ -l -11 
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f.._ e . = .£. p ra~~ I.e( <- C+ - . 
.. 1 «~d,, 16 7 'J .. ~ ,aj .u.€ CJI'._, 

~ l . = < A J ./l ~ ~ + -..,;"'.tot~, 16 I 0' 'I ~· <> .u1 "~ a.,_, 
A , . = _ 3 t"'f,;~z ~ .-.2. <+ -

"t ,.._ ""'~· q; 7 ~· " ..,;;i .,~ d.,., 
A 

A_ ' ' . =- 3 ; (' '' '{6z +- <- _/ "i .,~ ''""' /6 I J '" :; '~"- v; ".a or.,_,. 
..{ t. 4 -" f Z. /i. 2. t T 

"""" .. ""'·· = :vr. 1 ct "'~J~ 15 '"t -«~- o~,, 
A~,,.'4 "'3' = -~ If ol''j t;/16' «/ ""'~- d,, 
.Ji, _,- 3r"'r""'"a~~·-"·-·-J ,

1 
V.t. t:>~3{ - _. ..t/3 1~ ~ d~ (;I vj '11'~ a,,· 

"'[. U L Ji. t: = 3 l "'<. ,T (:- . 
"1 ..... d,, ,._,/ ""?~:z. 6 .,;if ".a d,, 

A 

A , , = - .:L. ([d'q a ~;_ 6"' -"+-d.- " -'p:x._ ot3, ,_., "d' ""j ~a';; 
4 

A. a o(' /. = _£.. t?'Jd', 01._14. ~ d .• d'- _, ": 1 4 "''' ~ f3 f . Q 17 1 ~ ~·, 
A. • _;]___ 'Jr _/2 q ~ _.j. , + - • 

ej: e..t o/31 =- -?..13 { JU ? dz (? ej e~ o/3i 
A • 1""r J. 11. z.. t- .:. - .,. 

eief. "'•' = - ._}. ;dJ"ff•"6 e;j eA ,:;,); 
A =A 1[.J' 'fi-2 c --«/-«.s. ol,..; :;:; T u J jz b « / + «t4 ds-< 

A.ui ... ,.. ol.,-- - ~If d'ff ~/"-6'- .uJ 4:~-~-
A .£. !"'f dz '"'- .--L " --v; .,.., d•i = "' ? '!'- " ..,, ,.,, ely •. 

A "i .,~ p~., - - :{; f f d'J g:v~ r;-' ~ + ,_i-d~.,-
" ' ~ - d. }f jlt( tl' ~ ,-Z -K + -'--' ~ 
"d i ol4 ""•• :v T a <f 17' "' ex/ "'~ ""•' 

A 

Aotl <><1 ot.f = --£,If dJ' 1l ~6"' d/ <'1-~.· 
..{ , , = .:L r"'r jl 0 ~~ ,__. c , - • eJ e4. «'1-l -t- vr ~ d~ o el e~ a't,. 
A . ' 'r = -<!/A( a'2u cr '4 ,_~ e-'e'- -' -~ e1 e4 or,_, .v J d (/L u ; ~ or~, 

(829) 
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T ._. +- -
Here~ and~ are shorthands for tf'-t'".t. and'fz.~ti' respectively. 
We note that the Yukawa couplings of the doublets in 120 give 
no contribution to diagonal terms in the mass matrix (j = k) 
only if the functions «jt and -«.it etc. are the same. (This is 
necessarily the case if SO{lO) symmetry is unbroken.) 

The singlets s., and the triplet -l-t contribute to ~1ajora­
na-masses for the right handed and left handed neutrinos, re­
spectively. Using (A84) and observing 

' If B,~ r s t 
-~ . 7i.l ® ~ (!) ~ ~~&> ~ e> /-r-t. 

k B,~ rJ.:z.. S.., =- 'Td tZJ ~a>~(!) --z: ~ ~1:3 (."t';z,. 

i...B r s == -r:f»'T<'.l''T~~a!)~~'T".t, r;; 14-.z.,.., t;.l 'bl 4 

j__s [1 s+ =--r.,.f4'~~~-~l%l~Gbl·-z-~ 
("£ I~ +-~ -f 

one finds the following non-vanishing Yukawa couplings: 

A < • .~-t...v; v4 s.., 
A .M-z.+-1' 

= z r r p(). ;:~6 vj "~ s~ 

p • lA r /l ~ l. + - .l ... ~ -.lj v_. f
4 

= Z, <>< i ~'- 0 VJ v<! T4 

A~J V~ S-t 

A[ < I{ z.=- '1--C-~ -Z{ d ?-"J'- c .,;l v<! s. 

