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Abstract:

A systematic discussion of the structure of fermion mass
matrices in terms of quantum numbers is presented. Small ratios
between fermicn masses and small mixing angles are related to a
fine structure of scales arcund the unificaticn scale. We argue
that in higher dimensional models all small fermion masses
should be explained from symmetry considerations since ng free
small Yukawa couplings are available. This leads to a scanning
procedure selecting higher dimensional models consistent with
realistic fermion mass patterns.

We present a six dimensional model admitting "compaciifica-
tions" with only SU(3}C X SU(2)L X U(l)Y gauge symmetry, a va-
nishing cosmological constant and three generations of quarks
and Tepfens, The field equations have solutions with a gauge
hierarchy for weak symmetry breaking for a large range of model
parameters without the need of fine tuning. The weak scale Mw
is a free integration constant and the mechanism determining its
order of magnitude is not yet identified. These solutions have
a good chance to be classically stable. For one particular solu-
tion the Targest fermion mass is the-top quark mass which is of
the same order as Mw' At the next level the fermion masses my
m and m. are supressed by a small ratio of symmetry breaking
scales y. For the mixing between the second and third generaticn
one finds 6,5 = mb/mt = v. The relation mb(M) = mT(M)(]+0(Y)) is

predicted. Corrections of order v? induce masses for the strange
quark and the muon with the relation mS(M) = 1/3 m (M), This re-
produces the gualitative order of magnitude ms/mb p mC/mt. Un-
fortunately this particular solution fails by predicting maxi-
mal Cabibbo mixing and 8,5 =~ y. The model can be interpretad as
a subgroup analysis for E3 x Eg superstrings.

We also give a systematic discussion of higher dimensional
scalar fields in non trivial representations of the gauge group.
We describe the higher dimensional Higgs effect which can lead
to a stabilization of the ground state.



1. Introduction

Models in more than four space-time dimensionsl) have at-
tracted much interest as candidates for a unified description
of mature. However, a realistic model is still missing so far,
To gain confidence that higher dimensional theories really
work, we would like to have at Jeast one model which satisfac-
torily reproduces the observed low energy physics. We need the
existence proof for some prototype models comparable to the
SU{5Y or SO(10} models for the idea of grand unificationz).
in recent years, higher dimensional models have made several
steps towards such a realistic model: We have understood the

3) Higher dimensio-

appearance of non abelian gauge symmetries
nal solutions with “spontaneous compactification” (solutions
with small characteristic length scale of internal space and
four dimensional Poincarg symmetry P,) have first been discovered
in higher dimensional gauge theoriesq) and later in pure gravity

using higher derivative termss) or nan-compact internal spaceﬁ).

Classical stability was estab]ished7) for some solutiens with
spontaneous compactification. This opened the way for a rea-
listic Kaluza-Klein cosmology with a Friedmann universe for the
late history of the universes) The inflationary univers may
griginate from a higher dimensional wor]dg) Another crucial
development adressed the probiem of chiral fermionslo) The
number 0{16?;;31 generations in four dimensions was related to

3,7) in higher dimensional gauge theories and the
14,12,15)

an index of internal space. Massless fermions have first

beeh foundl
describing quarks and leptons arouse in
) have be-

first models
this context. Ten dimensiconal superstring theories16
come candidates for a unification of all forces.

What are the next problems we have to solve for realistic
model building? We have to reproduce the hierarchies cf masses
and mixing angles for quarks and leptons. This is a very re-
strictive requirement for higher dimensional models since they
do not have free small Yukawa couplings and are therefore ra-
ther predictive. First attempts in this direction have already
been madely’lg’lgj. The second probiem concerns the smail scale
of weak symmetry breaking. (In the context of an existence
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nroof we anly need to establish the existence of solutions

with a small scale and may postpone the naturalness question

of the gauge hierarchy problem. This is similar to the cosmo-
logical constant.) So far this problem has mainlty been ad-

20). Both
problems are related to an understanding of the origin and
couplings of the low energy weak Higgs doublet, Finally we are
still missing compactifications where the low energy gauge group
is SU(3)C X SU(2)L X U{l)Y without further gauge symmetries.
Although additional U(l) gauge symmetries are not excluded

dressed in the centext of supersymmetric sclutions

experimentally, their symmetry breaking at low energies leads

to several thecretical problems. (Supersymmetric compactifi-
cations have the additional problem to explain low energy ba-

ryan number conservation, absence of strangeness vieolating neutral
currents etc.). There are cther problems to be solved for a
realistic model, but we think that the next most crucial step
concerns the understanding of the Higgs doublet.

In this paper we describe a model which admits solutions
with only SU(B)C X SU(Z)L b U(l)Y symmetry, vanishing four
dimensional cosmological constant, an arbitrarily small scale
of weak symmetry breaking and good chances to be classically
stable. This is the anomaly freeZI) six dimensional S0(12} mo-
de115’17’18).

for quarks and leptons for various sgiutions. Although no com-

We determine the structure of the mass matrices

pletely realistic pattern is found so far, we discuss one par-
ticular soluticn which reproduces many characteristic features
of the observed fermion mass matrices. [t explains the hierar-
chy of masses My >> My Mo, M >> Wy mU Br oMy My, My and
predicts a mixing angle between the second and third genera-
tign in the right order of magnitude as well as the relation
mb(Mc) = mt(MC) and the order of magnitude mS/mb = mC/mt. Un-
fortunately, the mixing angles for the first generation come
out too large for this particular solution.



The main topic of this paper is a systematic discussion
of the structure of fermion mass matrices in higher dimensio-
nal theories. We want to understand the observed small ratios
of fermion masses and the smallness of mixing angles between
different generations. (Ye do not discuss CP vielating phases
in this paper.) We develop criteria uniguely based on symme-
try properties which determine if a given sclution can repro-
duce the observed pattern or not.

In four dimensicns Yukawa couplings are free parameters.
The fermicn mass matrices can easily be reproduced but there
is very little predictivity. Higher dimensional theories pre-
dict the Yukawa couplings after dimensional reduction. They
are typically of the order of the gauge coupling unless they
vanish because of some symmetry or topological reason. This
makes these theories much more predictive and it is not easy
to reproduce the observed hierarchies of fermion masses and
mixings. We propose that the structure of the fermion mass
matrices is entirely determined by their quantum numbers with
respect to symmetries at the unification scale. We assume that
the symmetry G left unbroken at the unification scale M {the
largest mass scale of the model) is larger than SU(3)C b SU(Z)L
X U(l}y X gen,. There should be additicnal continuous or dis-
crete symmetries. These symmetries should be spontaneously
broken at scales M,, M,.. somewhat below M so that the low
energy gauge group is only SU(3)C X SU(E)L X U(I)Y. {Ratios
Mi/M =~ 1/4 may sometimes be sufficient.) We call this a fine
structure of scales at the unification scale since mass levels
which are degenerate in the limit of unbroken G split by scales
Mi’ small compared to the characteristic level splitting M. We
propose that this fine structure at the unification scale is
responsible for the cohserved structure in fermion mass matri-
ces. Small ratios of cuark and lepton masses are induced by
various powers of Mi/M' The appearance of a fine structure may
gither be directly related to small quantities of D dimensional
internal space like 1/D, the ratio of "radius" to volume LD/V,
inverse "monopole numbers” 1/N etc, or it may result from geo-
metric properties ("the almocst round sphere”) of particular
solutions.

How is a fine structure reflected in the fermicn mass ma-
trices? The different quarks and leptons in general have dif-
ferent quantum numbers with respect to G, The various fermion
bilinears appearing as entries in mass matrices must there-
fore couple to colour singlet and electrically neutral compo-
nents of scalars in SU(Z)L doublets which have different quan-
tum numbers with respect te G. The appearance of many scalar
doublets is very natural in higher dimensional theories, Usu-
ally all scalars which can couple to chiral quarks and lep-
tons are contained in the harmonic expansion of bosonic fields
17’18’19). Their Yu-
kawa couplings are typically all of the order of the gauge
coupling g. We assume that there is only one low energy Higgs

uniess there is some topological restricticn

doublet which must be some linear combination of those various
doublets. The typical mass for the other doublets is the uni-
fication scale M. In the Timit of unbroken G, doublets with
different G quantum numbers cannot mix. Spontaneous symmetry
breaking induces mixings proporticnal to varicus powers of
Mi/M. If the low energy Higgs doublet ¢L has only a small ad-
mixture Yy ¢f a given doublet di’ the vacuum expectation value
of di

<d1> SR

<o, (1.1)

will be small compared to <¢L> and this reflects itself in a
small entry to the fermion mass matrices.

As an illustration we give a possible realistic scenario
for three generations (this is not unique): The Tow energy
Higgs scalar should mainly consist of a leading doublet H,
which couples to the top quark but is forbidden by G symmetry
to couple to other quarks or charged leptons. There should be
another doublet which only couples tc bottom, tau and charm.
Its admixture to H; should be supressed by one or two powers
of My/M. The admixture of the doublet coupling to strange
quark and muon should be further supressed by higher powers



of M;/M or by & still smaller scale ratio M./¥. Finally, the
admixture for doublets coupling te the first generation should
onty be around 107 Corresponding supressions should hold for
the off diagonal matrix elements leading to mixing. What appears
as a small Yukawa coupling in the effective low energy theory
corresponds to a small admixture of the corresponding doubtet
to the "leading doublet”. This is in turn dictated by the fine
structure Mi/M! We note that our scenario could also be imple-
mented in a four dimensicnal framework, but this is not neces-
sary. In contrast, it seems almost unavoidable in higher dimen-
sions where no Yukawa coupliings of order 10"%49¢ avaiiable for
the electron. If the doublet coupling to the top quark is not
forbidden by symmetries or topology to couple to the electron
one ends with the prediction Mg = me!
In this paper we discuss two aspects of the fermion mass
problem in paralilel. In sections 3 and 7 we give a general
discription of the above mechanism and propose a systematic
procedure to select models with a realistic structure of fer-
mion mass matrices. In sections 2 and 6 we develop a given
model and try to push it to its Timits, This demonstrates the
predictivity of our apprecach. It also serves as an illustration
that our mechanism has good prospects to produce realistic fer-
mion masses using only few and relatively modest scale ratios
Mi/M.

In section 2 we discuss two particular solutions of the six
dimensional S0{12) mcdel with a scalar in the fifth rank anti-
symmetric tensor representation. They lead to three and four
generations of quarks and leptons, respectively. We establish
the quantum numbers for chiral guarks and leptons and for the
various doublets in the harmonic expansion with respect to
symmetries beyond SU(B)C X SU(2)L b U(l)v. Such symmetries are
subgroups of $0{12) 1ike the abelian symmetries U(l)R, U(I)B_L
or U(1)_ or isometries on two dimensional internal space like
U(l)G. The fermion mass matrices My My and M, are then deter-
mined as functions of vacuum expectation values of the various

doublets <di>' Treating for a first approach the <di> as free

parameters, we show for the three generation sclution that there
exists a possible order of scales for <di> which leads to reali-
s MD and ML! This order of scales is almost
unique (except some ambiguity for the smallest lepton masses).

It is rather remarkable that this simpie model allows for reaii-
stic patterns at this stage since for many other models and so-

stic patterns for M

lutions no realistic order of scales for di exists at all.

In section 3 we give a systematic discussion which quantum
numbers can lead to realistic mass matrices. The quantum num-
bers of chiral fermions determine the gquantum numbers of the
various bilinears in entries of MU’ MD and ML. If two entries
have the same guantum numbers with respect to the symmetry G
at the unification scale, these entries will alsc have the same
order of magnitude., As our first necessary criterium for reali-
stic mass patterns we require that there must exist at least
one assignment of scales to entries with different G quantum
numbers so that vrealistic mass matrices are reproduced. A
systematic procedure starts with the heaviest fermions - top
guark and possible fermions of a fourth or higher generation.
The quantum numbers of the corresponding entries should net
appear anywhere else in MU, MD or ML. Then one assigns the
next scale te bilinears coupling to bottom, tau and charm and
so on. An each step one has to check if the doublets needed
to generate masses do not couple to some other entries in the
fermion mass matrices violating the observational upper bounds
on various diagonal and off-diagonal entries. Also the mixing
angles have to be generated in this procedure, We genera-
tise the procedure to the case where mirror fermions are pre-
sent. A systematic search for viable candidates can be done
on a computer, Only quantum numbers are needed as an input. If
a certain solution proves consistent with this first necessary
criterium, we end after the scanning with an assignement of
generation quantum numbers (Le, Ly etc.) to the variocus chiral



fermions. A necessary order of scales is established for the
doublets generating the various fermion masses and mixings and
upper bounds exist for the vacuum expectation values of all
other doublets coupling to quarks and leptons.

In section 6 we turn back to the particular three genera-
tion solution discussed in section 2. We study in detail the
mixing between the various doublets of the model. This requires
a calculation of the mass matrix for all scalar doublets. We
discuss how the problem of miximg for infinitely many four di-
mensional scalars with quantum numbers of the weak doublet can
be reduced to the diagonalization problem of a mass matrix for
a finite numbér of doublets. In appendix C we give explicit
expressions for the various contributions to the doublet mass
matrix for a general class of solutions with SU(3)C X SU(Z)L
X U{l)Y symmetry. Our main concern, however, are the symmetry
properties of this mass matrix and the appearance of various
powers M,/M describing the mixing. We show how expectation
values of SU(3)C X SU(Z)L) X U(l)Y singlets S, contained in
the six dimensional scalar indeed Tead to a mixing between the
doublet H,; coupling to the top quark and the doublet H, coupl-
ing to bottom, tau and charm. For suitable {rather generic)
model parameters this mixing is indeed supressed by a small
parameter vy = MZ/M2, In cur model the mixing angle hetween the
second and third generation turns cut to be of order vy as well,
leading to the successful qualitative relations

m m m
Ba3 = mb = mT = mc Y (1.2)
t t t

3

There are solutions with a particular direction in group space

D
or ML. There exist, however, additional contributions of order

They give mass to muon and strange guark with

for <Si> for which no ether terms of corder v appear 1in MU, M

2 .
Y in MD and ML'
the relation

m (M) (1.3)

10

Since m and m, are only of order v® one predices the qualita-
tive relation

=y (1.4)

Also, the mixing with superheavy fermions due to scalar axpec-
tation values gives small corrections to the relation

mb(MC) = mT(MC) (1.5)

Unfortunately the Cabibbo mixing comes out near unity and the
mixing angle between the first and third generation is of ar-
der ¥, Our simple model fails at this point.

Section 7 gives a systematic description which "chains"
of supression factors (M1./M)P appear for various entries in the
fermion mass matrices. Again these chains can be established
only in terms of quantum numbers with respect to §. Suppose
that the symmetry G is spontaneously broken by an operator 0,
with given 6 guantum numbers and an associated scale M,, Assume
further that weak symmetry breaking is given by a leading doub-
let H; in a given representation of G. If the fermion mass ma-
trix element corresponding to the bilinear ¢,y, gets a nonva-
nishing contribution from G symmetry breaking, there must exist
G-invariants

ooy Hy 0 Oy 400 0y (1.6)

involving a certain number of cperators 0,. If P is the minimal
number of operators needed to produce an invariant, the supres-
sion factor for the corresponding mass matrix entry is at least
(MI/M)P {compared to the top quark mass). Determination of P is
a group theoretical problem invelving an analysis of subgroups
of G, We call the sequence of fermion mass matrix entries su-
pressed by M;/M, (M,/M)? etc. the "chain of the operator 0,".
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The symmetry breaking effects of 0, can appear in various
chanels which can be represented graphically. We discuss ex-
plicitely doublet mixings and mixings involving the non-chi-

ral superheavy fermions from harmonic expansion. This leads

us to a second necessary criterium for realistic fermion mass
patterns: For models where an order of scales for fermion

mass entries with different G quantum numbers has been found
consistent with our first necessary criterium, there must

exist a choice of symmetry breaking operators G,, 0p... whose
“chains" can reproduce the required order of scales without
violating the observational upper bounds on other entries. We
again describe & systematic scanning procedure (which in prin-
ciple could be done by computer) using only G quantum numbers

as input. For a three generation model with heaviest top mass
the leading symmetry breaking operator 0, must induce a non-
vanishing bottom mass. One establishes which other fermion mass
entries are contained in the chain of 0, and checks if no upper
bounds are violated. If not all masses and mixings are generated
by the chain of 0, one needs a second operator 0, to produce

the largest entry which still needs to be generated and so on.
A1l operators Di should correspond to vacuum expectation values
of fields contained in the model. In generai, there will be only
a small number of 01 since G should break to SU{B)C X SU(Z)L

X U(I)Y
with both our necessary criteria need only to establish the re-
quired scales Mi for the operators 01 and the identification of
the leadirg doublet Hy, as the main component of the low energy
Higgs doublet. This ensures that all entries in fermion mass
matrices have an order of magnitude compatible with cbservaticn,
Quantitative fermion mass relations may also follow partly from
group theoretical considerations. Weexpect, however, that a
complete gquantitative prediciion of all fermion masses wiil in-
volve details of the model beyond the quantum number analysis

X geny, in a few steps. We note that models consistent

discussed in this paper.

12

Besides the discussion of fermion mass matrices and the
(not completely successful) attempt to give an existence proof
for a realistic higher dimensional model, we are concerned in
this paper with an investigation of effects of higher dimen-
sfonal scalar fields. So far, most of the attention in dis-
cussions of spontaneous compactification was drawn to the
graviton and gauge fields (plus certain antisymmetric tensors
in supersymmetric theories}. Many higher dimensional models
also contain scalar fields. This may be dictated by supersym-
metry. Scalars also arise in a field theory expansion of
'string thecries. Scalar fields necessarily appear if a higher
dimensional theory is not beiieved to be the "final" unified
theory. In this case they reflect effects of a unification in
still higher dimensions. For example, an embedding of the six
dimensional 50(12) model into the ten dimensional Egx E4 super-
string leads to six dimensional scalars in varicus representa-
tions of S0{12).

There is no reason why scalars in non-trivial representa-
tions of the gauge group should not acqguire vacuum expectation
values. In the six dimensional S0{12) medel scalar vacuum ex-
pectation values are needed for several purposes: They accom-
plish the symmetiry breaking of the gauge group to SU(E)C X SU(Z)L
X U(l)Y and can thereby stabilize the ground state. They give
superheavy masses to the right handed neutrinos which guaran-
tees that left handed neutrino masses are small enough22_25).
Scalars also provide the necessary freedom in the dynamics of
this model to allow for a gauge hierarchy in weak symmetry
breaking. Finally they are Eesponsible for the mixing of doub-
lets with different G quantum nuymbers and therefore needed for
realistic fermion mass patterns, To simplify the discussion we
concentrate on only one six dimensional scalar field in the
792 dimensional fifth rank antisymmetric tensor representation
of SU(L2). Introduction of additional scalars would not Tead
to important qualitative changes at the level of our discus-

sion.
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In section 4 we derive the field equaticns in the presence
of the 792 scalar for an ansatz with SU(S)C X SU(Z)L X U(l)Y
X U(l)a symmetry. (Algebraic properties nezeded for the discus-
sion of antisymmetric tensor representations of $0(12) are
collected in appendix A.) We establish the.existence of a ten
parameter family of Tocal solutions {with topology R®). Depend-
ing on the choice of the ten integration constants these solu-
tions will correspond to compact internal geometry or a non-
compact internal space once they are extended to the whole
range of validity of the coordinate system choosen. For non-
compact internal space the four dimensional cosmological con-
stant Ay is a free integration constant and no fine tuning of
mode]l parametgrs is needed to obtain A, = 0 6’26). Similariy
the scale of weak symmetry breaking can be considered as a

free integratiocn constant26)

and can be arbitrarily small for
a large range of model parameters without the need of fine
tuning. These solutions can be interpreted as spontaneous
symmetry breaking through a higher dimensional Higgs effect.
In contrast to the algebraic problem of finding symmetry
breaking minima of the scalar potential in four dimensions,
the higher dimensional Higgs effect requires to solve a
coupled system of nonlinear differential equations. This cor-
responds to the existence of infinitely many coupled four di-
mensional scalar modes. We also show that symmetry breaking
scales Mi somewhat smaller than the highest scale M of the
mode! can be obtained rather naturally.