, ~ "' r -" ~ • -+ = - t -"- ~ .;:;..._ t. = -2/ r;x J 'J• u vi .,_. "' 

(830) 

(B31) 

Finally the singlets S.z., 5 3 and 59- (and also the triplett<..) 
have Yukawa couplings between fermions and mirror fermions. They 
are easily worked out using 

h;_ 13, r:!_
6 ~ T, @ 7:, <> 'T, 0 "7:, 0?J c 0 / ) 

-k rs,,_ r:... :: 'To e "" @ 'To "' '"'· .. c-.. /') (832) 
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APPENDIX C 

The Mass Matrix for Scalar Doublets 

In this appendix we calculate the mass terms for the various 

colour singlet weak doublets of our model. This will determine 

how these scalars mix to form the low energy Higgs doublet. We 

restrict the discussion to the mass terms for the electrically 

neutral components of weak doublets coupling to the chiral quarks 

and leptons. They are given by H;, H;, d4 , dL, d3 and dp..(Compare 

tables 1 and 2.) The corresponding higher dimensional fields are 

contained in internal components of the six dimensional gauge 

fields 18 ) 

A 0 "" d~ = e,. Aot._ 

Ad:!: ~ /,; ( A,x, +- i A.,.(, ) 

A,r.,. ~ i 1-/, I 'j1 x) E_,_.,., +- c· H<-I'J,x!E+-< H 

A.,.(_ ~ -i H,i'!,xt £.,.,__ .. -, H~l'l,x/E_,__c. =(A,..,/ 
and in the six dimensional scalar fields 

¢d ~ .X,I•p //), ~d~I'J1x)"D. .,_~ ('j1 x)~ rd~('f1 X} ~ 

+.I.. c. 

where we read from (ABO) 

-£' = j_ .5-. (r *r ..- r 
-1 ~ 16' -.f.,.-t-.z.-l~3 _..,.,_., -~~+.,. -.f+"..,-.1.->+r 

-r -r -r ) 
-.l-+~V->-1) -.(,-3-tJ-~+S" -z.-3+l-lfT'+ 

....... ( -1 
D = =- (r .,.,., .,.,.. 
~ 132,. {"(;'" -1+,.,-Z..-'3+'3 -4+-t-,<.-fl--f~ -4+-t,.:.,Z-S"'"+S' 

+ I' .;. r ~r ) 
-~,_'t-f'f-S"'''S -.t-3+-'3-S".fS -.t-3r3-'f+'f-

( C I) 

( C2) 

( C3) 

(C4) 

( c 5) 

( C6) 

" DJ = 
i 
~ 
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~ ( r ,..J7 .,_ r ) 
1..:5 -z,-3+'3-6+, ~-Y~-.G ... 40 -~-$"+S"'-6r-6 

h - _ _,_ (1 
J/1-- f3i -4T-f-.J.,-6-f'C. 

(C6) 

We make the harmonic expansion according to the U(1)q symmetry 

discussed in the main text 

-.·-y 
Hjt'J,x) = Hh..,; (l(!*"'f'i'")·'f') Hj 

7 
(x) 

( C7) 

d( ( '<1 X) = cX
1
;..., .., (x_) P.ef' (I~-- Cf) t?{,-., ~ .. (X) 

Q· ' ' 

The index n labels different states with a given charge i· For the 

sphere, this quantum number would label total angular momentum, 

but for the more general A dependence of our solutions the choice 

of eigenfunctions for the harmonic expansion is somewhat arbitra­

ry. As discussed in section 6 we make a choice so that only the 

lowest (n = 1) field gets a vacuum expectation value and we drop 

the index n from now on. After dimensional reduction the mass ,.,. .,.... 
terms for the four dimensional scalars HJ '1, d; 

1 
read 

5 r,,, ''" ...,, * "'i M 
H ~ - ()1 < ~· Cf,· IX) CfJ (x) <j ..,,.,..j ( cs) 

where we use 

lfi ; d,- foe i;4 ... 't-

Cf, = H/ ( C9 I 

'h; H-. 

It is the purpose of this appendix to calculate the hermitean 

mass matrix ~1t~. 101 • ..,. • , ' . 
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There are different sources for doublet mass terms in our 
model 

511 = 

~ 

) d~xff/'\"~ .. L,._ ) (CIO) 

The first contribution comes from the kinetic term for the gauge 
bosons and contributes to M$'"S'" and Ma: 

L, = ~'~" [d';<6"<.f'~ Y::,..(G'f'G'P'J,r ( Cll) 

where (6~ G~ )d is the contribution quadratic in the fields 
A_to:t. The next terms come from the scalar kinetic term 

L, =- ~ fd} r><~'i ~.p-,;..,. { ;;, ¢-r "? ~"" 
- z,ff [ A5<-

1 
¢-r] p¢-r- f'[As.t.,fJtf][A}", ,Pa ]} 

L, = -~[d'-,o'r"-ff.P t-~"{ -z,ff[A,x"
1
<Ps] ~¢4 

- 2 ff" [A,x,_
1 

,p,][A)41 ¢,x J J 

L'f ~ - ~ fd~ rs-'f 1

i~ "f< -,::,.. f- z,JC A,x,., ~ol] r ¢, 

- zr [Ao~.,.1 ¢ot][Ay1 ¢s ]j 

L,~ $: tfd'}cf0,i?'<"~{C~,~J[~~¢s1J 

( c 12) 

( c 13) 

(C14) 

( c 15) 

Here A~ and <Ps denote the vacuum expectation values of SU(3)c 
x SU(2)L x U(l)y singlets. In the limit of U(l)q invariance they 
correspond to the solutions of the field equations in section 4: 
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A,r = -ml;r.)(H_,r16_)-tp(;xjH1 t-!/,,_-rl/r) ,__.,.,(xJH-. 

As;;r = 0 

¢, ~ s,(l)""J'(ia;:;_,"f')s; -r S,J,r)"'riim7;9')s.; (CI6) 
~ "-

t- s ,(;(J -'-'1'1 ,-,;;;,_cp) 53 + s,i;:(! "-7' I'~'?') 5,_ +- .X:. c. . 

"' s, = -~ n-1 't').. .,...'3..,..Y.rs-

s~ - ..!-- r' 
<. - 132: -4t--f -.2..+-..t. +~ 

s= ..L..d-(r d., rr' ) 3 t=ri: r-:3 -'1-+Y--')+r+C. -5H-s>r,.~ -'3r3-V1'"'+'t't;. 

( c 17) 

"' s .. = -··~ :L ( r' t-f., r' {:J;; f'b" -A-t--f -3+-"1 +6 -.'f+A -'-1-+!f;N, t' -"'1'+4 -~+5>+6 

rr .. 'l.+a-~+3+~ tf:~+l.-¥-+l.f+-6 tr!..).+-<.-r+~+&) 
Finally there are contributions from the scalar potential V(¢;) 
which we split into the mass term and additional terms involving 
vacuum expectation values of Sj: 

L6; f H"fd':; .,->f'{ 0 rf,pp-r (CIS) 

L-,. ~ [ d'~ <>'r ,;,_ .c, V( ¢) (CI9) 

The appropriate normalization to obtain the standard kinetic term 
for the four dimensional scalar doublets is (without summation 
over indices) 

Zrr [ofxrs-l" H/';.,/X> H1..,1 !;;0 = 1 

Ur [d;ro)';i d/, • .,.IX) d,-_.., (X)= -1 
' ' 

(C20) 
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We first study the mass terms which are independent of 

the scalar singlet vacuum expectation values S((X)· Using the 
trace relations 

-r:r "P~ p; = 0 
(C21) 

"- 'V t- (' -r:, ]). "· = z 0 .. 
' "';; '3 

the mass terms from (Cl8) are 

l. 1/. " (') 11" (' ( 
11.. = o,j o "';""i 

tam;mj 
fdx " ? • ot. :.... "'/;..., 
r orx "f'id,.;,,..,-i""i 

fc-.- •ij=l 'I(C22) 

The term (Cll) reads 

L, ~ ;,(d~o-'r-V.t::,..[(JrA,•'<-:ioA,.,_ -··1 [A,'I'1 A«xJt' 

-1- 2tff •x A,'l' [A"'", A.xx] J 
With the ground state values of the vielbein 

0 ,f '1 
e'f = 5' (X )rCY> o/ 

e.,: = _,w..-, '1 

we have 

. " 
> "'r 

//, 
f '(i() A&. Cf 

e'= -Co->a> ; X 1 

( ~ 
Aa'1' = if (Ad., Mf' •C, +- Aa- ~ -•r l f 

Afx = - Jr. ( Ao~, A.ef' 'Cf - Aor_ -.ep - 1<r ) 

(C23) 

(C24) 

(C25) 

We insert the harmonic expansion (C7). Using the relations 
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[A"f 1 E_,+~] = (---,tx).,._..,(7(J)F_:u,;. 

[A,_, 1 E +<+6 ] = ( .-,()() +_,.,(;()) e: _,_..,., 

[A,, e,._,. ]= ( ---.rxJ- -.-,!~!) E+~-~ 

[A"'f, e_,--.. ]= -(-'•·Jx_)t-"'<iXl}L,_-~ 

1-r E E = 16 ( S !, $ b c.rw .. cz..~ ('}W'l£'1-Wy. w.,w3 t:.t~-€ 3 ~wlf- C.~1 -(...joo 

- $., • ...,.. s~-«- s..,.,.,, :; .. ,_., ) 

(C26) 

(C27) 

T-r { H; [ Ec'"''''-"'" Ec,..,,.,. ..... J j = /6 ( t:, S,w. -r c. S,""~ ) · 

( 
.[, (C28) 

· £~ ....... 3 J~-c3 ~....-,. dr<1-£.f>- $~w¥- J4,.-£v- JwL~ c,.,-c~ ) 

we easily can perform the integration over~ and obtain the fol­
lowing mass terms 