In section 5 we discuss Yukawa couplings of the chiral
quarks and leptons to the various doublets contained in the
six dimensional scalar. These doublets will mix with the
doublets from the gauge bosons which play the role of the
"leading" doublet, In presence of singlet vacuum expectation
values from the six dimensional scalars the wave functions for
the chiral fermions are modified. This corresponds fo mixing

14

with the infinitely many superheavy fermions in the harmonic
expansion. We give explicit expressions for the various Yuka-
wa couplings in terms of integrals over wave functions in
appendix B. For the particular three generation solution of
section 2 some of the wave functions are related by G symme-
try. This Teads to group theoretical mass relatians mT(M)

= m, (M) and between m, and m which hold up to corrections

of order M1/M. For otr particular sclution we also have re-
laticons between m and my as well as between my and Mw' These
relations depend, however, on the particular form of the wave
function for a given solution,

We demonstrate in section § how scalar vacuum expectation
values can stabilize the ground state. The mechanism is under-
stood qualitatively in terms of the six dimensional Higgs ef-
fect. For vanishing scalar fields the harmonic expansion of
the six dimensional gauge bosons contains several tachyonsl7’27).
As in four dimensicns, scalar vacuum expecta®ion values induce
positive mass terms for the gauge fields. For large enough
scalar expectation values these contributions are dominant
and the corresponding mode is stabilized. In ocur model, a
gauge hierarchy for weak symmetry breaking can be realized in
the transition regicn between stability and instability. Since
the lTow energy Higgs doublet is a mixture between doublets in
various representations of G, none of these representations is.
massless by itself. We argue that cur mechanism inducing the
structure of fermion mass matrices through doublet mixing is
incompatible with the idea of a scalar doublet in a given re-
presentaticn of G remaining massless due to some topalogical’
reasons.

We conclude this paper in section 9 with a discussion of
a possible embedding of the six dimensional S0(12) model into
the ten dimensional EgxE,; model obtained from superstrings,
Indeed, the six dimensional SO0{12) model can be considered as
a subgroup analysis for the ten dimensional EgxE; model, The
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ten dimensional model can be formulated as some version of a
six dimensional S0{12) model with infinitely many modes, Qur
particular quantum number analysis for the structure of fer-
mion mass matrices in the six dimensional $0(12) model will
be relevant for the EgxEs superstring provided the ground
state after spontanegus compactification is in an apprepri-
ate S0(12) x geng-deformation class which will be specified
in more detail. {This does not require a topology M® x K" ar
M* x K? x K* or a compactification in steps 10 -~ 6 + 4

with different scales.)

16

2. Fermion Mass Matrices from a Six Dimensional 50(12) Model

To gain some intuition about typical problems in attempts
to construct realistic mass matrices from higher dimensions,
we will first discuss two simple examples. Both are related to
compactifications of a six dimensional 50(12} theory17’18). in
addition to six dimensional Einstein gravity and S0(12) gauge
fields this model contains a scalar in the 752 dimensional
fifth rank antisymmetric tensor representaticn of $0(12) and
two Majorana-Weyl spinors with opposite six dimensional heli-
city belonging to the inequivalent S0{12) spinor representa-
tions 32, and 32,, respectively. This model is anomaly free 2’21).
The chiral fermion content after dimensional reduction is cha-
racterized by three "monopole numbers" n, m and p 17) {(integers
with ntp even). The spectrum of chiral fermions has been calcu-
1atedl7) for solutians with geometry M"xS” and internal gauge
fields in a monopole configuration. Due to stability properties
of the chirality indexll) the content of chiral fermions is the
same for a large class of "neighbeouring” solutions, including

vacuum expectation values of the six dimensicnal scalar field.

gur first example has three chiral generaticons and is cha-
racterized by monopole numbers n = 3, m = p = 1. We c1assify17)
different guarks and leptons by the charge q of the abelian

subgroup in SO{12) commuting with SO(1C) and by the SU(Z)G "an-
gular momentum" for the spherically symmetric menopole solution

as (2£+1)q:

C C .
ups dps U, et 2y, H Ly,
_ (2.1)
[0 .
di, & © 32

There are additional chiral neutrinos which are not discussed
in this paper. A tentative labeling for generations according
to g and the third componant I of SU(2},-spin is given in
table 1. Since we are concerned with mass eigenvalues and
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mixings we require the fields t*, b' etc. to be weak eigen-
states, Quarks within the same doublet must therefore have
the same values of q and IFI).
antiguarks u®

The labeling for leptons and
and d© s arbitrary.

In our model there are several colourless SU(2)L doub-
let scalars with electrically neutral components. The low
energy Higgs doublet is a mixture of these fields. The 50{12)
gauge fields contain a 10 plet of the S0(10) subgroup with
charge q = £1. We denote the two-doublets in the 10 with q = 1
by H: and H:. Harmonic expansion of the internal components of
these gauge fields leads to four series of scalar deoublets HT,
HE, Hi, Ha. Only HY and Ht can have Yukawa couplings to the
chiral guarks and Jeptons. (These fields and their couplings
have been extensively discussed in ref. 18.}) The six dimen-
sional scatar in the fifth rank antisymmetric tensor repre-
sentatjon of S0(12) contains the S0{10) representations 126,
T76 and 120 with q = 0. The 126 and 120 contain four fields
dy, d2, ds, du with the quantum numbers of weak doublets
(compare table 2). We note that the doublets di and Hj are not
oniy distinguished by their different S0(10} transformation
properties, but also by a different abelian charge gq. Finally,
the six dimensional scalar alsc contains a 210 with g = 1,
There are doublets in the SU(4)C X SU(Z)L'x SU(2)R representa-
tions (10,2,2) + (T10,2,2) with weak hypercharge -3, -1 and +3,
+1, respectively. Even though the Y = +1 doublets among these
fields have the appropriate SU(3)C X SU{Z)L X U(l}Y quan tum
numbers to contribute to the Higgs doublet, these fields cannot
have Yukawa couplings te the chiral guarks and leptons as a
censequence of 50{10) symmetry and U(l)q symmetry., We will omit
them for the discussion of this section.

For the sphericaily symmetric meoncpole solutions the
SU(2)G representations appearing in the harmonic expansion of
the doyblets have "angular momentum"

18
A P O P I . (2.2)
with
) - 1 .-h,m
L 77
n m (2.3)

by = 1 - -
Hy, z2°72

. om
M, T 7

In this paper we go beyond spherical symmetry in internal space
and we discuss solutions with only internal abelian rotation
symmetry in additicn to SU(3)C X SU(2)L X U(l)Y gauge symme-
tries. We, therefore, classify the harmonic expansion accord-
ing to the third component I of SU(2)G spin, Forn = 3, m = p

= 1 the harmonic expansion of H, and H, contains only integer
I, while the expansion of di leads only tc half integer [,

It is straigthforward quantum nuymber analysis to write
down the allowed couplings between the scalar doublets Hj and
di and the chiral fermions. Omitting the explicit Yukawa coup-
lings for a moment, we can schematically write the mass matri-
ces MU’ MD and ML {for charge 2/3 quarks, charge -1/3 quarks
and charged leptons, respectively) as functions of vacuum ex-
pectation values Hj and di:

+’ < ! aoJ
<} s -
t H& 4 aL ¢ } “% ¢
- . # q ¥ * )
}1U = I QL@ ) (}& 4) , ( H: ) (2.4)

“u d;'/a ) (H: )4‘) (H;f )x
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d*’ i"/z,4 J (ofp %);/ {O/D %)*

.y /u) e)

*
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...f’ -¥
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Here we have indicated I by an upper index and we denote by
dU{dD,dL) the linear combination of d,, d5 and dy(d,, d; and
du) coupling to MU (MD,ML). To derive this mass pattern, we

use the fact that the states H,, Hs, dy, ds, di, dy have ¥ = 1
and can only couple to MU whereas the antiparticles with ¥ = -1
couple to MD and ML‘ The rest follows from I and g conservation
plus the observation that the 5 plet in TZE couples only to ¥,
whereas the 75 in 126 couples only to Mp. We note that the

choice of a basis d,, dz, d3 and dy for the doubiets contained
in the six dimensional scalar is scomewhat arbitrary. Wewill come

back to this point in section 5.

The non vanishing Yukawa couplings of the doublets Rj are
all of the same order as the four dimensional gauge coupling
918). Al11 Yukawa couplings of doublets di are proportional te
the six dimensional Yukawa coupling F. This is the anly free
parameter appearing in the mass matrices once the ground state
solution is known. In contrast to four dimensicnal unificatien,
f is not a whole matrix of coeuplings, but just one real parame-

ter. The model is, therefore,highly predictive! A realistic
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mass and mixing pattern with the observed hierarchy of masses
and small mixing angles is only possible if the vacuum expec-
tation values for different doublets have different scales.
This means that the Tow energy Higgs doublet must mainly con-
sist of only cne of the Hj or di with small admixtures of the
others. (We do not consider the case of several light Higgs
doublets with mass of the order of the Fermi scale.)

It is a necessary condition for a realistic fermion mass

matrix that some order of scales for doublet vacuum expecta-
tion values exists which reproduces the qualitative features

of all mass matrices. In our example the leading vacuum expec-
tation value {VEV) must be H, which only couples to the top
quark. The next to ieading VEV must induce the bottom mass and
we take it to be H3. (H§ would be equivalent up to a redefini-
tion of fields and guantum numbers, whereas the other candidate

H? is excluded since it would lead to a relationm = m_ = mb.)

The VEY H, alsc induces a mass of the tau Tepton aﬁd the charm
quark. Its contribution should be a few GeV. Next we need mix-
ing between the second and third generation of the order of a
few percent. This either requires d&lz of the same order as H:
or (dé/z)* of the order of a few hundred Me¥. The second alter-
native is excluded since (dé/z) alsc appears in MD in the co-
tumn for d' and would Tead to a down guark mass of a few hundred
MeV. The first choice can only work if the scale for dé/Z is
much smaller than the VEY dé/z . a few GeV (for example if only
d, has a VEV at this high scale). A VEV of a few hundred MeV is
now required to induce mg and mu. The only candidate ffg/gs
which does not Tead to unacceptable values for my is dD and
we also try d[af? to gen?rate m . We therefore interchange the
definition of s° and d° (u' and e'). The next step must induce
the relatively large Cabibbo angle by an off diagonal element of
about 30 MeV in M. The only candidate is das1/2 This VEV can
alsc account for my with the relatively successful relation
my/mg = sinzec. {A Cabibbo angle induced by (H3)*in My would

lead to a very high mass for mu.) The electron mass would be
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induced by the off diagonal cantribution of dilfz in M and
me/md = 0(10_1) requires for the entries in ML and MD

d[1/2 1 d61/2
~=377 < — —=377 (2.7}
dL 4 dD

{A11 our mass relations are predicted at the unification scale
and we have corrected lepton masses for their different renor-
malization compared to the guark masses.) Finally we need a
mass for the up quark either b_y-H;1 or by off diagonal ele-
ments HY {or both)

One sees that the order of scales for different VEYs is
rather constrained., In our example there is an almest unigue
possibility

AB O B 00 B OO
my =880 ) my =[oco] m =jeco](z8
00 E 0900 0D 0
Wwith central values
A > 20 GeV  (H))
3 o= 3 6ev  (Hi': 4%
¢ = 200 Mey (4737 o737 (2.9)
b o~ 30 mey  (a;}f%
£ o= 5Mev  (HPLa[ME

(For possible modifications for the Tower lepton masses compare
section 6.) The different scales differ by roughly an order of
magnitude, Instead of zeros there may be non-vanishing entries
bounded from above to avoid unacceptabliy large contributions

to masses or mixings:
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1/2. 172
RN TSN
177
dU s C
(2.10)
372 372
(432 a3 < o
HE < D (C)

(Particularly savere constraints come from the observed small-
ness of the mixing between the first and third generaticn and
the small first generation masses.) We conclude that in our
example there exists a possible order of VEVs with different
guantum numbers which could produce the mass and mixing pat-
tern of leptons and quarks!

In the 1imit of spherically symmetric monopole solutions
{and also for the generalized solutions of ref., 26) the diffe-
rent scalar doublets do not mix. Is it possible that vacuum
expectation values of scalar singliet fields induce such mix-
ings? In our model there are four SU(3)C % SU(Z)L X U(l)Y
singlets contained in the six dimensional scalar (compare
table 2): The three singlets S,, S; and 54 in 210, have
SU(4)C X SU(Z)L X SU(Z)R transformation properties {(1,1,1),
(15,1,1) and {15,1,3), respectively, and the singlet 5, in
126, transforms as (10,1,3). On the spherically symmetric mo-
nopole solution the harmonic expansion for the Si contains

"angular momenta" £ = \kil, X + 1 ... with
. _ 3
AS; = m 7 o]
(2.11)
_ 1
)\52,53,51. N 7"

In our example with n = 3, m = p = 1 the harmonic expansion
for all Si contains only states with half integer I. Let us
now assume that some 1inear combination of S., S3 and S,
with a given value I = I, and also §, with a fixed value [
= I, acquire vacuum expectation values. Since 5., Si3 and 5.

have q = 1, YB—L = 0, I3R = 0 whereas $; has quantum numbers



23

g =0, YB-L = 2, I3R = -1, & linear combination of the genera-
tors 1, q, YB—L and I3R corresponds tc an unbroken abelian sym-
metry U(l)a {in addition to weak hypercharge). The symmetry
SU(5) x U{l) x U(l)q x SU(E)G of the monopole solutions is bro-
ken to SU(S)C X SY(2Z) x U(l)y x U(l)a {unless the linear com-
biration of Sz, Sa and Sy is an SU(5) singlet}. We will consi-
der soluticns with U(I)a symmetry as a first step of spontan-
rnecus symmetry breaking and assume that U{l)q gets broken at

a somewhat lower scale,
We want to induce a mixing betwsen H, and (H3')* by this

first step of symmetry breaking. What are possible values for
I, and I.;? We write the abelian charge

4 = 1+ a(lgy -5 VY5 ) +bag (2.12)

The vacuum expectation values of S, and S, 3,4 are neutral un-
der U(i)a implying

1
o

I, +b
(2.13)
Il-Z_‘a = 0

As a consequence b is half integer and a = (2n+l}/4. To aliow
mixing betweeh H; and (H:')* these fields must have the same

charge § . {Nete that mixings between H, and H;' are not al~-

lowed by hypercharge conservation.) This reqguires

o o1 . _ _ 1
iy, - b+ 7a = q(Hzl)* = 1 b + 7 a (2.14)
and determines
1
Iz = -7 (2.15)

whereas I; remains undetermined. Which cther doublets can mix
with H, and (HZ‘)*? The charge § for the doublets di depends on
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the quantum number [ = Id of the harmonic expansion:
i, - L (2.16)

Independent of a,thé only fields which are allowed to mix with
Hi have Id = 1. Doublets di with other values of Id as wetl as
(H3) and HI™)}* can only mix with H, once U(l)ﬁ gets sponta-
neousty broken., This has the encouraging feature that a value
dblz of the same order as H:z' as reguired for sufficient mix-
ing of the third generation may indeed be generated at the
first step! On the other hand, a lTarge vaiue for dé/z and di/z
is not excluded by § conservation., If there is no other mecha-
nism to suppress these VEVs to the order of a few Mev {2.10)
the solution with n = 3, m = p = 1 would be ruled cut! We will

come back to this question in section 6.

For more than three generations or for additional mirror
fermions (which are chiral with respect to symmetries outside
SU(S)C X SU(Z)L x U(I)Y) the discussion becomes somewhat more
complicated. We give a four generation example with n = 4,

m =p =2, The spherically symmetric monopole solutions are
again SU({5) symmetric and the SU(Z)G X U(l)q guantum numbers
for chiral fermions are

UL dps Uy ep 0 3, v 1 g,
c .
df, e, L5 i (2.17)
. s
dL’ eL l

-1/2
We note the appearance of mirror particles df and e in this

case. Similarly, the lowest harmonics for doublets are

H2+ H 5]_ (218)
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so that both Hj and di have integer I for this case. We give

a tentative assignement fer the quantum numbers I and g to the
different generations in table 1. The fourth generation lepton
and quarks are denoted bye, a and z and the Tabeling for the
quarks of type d® and the leptons e remains to be specified.
As before, we write the schematic form for the mass matrices,

a’ "" C—j M)
< 4 o ~1
a} Hd' i du ] dU ' ﬁ(u
qo- 7.'.'” 0{U4 ’ ( Hz-z):l (-h{z—l)f , (H: )r {2.19}
v ¢ e -] +
N odl s, W,
“d du-*f ) (H:, );} (Hzf-l)}t} (/_/;z)f
A z’ b’ s’ 0/;
1 2 ¥
D, 57 H.z_zv , Loy )’l(d-b )F’(MD )
oc| s, H, (Y () T
MD = D;— se , HJ.,O , (0/0-()*/ [dbo )#’ (dp‘)l‘ (2.20}
pe\ st #T (A () (ofy )
- - ~fhy
di\ s, W (ds) (o) ()
£, £ &3 £y &5~
—g’ 5_,2, , S.—d ) P - ) s s ) s
' owr owT, H, AR
E (2.21)

-2 34 “3y#

H } <'td (0/1.4 )* / (O/z_o)“, (d’:f)”/{d" ) 4 (0{(' )
/u (d/:,)f ! (ﬁ{:)ﬁ‘z (dg_a)’, [dz,d)lf (m"e}f
N2 ), (AL (AT (2] (A7)
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Although we have a four generation example, the matrices
MD and ML are 5x5 matrices because of the mirror fermiens d°
and &. In consequence, singlet VEVs s appear in the mass ma-
trices in addition te the doublets. These singlets will couple
the mirror fermions to a linear combination of the chiral fer-
mions and both will be eliminated from the low energy spec-
trum. This process eliminates from the mass matrices the mir-
ror columns (or rows) with singiet entries and also a corre-
spohding number of rows {or columns) for those standard ferm-
ions which have the leading coupling to the mirrors. In a
first look on the model we may not know which standard ferm-
ions should be eliminated from the low energy spectrum. Never-
theless, we have to require that at least one choice of the
remaining low energy fermions and of scales of VEVs for the

. Higgs doublets leads to a realistic mass and mixing pattern!

Let us try an example where E, and DE are eliminated by
coupling to & and ac. The leading doublet VEVs should give
mass to two up-type quarks, one down-type quark and gne
charged lepton. There are three different possible combina-
tions: i) H, and H:® with a possible addition of dl; ii) dﬁ
and d&3 and either d[3 or d[zor di with a possible additien
of Hi; iii) df and déz and either dis or d[z or dE with a
possible addition of H;. No other fields are allgwed to ac-
quire a YEV at this scale. We emphasize that there is no need
that the mass pattern of the first three generations is re-
peated for the fourth generation. The guarks t and a could have
degenerate mass, there could be maximal mixing between the
third and fourth generation or the heaviest quark could have
charge - 1/3!

We will not pursue & systematic.discussion of possible mass
patterns for this four generation example, but only briefly dis-
cuss a scenario similar to our first example, where in a first
step of symmetry breaking some scalar S,,;,, with a definite
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value [ = 1 gets a VEV, We check from {(2.20) and (2.21) that

Ev and DS are indeed elmininated from the low energy spectrum.

We assume the leading doublet to be H:, There remains again
an unbroken symmetry U(l)a forbidding a mixing with H, for all
other doublets except Hz®, d}, d} and dj. The VEVs of Hi, Hz®
and dﬁ would give masses to a, z, o and t and induce mixing
between the third and fourthgeneration. Large values far dé
and di, however, would induce unacceptable terms in MD and ML
ahd this scenaric is ruted out unless other mechanisms forbid
the mixing between d!, dﬁ and H, at this stage. The masses my
and m. could be induced at a next step from d53 whereas the
Yor HEEL It

becomes apparent that a systematic procedure to check all the

charm gquark could get its mass from HZl, dﬁ, dﬂ
various possibilities for mass patterns would be useful.

Qur first two examples may be somewhat misleading since
they may suggest that it is generically possible to find some
order of scales for different VEVs which lead to a realistic
mass pattern, Many models, however, lead to unacceptable mass
patterns for all arbitrary assignments of scales for the dif-
ferent doublets!
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3. Generation and Mixing Pattern of Fermion Mass Matrices

It is the aim of this section to give conditions on the
gquantum numbers of chiral fermions necessary to produce a rea-
Tistic mass spectrum. Our approach is quite general, based oniy

on symmetries and not on detailed dynamics. It applies especial-

1y to higher dimensional models, but aiso to a wide class of
four dimensional unifications.

Our basic assumption states that there are no fundamental
small coupling constants responsible for the smallness of cer-
tain fermion masses like the electron mass. The hierarchy of
entries in the fermion mass matrices MU’ MD and ML is uniquely
explained by symmetries and the scales of their spontaneous
breaking. We will assume that the detailed dynamics may be re-
sponsible for factors of 3 or 5, but all mass ratios smaller
than 1/10 have to be explained by symmetries. (Of course, this
barder line is somewhat arbitrary.} Our assumption is almost
unavoidable in higher dimensional models with only one or twe
{or no!) free parameters in the coupling of fermions to bosons.
It does not hold in standard grand unification which allows
small Yukawa couplings and therefore has neither restrictions
nor predictivity for the small fermion masses.