11 t•! = v S_ , fax<>"- { H, H, • · 
~~~/ ·--·~ ~~~~ 

.[ '{'4( ,...,_ 4 - ff (..,..,(;<)+,.,(~))- t {~f) t-Zf ("»~)+..,!(,{ J)] 

I 'i'( ., IH*) - (_,..,+4-i{(....,li()fn->(X!)-;;f- f) H,_f-1,~ •H..,.. ~-

-r 0 'i H I H') J 
J i""1. ~ 

H'•J 
"-~· = rr S_,~, fdi( o'{H,_ H4:.._ (C29) 

[ -v.( _L -1.! ) )' ( ~ . f .-,., H + ff (""'(~) _ _,(XI)-" f f r2 j "" 11;(!-..,'(;y J)j 

( - 1 -I.! ))(II. ~ I u } H • ) - "'"'+4 f'J ( ""'IXJ---d;.J)- ,.f f ,_II,~ .;-,u-. •-

'I•H'H*'Z ..,.. f 1--.. ..,~ j 

11''' -'i _,l.l'n'li - 0 o th erwi se 
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We have checked this formula by inserting the monopole solution 

of ref. 17 with G' = I, f= L,//>6•8?;/L.), n(;t) =3m (;(') = 

~ (4-cO--')'f;,) for the field H1..1 ,fXJ::::(~)'4.~ Y'L"' . 
One recovers the tachyon with f-1 1 ~ 1 c:.-;.y4 1... We expect ne-

Hl $!;"4-f U} 

gative values for the lowestHrr and 11'-b entries for a large 

variety of more general solutions. There is finally a contribu­

tion from Lt: Using 

[ A"'' /P.r 1 = - __,., lx,) d,· i5, +-""' (X) .r';* D, 1- (C30) 

the contribution to the mass matrix for i, j == 1. .. 4 is 

M I<) ~ Zrr ,S .. $ r d IS'" ( 14 · 1 . " 
1 

,·a ..,,..,j ,, ... ,. ... i ) .:t ? ot,,...,. d,,.,,. 
( C31) 

-'t 1,.. tl ) .,_. f "' (,..,. +I__,., tx,)! a;;...,-a;..,,. 
This contribution gives positive diagonal entries. As a conse-

quence, the mass matrix M(A} + M(l.J + M(6) 

occurs for vanishing expectation values of 
The masses for d; may be positive, whereas 

is diagonal. No mixing 

the scalar singlets si. 
the lowest Hj could be 

tachyons. 

How do expectation values Sj change this situation? There 

are additional contributions to the mass matrix for H;" from 

• -·sJJil • ~{ • "' "'J L, ~- z; ~ '}tS .f' 1/,1/, r:..[li_<.,._
1
n ][£,._.

1
'1-'s 

t+l,_ H: T-,. [ l?.,.bt- 6 1¢. ][t:_,__,., ¢,] 

+ 1-1, H: 7:,. [ E_,_+<-
1 
¢, l[ e.-,.-~, ¢, 1 

(C32) 

r /-1,_11! T-r [ li"+• +• 
1 

tj55 ][ E r~. -101 ~s ] J 
We use the relation 
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[ £C-tW'4£.tW~ ) r;3~ £¥-Wf.-~"'-'1- ~·. J 
· r b I' - i $ $. 'Zw: c M: C w,- · · 
{ ~ly4\1\13 f-A,-£3 f:tv,q.!,.~Cs-W,s-::, JV..tW'i £~,-£1 A 'f II l (CJ3) 

+ l ~ 4/.w11 6c,1 -"" ;;;"'1 £...,W-t- tr"'f-· .. - t'£w:tw;.£c .... ,-4 t;1 JV3 £".,~ Cr-Jo1- •. · 

t-t. hw4 J.V,rc:S'£.,1 -Cs·'i3 k/lt.r; v~Ct.W.t.- l. hw..tws-dcl-1 -cr~~ !.y~£ .... ~ .. , 
+ • 

to calculate the commutators 

[r: -"]=-;;..sr -t+G.) rs f3.Z, .., +--t+"3+~+-s-+-"-

+..:L s"r f3i ~ -4-r4-.Z, -b,-,q; 

r.Ls'.!...(r +-r' ~r ) m 3 rf -~ .-~J-.J-9--S'+S" -.t-3+-3-r~s- -.t.-3.+?. ~+'+ 

~.Ls'.!..(f' I' r (C34) m If !(; -·1+-t-.t.-3+1 + --1+4-.Z-Y.f~r -4+-t-.l-r~s-

+ G -1.-n. -t. +' + r!..z -i~-+Y-~+6 -r I:.;. -s-+s--~+1. ) 

=- ~ s r m .., +4+3 -rY.+"r ..... ~ 

+ i $: D-;_ + !z- s; (D., - ~ ) -f s; (;)., + D;, .-12' 73; ) 

if +<-•(, I (A 1 = :!._ s ... I' 
~ 4 -""-J-Y..-s--6 

4 "H - s~ ' f3i -4+"--f..j-Z,-6+{. 

~i.. s" .:!...(!' tP .,.r ) f3i, 3 13 +z~+tr-s~s- +~-3+'3-s-+s- +J.--3+l-t,...,.V. 