This approach requires that at some unification scale M
the symmetries acting on quarks and leptons are larger than
SU(S)C X SU(Z)L % U(l)Y. {In higher dimensional models M could
be the scale ¢f spontaneous compactification given by the in-
verse characteristic length of internal space,) These symme-
tries may be an abelian or non-abelian lccal generation group,
embedding of SU(3}C x SU(Z) «x U(l)Y into larger groups like
SU(5), SC(10), E; or SU(4)C X SU(Z)L X SU(Z)R, additional dis-
crete symmetries, global Peccei-Quinn symmetries or some other
remnant of higher dimensional symmetries. Our basic assumption
implies that entries to the fermion mass matrices which are
not distinguished by quantum numbers of these additional sym-
metries will have the same order of magnitude.



At this Tevel we can distinguish between models which could
possibly lead to realistic mass patterns and models for which
all possible mass patterns are in contradiction to observation
by the following strategy:

1) Determine the guantum numbers of all chiral fermions
with respect to all additicnal symmeiries.

2) Calculate the quantum numbers of the bilinears appearing
in the mass matrices MU, MD and ML. For abelian symmetries the
charges of fermion bilinears are uniquely determined, whereas
for non-abelian symmetries the bilinears typically contain se-
veral representations.

3) Investigate if the model provides scalar fields with the
same quantum numbers as the fermion bilinears. [f there is no
scalar field with the quantum numbers of a given bilinear, set
the cerresponding entry to the mass matrices zerc. (There may,
however, be radiative corrections.) In higher dimensional models
possible quantum rumbers of scalars may be determined by direct
inspection of the harmonic expansion. Alterpatively, one may use
topological criteria: Under some conditions the chirality index
implies that certain fermions cannot get a mass or forbids cer-

tain mixingsls).

4) Label bilinear operators with different gquantum numbers
by X1, Xz2... Xi"’ Assign the same label xi to two operators
which have identical quantum numbers or are complex conjugate
to each other. (If a doublet di can couple to a bilinear in M,
its complex conjugate can couple to MD ar ML if quantum numbers
of the additional symmetries match. Note that by this procedure
we are not sensitive to phases so that CP violation has tc be

checked separately.)
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5) Look for arbitrary assignments of scales to Xi so that
realistic mass patterns can be produced. If this fails for all
possible assignments the medel is inconsistent with cur assump-
tion and should be excluded. If this search is successful we
are of course not guaranteed that the model really produces
realistic mass patterns. However, it fulfills our first neces-
sary criterion and can then be analyzed by the next set of con-
ditions on quantum numbers explained in secticn 7.

An ambigquity may arise in this systematic search if a
given fermion bilinear couples to several Xi. {This is possible
for non-abelian symmetries.) If those Xi belong tc the same
higher dimensional field the pattern of spontaneous symmetry
breaking may choose & direction in field space where the con-
tributions of the different Xi to a given entry in a mass ma-
trix cancel. In this case the cancellation has a group theore-
tical origin - some generalized Clebsch Gordan coefficient
vanishes, No fine tuning of parameters, which woulid be in con-
tradiction to our assumption, is needed for this cancellation.
There is no problem if the correspcnding X1 appear only in ocne
entry in the mass matrices - we just may use a collective label
X, If the same Xi appear in other entries of the mass matrices
with different linear combinations, we have to use different
colletive labels Tike X,;, Xpo, X ; for those linear combina-
tions which couple to different bilinears. The corresponding
fields, however, are in general not linearily independent. If
we find a viable scale assignment with XUj’ XDj and XLj treat-
ed as independent labels, we still have ta check if this assign-
ment is not in contradiction with the fact that XUj’ XDj and
ij are formed as different linear combinations of the same Xi'
(For our example we discuss this questien in section 5.)

What are our c¢riteria for realistic mass patterns? Let us
first discuss the three generation case: We ngte that there are
upper bounds on the order of magnitude for the different entries

in M M, and ML:

u» o
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A B ¢
My A B (3.1)
A B
B ¢
My B C (3.2)
B ¢
C
Moo: {8 CC (3.3)
D

with scales

few hundred GeV
few GeV¥

few hundred MeV
few ten MeV

(3.4)

o O W =
Hoo
[ < PR - TR = 1)

If these bounds are viclated, masses or mixings come cut too
larger). We note that the observed smallness of the mixing be-
tween the first and third generations puts severe bounds on the
entries (Mﬁ)‘a and (MD)la. We have assumed that all mixing angles,
including the Cabibbo-angie, are to be explained by symmetries.

In addition, the smallness of m, and m g requires
(MU)13 (MU)JI < DA

(MU)23 (MU)BZ = DB
(3.5)

(ML)lg (ML)gl < DC
(ML)ZS (ML)az £ D

We have only given a rough upper bound for the first generaticon
and one may be more severe restricting Mj;-entries by an upper
bound E * a few MeV. Qur bounds are rather conservative and one
could advocate more stringent bounds,

“the third to u', d', e' and simiTar for the rows and tcl, b
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For the matrices MU, MD and ML we have choosen a basis of
weak eigenstates already adapted to the generation pattern {the

first column refers to t', b', *', the second to c¢', s', u',
C

etc. We may have started cur investigation of bilinears in some
other basis of weak eigenstates. To connect with the basis in
{(3.1), (3.2) and (3.3) we may arbitrarily exchange rows in all
matrices. The exchange of columns is arbitrary for ML’ whereas
for My and MD the same columns have to be exchanged in order to
preserve weak eigenstates. Nothing is known about mixing in M

L
and there could be another pattern where (3.3} is transposed F3).

The search for a realistic mass pattern must first find
some Xgl) which appears only in one column in MU and neither in
M, nor in ML' This will be a candidate for the top mass and sets
the scale A, The second step at the scale B must provide one {or
severai) ng) appearing in M, in the same column as X(l) and pos-~
sibly in at most one column in ML and at most one column diffe-

rent from X(l) in M but nowhere else, This entry provides iy,

If it did not genergte m and mc, other entries ng) with scale

B and the same criteria must be identified. The next step at the
scale C has to provide masses for mu, mg and guarantee enough
mixing between the second and third generation. This mixing
either requires non diagonal entries to Mp of order C or entries
to MU or order B, Finally, the Cabibbo angle and masses of the
first generation have to be generated. Note that all masses may
either be generated by diagonal or paired off diagonal entriesza)

{oer both).

For the case of four generations the upper bounds ¢n en-

tries are
A A A" Al
A A A C
MU (3.6)
A A B C
A A B D
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A A A A
A B C D

My (3.7)
A B C D
A B C D
A A A A
T A B B B

M or M) (3.8)
A8 C C
A B C D

Very 1ittle is known about mixings of a possible fourth genera-
tion: Only the relative decoupling of the first two generations
requires A' to be roughly a factor 10 smaller than the largest
fermion masses. In additicen there will be several constraints
of the type (3.5) guaranteeing that the contributicns from
paired off diagonal elements do not induce too large masses for
the Tower generations. The first step of the search for a rea-
listic mass pattern must now provide masses for two up-type
quarks, one down-type quark and one lepton (instead of only
producing my for NG = 3). The remainder of the analysis remains
the same.

Some unification modeis may contain mirror quarks and lep-
tons in addition to the standard quarks and leptons. These are
left handed fermions in representations of SU(3)C K SU(E)L
X U(l)Y which are complex cenjugate to the standard left handed
quarks and leptons. A mass term coupling mirror fermions to
standard fermions is allowed by SU(3)C X SU{Z)L X U(l)Y symme-
try, but it may be forbidden by additional symmetries. Once
these symmetries get broken by vacuum expectation values (VEV)
of SU(3)C X SU(’Z)L X U(l)Y singlets 51 at the scale Mc or below,
those mass terms will be induced. The mirror fermion generaticns
and the same number of standard generations disappear from the
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low energy spectrum, whereas exceeding standard fermions are

protected from getting a mass by SU(3)C X SU(Z)L X U(l)Y chi-
rality. How do mirror fermions influence our systematic dis-

cussion of fermion mass and mixing patterns?

To illustrate the problem we take a three generation ex-
ample with four standard quarks and one mirror quark. The

quark mass matrix contains singlet and doubiet entries (ﬂi, di}:

q. q: Gs qy

qilj dll dl? d['j d]g
q% dzr daz dasz day
Mos (3.9)
q3 dyy diz daz diay
a Sy Sz 53 Ss

If only the singlet S, acquires a YEV the mirrer quark and the
quark g, disappear from the low energy spectrum and we can dis-
cuss the remaining matrix for qf, qg, qg, qa2, 93 and g, as
above. Assume that also S. acquires a VEV somewhat smaller than
5,. The superheavy quark qi is now mainly q; with an admixture
of g2 of order 5:/5:. Correspondingly, the Tight quark qz has
an admixture of g. of order S52/$,. This induces additional en-
tries in the low energy mass matrix: The celumn for qz has in

addition to the entries d1.2 other entries of order (52/5:)d Fa.

it”
This may influence the analiysis for the low energy mass patterns.

We generalize our strategy for the case of mirrors: First
one chooses some order of scales for the singlet biiinears 5
{which are distinguished by quantum numbers of the additional
symmetries). As before, all arbitrary assignements of scales
to these operators are allowed at this stage., One eliminates
consecutively those standard fermions which are coupled by
the largest operaters Si to mirrors until only the number of
SU(3)C X SU(2)L X U(l)Y- chiral fermions remains. The mass ma-
trices for these low energy fermions are corrected by additio-
nal entries as described above, Then the analysis of the cor-
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rected mass matrices proceeds as described before by assigning
arbitrary scales to doublet bilinears, ﬂe note that very often
it may be possible to assigp-scales to 5, so that the problem
of additional contributions to the low energy mass matrices is
avoided. As a simplification for this case we just can try all
possibitities for low energy mass matrices after eliminating
arbitrary standard fermions by coupling to mirrors. However,
new possibilities may be created by generating needed entries
from mixing with superheavy fermions. We will see in section 7
that the order of scales for Si is related to the order of
scales for doubiet Dilinears Xi. This will impcse much more
severe restrictions.

Obviously, the chances for a model to pass the necessary
criteria of this section are best if the bilinear operators are
maximally differentiated by using the maximum amount of symme-
try available, (If all bilinears have different quantum numbers,
the choices for possible scale assignments become trivial.) It
is, therefore, important for the search of realistic mass pat-
terns to use all symmetries of a model. In some cases, however,
where the maximal symmetry is broken at the scale M to a sub-
group K,allscalars with the same K transformation properties
get maximally mixed. (This is not always the case - compare
section 7). If this happens, only the quantum numbers with re-
spect to K can be used to differentiate between possible states.
For our example with n = 3, m = p = 1, a restriction of the dis-
cussion to the symmetry SU(5) x U{l) x U(l)q X SU(E}G or sub-
groups of it would strengthen our criteria: In fact, this solu-
tion would be ruled out, since encugh mixing between the second
and third generation could not be generated without irducing
much to high values for moor .

At this point, a comment on the use of higher dimensional
symmetries 1s in order. At the compactification scale Mc the
higher dimensional coordinate, Lorentz and gauge transformations
are broken to some four dimensional symmetry group. There is no
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small scale ratio due to this symmetry breaking unless Mc is
smaller than the overall characteristic mass scale M of the
theory. In some respects it does not make sense in our approach
to treat the higher dimensional symmetries as approximate sym-
metries acting on the chiral fermions. The chirai fermions can
only be classified with respect to the four dimensichal symme-
try group. In our example, only some part of a given 30{12} re-
presentation contains chiral fermions, whereas the other part
leads to superheavy particles. Nevertheless, the mixing of ope-
rators with the same transformation properties under the four
dimensional symmetry is not always maximal. We will see that
quantum numbers of the higher dimensional symmetry can indeed
play a role in mass and mixing patterns, Another possible ef-
fect of higher dimensional symmetries concerns compactifica-
tion in steps. For example, some fundamental (string} the-
ory could compactify at a scale M to an intermediate higher
dimensional model as the six dimensional S0{12) model. In this
case small Yukawa couplings could appear in the intermediate
model if the first step involved some small scale ratic. In

our example, £/9 could be smaller than order one. The systema-
tic search for viable mass patterns can easily be generalized

te such a case.

To resume this section, we propose a systematic scanning
procedure deciding if a given fermion content fulfills the
necessary criteria for a realistic mass pattern consistent with
our assumption of no small coupling parameters and ngo acciden-
tal cancellations. The only input are the quantum numbers of
the chiral fermions with respect to symmetries beyond SU(B)C
X SU(Z)L X U(I)Y. This concerns only rough properties of the
theory and is independent of many dynamical details of a uni-
fication model. It seems to us that this is the next phenomenc-
Jogical step (after establishing the content of chiral fermions
by index considerations) by which the compatibility with obser-
vation should be tested for higher dimensional medels. A de-
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scription of the logical steps needed to program this scanning
on a computer will be presented e]sewherezg). If the scanning is

successful, one ends with one or several solutions where

i) the assignment of generation quantum numbers (like
Le’ Lp etc,}) is fixed for the chiral fermicons,

i1) an order of scales is established for the set of
scalar vacuum expectation values responsible for masses and
mixings,

iii1) upper bounds are established for scales of other sca-
Tar vacuum expectation values coupling to fermion bilinears.

In section 7 we will give criteria to decide if this order of
scales can be realized.
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4, Spontaneous Symmetry Breaking with Higher Dimensional

To substantiate the discussion of section 2 we will show
in this section that classical solutions with SU(3)C X SU(Z)L
X U(l}Y x U(1). symmetry indeed exist if a six dimensional sca-
lar in the fifth rank antisymmetric tensor representation of
$0{12) is present. Oné of these solutiens should appreximate
the ground state up to effects breaking U(l)q and SU(Z)L X U(l)Y.
We will derive the coupled field equations and discuss the gene-
ral existence of solutions as well as some of their properties.

The action of our six dimensional model is

~ oA

S = SdRG SR - LT G 6
-t B (DEPla ) + V()
gy - fEdy d

Here @ﬁ; is the field strength of the S0(12) gauge boson %; and
¢ is & scalar in the fifth rank antisymmetric tensor representa-
tion of $0(12)}. Both a;; and ¢ are represented as 64x64 matri-
ces. {Compare appendix A.} COtherwise we use conventions of refs.
15,17,18, The covariant derivative of ¢ is

Dap = %f-GLA, 4] (a.2)

Neglecting fermionic excitations we cbtain the bosonic field
equations

A
»

{4.1)

-~ "/l/‘ ]
Ras — #R G = 75 1o (e
P e LT LR LT Gan Gyd
T = e P0G g g Gap s
(4.4)

- L T DR Py ) + 3 T e pND5 P)
FVIP) 949
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Fr l; 7;13( PI;G/N" ‘§£¢/D‘J¢j).€ = © (4.5)
IQ;D’:¢ *'2’%% = O (4.6)

Here TAB are 50{12) generators in the Dirac basis. Normalization
and derivative of V are defined so¢ that a mass term reads

V = tME TP+ (4.7)
2V o LMY o+ (+.8)

o
For independert complex scalar fields ¢ {(compare {(A49), (A84})
the scalar field equation has the standard form

207 + ;; = O (4.9)

We are interested in solutions with SU(3) b3 SU(Z)L X U(l)Y
X U(l)a x P, symmetry. The symmetry U(l)w is a combination of
isometry~- and gauge transformations. Its orb1ts in internal
space form-circles or fixed points. We parametrize the orbit
(except for the fixed points) by a coordinate ¢, whereas the
other internal coordinate is denoted by x- The orbits of the
maximal four dimensicnal symmetry F. are the four coordinates
x*of observable spacetime. The most general lecal form of the
metric consistent with these symhetries is

/s
G'(XJg/‘.,.(K)

Fal
/‘
- P
with ?/HCK) the maximally symmetric four dimensional metric with

cosmological constant A We denote by %Fag) (without a hat)
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As
the curvature tenscr formed from jﬂ* and one has

s Ao
R/mv - é ’Qg/d = Ao g/«—v (4.11)
The most general gauge field configquration consistent with ocur

symmetries is

qu = Hg e () +{ Hy+ H ) (3D +(Hyr# fﬁ;—)P(X)

(4.12)
G #u(x) =2 Tsq #(2) + 3 Yg-r POY)
Ax =2 (4.13)
A =9

with generators Hi specified in appendix A, Finally, we need the
SU(S)C X SU(Z)Lx U(l)Y singlet scalar fields in¢. There are
four compiex singlets Si, S2, S3s, S« whose properties are given
in appendix A and table 2. The symmetry U(l)q requires

S1 o= ui{X) exp(ia:{x)) exp(imig@) (4.18)
S = ux(y) expliga(y)) exp(if:¢) (4.18}
S3 = us{y) exp(ies(¥)) exp{im.¢) (4.16)
Su o= un(g) exp(is(F)) exp(if. @) (4.17)

The functians u; are real andzxi are phases. The integers m:
and M, determine the unbroken symmetry U(1): and will be dis-
cussed in sectien 6. The ansatz (4.10) - {4.17) has the most
general local form consistent with the symmetry SU(3)C X SU(Z)L
x U{1}, x U(l)q x P,. In addition it is left form-invariant
under

- constant translations in ¥,

- rescaling of xF by a constant factor,

- globatl U(l)q and U{l)g transformations.
We will use this freedom later to fix some of our integration

¥



41

constants. (We remind that these transformations are symmelries
of the action which are broken by any given solution of the
above type provided 5, and S., S5 or S, do not vanish.)

We have to find solutions for the 13 unknown functions g,
£ Namy p, U, U2, Us, Ug, o1, ,a&sanda,, In terms of these
functions, the scalar field equation (4.9) gives

-4, 2
R R A T2 DK i LI LD

,(A':+(£-SJ—I§>J+26."{6'))4¢;—'0’AR'“L "_?-4(’”—"2 '5”")22{?«— E," gzz: e {4.19)
“3”1“(7’,?"5:}*2,6“’6-’)4{3’vd;?‘as '94[”;’4"50»)&“3 -i-%{;s =0 (4.20)
e lbg7e'r A Jay -t 44, ’?4(”;2'9_’”)&“* = %“i =2 42
a +(Loe'risTs il ) - % ‘f.:z'%, = O (4.22)
al + (L 2T Vb S =
053”4-'(%Pd’9‘+25-‘6J+2a3-‘,6{3‘}o(; -4 4@""%—5—; = O (4.24)

OCFH *[I’?Jg’)*26-"6)“3“9—4“3)“;‘) ‘2"4";&_& 'g%; = O (4,25)

A prime denotes a derivative with respect to . The algebraic

relations necessary for a derivation of field equations can be
found in appendix A. The P component of the gauge field equa-

tion (4.5) implies

3>
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» - -
e (- 467000 2676 )i’ 2 (7= G et e e 2 )= O

20t (Lo 0 2676 ) 2G (- G (Lame 3p) s = ©

?

Pt (-Lp0 +2676)) pleg (3, ~F (23 Y est = O

A

X
whereas DA G/“= O requires

e

} J }
o) et v oy el v, wf =0
Finally, one ohbtains for the gravitational equations

)

@Nﬂéé‘g}w = j‘f,{/\,sﬂ—%eﬂo'{%G‘"e"y"f"-2—'/59 ?
+egiety = ZLS T

-144 _‘:_A - -2 2 -y _.._L"
W iR G =y (63676560 [ = 72 Ty

with energy meomentum tensor
- > Lty 32 )
Tew = G 1 267 7 2o eap )
&
e 2, 2 - %
- Z <0 . ;!
i¢4[ it *; +.? a‘i “( ]f

o= b {2 ot 2wt 2V

5 — L 2 22 -/ 2 2
-£_=4L«; gt r — e ot ]i
Tm =3W{ —%fuifm'?'+2m’2’+3pn )y rv

L4
b 3 [a/ e atalt- ot at et ]

Y

(4.

(4.

(4.

.26)

.27)

28)

29)

.30)

.31)

.32)

.33)

.34)

.35)

36)
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Here we have defined the shorthands

— —

@, = am, -~ § (2m +3p) (4.37)

— — o 4.38
azﬁa3=a¢=m% g 7 { )
A
The component?R? vanishes due to 14.29), (4.30) and all other
”
nonspecified components of @;4 orZ}J vanish trivially.