.,. .L sv .:!- (r +~" +~" m If. fi:" _ _,,..,+.t -3+3 _., .. .-r+:t-¥+1f _..,..,...,+l.-s--~-s-

(C35) 

-r -r -
+-~-3+'3-6+' +-}.,-lfrlr-~+€. r:.:z~+r-6+-f. ) 
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= 4 11' (' 
fii. s., _,.,-3.-'1--$-..,., 

_ · ~ '""' t i If" · ....... r ~ i ¥- -t ~t ""t 
1 s~ D.,. + r>: s, ( [)4 - l5/ )-;;s;{l?, -~-v~ -rr D, ) ( c35 l 

[e.,_,_.,, ¢sJ ""-[E_zr.,, ~,]r 

[ E-z-,_
1 

¢s] ~ - [E.,.zr¥> 1 ¢,] t-
(C36) 

For the evaluation of the traces one uses (C21) 
the trace is an 50(12) singlet and, therefore, 

and the fact that 

{~.) '[:;.r 
£tW, f;_W,t. .•• 

r:(·::~ ~ 
€.,k4C..t,~ # .. 

r:.r:-:.) ~ 
c...~ ci' "'1 .•. 

=Fo 

only if for each weight Wi the sum over all t;i. under the trace 

vanishes. One finds 

7:r [ E-,~·~ rPs ][E.,..~- -.;1 ¢,] = 1-r[E.;.•·~/A J[ f[z-.: 1 ¢,] 

( ~ .. " ") :::: - z_ s.., s.., + sl. Sz. + .5 3 s3 + s<,<. s~ 
( c 3 7) 

f-v f E_ • .,.,,.;41[£:.._./,4] = 1~ [E.,_,. leA ][E.,.H.1tPs] =O(C38) 

One obtains the following contributions to the mass matrices 

Hl>) - ' -~ r r I ' 'i • ' • • I 'I"' - ._rrq a.., ... J"'"<Jf {s,>1+s,s,+s,s1 +S•s•) 'l,__tt,_ rr...,..,.,.., d (\ 

Hi<;) , __ ,_( (J ''t( , s • k .) ,,# ,,_,...,, -::..~,~ o.....,.,.,, ;p~;(Df s.,s4' +- lsl .... s3S1 -~-s~s" H4_,n4'""" 

f1.H·) = 0 otherwise ,, ... ,..,i 

(C39) 
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In contrast to Ml
1

) these contributions are positive and the 

tachyons become stable for large enough s/'s1 . At this point 

there is still no mixing. 

Mixing between different doublets is induced by the term 

L = - 3.__ a f d'« 6 '5"~ 
1 zr;; o " 

· { ~~'1' T:r- Ula~+; ¢, J( ¢_/ -r,i'id'l ¢-t"'f / 4
[A"f

1 
cPot]) (C40) 

-t:bef(-i'}') r:;. [Aof_, cPs](-¢;"' f -<i dr¢>-r •j S'-'I,.[A~, cfo1 J J 

We integrate over 'f and obtain for 1 . . . 4 

H"1 __ irr-J z 
i6m,im(. - ~~ --nt; +--nt6 +...;;::;4. +1" c f dx_ 6"' · 

{ 
14, li) - .. ~t ~ ( ~t] 

· 5' d;,..,, ;-(,.,,.,.~--.t~J)o(;_,,j/-14_,..,, T-r Di [~ ... , s~S~+~ S~ 

M"' i rr - S - r d '-(. ~"""-,·m'ls-- = - -r;:- ~ -~i ""~~ +.-.r~ -4) 0 J i( 6 . 

[ 
14, # ) - .* .,. · f c(,,.,. - ( ~i +- q ~lx,J)cl,..,, J H, _ _,., 

1 
d I s-

( c 4 1 ) 

"'"vt ""' *" "'+ T-r "D; [ E -2.-•; s~ 5.1< ~ s~ S~ ] 

"' M' ~·r#'tr..l"1"'lt· = (11:" )" '",_,,·..wt,. 
I>) ( (1) )"" 

f1s-t' -tr~,· = f1 is----rt'.....,c 
~ 

Here we use inlt = ITi_,, -iil-1 , m;., -lii2 for 
(s:, s;, s;), respectively. Employing 

(C36) and 

S1 , S.,. , ( Sl., 53 , S"'") or 
the commutators (C34) to 

l-.r b,. [ Ehu., $. 1 ~ 1-.r 75; [ E:±z±61 S/] = o (C42) 

one finds the following mixing terms in the mass matrix: 
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~-~~" - - b - r "' A,,.,...~Af'ft.- 7T~ _,.,...,.,_,+..-tt.-.....-z2-t--t,o tf;( G 

[ '4'' ~l (''s') · S' ct4_,
4 

r(/l??_,rr~~·-t~x))t'(,_,.., H..,-m
6 

s3 -ff: ~ 

H 1') - - - S -
Z6,#<'12..nt6- !T;j -.-"~~+-....,.,,-'""":.+--f1 o J t?{ I( co" . 

[ 
1/, ~ J ( - ~ ] ( # I 5 ~) · f •dz~, -r ""~ +;j""'ll(l)c/.,...,, H~,.,.,6 s3 +r.t 'f 