Equations (4.18) - (4.33} form a complicated system of
coupled noniinear second order differential egquations. The sca-
lar field equations respond to the gauge field configurations
n, m and p and other nonlinearities are induced by the potential.
The gauge fields feel X—dependent mass terms and source terms
and the gravitational equations are compiicated due to the struc-
ture of the energy momentum tenscr. [n addition, it may seem
that one has more equations then free functions and that the
system may be overdetermined and has no (or only a few special)
solutions, This is, however, not the case since not all of the
equations are independent.

Let us first look at the two equations (4.22) and (4.29) for
a4 . Since the U(l)B_L subgroup of S0(12) acts as a transiation
in e, and the potential is 50(12) invariant one has

¥ .o

P T (4.39)

Equ. {4.29) implies conservation of the B-L current

- Al g “ —

p? jm"ﬂf{‘ﬁs [s/ D”s, -5, D%s, ]f = 0o  (4.40)
and using (4.39) one finds that (4.22) is identically fulfilled.
Similarily, U(l}q invariance implies that the potential can only
depend on two independent phase differences for which we may
take “}'“L and “&"*L' The potential must obey

o, L |

o, ety ety

(4.41)
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From (4.30) and (4.41) one finds that only two of the equations
(4.23), (4.24) and (4.25) are linearily independent. Two inte-

grals for the phases are trivially obtained:

oy = oy, (4.42)
A
) 2 2, %
_ — ofy £y + aly Ay
A = %y, fdx — (4.43)
o L2
We may use the form invariance under global U(I)B_L and U(l)q
transformations to put
K = Ay, = O {4.44)

What remains are the two equations (4.23) and (4.24) for the two
phases «y and &x. We note that aca-rxz*o O o ~0G + O indicates
CP vicolation for the corresponding solution,

We also have three gravitational eguations {4.31), (4.32)
and {4.33) for twe functions & andf . Again, oniy two of them
are independent., This can be seen most easily from the Bianchi

identity
P )
//M

= O (4.45)

which implies

el

9){ (R?‘K‘%Ré‘ﬂ)r(i—g)"}:’,«.gs‘%’)(/q?fﬁ_zr_gg)ﬁ)
+ LG Gy (RVE-LRGW) e L6765, (R724RG) (5.46)
= O

Since the energy momentum is conserved as wetll

%/m _ o (4.47)

if
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we conclude that we have only two independent equaticns for g
and p . The four dimensional cosmological constant Ag is a free
integraticn constant! As a check of our equations we have veri-
fied that the nontrivial compenent of energy momentum conser-

vation
) [ - p , 3 2.2 -1 % 2
Pa R e gty 2 [ e
_ 7y 1.2 2
ro '?J.‘!Z [ e h&(,'z'ot"”’—? e, J (4.48)

e L, ’2 =,
#2676 { o7 (' # 2o 43 ) FR L [« ven = Ij - O
indeed follows from the field equations (4.18} - (4.28).

We are thus left with 13 independent equations for 13
functions. This system will always admit Tocal sclutions, de-
pending on initial values, i, e. the values of the functions
and its first derivative at some given X=X, . In fact, due
to (4.39) and (4.41), only oékz?) and «£(y,) can be given in-
dependently. The most general local solution will, therefore,
have 24 independent integration constants. One of them, for
example ?Hxv) , can be replaced by Ao. The form invariances of
our ansatz tell us that not all of them correspond fto different
physical situations since certain solutions are related by six
dimensional coordinate and gauge transformations. We can elimi-
nate this freedom by the choice (4.44} and fixing arbitrarily
Xe and GilXe) » for exampie

Xo = O
(4.49)
Glo)= A

(care has to be taken if a function becomes singular at y, or
iF€ & or Uy vanish at x,.)

One more integral can be easily obtained by noting that
the U(l)Y gauge fieid does not couple to the scalar fields Si'
We write
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o (Hp B )t p(HyrHprt )= 3 Y 2 2

{4.50)
with
4 = -3;5_ (=)
2= £ (3pram) e
y = —Hy- Hy v T Hyr My rie)
Z o= U, ety by e H s (4.52)
Equaticens (4.27) and (4.28) decouple
31(62’57"/“’;) )= (4.53)
Iy (6™’ )+ 23 o"g'y*‘a,, @l = o (4.54)
and (4,53} is integrated
A
g gt G lx " (4.55)
We remain with 10 equations for G’,P s B By Ups Uy Uy, Ug,
oy and dy which, after some rearrangements, read
e A R A 'g" 'Z'.(a‘-“%a‘."ac;u )70 (4 56
26767 + ﬁs“%""'—z,/\os“~§%yfc"t;é-3:., ¢ (ka ra®) -
-Z'; g"[aj’aj’ v (et re+ a,f)]+£/s— *2._1'5 ‘Z{u‘-";-“‘."x;”) =0( 4.57)
GL" - I‘f“?,ai:}+26:’c;‘)a)—- 403—"«}@ =0
£ {4.58)
C?;} —71": f&’? )Q: +'_26'_‘6',Q; _zjb(“;*a’h’“;)az' = {4.59)
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¥ ] - } ~i & 2_‘(- —
Ay *('::S; P +IT %’)at - Iauf ey - i_ ety o

(4.60)

" ) o J ; ’
A E A o L (o A P o lnter, L2 < g (4.61)

&a«z’
UG P 26 0) e~ ot} ~ o7 o, - 1 S =o (4.62)
2, Hip P e )a) ~al w —o7q b e, - 4 & -0 (4.63)
a¢3”+(,{5:'?'4»26‘"6#2,«;'«3’ Yoty - + ™ %3— = (4.64)
(L0 REE 2w | - e —::‘1{: = O (4.65)

These equatiens simplify for special cases. For exampie, if
SU(5) symmetry remains unbroken, one has 4"CX)=P[Z) and, there-
fore, yo"cy= © , There is only one SU(5) singlet with q = 1
and all phases can be set to zero {«; ==, —o ). The eguatiaons
for uy, u; and u, reduce to the cerresponding field equation for

the SU{5) singlet field (compare (AS2)) ¢ = !:d'ra_,(az.rﬁ’asqbfé"a,).

In equ. (4.56), (4.57) and (4.59) one replaces u} + uj + uf by

v? and ux? + uy? + u,? by v'?.

Let us discuss a class of solutions of (4.56) - (4.65) where
the U(1l)}. isometry has a fixpoint at A =0 which is inctuded into
the manifold., Without further restrictions this corresponds to a
topology R®. Reguiar behaviour of all functions requires that P(H)
vanishes like XL and m{x), n{z) and p(x} vanish like cn’mgdxl
for x-»> 0. As well, the complex scalar functions Si must be even
{(odd) in  for m, even (odd) and must vanish at x = 0 except for ms
= 0. Let us discuss sclutions with m; = m; = 0 (compare section 6}.
Near the fixpoint the different functions are then approximated

2

elx) = x
(X)) = 4+ cox*
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G, (X)) = C,. 7(2’ (4.56)

‘C{!‘ (X} = Ay, F C“‘- IL

i (x) = cx:“ KL

and the field equations imply the relations

2
= 1 ! L% 2 s C v,
Co =z * ;552’(5'%1.”‘?2)*5@? F T
- 1 2¥ (4.67)
Car = g e,
-2 2V -
Cug ™ BL “o Sy

Here the scalar potential V is treated as a function of Uso and
°<1'0'

The requirement of a fixpoint at ¥ = 0 determires half of
the "initial values" for cur system of differential equations.

5

We remain with ten free integration constants /h, Cy, Cai’ Cui

Cxi' We thus have found a ten parameter family of solutions

with R® topology in the neighbourhocd of X = 0. (For u; . « ,
Cui’ Cei = 0 one recovers the solutions of ref, 26). This solu-
tion can he continued for growing‘X either for all X or until

a singularity occurs at;{ =,X . The fate of a given solution de-
pends on the choice of initial values. Not all choices may cor-
respond to physically acceptable solutions and one may impose ra-

30) If one requires compact in-

strictions by boundary conditions
ternal space there should be another fixpcint at X =7—( {which in
this case corresponds to a ccordinate singularity). This would

imply ten more constraints on the integration constants and fix

them completely in terms of the model parameters. We expeci that
solutions with compact internal space and nonvanishing scalar fields
indeed exist. In this case a fine tuning of parameters is needed to
obtain Ao= 0. There is, however, no need to require a pricri com-
pactness of internal space. Solutions with a genuine singularity

at y = X
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where AD and other integration constants remain free may offer
more interesting physics!

We can interprete our solutions as spontanecous symmetry
breaking due to a higher dimensional Higgs mechanism. Whereas
the spherically symmetric monopole solutions with U(l)q and
U(l)B_L symmetry may correspond to A, 7 0 the vacuum expecta-
tion values of scalars can reduce A, . (For the final ground
state one needs A, = 0, whereas the U(l)q symmetric approximate
ground state may still have a cosmological constant~M:.) Also
the monopole solutions are classically unstab1e17’27} and sa-
tisfactory spontanecus symmetry breaking requires a stable
ground state. We will discuss in section 8 that scalar vacuum
expectation values can indeed stabilize the g¢ground state,

The detailed form of spontaneous symmetry breaking depends
on the scalar potential V(4U. We will assume that the configu-
ration space for the scalar singlets Si is affine in the range
where they take expectation values. (This is not necessarily
the case if the six dimensional model is obtained from a funda-

mental higher dimensional theoryl7)

.) In this case the chirali-
ty index is the same as for the corresponding moncpole solution
for topologies M" x compact internal space. We expect the same
chirality index also for a wide class of solutions with noncom-
pact internal space. Even for affine configuration space there
are important differences between standard four dimensional
symmetry breaking and the higher dimensional Higgs effect. In
four dimensions, the search for symmetry breaking minima of

the scalar potential is an algebraic problem. In higher dimen-
sions one has to solve instead a coupled system of differential
equations, This corresponds to the fact that there are infinite-
ly many four dimensicnal scalars in a given representation of G,
For any given X the value of Si(X) will in general not corre-
spond to an extremum of the six dimensional petential V. Indeed,
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the effective four dimensional potential is not only determined
by V but also by the four dimensional scalars contained in the
higher dimensional graviton or gauge fields (o, p, ai}. In
particular, a pesitive six dimensional scalar mass term 1/4 M?
Tr ¢% is not a sign for vanishing scalar expectation values. The
instability of the spherically symmetric solutions in other mo-
des can require $; t 0 even for M* > 0.

What about scales of spontaneous symmetry breaking? We may
denote by Mg | = g(gB_L> and M, = ¢<¢,,7 the scales of spon-
taneous symmetry breaking of U(I)B_L and U(l)q. Here g is the
four dimensional gauge coupling and((pB_L>, <‘P2,m> are the
leading vacuum expectation values (in standard normalization)
in a four dimensional language. The most natural order of mag-
nitude for Mg and M,,, is the compactification scale M.
Larger values are possible if the six dimensional scalar po-
tential has a deep minimum with a higher characteristic scale.
Smailer values require a tuning of parameters or a special
choice of "initial values". The characteristic mass scale of
the six dimensional theory is the six dimensicnal gravitational
constant and one may assume a typical scalar mass M? . 541.
We note, however, that there are two sorts of natural small
parameters in the model. One is the ratio of internal charac-

teristic length scale Lo = M-' to the two dimensional volume Vs,

c
Lo Lo
v, V4

(4.68)

{For spherical symmetry one has V. = 4m.) The other is the in-
verse of the generalized monopole number

I !

N* (3P’-+2,m" ) (4.69)
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In terms of these guantities the Planck mass Mp and the com- 5, Yukawa Couplings and Fermion Mass Relations
pactification scale MC are
_— How do fermions propagate in the field configuration dis-
2 %
PV Y Vi A/b S £ . . . :
P& lemr v (4.70) cussed in the last section? Fermicns are coupled to gauge fields
and gravity through the covariant kinetic term and to the sca-
Ffz'-v N é %4, lars by a six dimensional Yukawa ccupling ¥ (compare appendix B8}):
C ~

A/L (4.71)
Py - -

| gyzg‘éy/{{-a?wp/f*;qﬁf % (5.1)
Ore should not take these relations to seriously since propor-
tionality factors may change an order of magnitude. A scenario
with M2 smaller than M? . 5% by an order of magnitude and _ ('ﬂﬁ - 32, (5.2)
between two and four orderscof magnitude below Mp seems, however, v [ ) - 32, )
not unrealistic,

Neglecting all excitations except the "ground state" configura-

tion the field equations have the form

L'a/‘“}‘yz + Moy = O (5.3)

with mass operator3l)

M= c* f'afr[ fe’“15¢+/f’°‘6_'9,¢o‘]+ f\gé f (5.4)

Left handed {right handed) massless modes obey

(fowﬁn& fT;‘.12¢ ey ) = © (5.5)

o 2
(Here f', Dd, and 45 are formed with the ground state configura-
tion of section 4.}

In general we do not expect a vanishing mass M except for
those modes protected by chirality, The chiral fermions for
spherically symmetric moncpole solutions are listed in ref, 17
for arbitrary m, n and p and their wave functions 1%(1,?) can
be found in ref, 18. For a large class of "neighbouring confi-
gurations” without spherical symmetry (including expectation
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values for scalars Si) the spectrum of chiral fermions will re-
main the same. This is due to stability properties of the chi-
rality 1ndex11). The wave functions ¥ {X,¢) for the chiral ferm-
iens, however, will get modified., Deviation from spherical sym-
metry due to &7(X), p(A)» m(x), n{Y) and p{x) amounts to a mixing
of the massless lowest angular momentum state with superheavy
higher angular momentum states in the tower of the harmonic ex-
pansion for functions with given SU(3)C X SU(Z)L X U(l)Y X U(l)R
X U(l)q transformaticn properties and given I. (In addition to
these symmetries the wave functions form SU(5) representations
for m(z) = p{}x) and ¢ an SU(5} singlet.) A vacuum expectation
value for‘¢ induces mixings between fermions in 44 and % . In-
c¢luding the scalars, the wave functions belong to representa-
tions of the unbroken symmetry (SU(3)C X SU(?)L X U(l}Y X U(l)ﬁ
for the generic case above). Despite of that mixing, massless
medes will be found after diagonalization of the mass cperator
in accordance to the index.

Mass terms for chiral quarks and leptons appear cenly once
SU(2)L X U(l)Y symmetry is spontaneously broken. They will be
proportional to the scale g, of this symmetry breaking. One way
to study the quark and lepton masses would investigate solutions
of the field equations (4.3) - (4.8) where SU(Z)L X U(l)Y doub-
let fields have nonvanishing values and to study the mass opera-
tor (5.4) in this background. For small values of the scale ¢,
we can instead calculate the Yukawa couplings of the chiral
fermions to the various weak doublet scalar fields in the ef-
fective four dimensional theory obtained frem dimensional re-
duction on the SU(3)C X SU(Z)L X U(l)Y symmetric approximate
ground state soluticn. We then have to determine how the low
energy Higdas scalar is composed from these various doublets.
This approach deviates from the correct result by terms of or-
der(?L/MC with MEl the characteristic length scale of sponta-
necus compactification. In a realistic theory they are negli-
gible, If instead of dimensional reduction on the SU(3)

C
X SU(Z)L X U(l)Y symmetric approximate ground state solution
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we use the wave fundtions from an expansion on our soluticn with
SU(S)C X SU(2)L x U{l)y x U(l}a symmetry, there will be correc-
tions of order ME/MC to the Yukawa couplings. (M- is the scale
where U(l)ﬁ is spontaneously broken.) We alsa should remember
that we calculate the fermion masses from classical solutions
derived from an effective action assumed to be valid at the
compactification scale. Our fermion masses therefore correspond
to a scale M. and they have to be rescaled by the standard re-
normalization group procedure before comparison with experiment.
We denote by ut, ufk the 1eft handed quarks and antiquarks
with charge 2/3 and -2/3, respectively, and similar for down-
type quarks and charged leptons. Four dimensional mass terms
are written

z(;’ = &’:} { M, )}-4 "‘i + 4 c. (5.6}

The mass matrices are proportional to vacuum expectation values

of the various doublet fields in our model:
{4

(M) = 2i Ao, gy <HP e 20 47

Aj_aéhﬁ g g Hy

<HaY

(5.7)
’ 4“;4%5§f<:aﬂr> ﬁjga;a%ag‘:a%>>+‘€§‘%a¢<:d;>’

+ “%.a.; ol <ol 7+ 4',“% u; Ay <a(3>+‘4a_¢a;,dg. 40{‘/—>

Similar expressions hold for MD and M . The factor i in the
first two terms comes from i}f in the mass operator (5.4). It
can be rotated away by a chiral phase rotation, but the rela-
tive phase between the different contributions may play a rele
for CP violation.

The Yukawa couplings h(l) and h(z} have been calculated
in ref. 18. All nonvanishing couplings are found in the same
order of magnitude as the four dimensional gauge coupling g.
We have calculated in appendix B the Yukawa couplings for the
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doublets di contained in the six dimensional scalar field., All
nonvanishing couplings are of order (f/3) g with T and § the
six dimensional Yukawa and gauge coupiings. The Yukawa coup-
lings are given in terms of two dimensional integrals over
wave functions of chiral fermions and scalar doublets. The de-
finition of the wave functions for the scalar doublets will be
discussed in the next section. Here we note that for our U(l)a
symmetric solutions the @ jntegration is performed trivially
and accounts for conservation of & (or I) in the Yukawa coup-
1ings,

The choice of a basis d;, dz, d;, dv for the weak doublets
with g = 0 within the 792 scalar of 50(12) is not necessarily
the most appropriate for a discussion of fermion masses. Indeed,
both d; and d. give a nonvanishing centribution to My, but the
mechanism which determines how the low energy Higgs scalar is
composed from various doublets may single out a linear combi-
nation of d,, d. and d, which does not couple to up quarks. To
apply the general analysis of section 3 we have to avoid such
possible cancellations since they could be caused naturally by
symmetry reasons, We define linear combinations

Ay = %—‘a’b*—/fz:'d3 + _fij—,“_df

Aoy = F= by = o= s~ = e

Apg = fo oy — gl ¥ f= s (5.8)
Ay, = ;é: oty + 7%?’045 - 7%15#;

Ay - Eee - B - el

0{;_,2,‘—' /—:3:"—9(4 ""[l-g?ds"“ “‘;'/—;—Td‘f-

In terms of these fields the nonvanishing Yukawa couplings from
the six dimensional scalar read
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- 2 Y 2, C¥,,—
& A'.; ay 0{(}4 = % f fﬁ{ y jg & a‘t Ay dei

biyugdn =

" - -
Aoy s, = i1 [ gt 67l Ay o (5.%)
391 “hi
A + L~ *
_hf Yy g e A
Adja{‘idﬁz = [z A.jz P -Fo/’
12§ [dYygfetey er A
2 2 LN :F
TP A g e e A
and dL2 depend linearly on dUl’ dUE’ le and

il

43} ey 0(;_':,
z«ae;oﬂ;, =
We note that dLl
dDZ' These fields are properly nermalized, buf not orthogonal
to each other.

In our example with n = 3, m = p = 1 only the fields dUl’
dUZ’ dDZ and dLI are allowed tc couple to chiral guarks and lep-
tons in a leading approximation. The fields dE and e are ob-
tained from the harmonic expansion Of'Vi {compare (2.1)) and
one, therefore, has d§+ = 0 and e; = 0, This situation may get
modified dye to scalar singlet vacuum expectation values Si' The
term~f?¢ in the mass operator (5.4) can in principie mix fields
with quantum numbers of 4% and e in Yy and 7% . It may, there-
fore, induce nmon-vanishing Yukawa couplings ha‘dkdsi of corder
(<Si>/Mc) . hﬂQdEJSi' The existence of such couplings depends on
details of the mixing between 1 and g3 for the chiral modes.

Wwe will come back to this question later and assume for the mo-
ment d§+ = eg = 0. The discussion of section 2 shaws in this
case that a realistic mass pattern for MD and ML requires a
very small admixture of dDZ and dLl to the Higgs doublet. This

will be discussed in the next section.

What can we learn about fermion mass relations at this
stage of our investigation? First we note that Mps Mo and m.
are all generated by Yukawa couplings to H;l, leading to the

relationsls) at MC:
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{5.10)

| 2= = ]fd%gz%z’f' T |
= (d givc™ b & A

(5.11)

| e | = | [y gurs e < HT) v At |
% [y gl b b 17 |

Here we denote by 1, ¢, d, HE1 the wave functions for the cor-
responding leptons, quarks and scalar doublet. The gquantity
- C
Cmix _
t'. For the first relation we observe that vt = b

stands for contributions to L from mixing between ¢' and
€ and %7 = b°
in the limit of SU{5) symmetry. For m = p one therefore pre-

dicts
Mo (M) <si>
= 4 + O (5.12)
wiy (M) ( e )

A small ratio Si/Mc would be sufficient to ensure the successful
relation myo=om. In contrast, the wave functions for b and ¢

are not obviously related. A prediction of mc/mb will depend on
details of the ground state solution even if a mixing bhetween
the second and third generation can be neglected. For any given
solution this ratio is calculable and may serve as a good test
to distinguish realistic solutions,

What about relations similar to (5.12) between m_ and mu?