H l>) = _ !T'I r _ 1 .J ~~ 
3'""1

3
_..,..,, ~ O-..-H?3 .r~,--~~+-11 o ) M;(v 

L- liot'' - ~ ,. · f 3....,
3 

r ( ...,.., .,. :J_..,I;(l)cf3~, 1 H4...,~ 5'" 

11 13) f2 - s fd ?. 
lf&.-;lf;m' ""' 2 lT 'j -....-..s--+---..6 -~ +-4; 0 I( 0 . 

[
II' '1 - '1 K · 5' •c~ .. ...,,_ +r-.. --~-rx,!Jd~.,.,. H,...,. s<-

H o! - J f :e. 
4 s-..-_,_,r- = -IT'} -..-,"+_..,s-,....;:;;-~.--t 1 t? dl( r5 ' (C43) 

·[ '4 ¥ ) - " 1 H" ( I ) 5' ,x,,..,, - ( -., +- ~-..{?(!)cf~~, z,--., s3 -n; s._ 

h 131 -
LS""A"l'l..t~., - TT(j 6_~<.-.,..~S'.,._.;;;< --1/ o 

L f d?( 6" . 

. [ !/, ' ) - • ] "' ( s _L ) " • ~- - ( __,.,~ + ".....,l?f>)cl.,..., Hz__, J + rr:: s._ J ;: d ~ I !" 

,.tn ~ r ~ n ~-TT-o - ??'f6 Js-..?"7J~f' '} -"""'?J'f-""?s-T--..,<,--1/ 0 /( . 

-;i /() ""],. · L r c1'3...,, - t ...,, +-f·•·.r)( >)~...,3 H2., ---,- st-

1-/JI _ J 2 

~~n>?"""h1s- ::= {j} lT tj ~y.+~s-+--"1z-"~/ o f d1 D . 

[ li ;/- ) - *" ]I-!..,. · f d,...,,. -(.-._-+-:Jn-.o(;(J)d.,_,• <,-~,- S.z. 
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The next term is 

4 - r ..1< ~ 
L =--" J"' «~. ,_ ZIT o o 

{'""t"''l' Tr [A'",_
1 

1,15'"]{)>
1"-d/A -tl"d,¢5 -r ~U1sr,<Ps]) (c44J 

+ '"1"-'r 0 [4<?1-~ r/'-r ]{-rv. J;r¢, -r 1 drcPs ,_ ff Ulsr1 ¢, J)} 
One obtains for i = 1 ... 4, k 2, 3, 4: 

{1 {;) . =-!JI_-,f, - 2 , t.-;.--.~ rz ';! -"""t' +-~, -~~ +, t> r ax o fl...,...., • I • 

d:~, h- [ E_,_.,..., 1)/J( f~ s~' s:+-d4-f~1x,J)s: ~+) 

1>1 -
His-.-,;-,r _. lrra$ _ (d •!i" ·(C45J r;; (/ --; + .......,s- t-...-r,t -41 0 i( rs- ~-41101; 

7:;- [ &:...,_,-61 -;,+](~lis~ 5.;_ + ~~ -r.-.(x>Jst .\) " ol_. ·---·, 
H t"J = 

6t',;»fb__,l. 

(!f) >It 
11 

t&.--r,"--rtf. 

Hn·l41rh'l1/ 
(II) 4' 

H,-5'-,-~..,-

We evaluate the commutators 

"""t { ...._, r' ......... ........ 
[E_,_.., v, ] ~- rr:: 53 +- T ( S, + T,_) 

"""f - I ,..., l. """ + ..::::::, 
[ ~::-~+• 1 t;, J - = S1 .,. _ r s~ '< ) ',. ,.. 

""Vt . ........ ...... 
[E_<._, ])

3
] = ff( 5~-T,_) 

""'-'t ........... 
[E_l.+IP; by]= -t 5.,_ 

(C46) 
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c- ~t , ~t . ~t ~t 
c_,__61 1>~ ] = - rz 53 .,. ~ ( s~ .,. -,;_ ) 

[ ~f -E-1.-~; !i._ ] - _, st .,_.i(st+-!t) 
fJ; 3 2..- ft. -t. 

[ ~f] - - J_ ( ?' t- ~ t-) 
E-Z-tD; 1>3 - r:;; I< '~ 

[ "'f]-[;'_,__-,;I 7)¥ -
. s~ t 

I z 

From this we read 

I•J - - - ~ - f < " /1.,(.._,"_,"- TT9- _ _,..,.,.'"'"_.....,z.+41 o d,..fC fl.,.....,, d.,_,.., 

· [ fv.( s; ;_Its{')+-{.;:;;, -f"'tXI){ si"- ft s: J] 

t•) -
Hz.,~_,,- TT~ b_.-nt,t.+-.-,"--H?~-r.-(1~ )di(\'5""""<-H..,__,0ofz:.v. 

{I"" ( s{' _,. (,; s: ')t-(~ -f'"'i;p){ s; _,. ;,_. s; J] 
(9) 

H 3~ .... ,-. = lT~ ~-~! +---t. _..,;;;.it t-..fl 0 r 2 II' otx, ~-~..,_. or3-., · 

[ 0 ¥) (- - ) "] · f' s.. +- ""'• -'}"' ()(J s._ 

H I•) - - - ( 2 if 

'-6 -., .... - R rr'J :;_~.-~--.-~ .,."," ylx<> ;z;~or. ... , 

· [ S' 'i s: 1 .,.. t ..;:;,< -~ ..... txJ) si ] 

H 19
' - - J (d ' H" " -ts-~..-r- -rr~ -"""1.,+--ts-+;;;;z-"'lo oZ" 6" z,---s- p/1-_, 

[ f 1i ( s/ - if- s/) + ( .;:;;, - 'j~l;fl)l 53 - .4 s,.. ) J 
H 1'1 - t 2. .. " = rra. o - fc(:rrS H d 

h5""'"?~""'15- (} -"""".z+-..,...,r~z-4t If' )' /{ .z..--.s- .?..-....,-' 

[ ~{) <s,i) (-- )( _L .l · f' 53 <- fi: ,._ + "'"'< -;J~Ii'/J 53 + r.;;S•)J 

(C46) 

(C47) 
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HN) = -7T~ 
3S""""""'!441S"" £'_~3+-.--s-r;;;;,,--11 0 r d~ ~z ~~'""r ~:J 

[ l,/'i s,_' t- ( ~ -§-.li',.!) S._] 
( C4 7) 

H (O} 

~s-,..,..,~" .-,~ 

- b ( < K II' 
= (£ lT '} -_,.,v- +""'1:; -r_;;fl --1) 0 J br';r6 fl.~.,p-.!" of,..,.,~ 

L-16_)(-- )] · '? s., ,. ""'~ -:J~tx.J s.._ 

We observe that the structure of the mixing terms from Ml
4

J is 

similar to M
13

J except for a different X dependence of the in­

tegrands. 

Finally, the contribution Lr from the scalar potential ge­

nerates mass terms for the doublets dt which are proportional to 

an even power of s4 . Mixings can only be induced if the quantum 
• numbers of the operator di d1 appear in some even polynomial of S-4. 

The exact form of these mixings, which depends on details of V(~), 

is not important in our context. 



Table 2 Electrically neutral colour singlets in 792 

__ -'1__2 2 ~ _l_ ~ l ~ YB-L S0(10)xU(1) 0 
s 1 1 1 1 1 o o -1 2 126 0 

SU(4)C x SU(2)L X SU(2)R SU( 5 ) 

(10, 1,3) 

s2 o o o o o o o o 210 1 

'3 0 0 0 0 0 1 0 0 0 2101 

'4 0 0 0 0 0 0 0 0 2101 

d1 0 -1 0 0 0 0 -1/2 1/2 0 1260 

ct 2 o -1 o o o o -1/2 1/2 o Tlb
0 

d3 0 -1 0 0 0 0 -1/2 1/2 0 1200 

d4 0 -1 0 0 0 0 -1/2 1/2 0 1200 

t1 -1 -1 -1 -1 0 0 -2 1260 

( 1 , 1 , 1 ) 

( 15 , 1 , 1 ) 

( 15 , 1 , 3) 

( 15,2, 2) 

( 15,2, 2) 

( 15 , 2, 2) 

( 1, 2, 2) 

( 10,3, 1) 

( 15,3, 1) 

1,24,75 

1,24,75 

1,24,75 

45 

5 

5. 45 

5, 4 5 

T5" 

24 t 2 o o o o o o o o 210 1 -------------'-- -----------

Table 1 Abel ian quantum numbers q and I for chiral fermions 

a)n=3,m=p=l 

--j-t_'_ ~ _c_'_ ~ _u_'_ ~ _b_'_ ~ _s_'_ £ _d_'_ £ _T_'_ £ _u_'_ ~ _e_'_ ~~ 
I 0 0 -1/2 -1/2 1/2 1/2 0 1 -1/2 0 1/2 -1 1 0 0 -1/2 -1 1/2 

q J-1/2 -1/2 1/2 1/2. 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 -1/2 -1/2 -1/2 1/2 -1/2 1/21 
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

b)n=4,m=p=2 

___ a_'_~_t_'_~_c_'_~_u_'_~_z_' __ b_' __ s_' __ d_'_~£~~ 
0 0 -1 -1 0 0 1 0 -1 0 0 -1 0 1 

_q_-1/2-1/2~~~2~~-1/2~~~-1/2~~~ 

c c c c c --1 01 02 0 3 04 05 E1 E2 E3 E4 Es C!c e 
-- -- -- -- -- -- -- -- -- -- -- -- --

! 2 1 0 -1 -2 2 1 0 -1 -2 0 0 ' 

q -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2l -- -- -- -- -- -- -- -- -- -- -- -- --
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Table 3 continued 

--~ _H_2 __ H_3_ ~-H_4 __ H_5 __ H_6_ _I_3_L _I_3_R _v B_-_L _o __ s_t_a_t_e ______ l s u ( 3 ) c X s u ( 2) L rep 

XI -1 0 -1 0 0 0 1/2 I/2 -2/3 2/3 E-1,-3 II (3,2) 

-1 0 0 -1 0 0 1/2 1/2 -2/3 2/3 E_ 1 ,_ 4 

-I 0 0 0 -I 0 1/2 I/2 -2/3 2/3 E-I,- 5 

0 -I -1 0 0 0 -1/2 1/2 -2/3 -1/3 E-Z,-J 

0 -1 0 -1 0 0 -1/2 1/2 -2/3 -1/3 E_ 2 ,_ 4 

0 -I 0 0 -1 0 -1/2 1/2 -2/3 -1/3 E_
2 

__ 
5 

--~--------------------------~--~~~~------~~----~ -
0 1 -1 0 0 0 I/2 -1/2 -2/3 -I/3 E+Z,- 3 (3,2) 