Up to SU(B) violating corrections the wave functions for s and

uc are again equal. For our example n = 3, m = p = 1 discussed

in section 2 we can completely neglect mixing effects between
b* and s' or 1' and u'. The only difference between m_ and mu

comes from the fact that s couples to dﬁg/z whereas y- couples

to d[f/z. However, the wave functions for dBS/Z and d[§/2 are
equal up to corrections <Si>/Mc' As a consequence, the ratio
mu/mS is mainly given by the ratio how straong dD2 and dLl contri-

bute to the low energy Higgs doublet

-3 . (5.13)
W (M) Ld,, > £350 0
TRl ALY
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For a given solution, this ratio will be calculable from group
theoretical facteors relevant in the breaking of U(l)ﬁ. We ob-
serve that there is no reason to expect m_ = m1J and a realistic

5
value m, (Mc)z (Z -3)m (MC) could well be obtained.

5

Under the assumption that H, gives the leading contribu-
tion to the Higgs doublet we can calculate the absolute scale
for the fermion masses and determine the top quark mass. The
mass of the W-bosons is

My (M) = L g%k )<t >® (5.14)

and the four dimensional gauge coupling g is related to the six
dimensional gauge coupling g by

—z

g
fo*y g

9% (M, ) =

{5.15)

One finds the relation
m.t.(”fo) -

p 2 -, p /A
-———"'M ) tf‘“(fd&gg’:ﬁd'f'f #4)(fd€?gzi)/z, (5.16)

and, using the normalization conditions

M)

K ey g0 % p ¥ Y
(ol gt 2 ) (foly gt ) e) (el gl Hity) %

= 2 (d’“g g T Tl N Ay P )% (5.17)

The model predicts a top quark mass in the same order of mag-
nijtude as Mw.



6. The Low Energy Higgs Doublet

Our model has many scafar states with the SU{3)C x sU(z2),
X U(l)Y quantum numbers of the Higgs doubliet: There are HT, HE,
HY and H; from the S0(12} gauge fields and the doublets d., d:,
ds, dv, Ky and K, from the six dimensional 792-scalar. (We de-
note by K, and K, the doublets 1'n210+1 within the SU(4)C X SU(Z)L
X SU(Z}R representation (10,2,2) and {10,2,2}.) For every one of
these states harmonic expansion leads to an infinite tower of
four dimensional scalars. How to choose the physical Higgs doub-
let? Which linear combination of these infinitely many states
could correspond torthe low energy doublet responsible for spon-
taneous symmetry breaking at a scale P, ~170 Ge¥? This question
splits inte two separate parts.:

1) How get the different doublets mixed? How is the ligh-
test mass eigenstate composed from the different doublets? This
is the question relevant for the structure of the fermion mass
matrices and will be treated in this section.

2) Why is the mass of the lightest doubiet very small?
What could be the reason for the tiny ratio:PL/MC? This is the
well known gauge hierarchy probiem and we comment on it in
section 8.

For our solutions with U{l)El symmetry one part of the mix-
ing problem is easy to treat: Conservation of § forbids any
The doublet sector can

mixing between states with different g.
be decomposed into sectors with given § for which the dependence
on the internal angular ccordinate q: is fixed. However, each
sector still contains infinitely many states due to the depen-
dence ¢f all functions on the other internal coerdinate 1.
States with different ¥ dependence are not distinguished by

any quantum numbers., We stiil are Teft with a mixing problem
between infinitely many states.
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The direct method to ceope with this problem would solve
the field equations for HT(X,qﬂ, H:(X,yﬂ, ey di(x,qﬂ etc,
coupled to all the SU(3)C X SU(Z)L X U(l)Y singlet excitations.
For a given soluticn with nonzerc doubiet functions the symme-
try SU(Z)L X U(l)Y is spontaneously broken and the scale‘?L
could be read off directly from the seluticn. In pur example
the relative @ dependence of the different doubiet functions
would be dictated by U(l)tl symmetry up to effects of order
Mq/Mc. (Mﬁ is the scale where U(l)ﬁ is spontaneously broken.)
The remaining eguations for the x dependence, however, would
form a complex system of nonlinear (second order) differentiai
equations. Without some more insight intc the structure of the
problem this would be very difficuit te solve.

An important simplification occurs if the low energy Higgs
doublet consists mainly of an excitaticn of one of the doublet
states - for definiteness we may take HT. Assume the wave func-
tion HT(K,@ is known. Then the field equations for HI(y.¢),
di(x,¢) etc, can be linearized in the doublet fields, inciuding
the field HT(%,?ﬁ which is treated in these equations as a given
source term. This source term will be responsible for the admix-
ture of HZ, di etc., to the tow energy doublet. Its strength com-
pared to the mass term will determine the amount of mixing.

The mixing problem can be studied by determining the doub-
Jet mass matrix in the effective four dimensicnal theory obtain-
ed from dimensional reduction on the SU(3)C b3 SU(E)L x U(l)Y
symmetric approximate ground state. Expanding on this state, the
correct mixing {as obtained from the fuill field equations) is
reproduced up to ceorrections of order(pL/Mc. If we use instead
of the approximate ground state our solutions with U(l)ﬁ symme-
try we can still calculate the mixing up to corrections of corder
Ma/MC. We first can study the structure and order of magnitude
of the doublet mixing by assuming that the final wave functions
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Hz(x,¢), di(J,Qﬂ etc., are known., Using these functions for a
determination of the mass matrix, we have decoupled all the
infinitely many modes which do not acquire a vacuum expecta-
tion value, In this basis, only a finite number of fields con-
tributes to the low energy Higgs doublet. The other fields
correspond to massive doublets which are not mixed te the
modes H;(X=?)’ di(Ks V. (Any such mixing would distort the x
dependence of the low energy Higygs doublet in contradiction

to our assumption that H§(7,¢) is already the solution of the
field equations.) We have calculated in appendix C the doublet
mass matrix for given functions HT,Z(X,q), di(z,?). At this
stage we can already discuss the general structure. Orders of
magnitude being known, we then could derive the wave functions
a posteriori using an expansion in the small mixings to solve
the field equations. One can proceed by steps and first solve
the nonlinear field equation for the leading field HT in the
approximation that all other doublets vanish, The wave function
for the next to leading doublet can be calculated in an appro-
ximation linear in this field and H} (but not Tinear in the
singlet fields), neglecting fields with even smaller admixture.
This process can be repeated, and the structure of the mass
matrix immediately determines which doublet fields have to be
included at each step.

We will not attempt a calculation of scalar wave functions
in this paper but rather concentrate on a qualitative analysis
of the scalar mass matrix. How can the mass terms calculated in
appencix C be understood in terms of symmetries? First we ncte
that the doublets Hi, H2, di have all YB—L = 0. The weak hyper-
charge Y is, therefore, given by 213R and Y censervation im-

plies that the only allowed mixings are between Hy, d, and (Ha)*

(not H; and H., for example), The conserved symmetry U(l)Ei is
responsible for the Kronecker symbols for the my which charac-
terize the ? dependence of the wave functions: The charge § is
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given in terms of the third component I of SU(Z)G spin and the

abelian charges q, I, and Y (see (2.12), (2.13)):

3R B-L
_ ) 1 1
9 = Iy - Lo - Iy (e -3 Vg ) (6.1}

Here Ii is composed from the third component m. of angular mo-
mentum on internal space and helicity Ai

I, = m, + X, (6.2)

and one has

W= i bomg e (hom # 2 )Ty 1Yy, )

(6.3)
—_ i - 1 =
29 4”"(1-3&—%)/8—4_)
In general, all doublets have nonzero §:
Y A A 3m+3p
? A % 5 (3 (] G- a
- — 2
§ (He)= s e A R R (5.4)

OO‘u

— 3
C‘y\‘(ﬁl")= Mt'_‘(::”’?4+?m"+

P g U= A

Mixings between H, and di or H: and di are allowed by § conser-.
vation if

mé-—/»l"——’;;ra’-}—/f =- O -fay H, oty
_ (6.5)
/”ts- - -”m"g, —e = O /“v HJ‘"O’{,‘

In our example for n = 3, m = p = 1, we need a mixing between

H, and (H3")¥ F&)

to obtain a realistic bottom mass. This requires

m, =1 (6.6)
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Allowed are mixings between the following groups of doublets:

H: - 0£42 - [ ;J )' 7 (-¢ﬂz = =4~n‘=cﬁ)
o™ - (H )" (g === 1) (8.7)
aF- W ( #e =7 =72

The fields d"1/2, 47372 ¢3/2  (49y)% and (HE'V* cannot mix with

the leading doublet H, in the limit of U(l)q conservation,

No mixing occurs in the limit of vanishing expectation
values for the six dimensional scalars 5.. For 5, = 0 the unbro-
ken symmetry (for m = p) dis SU(5} x U{l) x U(l)q X U(l)I. The
conserved charge q forbids mixing between H, and HY or H, and
di' SU(5) symmetry forbids mixing between doublets in the &
and 45 representation of SU{5)}. However, a mixing between d,
{(dy} and the 5 {45) contained in 120 is not forbidden by any of
the continuous symmetries. The mass terms in L, break SO0{10)
symmetry due to nonvanishing gauge configurations m(¥}, p(x}.
Although SG{10) invariants can be constructed from 120, 126
and 45 or {45)2?, these invariants are not present in the six
dimensional model, Six dimensional gauge invariance only al-
lows the combination

(1,45 x 120),50 x (1,45 x 126) .26 (6.68)

which does not contain a singlet. Compared to generic four di-
mensional theories of spontaneous symmetry breaking, higher
dimensional symmetries lead to restrictionsgﬁ) on allowed in-
variants! At this level, mixing between d,, d,, d; and d, is
forbidden by six dimensional symmetry properties.

Mixing between different doublets is induced by nonvani-
shing scalars Si £ 0. There are mass terms (L; and Ly} from the
covariant derivative containing H, or H; applied on the six di-
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mensional scalar field. They induce off diagonal elements in
*
the doublet mass matrix between H, and di and between H: and

di of order

% .
MHd ~ Mzyo MC (6.9)
with
Mare = g <S210% {6.10)

involving the four dimensional gauge coupliing g and the lead-
ing YEV in 210 {calculated in the four dimensional theory by
using the appropriate normalization for the scalar wave func-
tions). Comparing with the diagonal mass terms

WAL MEoeMEIoooe {6.11)
Méd . MR MEL, o+ L. {6.12)

we find that any admixture to H, of doublets di is indeed small
of Mi,, << M%?, As we have discussed in section 4 this can easily

be reaiized in our mecdel!

We observe that no direct mixing appears between H, and H3}.
S0{12) symmetry would allew a term M;ng -~ M3,, and the mass
term Ly is a candidate to produce such a term. Again, a higher
dimensional symmetry forbids the appearance of a term M;1H§'

In this case the relevant quantum number is two dimensional he-
licity on internal space. Although the internal two dimensional

Lorentzgroup S0(2) = U{1} is not a symmetry of the four dimensional

effective action after compactification (only a linear combina-
tion of this Lorentz group with several other U(1l) groups leads
to the unbroken group U(l}q),
nal action influences the pattern of mixings. Whereas six di-

its presence in the six dimensio-

mensional scalars have two dimensional helicity Ax = 0, the
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wave functions for Hi and Hi correspond tc two dimensional gauge
bosens with hz = 1. {Note that one should distinguish between
the pure Lorentz-helicity Ag and the generalized helicity A in
presence of monopole configurations which determines the spec-
trum.) Since the symmetry breaking operator sisf in Ls has Agp

= it cannot mix the doublets HT and {HZ)* which have opposite
Lorentz-helicity. It only gives to the diagcnal terms MﬁH a po-
sitive contribution of order M%,,. Oh the other hand, the doub-
lets H7, Ha (whiech have no couplings to chiral fermions) have
Az= -1, It is easy to verify that mixings

2 i 2
RHEDAR (6.13)
. 6.
2 2
MH (H:)* ~ Mz

indeed occur. Two dimensional derivates J4 as well as the mo-
nopole fields AS+ carry 32 = +1, This explains why the mixings
(6.9) as well as

Mﬁ;d -~ M210 MC
M(H;)*d ~ M210 MC

can be induced. As another consequence, higher order terms in-
valying Ag = 2 operators could in principle lead to direct
HT - (H;)* mixing, but those contributions shculd be suppressed
by the large mass scales appearing as coefficients of higher
order invariants.

So far all mixings are completely independent on the vacuum

expectation value of S, in the 126 of SC0{10). The VEV<3,»is re-
sponsible for U(1)8_L breaking and we denote its scale

My = 9<50> (6.15)

1]

The field S, has YB—L = 2, Since all doublets H and d have YB—L
= 0, B-L conservation impiies that all contributions to the mass
matrix for H and d must invelve the cperator Slst. If <$:> has

a definite value of I the operator slsT has I = 0 and cannect in-
duce mixings between doublets with different I, It oniy can con-
tribute diagenal terms for H and induce some mixings between
different di of order Mé—L through the scalar potential L,.
{Since S; is a SU(5) singlet it only can mix d; with 3q5 and d,
with d5, but cther mixings between di of arder M%,, can be in-
duced by VEVs Ss, Ss, Sy in the potential L;.) However, the
doublets K; and K, in 210 have YB—L = 2. Mixing terms

2
MHK - MB—L M (6.16)
are indeed induced by the mass terms Ls; and Ly.

We schematically summarize the order of magnitude for the
different mass terms for doublets with a given charge §:

o W) e (W) ka o
WMy, 10 ) Mo, O ) My s MMz ) -0 [

(H;f o /”:“”:rf Moo ) MMy ) Mo + 0 1+ © My Moy
o | MM, ’Z%wﬂ%*éﬂ9¢€1;ftfﬁm; Mtuo y MuoMat 1 Myottoy,
0 M, Methe MM, O MHe o

;}' My ) O 1 MMy ) © ;f'ész'!;fH;) O ) MMy

Kol Mian) O ) Mwlsr, MMge ) O,MuBHINS, M,

I'
ﬁ% C ] MMy ‘ﬁwﬁﬁi-/ o /f1’%1.) *&; /Hﬁi;ﬁﬁfhéi
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Here we have used a short hand "d" to denote the linear combi-
nation of di, d2, ds and d« which finally acquires a vacuum ex-
pectation value. The doublets K induce effective mixings be-
tween Hi and Hz by two step processes where first HT mixes with
K and this in turn mixes with (HI)}* etc. In the limit ME_ . M2
<< M? the two and three step mixings induce effective mixing
terms in the mass matrix for H:

HE Ha Mg
Hiﬁ

(€3] {ri?

3 2
(M;mu;)") ~(MH;'(H;)') -~

&
M(j‘ HBA—}_ H‘UO

tH) 2 (x) A

(M:L:(H;)‘) "’(”H;Utz.’)’) A~ T (6.18)
Ly () z Mt Mg,

(Mygye )° ~ (Mgypeye )~ —i'gf:t':"

Indeed, we may integrate out the doublets K in tree approxima-
tion. Some graphs leading to {6.18) are shown in fig. 1.

The mixing between HT and (HE)* depends on the ratios
M%lo/Mé or M%,D/Mg_L and may be large if M,,, is of the same
order as MC (see the discussion in section 8). For large mix-
ing, the VEV of the Teading doubiet <HT> coupling to quarks
and leptons will be smaller than . 170 GeV thereby reducing
the ratie mt/MW' Many step mixings including H  induce an ef-
fective mixing between H} and (H3)™ or order

( (K H) )z ML ML M, + Mio)
HiHy” M MEer Heny )

(6.19)

To keep our discussion simple we will concentrate in this sec-
tion on the case of small mixing between HT and {Hz)™. In this

* -
case the many step contributiens to Hf - (H;) mixing from H
and K are small compared to those invoiving an intermediate d

and we can neglect them. (For large HT {H2)* mixing both con-
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tributions may be of the same order, but the qualitative fea-
tures remain the same.) Integrating out the fields K and H~
the effective mass matrix for HT, (H:)* and d reads

H; . ' A
H, M, o o MMz
AR M Mt (6.20)

d wfkfhm /3}Qﬁﬁm Ffz

Here the order of magnitude of M} and M3 is bound by the maxi-
mum of Mé, MZ., and MéhL. The coefficients a and 8 are expected
of order one and we have neglected corrections of order M,,,/M,
MB_L/M, MC/M. As we will discuss in section 8 a gauge hierarchy
requires M3 = a? Mé M%Z,,/M?2 and we take both M,,; and Mg _|
either of the same order of magnitude as MC or smaller. Diago-
nalization of (6.20) is straightforward, and the leading doublet
H, induces admixtures

M oM
Ld > T <,y
(6.21)
2, 2
<H;> s o, /:fc :"14,15 <H4>
F® 112

We therefore expect <d>» and <H:> of the same order of magni-
tude. Both are suppressed by a factor MC Mz,0/M?% compared to

<H,>. Realistic masses for bottom, charm and tav reguire this
facter to be around 1/10 (or smailer for very large mt). This
is well compatible with gur discussion of scales in section 4!

We next address the question which linear combination of
dy, d2, d; and d, acquires a vacuum expectation value. Remem-
bering the discussiaon of sections 2and 5, it is crucial for
D2 has a very small VEV. Is
this possible? The direction of <d> in the space of d,, d;, d;

the viability of our example that d
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and d, will depend on the directicn of <S,,,> in the space of

Sz, S; and S,. We observe that to leading order all di have

the same mass M?. (Diagonal and off diagonal terms in the mass

matrix for di induced by the sca]qr petential L; are suppressed

by factors M%,,/M* or M3  /M*.) The mixing of the different d,

with H, is, therefore,determined by the structure of the mass
terms M2

;:%1m6 in (C43) is the same for all i and the direction in d;
space s determined by $0(12)-Clebsch-Gordon ccefficients. We
observe that the same coefficients appear in Ly and L, and we
can collect the mixing terms (with 5; denoting here the group
theoretical direction

d from L; and L,. The dependence on wave functions in

rather than wave functions):

E3+4) z

L4 ! *

H“ '—'/‘Q(S!_T‘;S*)

r3+4) ror_ et kst
My = oy (—53 =12 ¢ ) (6.22)
M = ot (=5)
My = tf (7T s )

¢ .
M o e (< sy e fse)

) L &y + = S
My = o (5 7 «) (6.23)

£34%) (-3
M = A, )

m’j;“' = My (17 %)

* ‘.
(As in appendix C, 5 and 6 denote Hz and H,, respectively.)
Using the definitions (5.8} one finds the following mixings:
» i x }m +*
Hy dloa ~ 52,“"93'—]?5“'
(6.24)
!
— )
Hoolyy ™ “% ~ 5 73

/0

#* o
Hyolps ~ 5o + 53

-
Hyoloy ~ -S2 + % ~ 7z Se
(6.24
Hedlg ~ fa(-sf+75si) )

Heddiy ~  fe( 525 /378y — /E7s )

HYdue ~ 5o+ 553

2

H;duz -~ —Sb*_f’%_s-’"*— g
<
H ooy ~ So =755~ 7 5+
.25
H;dbz ~ "’52,"7}5':'53 ( )

A - 375, + V€ S& )
Fﬁf Ay = ( S 3 %s

i
=
Hid® ~ _,J_.,S:_,—(S%—-f?h)

As a check of these 50(12)-Clebsch-Gordon coefficients we may
use the outer automorphism I,, which changes the sign of the
eleventh component of the fundamental

12 dimensional vector re-
presentation, This transforms

ooy e dypy
dpy = dp,
4, < 4, ' (6.26)
H, ++ -H*
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Neither the combination dD2 nor dLl mixes with H, if

Sz = - S
V3
(6.27)

Sy = "“2—32
VB

However, a vanishing of dD2 and dLl mixings with H, and H: is
impossible due to I;1 (6.26). The combination (6.27) gives

H;(Mb), »= SZ/

w|F

(6.28)

A AP Sz

A

The vanishing of Hidp, and Hid , for {6.27) has a group theo-
retical origin. The "generator™ for the combination {6.27)
{compare appendix A)

S kSt S TS

/2

[A
s + [ /7
fz¢ { 3 ALl | NrbeSHERE | 3eRbrive” | 2343-TRSVE

i

(6.29)

—

- -
A= IT bl Al tpblf f:H -F*SHE

- c:ﬁ&-".’w‘.afa "/_1*;_,,44*5 TP }

: 2 < !
= 3l (IM—I';: 4-83‘)%4-—'2— * Vo Lae )
belengs to the representation ZI0 of the SU(8) subgroup of
S0{12). The S0{12) spinors 32, and 32, decompose differently
under SU{6)}.(This is the origin of the different Clebsch-Gor-
don coefficients for le and dDZ'):
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SOLS, _
Sufe) = 30(5) 40 T
sowy=su) +1 > 4 (5T
3, ——

s s 515G TR IO ")

s s 5_'(0?’,69,1))”5(‘22554;‘) (6.30)

6 ——>A( STy rs(AET)

vo > 104 i o) ¢ 70 (&, &)

The six dimensional scalar decomposes under SU(6)

P > Ll +EAE +2O L2040+ 70 +B4 tBY 4210 4240 (6.31)

and the combinations dUl’ dUZ’ le and sz belong to 6, 84 and
210 whereas dD2 agd dLl only belong to & and 84, Similarly, the
doublets H, and H, belong toc the SU(6) representations 35 and
15, respectively., Since H, is in the adjcint of SU{&) the co-
variant derivative Dp(Hi)dDZ in Ly, belongs tc 6+84 and there
can be no mixing with $* in 210. Similarly DU(HI)S in L; be-
longs to 7I0 forbidding a mixing term with dp,. This fs the
same mechanism which forbids all doublet mixings for <35> =0
and is a consequence of six dimensional gauge invariance. The
L1 are not forbidden by global SU(6} sym-
metry alone since 84x7I0x35 contains singlets. However, there

mixings Hld02 and H,d

may be a subgroup of SU({6) or some other subgroup of S0(12) ex-
cluding these mixings. We note S(ZI0) belongs to a 75 of SU(5).
Both H; and H: can, therefore only mix with doublets di in the
45 representation of SU(5)!

As another consequence of SU{&) symmetry we can read from
{6.30} the transfermation properties for bilinears involving
quarks and leptons and mirror fermions:
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= = ¢ Ze e3¢ + By +RIO
4(1%41040@,462,“4 18,8 < & {6.32)

p/jz;,f, .8 ¢ & + 8%

AX A, €8 C & + &%
{The index indicates if a field is contained in 32, or 32:.)
This has consequences for the wave functions in (5.10}) and
(5.13): There are no correcticns from S(ZIC) to the wave func-
tions for b% and t in 32, (as well as sc, s d* and e). How-
ever, the fields b and 7€ in 32; are contaminated with higher
modes in 32, and their relativ Clebsch-Gordon coefficients for
the mixing through S(7ZI0) differ by a factor (-3). The rela-

tion my = m indeed gets corrections of order (?/5)(M210/MC)
(see {5.12)).

Do we expect that VEVs for $,, S; and §, in the Tinear
combination corresponding to the ZI0 of SU(6) are exact solu-
tions of the field equations (4.56) to {4.65)? The answer de-
pends on the guestion if S(ZI0) induces terms linear in the
orthogonal combinations S(8%F) and S(8&). The only source is the
scalar potential. For a generic potential we expect invariants
Bx210x7T0x210 and BIx210xZ210x210 to appear. As a consequence,
a generic soluticn has a contamination of S({&) and S(3%) to a
leading S${Z10):

My —
£S(B)>, < s8> ™ -—H‘“-f;- <L Sc20) > (6.33)

This gives a contribution to dD2 and dLl of the same order as
the mixing with H> (6.28).

In summary, we have found a natural suppression factor
M3.o/M? for the ratios dDZ/dU1,2’ dLl/dUl,Z' Unfortunately,
this suppression seems not enocugh, Indeed, typical entries
dDz or dLl are of order
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<y, >, Clen> % V‘%_ < oAuge > (6.34)
Since <dU2> must be responsible for the mixing between the second
and third generation, there are entries to M, and ML ¢f order
ﬁﬁa x a few GeVY = 50 to 300 GeV.(i}‘z3 is the corresponding mixing
angle = 4 to 5 %.)If m. and mU are generated by <d_3/2> these
entries contribute directly to my and m, (see section 2). Espe-
cially for the electron this mass is far cutside the acceptable
range even if we account for some suppression due to integrals
over wave functions. We can consider the alternative that <di{2>
is responsible for the p-mass. Taking renormalization effects
into account, the muon mass indeed requires an entry of about
300 MeV. However, there is also an entry

<Ay > o= = 5’—<0f¢4> (6.35)

to My of about 100 MeV. {The factor -1/3 is due to the fact that
dDZ,Ll belong to a 45 of SU{5).) Unfortunately, this enfry is in
the column for the down guark and cannct be used to generate g
without inducing an unacceptably large Cabibbo angle. The wave
functions for the entries to ¥ and Mp are related by SU(5} sym-
metry {similar to (5.13)) and we remain with a real problem
either for the down quark mass or the Cabibbo argle!

We could try ancther alternative where both mixings H‘dDZ
and Hidy, are forbidden. This is the case for

33 = —1/3-52

(6.36)
Su = - /-6-52

There is large mixing between H, and dLl and <dL1> could be re-
sponsible for the muon mass. Unfortunately, the mixing H1dU2

(6.24) vanishes as well. The mixing angle between the second and
the third generation comes ocut much too small! {The matrix ele-
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ment (Mu)lz responsible for this mixing is proporticnal to
<dU2>.) Once again, a realistic mixing pattern imposes severe
constraints on medel bui]dith

To conciude this section, we have found that the mixing of
doublets can indeed give a fermion mass pattern with a hierar-
chy of generations! Our example n = 3, m = p = 1 accounts for a
large top gquark mass of order MW’ masses mp, M and M of & few
GeV, the successful relation mp (M) = mT(MC), a mixing angle
between the second and third generation of a few percent and
a muon mass in the right order of magnitude., It also could ac-
count for mg = 1/3 mu, but unfortunately the Cabibbo angle comes
out maximal for this case. {Smail masses for the first generations
could be induced by U(l)a breaking effects.) Although it is sur-
prising how well this example agrees with the observed fermion
mass pattern for the heavy generations, its probiems will be
difficult to cure. A more realistic model is required. Cur ana-
lysis shows that it will not be easy to find a model obeying all
the restrictions for realistic fermion mass hierarchies and mix-
ings. To facilitate the search, we give in the next section a
systematic procedure to calculate orders of magnitudes of scalar
doublet mixings. We find it, nevartheless, encouraging that in
this simpie model a relatively modest scale ratio M210,MC/M = 1/3
to 1/4 not only could explain mb,c,r/mt ¥ 1/10 to 1/20 and mix-
ing between the second and third generation around Tive percent,

2
!

but also mu/mt < 10
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7, Scales in Fermion Mass Matrices

In this section we describe a general mechanism how small
ratios of fermion masses can be induced. The main idea is that
a small ratio of symmétry breaking scales at the unification
scale reproduces itself in the fermion mass matrices., In higher
dimensional models, the Tine structure of scales for spontaneous
compactification is responsible for the structure in the fermicn

18). Since small scale ratios at the unification

mass matrices
scale are reproduced with various powers in the fermion masses,
relatively modest ratios (M;/M . 1/4 say) may sometimes be suf-
ficient. A small ratio M,/Mmaycorrespend to an intrinsic small
parameter of the theory. In higher dimensional models, it may
alternatively be a property of a given compactification solu-
tion, Examples for small numbers are the inverse of the number
of internal dimensions, the ratio of "radius" to volume of in-
ternal space, the inverse of "mcnopcle numbers" or two diffe-

rent scales in internal geometry (the "almost round" sphere).

Suppose that at the unification scale M the symmetry group
G acting on quarks and leptons is Targer than SU(3)C X SU(Z)L
X U(l)Y and that the varicus fermion bilinears in the fermion
mass terms have different quantum numbers with respect to G
{compare section 3). Suppose further a vacuum expectation value
(~170 GeV) for a "leading" scalar doublet H, {the main compo-
nent of the low energy Higgs doublet} in a given representation
of G. In the Timit of unbroken symmetry G the leading doublet
will not couple to all fermion bilinears and, therefore, induce
masses only for a subset of guarks and teptons. {(This should be
the top quark in a realistic .three generation example.) Next
assume that G is spontaneously broken at a scale M; < M by an
operator 0; {typically a VEV for a scaiar field). This coperator
will mix doublets with other guantum numbers to H;. The amount
of mixing is suppressed by a factor {MI/M)P where P counts the
power of the operator 0, needed teo induce the doublet mixing.
As a consequence, a chain of scales with various suppression
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factors (Ml/M)P appears in the fermion mass matrices. The order
of this chain will be determined by the fermion quantum numbers.

This mechanism also appears in four dimensional unifica-
tign. Indeed, it has first been discussed to explain why neu-
trino masses are naturally sma1124’25} and why my differs from
m, in medels predicting m_ = my 32)‘ 1t has been usedaa) in su-
persymmetric theories to produce a scale MN ~ M%/Mp. In the
context of family unification it was applied to generation
splitting. However, in four dimensional theories it may only
partially be responsible for the structure of fermion mass ma-
trices, since other small parameters (Yukawa couplings) are
available. In contrast, higher dimensional theories have typi-
cally no small Yukawa couplings in the effective four dimen-
sional theory. In this case, all structure of the fermion mass
matrices has to be described by this mechanism. As we have
seen in section 6, this gives severe constraints on model
building, but also may offer an understanding of the fermion
mass puzzle!

For higher dimensional models we will first assume for simp-
licity that the compactification scale M. (the inverse of the
characteristic length of internal space which may be defined by
the mass gap of harmohic expansion) equals the largest relevant
scale M in the model. {See, however, below for a discussion of
the case MC < M.) One makes a harmonic expansion on a state
with maximal symmetry G unbroken at Mc' This state should ap-
proximate the true ground state up to symmetry breaking effects
with a scale M; below Mc' Different quarks and leptons as well
as scalar doublets are classified in representations of G ac-
cording to section 3. The appearance of small factors M, /M in
the fermijon mass matrices is now mainly a group theoretical
problem. We give a systematic procedure in several steps:

1) Determine the symmetry breaking operator 0, with its
associated scale M,. Determine the subgroup X of G left un-
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broken by 0, . Classify the Higgs doublets in representations
of K. Since 0; cannot mix doublets {in different K repre-
sentations, this determines the space D, of doublets which can
mix with the "leading” doubjet H; through C,. Doublets outside
D: get no VEV at this stage. (In our example, K corresponds to
U(l)ﬁ')

2) The next step involves the analysis of abelian quantum
numbers, (We treat it separately from the non-abelian case
(step 3) since it is easier and often sufficient to establish
upper bounds on mass entries.) One determines all abelian guan-
tum numbers Q(i) (in our example I3L’ IER’ YB-L’ g, I) for the
operator 0; and for all doublets in Dy, including Hy. This estab-
lishes an upper bound on the VEV of a doublet d in D,

MiyPo
<d> < ( TT) <Hy> (7.1

The number PG is determined by
ol gy sy #po ¢ Moy = 0 (7.2)

{The signs account for mixing with H, or HT through Py powers of
0, or T,. Equation {7.2) must hold with the same choice of signs
for all abelian charges Q(1).) The bound (7.1) arises since the
mixing involves at least a factor Mlu. It is then suppressed by
a factor M % since M is the only other mass scale and mixing
angles are dimensicnless,

3) More severebounds can be cbtained from a rnon-abelian
analysis. One considers various non-abelian subgroups of G and
determines the representations R{0.}, R{H4), R(d) to which 0,
and the variocus doublets belong. We generalize (7.2) to the non-
abelian case: An upper bound on a doublet <d> is suppressed by
only one power of M,/M if the direct product of representations
for H; and d contains the representation of 0,:

R{d) x R(H1) R(0,) or TR(0:) (7.3)
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(Inciusien of the complex conjugate F(H1) should be understocd.)
The suppression factor s (M;/M)? if R{d) x R(H,) contains a re-
presentation which alsoc appears in R(0,) x R(0,), R{0:) = R{D)
or R(0;) x R(0,) and so on for higher powers of M,/M. It is ob-
vious that the bounds from non-abelian symmetries may be stronger
than these from their abelian subgroups. For an example where
R(d) x R(H:) does not contain R{0,}, but only a representation
contained in R{0:} x R(0G,) x R(0,), the non-abelian suppression
factor is (M, /M)>® whereas abelian analysis only gives a bound

with one power of M, /M. In principle, all subgroups of G {includ-
ing nen-maximal subgroups) should be analyzed. In practice, most
restrictions come from subgroups where 0,, H; or d belong only

te one irreducible representation, especially if they are sing-
lets. {Instead of a complete subgroup analysis one may estabiish
the power of the suppression factor by a direct calculation of
non vanishing Clebsch-Gordon coefficients for mixings through the
expected power of 0,;.)

4) If doublet mixing with a given power of 0; is comsistent
with all subgroups G, this determines the group theoretical value
{(M1/M) G for the suppression factor. In the generic case without
unnatural cancellations, this will not only be an upper bound but
give the actual order of magnitude of the mixing, at least if all
required invariants appear in the action {without scales heavier
than M}. If there is only a restricted set of invariants - for
example as a consequence of a higher dimensional gauge symmetry -
it is still possible that the relevant Clebsch-Gordon coefficient
for a doublet mixing vanishes, even if the pure group theoretical
bound is fulfilled., In this case, an explicit calculation of
Clebsch-Gordon coefficients for the existing invariants may be
necessary. It may happen that certain mixings are not induced
at all or only occur with P > PG'

5} The doublet mixing described above can be represented
graphically (see fig. 2). In addition, the symmetry breaking
operator 0, may induce other contributions to the fermion mass

1

matrix, In fig. 3 we have depicted the mixing with superheavy
fermions which was discussed in the preceding section. Again,
such contributions are suppressed by an appropriate power of
Mi1/M which can be calculated by similar group thecretical argu-
ments as for the doublet mixing. An upper bound for all contri-
butions to fermion mass matrix entries with given G quantum num-
bers is easily established: Let %, and % be two left handed
chiral fermions for which we want to calculate the mass matrix
element M,,. The direct product of representations for ¥ and

W% with respect to various subgroups of G will in general contain
several irreducible representations:

R{%) x R(y) = Z R, (7.4)
1
The Tcwest poser P of 0, for which

(R{H.) or R(H.)) x(R(0,) or R(0,)) x{&(0)) (7.5)
or R(0y))x ... {R{0,) or W(0,)}

{ 7 times )

contains a representation Ri {this must hold for all subgroups of
G) determines the group theoretical suppression factor

Myy P
My = gy <H ;> (TT) (7.6)

for all possible contributions from 0,. (Here 9y is the Yukawa
coupling of H;. In higher dimensional theories it is typically
of the order of the gauge coupling.}

At this point we should comment on the case of a higher di-
mensional theory with compactification scale M. somewhat smaller
than the largest characteristic scale M of the theory. In this
case we may consider spontaneous compactification itself as a
symmetry breaking operator 0, with MC = M1. The maximal unbroken



81

symmetry G ai the scale M is now a higher dimensional symmetry
group. We can essentiallyproceed as before, except one important
modification: The superheavy fermions and some of the superheavy
scalar doublets have now a characteristic scale MC rather than

M and one has to account for this in the suppression factors.

We are now in a position to combine the results of this
section with the systematic fermion mass matrix scanning of
section 3. As a result a realistic model will be subject to mere
severe necessary criteria. After a successful scanning in sec-
tion 3 we end with candidate mass matrices with a reguired order
of scales for the different entries. We now check if this is
consistent with our operateor analysis for spontaneous symmetry
breaking, For the case of three generations the doublet H, (with
VEVY . A) is uniquely determined. One now has to find a symmetry
oreaking operator 0, which induces the necessary entry for my ef
order B, for a given operator 0, one can now check if the sup-
pression factors are strong enough for the various wmatrix entries
to be consistent with the bounds of the scanning process {3.1) to
{3.5). If this fails for all possible 0:, the model should he
discarded. If successful, cne records the other necessary en-

tries (like mo, m m, etc.) generated by 0,. If not all necessa-

ry entries are ge;erated by 0,, one has to iook for a second ope-
rator 0, with scale M; < M,, The analysis can now be repeated
with the combined set of operators 0; and 0,. Some care is needed
in the discussion of suppression factors since ratios M,/M, may
appear instead of My;/M for graphs mediated by particles with mass
My, In this way one has to proceed until all necessary entries
are generated without ever conflicting with the upper bounds (3.1)
to (3.5). The analysis for four generations is similar. If there
are mirror fermions in the model, there will be additional re-
strictions: The same SU(3). x SU(Z)L X U(l)Y singlet operator 0Oj
can be responsible for the superheavy masses discarding mirrors
plus associated quarks and leptons from fhe low energy spectrum
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as well as for the mixing of various doublets to H, etc. For gi-
ven guantum numbers of 01 the contribution to superheavy masses
is easily established and the removal of the "mirror partners"
from the low energy spectrum no longer arbitrary.

One may do again a systematic scanning for cperator trees
0i consistent with the needed hierarchy of scales. Not too many
models will pass this second test, especialily if one allows only
for a few (two or three} symmetry breaking operators. For suc-
cessful models, however, the problem of structure of the three
fermion mass matrices (mass hierarchies and small mixing angles)
will be reduced to the problem of explaining its symmetry break-
ing scales Mj. Also remains the problem of quantitative predic-
tions of fermion masses, Scme of them will depend on dynamical
details of the model. On the other hand, the group theoretical
content of symmetry breaking of G will be determined to a large
extent for any model successfully passing the scanning. Several
fermion masses and mixings may then be predicted from the cor-
responding Clebsch Gordon coefficients and serve as a further
test for such models.
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8. Classical Stability and the Gauge Hierarchy Problem

Let us come back to our six dimensional S0{12) model and
discuss some problems related to the observed smallness of weak
symmetry breaking. Neglecting the scalar vacuum expectation
values and expanding on a spherically symmetric monopole solu-
tion, the lowest modes in the harmonic expansion for HY and H;
have negative mass squaredzy). These tachyons indicate classical
instability of the corresponding monopole solution. Classical
instability could be a sign of spontaneous symmetry breaking if
a less symmetric stable ground state is found. In six dimensig-
nal gauge theories this requiresss) gither geometries which are
not & direct product of four dimensional space and internal
space or additional fields {fcor example scalars). Both features
are reatized for our soluticns in section 4 and we can investi-
gate if they should indeed be interpreted as spontaneous symme-
try breaking (for m = 3, m = p = 1)

SU(B) x U(1) x (1), x SU(2)g

~ SU(3)e x SU(2) % U(L)y x U(1),

For small symmetry breaking scates Mzio, MB—L we expect un-
stable solutions. Indeed, for awide class of deformations from
spherical symmetry the diagonal contributions. . Mé in the mass
matrix for H} and H} (6.17) will be negative. (A1l mixings are
small for Maio, Mp_ | << Mc.) Or the other hand, the diagonal
contributions . #3,,, MJ_| in (6.17} are positive (compare appen-
dix €). For M2, Mg_L é,
eigenvalues of (6.17) are positive. There is no classical insta-

s> M MZ,, all mixings are smail and all
bility in the doublet sector anymore! We expect classical stabi-
1ity for the doublet sector for a wide range of solutions with
MB-L andfor My, sufficiently large. A similar behaviour s ex-
pected for other modes which would be tachyoniclT} on spherically

g4

symmetric monopele solutions with M, | = My = 0. The six di-
mensional Higgs mechanism can stabilize the "compactifying" so-
lutions! Stability depends on the scales My , and M;,, which in
turn depend on parameters in the six dimensional scalar poten-
tial and on "initial cenditions" for the soluticns in section 4.

For targe encughM and Mz,, we can indeed interprete these

B-L
sglutions as spontaneous symmetry breaking of the higher symme-

tric monopole solutions.

For some intermediate range of MB—L and My, theremustbeatran-
sition from stability to instability, [t is this transition region

we are most interested in since U(l)ﬁ and SU(Z)L X U(l)Y must

be spontaneously broken for a realistic theory. There is a class

of solutions in this transition region where U(l)q is broken at

a scale Mq << Mayn, MB-L’ Mc' This happens if we choose poten-

tial parameters and initial conditions so that the mass term for
the lowest mode from six dimensional scalars with § £ 0 is nega-
tive and small compared to Mé. In this case we can use the four
dimensional effective thecry for the corresponding scalar mode

in a good approximation and do not need to discuss the compli-
cated ¢ dependence of the correspanding higher dimensignal so-
Tution explicitely. We now want to study the symmetry breaking

of the weak interaction gauge group SU{Z)L X U(l)Y. The mass

matrix for the doublets in HY, H} and d {after integrating out

the other doublet modes) will have the form (6,20}, up to small
corrections proportional to some power of Mﬁ' Consider for a
moment MB—L and Ms;,. as free parameters. Decreasing the overall
scale for the scalar vacuum expectation values will induce a

change from positive to negative M2 or MZ. This corresponds to

a phase transition where SU(Z)L X U(l)Y is spontaneousty broken.