0 1 0 -1 0 0 1/2 -1/2 -2/3 -1/3 E+Z,- 4 

0 1 0 0 -1 0 1/2 -1/2 -2/3 -1/3 E+z,- 5 

I 0 -1 0 0 

1 0 0 -1 0 

0 -1/2 -1/2 -2/3 -4/3 E+l,- 3 

0 -1/2 -1/2 -2/3 -4/3 E+l,- 4 

1 o o ___ o __ -_I __ o __ -_I_;_z_-_I_;_2_-_z;_3_-_4~/-3rE~+~l~,~-~5 _____ -r; 
~~---~-----0--0·~ 0 0 1 1/2 1/2 0 1 E_

1
,+

6 
(1,2) 

~1_ _ o__ -_I ___ o __ o ____ o __ _::1 __ -~1._1 ~z _I._1_:2:____::o __ _:o+E-'_'-'2~+:.tcfic_ ____ ---11--------l 
H~ 0 1 0 0 0 1 1/2 -1/2 0 0 E+Z,+fi (1,2) 

_2_ _1_ __o ___ o ___ o ___ o_ --~~ _-1_1_1 _-1_1_1 _o __ -_1 __ E"'+ ,_1 ''-'+'-"6'-----------' _______ _l_ __ 

Table 3 Quantum numbers for the adjoint representation 66 of S0(12). 

States labelled withE c"'""'"C-(""~ are complex. Their complex conjugate states have 

opposite quantum numbers and all labels cw replaced by -t:.w . They are not listed 

separately. 

Po- Hz H3 -- ----
uq I o o o 

H Y B L Q I state I SU(3) xSU(2) rep I 6 3R - c L ---- -----1 
0 0 0 0 0 0 0 H6 ( I , 1) 

w+ ! 
L -1 1 0 0 0 01 0 0 IIE-1,+2 ( 1. 3) 

w3L 0 0 0 0 0 0 0 0 0 0 I//2(Hl-H2) 

w+ 
R -1 -1 0 0 0 0 0 1 0 1 E-1,-2 ( I , 1) 

w3R 0 0 0 0 0 0 0 0 0 0 l//2(H 1+Hz) ( 1 • 1) 

u 0 0 0 
;-Lr -~···---·-·--· 

0 0 -1 

0 0 0 0 0 0 0 l/IJ(H 3 +H 4 +H 5 ) ( 1 , I ) 

I 0 0 0 0 0 0 E-3,+4 ( 8 ,I) 

0 0 - 1 0 1 0 0 0 0 0 E-3,+5 

0 0 0 -1 1 0 0 0 0 0 E-4,+5 

0 0 0 0 0 0 0 0 0 0 -l/17(H 3-H 4 ) 

0 0 0 0 0 0 0 0 0 0 -l/lb(H 3+H 4-2H 5 )_ 

c 0 0 0 I 1 0 0 0 4/3 2/3 E+4,+5 ( 3. 1 ) 

0 0 1 0 1 0 0 0 4/3 2/3 E+5,+3 

0 0 1 0 0 0 0 4/3 2/3 E+3,+4 
--
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Footnote 

Fl) This requirement was not made in ref. 18 where we have only 

been interested in mass eigenvalues. For a discussion of weak 

eigenstates the role of s' and d' should be interchanged in 

table 3 and equs. (71) and (72) of this earlier paper. 

F2) For a very large top quark mass we may release the bound on 

(Mu) 12 and introduce a higher bound A' which is about an or­

der of magnitude smaller than mt. 

F3) The author thanks H. Bijnens for pointing out this possibili­

ty. 

F4) The assumption s 2 < s 1 is not necessary. For equal order of 

magnitude for s 2 and s 1 both entries ct 12 and ct 11 appear in 

the low energy mass matrices with equal weight . 

F5) There is another possibility where H1 mixes with (H~ 1 r for 

m2 = 2. 

F6) It may be possible that these restrictions reflect themselves 

in terms of conserved four dimensional discrete symmetries or 

additional effective global symmetries in the scalar sector. 

F?) In addition, massless scalars due to Betti numbers are only 

possible if the full scalar mass operator only involves the 

laplacian 17 ). In generic theories, including string theories, 

we do not expect this to be the case. 
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Fermion mass contribution from doublet mixing 
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Fermion mass contribution from mixing with superheavy 
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