If the quartic coupling for the doublet is not too small {sc that
Coleman-Weinberg symmetry breaking36) is a small effect) this tran-
sition is essentially second order. Thergz is, therefore, a critical
scale of singlet VEV's where the lowest doublet mass vanishes. For
values sufficiently near this critical point the lowest doublet mass
can be arbitrarily small and a gauge hierarchy is realized!
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0f course, MB-L and M2:¢ are not free parameters. The ex-
act location of the phase transiticn depends on the different
parameters of the model (including the scalar potential) and
the "initial values" for the different solutions. For a wide
range of model parameters there will be a second order phase
transition on a hypersurface in the space of "initial values".
{This hypersurface has one dimension less than the total dimen-
sion of that space.) Solutions near this hypersurface realize
a gauge hierarchy independent on any fine tuning of model para-
meters! This realizes the idea of & continucus spectrum of
classical solutions where the weak symmetry breaking scale is
a free integration constantzs)‘ Solutions realizing a gauge
hierarchy cover only a very small range within the continuous
spectrum of solutions. It is a difficult open dynamical question
to understand why such & particular solution should be preferred
and what determines the scaie of weak symmetry breaking. We only
note here that a small doublet mass at the compactification scale
MC remains small in the whole energy range down to 100 GeV even
if quantum fluctuations are included. This "naturalness” of a
small quantity is due to the second order character of the phase

transition37)

. For generic model parameters the gauge hierarchy
sglutions correspond tonon-compact internal space26). Only if
one insists on compactness of internal space a fine tuning of
model parameters would be needed for a gauge hierarchy. In this
respect, the status of the gauge hierarchy problem is now very
similar to the problem of a vanishing four dimensional cosmolo-
gical constant Ag. The cosmological constant is another free
integration cunstant6’26) in a continuous spectrum of classical
solutions with non-compact internal space.

Critical solutions with vanishing doublet mass are generi-
cally expected due to the second order character of the phase
transition. A given model may predict which one of the candi-
date Higgs doublets becomes massiess. One has to check if this
doublet coincides with the JTeading doublet needed for realistic
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fermion mass matrices. This places further restrictions ogn mo-
dels which fulfill the necessary criteria of sections 3 and 7.
In our expample (n = 3, m =p = 1) all doublets except the low-
est modes in HY and H} have positive mass squared in the limit
of spherical symmetry. The massless doublet will be either HT
ar Hg depending on M} smaller or gereater M3. In our example

we need a range of solutions for which M{ < Mi so that 4T 1s
indeed the leading dcublet.

We also can determine the quartic scalar coupling i for
the doublet Hf. Since H; is a component of the six dimensicnal
gauge field its interactions are determined by six dimensional
gauge symmetry. We can read from ref. 15 that x is positive.
For any given solution the gquartic coupling is easily calculat-
ed and the physical Higgs mass, therefore, predicted. Details
depend only on the specific form of the wave function Hf(y).
One finds » of the order g2 and the Higgs mass is, therefore,
expected to be of the order of the W-boson mass and the top
quark mass,

One more detail is important for the general setting of the
gauge hierarchy probiem: From the doublet mass matrix {6.20) we
lTearn that the phase transition is not at M = 0. (We assume M}
< M3 for definiteness.) Due to doublet mixing, a zero mass eigen-
value rather occurs for

M: = ok M2 MELo/M° (8.2)

This situation is generic for all cases of mixing. Even though
M2 Mé/M2 may be small compared to M} or Méjit is still enormcus
compared to the weak scale Mﬁ, There is no gauge hierarchy for
Mi = 0}

This shows a serious dilemma for ideas which want to obtain
a massless scalar in a certain representation of G at the compac-
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tification scale, for example due to some Betti numberF7), and

then keep it massless due tc supersymmetry. (This idea is popu-
lar in some discussions on string “"phenomenology”.) Since all
mixings with other doublets would destroy the gauge hierarchy
they must be forbidden in this case. Preventing mixing due to
symmetry breaking is by itself not easy, but in addition it also
creates serious problems for an understanding of realistic ferm-
jon mass matrices. Without doublet mixing, the structure of
fermion mass matrices must be explained by Yukawa couplings
which are small without any symmetry reason and all quarks and
leptons must get their masses from couplings to one massless
doublet in a given G-representation.

One first might have thought that doublet mixing could be
replaced by mixing through heavy fermions as in fig. 3. Fermion
mixing aione, however, does not lead to realistic mass patterns:
Assume that in the 1imit ¢f unbroken G symmetry the massless
doublet couples only to cne up type gquark

£ Hy t' ot (8.3)

Mo
Symmetry breaking of G can induce mizing

t' = a

1i 71

(8.4}
[ ¢
t = b“_ui

Here the sum runs over the light quarks Uy, Ups Ug 3S well as
infinitely superheavy many superheavy quarks. The mass matrix
for the 1ight quarks Uss ui has the form

w(U)

ik Hi 34 j blk (8.5)

This matrix has still two zero eigenvalues and nonzero masses
for charm and up quark cannot be explained by fermion mixing.
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Also the small ratios mb/mt and mT/mt cannot result from fermion
mixing. Doublet mixing is needed if small fermion masses and
mixings are to be understood from G-symmetry breaking effects,

In conclusion one has to chocse between cur explanation of
the structure in fermion mass matrices by symmetries and the
approach with a massless doublet in a given G representation.

In our opinion, not only the radiative stability of a small
doublet mass between the scales MC and Mw does not need super-
symmetry37), but also the mechanism generating a vanishing or
small doublet mass at the compactification scale is probably
not related to specific properties of supersymmetric potentials.
The most important property for both questions seems to be the
essential second order character of the weak phase ftransition.
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9. Conclusions

In this paper an attempt was made to give a systematic
discussion of the structure in fermion mass matrices. The hier-
achies of fermion masses and the small mixing angies are ex-
plained by a fine structure of scales near fthe unification scale.
With the assumption that all small ratios of entries in fermion
mass matrices are due to ratios of symmetry breaking scales, we
have formulated several necessary criteria for possible quantum
numbers of quarks and leptons with respect to a symmetry G at
the unification scale (which is Jarger than SU(3). x SU{Z)L

X U(l)Y). We propose a systematic scanning procedure (which can
be done on a cemputer) to select "viable" quantum numbers.

We have demonstrated these jdeas for a specific class of
solutions of the six dimensional $0{12) gauge theory. They can
reproduce the hierarchy of fermion masses M 2> M, m
mu P> My, M

, M o>,
ur Mo but tend to predict unacceptably 1a;ge nc11'x1'ng5
angles for the first generation. The six dimensional S0(12) model
is the simplest model to discuss the problem of fermion masses
in a realistic setting., So far we have treated it mainly as an
illustration. Since this model has proven to be relatively suc-

cessful one may wonder if there could be some real physics in it.

Qur discussion i1s only based on symmetries and their break-
ing scales and we observe that six dimensional general coordinate
and Lorentz transformations (gens) plus SC{12) gauge transforma-
tions are a subgroup of the symmetry group for various interest-
ing unification models, as gen,o x Es x Eg¢ for superstirings or
gen,s for the simplest pure gravitational mode115). The S0(12)
spinor representations for fermions discussed in this paper
appear in the decomposition of spinors for such unified models.
One may ask to what extent our discussion can be considered as
a subgroup analysis for unified modelis?
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Subgroup analysis in higher dimensional unification is much more
invoived than in usual four dimensional “grand unification”.
This is due to the appearance of infinitely many representations
of the subgroups if they relate to a reduced number of dimen-
sions, Suppose a theory with a symmetry which has gene x S0{12)
as a subgroup, as for example the ten dimensicnal Eg x Eg super-
string or its field theory Timit. We aiways can expand such a
theory on a state with global six dimensional Poincarg symmetry
and S0(12) symmetry (plus possible additional symmetries}).(For
the Ez x Eg example one may think of some space #°% x K with an
appropriate gauge field configuration.) This expansion leads to
an action with local gens x S0{12); symmetry and the correspond-
ing massless graviton and gauge fields. In addition, there wil}
be an infinite tower of other fields which are in general mas-
sive unless protected by some symmeiry or topological reason.

We note that our expansion state is not necessarily a solution
of the higher dimensional field equations, If it is not, the
effective action obtained from the expansion will contain terms
linear in six dimensional scalars which are singlets of 30(12).

We claim that any arbitrary classical configuration of the
higher dimensional theory can be represented by appropriate
values for the infinitely many fields of the six dimensional
theory. In particular, the (classical) ground state can be ex-
pressed by vacuum expectation values of the six dimensional bo-
sonjc fields. This is the generalization of subgroup analysis
to the higher dimensional case. These statements may at first
sight Took somewhat surprising. How can a ground state like
M* x 5% be expressed in terms of expansion on the tepologically
inequivalent state 4* x $"? Locally, it is obvious that we can
axpress the metric of A" x 5° by expectation values of bosonic
fields in the six dimensional theory obtained from harmonic
expansicn on 4% x S*:

Yo 0 G s 0 0
s

= 0 <metric>, <vectors> (9.1)
0 976(56) 0 <yectors>,<scalars>
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{In this schematic notation the six dimensional metric has the

form of spontaneous compactification g(ﬁ) = ( 7}« ° ).}

0 <metric>
Such a lecal region with topology R'® can be extended everywhere
except the south poles of S°® and S', respectively. They appear
as singularities in a cartesian coordinate system with the north
poles as origin. The structure of the singularity heing different
For#* x S° andof® x S*, we conclude that the states" x S° appears
as a sinqular configuration of bosonic fields in the six dimensio-
nal theory obtained from A x S"i (This is another reason why we
considered in section 4 solutions of the six dimensional field
equations corresponding to non-compact geometry.) In general,
such a singular configuraticn may involve infinitely many harmo-
nics on A% x 5", Higher dimensional ground states
with topology not admitting gens x SO0{12)s will appear as sin-
gular configurations of some six dimensioral SC{12) theory (if
the unification group contains gens x $0(12)s). We, therefore,
can always formuiate a ten dimensional Eg%Es theory as a six
dimensional S0{1?) theory with infinitely many modes. There is
even an infinite number of such formulations cerresponding to
expansions on different states with Pe x S0(12) symmetry. The
question whether such a six dimensional formulation is usefuyl
depends on the criterium if the ground state can be well appro-
ximated by a finite number of six dimensional fields.

What are possible modificatiaons of cur six dimensional
model if it is embedded inte a higher dimensional unified the-
ory? First of all we have all the massive modes, in particular
infinitely many six dimensional scalars instead of only the
fifth rank antisymmetric tensor representation. The scalar po-
tential will be more complicated. More general, the six dimen-
sional field equations will be modified, but we expect that
qualitative features of the solutions and scale arguments re-
main unaffected. Only very few modes can couple to bilinears
of chiral six dimensional fermions and, therefore,influence
the structure of fermion mass matrices. In our example there
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wiil be two more scalars in the vector and third rank antisym-
metric tensor representation of S0(12) {compare appendices A,
B). The structure of their contributions to fermion masses is
essentially the same as for the 792 scalar.

More important, their may be traces of the higher symmetry
of the unified theory (for example E5 % Eg) in form of relations
between six dimensional couplings. This could explain cancella-
tions between contributions to fermion masses which would lock
unnatural in a purely six dimensional context. In our example,

a cancellation between contributions from scalars in 12, 210
and 792 (which may all belong tc the same multiplet of the uni«
fied theory)} could make the unwanted mixing between dDZ and H.
vanish and, therefore,cure the problem of too Targe mixings of
the first generation!

The content of four dimensional chiral fermions obtained
from the chiral six dimensional spinors 32; and 32, could be
more complicated than the one given by the monopole numbers m,
n and p. This is possible if the non-compact solutions deviate
sufficiently from the compact monopele solutions. Qur analysis
could easily cover this case as well. We note, however, that
the possible content of four dimensional chiral fermicns is
strongly restricted due to anomaly cancellation (including
U(l)q, U(l)G and U(1)8~L)' There also could be other mass]esg
six dimensional chiral fermions. This possibility is restricted
by the requirements that all six dimensional anomalies must
cancel and the additional chiral spinors should contain fermions
with guantum numbers of guarks and leptons.

There is, however, an even more drastic possible modifica-
tion of the six dimensicnal theory: This is the case if the four
dimensional chiral fermions are not obtained from the six dimen-
sional chiral fermions, but rather invelve the infinitely many
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massive fermions of the six dimensional thecry. This can happen
if the four dimensional symmetry group cannct be embedded into
the unification group G via the chain

6 D S0{12)s x gens DSU(3). x SU{2) x U{l}, x gen,  (9.2)

or if the ground state does not belong to an appropriate SO0(12)},
X geng-deformation c]assl7}. For an appropriate deformation class
it must be possible to "blow up" two dimensions so that in the
corresponding limit Mc + 0 the massless fermions form a set of
chiral six dimensional spincrs containing the two spiner repre-
sentations of S0{12). Note that the concept of blowing up two
(arbitrary) dimensions defines the notion of a SC{12}s x gene-
deformation class even for a ground state which has only four
flat dimensions. One $0(12)s x geng-deformation class contains
many SU(3) x SU(Z)L X U(l)Y % gen,-~deformation classes. If the
four dimensicnal chiral spinors are not contained in six dimen-
sional chiral spinors a subgroup analysis with respect to
$0{12}s x gene is meaningless for the c¢hiral fermions and the
six dimensional S0(12) model is irreievant for the structure of
fermion mass matrices. (This is for example the situation for
the subgroup SO0{12}, x gens,. For m, n or p different from zero
the four dimensional deformation class of the ground state does
not admit $0(12) symmetry.} The relative success of our simple
model may indicate that the four dimensional gauge symmefries
are indeed contained in S0(12)s x gens and the deformation class
of the ground state admits a six dimensional formulation for the
chiral spinors.

We canclude that for a large class of compactifications a
suitable version of a six dimensional S0(12) theory reflects
many relevant features of a fen dimensional Eg X Es theory. For
our discussion of fermion masses we only have used the symme-
tries S0{12) and U(l)G {isometry of ¢ -vrotations on internal
space). It is pessible that U(l)G could be replaced by a dis-
crete subgroup. It is also possible and perhaps necessary that
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other continuous cor discrete symmetries play a role for the
understanding of fermion mass matrices. We find it encouraging
for higher dimensiconal theories (in particular for those con-
taining SC{12)¢ % gens as a subgroup as the Es x Es superstring)
that for a first time we have a model with predictive power about
the structure of fermion mass matrices. Even a relatively simple
solution can explain the hierarchies of fermion masses. Unfortu-
nately nct all mixings 'come out satisfactory sc far. It is our
hope that a systematic analysis of possible quantum numbers of
guarks and leptons with respect to symmetries at the unification
scale will lead to a complete understanding of all small quanti-
ties in the fermion mass matrices in terms of ratios of symmetry
breaking scales.
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APPENDTIX A

Totally Antisymmetric Tensor Representations of 50(12)

a) Scalars in 0dd Rank Antisymmetric Tensor Representations

In this appendix we perform the analysis of the 50(12)
algebra for the totally antisymmetric temsors appearing in this
paper, We give a systematic treatment which is easily genera-
lized to orthogonal groups in arbitrary dimensions. Totaily
antisymmetric tensors will be represented in terms of the
Clifford algebra. We start by defining the usual Dirac matrices
in 12 dimensions by

(R Ml =2, = —28p , AB=4... 42 (A1)

and their totally antisymmetric products of rank ﬁ%

) [
3 _ Lo (A2)
a = a0 Tra A T

The bracket[, jun indices means antisymmetrisation and we will
often omit the label (£). We are interested in scalars in the
representations 12, 220 and 792 of S0{1l2) corresponding to to-
tally antisymmetric tensors of rank one, three and five. We
represent them by 64x64 matrices

;4 Ao As 1)

4} {
P - o Far . s )

with

By. - B,% --/4{

P
¢ = (—1) g% (A4)

and (—l)P the degree of permutation of the indices (B,...RBs)
compared to (4,... Az ).
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This representation is adapted to the fact that the direct
preduct of two Dirac spinors contains all totally antisymmetric
tensors., A 30(12)-Dirac spinor has 64 components and transforms

w —= U %
. {A5)
AR .
= -
v = g’?’( 2 & jAB )
with f;a hermiiean generators of 50(12} in the spinor represen-
tations:

- L
/1"

Correspendingly, totally antisymmetric tensors transform

¢(§) Y ¢{.§)U_.,r (A7)

Tas L720,71 = = Tas (A6)

Using

- 8
U U r o,
(A8)
. B
B _ ..L— ch v)
C 4 Zj}k?b( z & 7_c> {1 A
. v :

wmthT;b the S0(12}) generators in the vector representation
given as 12x12 matrices

— (V) N N
(7 . )sr = Ses Sy F1 §CT S 5o (A9)
one obtains
- A a4 - A4
ArA, ---As Ay 4 oM e fz o (A10)
Q? —> O A,:O 4;"' A‘)

We have chosen our normalization (A3) so that the standard
kinetic term for scalars in antisymmetric tensor representations
reads
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S = (%3 L1 (D7) Dag

¢b _ é;— géfé)

This is easily checked by using the fellowing relations for
traces of {? matrices in even dimensions:

(A1)

.. n = o for £ odd or at least (A12)
AT AL Ay one index appearing an
odd number of times.

7_'; r1/454) l__’{%z/)

Ag-- Ay, D g, .B/s,“—:do for 3, + %, (AL3)
A(&r) Aa. ~Ag
&} g) E>
= (-1 P ln o)
L ,44...44/-,';,.,.55“ (=1 6¥ I (p, .. B (Al4)

Ao A +1 for Be.--Ba even permutation of Ae.--g
P( R for B« ~ By odd permutation of A ---Ae (A15)
Ba--8g ;
0 otherwise

For real @™ ™ e note that gﬁru and ¢5“7 are hermitean

whereas gﬁ“) is antihermitean

&) ' &(%*4) (%)
(/-1 Ay ) = ("l) f"

A4""ﬁ'%

q)wf - @“) (A1)
¢(3l1‘ e _ @fﬂ
¢(S‘)f- = ¢“—)

We also define the S0(12) charge conjugation matrix B, by
¥ -1
/74 - Bw /74 2

rT Ba 17y Ba'

1

B;BIQ,:—J’

/
AL7)Y

Il
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The matrices
¢(4) = B, 45““ (18}
obey
(é{ﬂ 3T - 5{4)
~ "
(@>)T = @ (A15)

(é’(y))r - grr)

(5(&))# — B,q ¢(5) @(%}Bm
(P = By B

(A20)

b) $0(12) Gauge Bosons

The gauge bosons of 50(12) beleng to the totally antisym-
metric tensor representation of rank two. It will be useful in
our context to represent them in the Dirac representation as
54x64 matrices

@

AAT
“

A 4 A !

Ay = o As Ty = v T

5 (A21)
AR _ B4

i A

Their transformation properties are modified by an inhomoge-
nous term

éﬁqu&u"u?ug‘cu" (A22)
The field strength is defined as usual

o~ A b . “ - 1

6/24 ’"%«‘Aé "%fj’,ﬁ“ij[ﬁﬁ/’;]* 2 6/3:, "AB (A23)
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The normalization (A2l) implies that the gauge invariant kinetic
term in the standard normalization reads

A aa U Qv DAB

Aty | o e i €332 67T G

RGE L T Oy = 5
% f Fooep B T £ 375 Gas € (a24)

c) Weight Basis for Dirac Matrices

We want to identify physical fields of interest 1ike
SU(S)C X SU(Z)L X U{l)Y singlet scalar fields responsible for
spontanecus symmetry breaking of the unification group or Higgs
doublets inducing fermionr masses. For this program a change of
basis for the matrices /7% is appropriate, It will also be
useful to study various subgroups of S0{12) and the projection
operators for their representations.

We define the generators of the Cartan subalgebra of S0{12)
= =
HW 7;W-f,2,h/ Y /_;w-/f /.1\,\/ , w=_4 .6 {AZ5)

They are related to the usual gquantum numberslg)

H,, - - (rs;_f-r?:&)
Hy = I - Ise
Hg*’#@*h’s" = '%’ yB"L. (AZe)

Hé =?

& = — M, + é’(’h% * My v Hs )]

Qi

The weight basis for the Dirac matrices consists of eigenstates
of ﬁJ:
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[—751«/ = % (r—;.w’—l tie /jw ) A (A27)
[Hw,, ﬁsw] - £ gw‘w M (A28)

(A29)

.'L
(ri) =-7rL.
In a metric formulation, we can define the operations of
raising and lowering indices {gw): HWriting

_ " A ; A ‘ A
/_;,‘w " € F?A ’ 85,1/ = E(ézy_lfls éz.w)

-

{A30)
Ew Cws | FT , T
[; = €4 /:;J ; €a 7 fZ'( & A -gilch )
we hote that eﬁl and Q:V play the role of a vielbein and its
inverse

A £'w! £ e w’
e, e, =855

a7 A
(A31)
Cw A’ Al
f& e = é;
The metric which Towers and raises (g£w) indices is
—_ A" A“’ _—
Fetancawn = eg,,m € e 77/?4'4, -7 SW4H/1, 5?:”-5:,
Ltwr L L £z A32
/7 e = & ‘ B ?Af"b' = 4754)«/: L2 W2 ( )

- A4 AZ
Ezwh £3 Wy §£3 S Wi
= €A L]

Lowering and raising indices is related to hermitean conjuga-

/%,'4 Wi LT,

tion ~
e/fv= ’7w£;e:‘u‘/ Tan = (e;v/ )"
€t = Yewis €5 97 = (edT)" Y
e 775“/5‘;;*1 - =(/—::w)+
£ e (A34)



In the weight basis the anticommutator is

lr [}4‘,'/4 / ﬁ'i‘zwzf =2 47&'"/42-%/2, = —2’5’“”"2. 5‘-"’; ~gz2. (A35)

implying

() =o frim =2 (A36)

w £w',

The adjeint representation is again given by the commuta-
tor of two /7 matrices

=‘ZI[I;W4/ f;w&]___{"' /£ +5Mn~§, éﬂg'& (A37)

Liwi €2 w'a, £iwn £aay

The generators of the Cartan subalgebra read
= 4 = 1 £38
HW T2 rjw+w % [/jv; rlv'] ( )
The Tadder operators are obtained for wjy =+ g

= ZL s (A39)

ELWIEL W2 A o L2 7

They fulfill simple commutaticn relations
- y i
Z‘g&ﬂ\/‘f £2ny 4 /;?3;‘/3 ]'—‘ -t 5""3% égia_gzrg:y,,*l éygv,éc;-ﬁ' fz#&(Aqo)

[wa ES(WJCLN_L] = (54 S‘VSW *‘%SWWL} Eivvncrm (A41)

= 7 (A42)
[E-C'!‘Wdﬁlulz,l ’E:-,g,,,m__%%.] = Ex Hua + E2 f?IWL
Under hermitean cenjugation cne has
t_
t (A43)
Ctum £2nh, - —E£s g, ~Ep Wh
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Using the weight basis, all fields are eigenstates of the
abelian charges in the Cartan subalgebra. The gauge fields

- Al ACAWHCLindg,
A, = L A, 7~ L A4,
4 p T AB ¢ A Lttt Epw,
(A44)
AR AR 5”"‘851*% -+ Az Ay,
ST % Sa A
can be divided into néutral fields in the Cartan subalgebra
-
A A . b 0
U = U" /./ = Z L A. ﬁ
o W b A /" bt
f s “ {A45)
w . - A 2w, A
U.q = A - = A -~ 4
v -~ A~
and into charged fields
A . A Crw' €20,
.= 2 2 A, Egpuncrna (A26)
a wpewy s

/},‘.=%+€& (AL7)

A
For example, the field /4/;; has charges H,=-1 , Hy= 1,
Hy =t =He=He = and, therefore,the quantum numbers of the
w:—boson. For the scalars we define

@) Ay Ag &) Y ar I
Cond . Eghs e&,%"' 6&‘4% Ao - As T &) T, gawy1 (R48)
Eewi. . . Eqhp Eetetr £k A4,... . Ag A4S
7 SRR 2 e
v A P
(p&ua SRR L S (—f )'PCFL',w.,«-,.ﬁLV@ (A50]

with (—1)P the degree of permutation of (5’:/;,- -,i‘%) compared
£0 { Sy . ... ). The fields g™
lization and

MR haye standard norma-

a1t Fom = B 1y (4)
‘79 P Y 7 Erus .- Eguy (A51)
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Properties under hermitean conjugation are given by

(/-1(‘-) » + ’gé—%,f_dl (€)

Binie - g R ) =0 /ng_-,_ ~Eind, (A52)
—Ely - —

(i - v )*7_ @ BiA (A53)

d) Projections with fw

In even dimensions N the tetally antisymmetric tensors of
rank N/2 are reducible. Irreducible representations are obtain-
ed by using the projection operator 3‘;{]1‘1’3) . In our context
antisymmetric tensors of rank N/2 appear for various subgroups
SO{N) of S0{12) and we present the relevant properties for arbi-
trary N even. The operator

— (A7)
= Il = e (A54)
- Ay oo Aps i A Ap A
’77\7_“;-.6 f::,.""f;y_ -_,’_C /*’Ar-"‘bv
s (A55)
Ve =L

Commutes with ail SO(N) generators /,z . It induces a duality
between totally antisymmetric tensors of rank & and -4 :

NTY &)
g IS - T (-1) * £ {AS56)
Ave- Ay (p-3)] Auc- Ay Agua - - Ay

Ay A,Vf,, (=%}

The totally antisymmetric tensor SAA"'"-AN
with &,, ., =1 and indices raised and lowered with ’7A5="SAB-
Thus gﬁ‘”and gﬁ(""u belong to the same representation

is an SO(MN} invariant

— ceg (R) s (r-4%)
r A %r, - Agyy - Aw IS
i ¢ AA "'/44, ¢ 4_5*‘.....,4”
~ ~f
Ay A UED A Arr. Ay (ABT
@ e e T (=1 PR L ™ (A57)

= (-a A, - As

For 35/"?2/ the operators ’/4-.,(!:‘: G’/) project out irreducible

representations

©E i emn™

/:4__,4% T YA Aug, (A58)
Ay oo A AA...A%' ’vﬂ,;—“AMﬁ,
+ "o L@ t @ ) (A59)

In the weight basis, relation (A56) reads

r:/rﬂ {(-1)

e —
Ctw - Cgig (a3 Cowg - Egig

with

EgoeWes - Eiiv A As Bungy  Eubiw

554.‘/4--.2&% %;46&“& e G

~ -~ ~
_ Eam et Cgnd Wi Caritipt EppWins

t8) 7}\/ &‘{’"&iﬂl Egra W £ N m-E)

f-iu“iu"t”""( A60)

Age A
A4--‘AQ

(461)

~

. R A V)
Cowry - - ighf Bge Vet VTV

(A62)

and Lo towi the totally antisymmetric tenser of rank R
M
£‘4+4—L4’2,-v-—1\_/+£\_/ = (') = /7/1/
A A
py
6—/”‘L+a.-—- - (__c-)/"v = 4/,7/\/ = 47,

The matrix fr:, is
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— ) A63
mo= (A63)
N r:iif'/f 2tz o Ml

and for antisymmetric tensors of rank N/2 one has

= o) et Y

S =(_f)y(z*’) p_(Z)

Nt g (=) .. o (AB4)
LG, Gy e T Way

Here (Liwi, .- .., Lay Wi Jand (5;':’:‘, cee s Eay ;’vké)are two dis-

Joint lists of N/2 double ipdices £;w; (no double index appear-
ing in both lists) and (—1)P is the sign of permutation of the

~ ~ o~ M
set(sqw/-—-,é%h{%,c,m,...i.,%w% b, compared tO(—1f4l_,, L.v)

e) Subgroups of 50(12)

For a classification of states we use various subgroups
of S0(12). Let us first consider the maximal subgroup S0(10)
% U(l)q. The S0(10) generators are given by T, iMAa=1-.i0,and

M/
the U(l)q generator is T;”L . In the weight basis SO(10) labels
correspond to w=+4...5 and U(l}q Tabels tow=¢g . The antisymme-

tric tensors considered in this paper decompose as follows
12— 10, + 144

66 —» 45, + 10,., + 1,

(A65)
220 —> 120, + 45,, + 10,

792 —> 126, +126, +210,, + 120,

The fifth rank antisymmetric tensor of S0{10) consists of two
irreducible representations complex conjugate to each other

() 30eid™ - 51577 ) (A86)
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The irreducible complex spinor representaticns 16 and T& obey

e {6 + 16

I (_ =( _.) A67

o\ ) -lé ( )
With respect to U(l)q, tensor fields with charge q =1 (g = -1)
have one label /.., (/7. _,) whereas fields with no label -6

or +6 or hoth labels -6 and +6 have g = 0. Spinors with charge
q = 1/2 (-1/2) are eigenstates offl with eigenvalue +1 (-1).

The group 50(10} can be further reduced to various sub-
groups. (For useful tables on SO(1C) representations and theijr
decomposition see ref. 38, although our conventions differ from
this author. For a systematic treatment and additional material
compare ref, 39.) The subgroup S0(4) = SU(Z)L X SU{Z)R is spanned
by the labels w = 1,2 (M,N = 1...4). The spinor representations
of SU(Z)L X SU(Z)R chey

o2, 1) = —(2,1)
B (A68)
o,y = F (1)

The singlets (1,1) have either no label w = 1 or w = 2 or labels
I -141-2+42>. The 30(4) vector (2,2) has states with labels

I=A7 , 1+42 =27, [+2> (A69)
or
A, 2> 1=, =, 42D, [, 1, 2, e, S (A70)

The antisymmetric tensor of rank two gives the adjoint repre-

sentationsof SU(Z)L and SU(Z)R:
. L _

(4,3) 5 | =4,-2%; f_z,'{’_'”’o“"' 3+z>}; P #4425

A7l
(3,4) ¢+ [-4, 27 Fj__;{f-'4+4>‘f"3-*2—>}; I+4,-2> ( )
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and fulfills
{3,1) 1 = (2) 5 - .
(uls))=z.(‘+’?,)¢ =i ) (A72)

The subgroup 50(6) = SU(4)C is spanned by the Tabels w =
3,4,5 (M,N=5,6,,.10), The 4 component complex spinor represen-
tations obey

o o= -

I~

(873)

+

o !
1
i
1

Singlets of S0{6) have no label w = 3,4 or 5 or are labelled
]-3,+3,-4,+4,-5,452 . The vector (§) has states

l—3>jf+3>;l—¢?;r+%>;f—Y>)I+§> {(A74)

oer the corresponding dual states with five S0(6} Tabels obtained
by app]yingfj . The adjoint (15) has two (or four) labels with

w = 3,4,5. The antisymmetric tensor of rank 3 decomposes into
two complex representations 10 and TO with

1o - 3) 3} =
() =402 7 =751 £7) (A75)
The colour interactions correspond to the subgroup SU(B)C of

SU(4)C. The Octet within the 15 of SU(4)C s spanned by the ge-

nerators

£ &

MR “3+5 ) —%+5

Eine , Eizes , Ewpos ) (A76)

S (tt,) | T (Hyt iy =24 )

{The generator *H@*Hr) corresponds to the abelian group

=l
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U(I)B_L commuting with SU(3)C.) Singlets of SU(3)c occur in
varicus SU(4)C representations. The trivial one in the singlet
of SU(4)C has nc labels w = 3,4,5 and YB—L = 0. Other singlets
with Y = 0 are in the 15 of SU(4)c and correspond to the
states

B-L

1. , .
ﬁ,{1-3+3> + =g F TI~§+5>§

(A77)
L - ~ - - bl ST
r;i [=343 ~4 +43 + [-3#3=S+C > + -4+ >1
Finally, there are singlets with YB-L = -2 {42) in the repre-
sentations 10 (ID):
[-3-4-5 > ( Yo, ==2)
(A78)

J+3 ¢4 +5 72 ( Ypr = 2)

Triplets are contained in the 6, 10, I0 and 15 of SU(Q)C as for

example
3 - - _ B
1T s (V™75
T I3 vy e (Yoe= %)
(A79)
3¢ J+¢r+S‘>J. .'+3‘+3>}, 1+3+4> (YB—;.= *f/3>
3 | 9= (=5=3> =34 (Vg =-%)

We finally note that the SU(5) embedding in 50(10) is complete-
ly paraliel to the SU(B)C embedding in SO(6). SU{5) labels run
from w = 1 to w = 5 instead of w = 3,4,5 for SU(3)C. Among the
SU(5) singlets are the following states

no label w = 1,2,3,4,5

jHa+2+3+0+5 >

[=4-2-3-4 -5 >
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fJ:s [[—4+4> 12+ -3 435 +1‘--f+l+>1-f"‘$"+s‘>i
(AS0)

i
7= -

T R TS, I SN S o R o . R S e B N R a s g e e N i

and some 5-plets are given by

V=47, 025, 1-3%, I~4> , (ms>

-~

[+2+3 44 +52, I+1+3 HersTH)

ol

Jod =g 2o+ t-d =3+ ) + A —ru> + f——f—s-+y>fJ

b

[l=2-1+2> +l—z-3+3>+f—z—wv>+1-a-s—+5>§) .o .
»
(A81)

[/-4-—2,+z-—3+3>+ fud =2+2 444D + 1o 4232 -5+5 S

-

S —A=3EB b b A= IEY SIS S b [ Sy =SS 3 ,

D R R B B I R Al L gl i e et g a4
izl

Y e LA R e R R R A 04—+9-—-5—+S“->jJ -

f) Physical States

We are now at a point where the classification of "physi-
cal states" in the various antisymmetric tensor representations
becomes an easy task. Let us first study the adjoint of S0(12).
In table 3 we give a 1ist of the abelian quantum numbers MV and
the labelling for all states in the 66. A& similar analysis can
be done for the other totally antisymmetric tensors. As an ex-
ample, we discuss the electrically neutral colour singlets in
the fifth rank tensor 792. We have given in table 2 a list of
these fields with their quantum numbers. For the weak doublets,
we have omitted the neutral doublet components in the 210 of
S0(10) (with SU(4)c x SU(Z)L X SU(Z)R transformation properties

A ¥ =2 ALY F A Ft =54 FIAFT — F Ut ot ST T [ 42343

I 42 44485 fetrary A PR LV FL PN
/A
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(lo,2,2} + {(T0,2,2)) since they do not admit Yukawa couplings
to the chiral quarks and leptons. To specify the labelling, we
write this neutral part of ¢fﬂ explicitely

+ S5, ‘r:f rA-2 L +E

) i {
¢,, = ﬁ‘_—z—." S4 Fwnﬂf-w-g—

I
+ = '
33 (,zlfﬂh—s?s"‘»é RS R P P e )

+L
eS¢ ( E-’-:M-a-«»s +6 "'/:]4”—4-‘9*4 * /-:'4“4—““""‘¢

T o ien-nenee A r et vg F rtmtesie )
+ %0{4 (“- r:’z, e ,:Iz-3+3~s'fs- - sz A rE e e
+* ,-_’41*4-2,-31-3 "”jﬁq-z —p oty * /—-'44-4 -l -+ ) (Ao2)
] *
* ,";-“:-a/;_ ( {_:-Z ol agpe rl;,-—s-'-'s—s"w‘s‘ "'/14,-3+3 — i
+ [:14+4+z, -3 F r_-'4+4 P g Cﬂvﬂu’b — s )

I
+
ffd?t ( f—tz-3+3—é+6 + "3—-%»*9-6-#41" /-""1‘,"5"'!‘5""6“‘ )

— oy l—l‘ff'»f ~1-6+6
- ta r:nr-rz.-—'s-u—-f
+ A
ré fz ( r'1-4+4—3+3+6 +/:'4~»4—u-»p.+5 f-/_-rf-r'r-S'#S"Fé

-t

-1, v2=3+326 " lavsnirpis = s crs e )} + 4. c.

To proceed further, we note the following identities

1%) () (&)

I_' = £ A +- A, - *A'i

At <o A g e Are A, P r;m‘_'ﬁ* iof Ay s {A83)
(&) RIS FM-U _ )

Eawty, - 3mUp0, o Egwy  py g Comi- - Eqiy !f WaoWg #¢ 1p84)
i)

Yo n.

—(+
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_ ~ Cw AB5
Comnfars, . Egwh ’Z,.,, f;m“'/clw if waFea® x (A8S)

£-2}
In equ. (AB2) the 1ist of indices of rd is the same as the

one of b with indices -1, +i taken away. Using (A28} one
finds

¥

4

6= i1 5By Dt B+ Byt T

+£'f—f 7, { Se80 + D, %‘*Dz”{z'*pb‘d;’*b"d"‘f Ta ts f

L {ABE)
-Ef:é[s,.s,‘** 5355+5,59 T, E
5 { Sasd +Sysy * Sl v T ]
with
1.
54 -7 - "&./::Fs/j‘fﬂf'
5 = 7;+ = %:/14[:1/29 s
2
D, = I"JZ-{-FES'VB-L*% B %YB_,_(I}L*'IM)}
R R R R
Dy = %j: Va9 (A87)

112

Trhe fields d; and &% belong to a 5 and a 45 of SU(5} and

to 175 and 126 of SO(1G), respectively. The neutral fields in

the 5 and 45 within the 120 of S0{10) are linear combinations

of dy and 4, . We write the corresponding contribution to @'
as )

~” 4 A
Ay Dy +ol, D, = De + olye Dye (A88)
with
R J N LT
D, = 30 - LD,
=3 { rzz-'sﬂ—‘ﬂ‘- o verbre* D osus-gee M ronoe § {A89)
- - -
D;,;— = :?'L ED'# * 'i_ Dy
A
de = L1350l - Loty
- L e {A90}
6ﬁq'= '%‘“3 MELERL

Similarly, the singlets 5, Sy and S, in 210 of 50(10) belong to
SU(5) representations 1, 24 and 75

o o ~ - - - - Y -
3 S.z + Sy S3 * 5, ‘SS‘ = 5 'S.f + Sz‘ SL,, * Sae S?-S" (A91)
with
- ! ~ -~ A
St s (S, tE5 &5, )
" (A92)
s, = r—’,:;(s%+ﬁ_’53+/2_'s,)

We may use the explicit basis for the matrices r; in ref.18
to work out the matricesEL,. One finds
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@ T +L'q,01;@‘z_'_®£@fg!@fcq one has the follewing relations for i,j = 2,3,4:

1 ~ A
R B = ©
52 T’a'c;@'t;‘efz;ca'g'o’z; ﬂ:oo"(_;e"iofc;s'z;@r_r 5; 1.
ct] =2 S5, H
. = 4
i _ T T E S U (A97)
Pl =T eTeTeTeT, eT + TOTSTOTETOT, (145 e
— 6 @ N+ .
LT BT ST OTET AT - TATOTETET T, §5,,8571= 35,
—LF - ,gafcof-ofg_eﬁ{;@'c_'-— T,x ’CL@’C"&QT_F‘”T,"’FQ We use the identities
-
= aT - T& T T ®TO®TET T H' = o
L =-geTeTeTeTeT  TEERSLT LT v
: ore® T - TO®T®T2TSTIT - H H} ¥ ASS
ol = TATATETIL, T L7 . = o * (A98)
Here we used the following combinations of Pauli matrices T H",f H;',,"' H"& =0 f‘”’ Led %013
(o= 1)
oo to derive the trace relations
'I:_z J::(T'f'_‘IT&.):(—io) ~ .
I~ S8 =o©
—— — 4 — o1 .
T = LT, +im)= (37 . & 3t< 18, (A59)
(194) ~ 20 ¥
Te= t(m+Tyy= (22
—_— ~ A~
Ty = L (m-T3) = (39 P Eenncn LS:, 1= 0
A 2 o 41 _— -\.. 2 p
I~ Ecpmann LS, 571 = 0 (A100)
In this basis one finds
- [ A
+ I/-y e (A95) L~ Hk C St', S?-] = O
-— = — - -}
S LUNAR AT R AR L L5 E*7- % fr A=123us
-~ % 1, 2 o for 4 =8
To derive the field eguations in section 4, we need a few
trace relations for the SU(3)C b SU(Z)L % U(l)Y singlet compo- T Ha L S~ Nf.-] - 2.51} TC"" f"? 2/3, 4 anol §=¢
nents of ¢o . Writing v TR {r 4 & fer 3 =37 {ALOL)
A ~~ r T oA auod 221,23 45

¢5 = 5,5, 75 S, v S, v S, +4c (A96)



115

APPENDTIX B

Yukawa Couplings of Scalars in Totally Antisymmetric Tensaor
Representatigns of $0(12)

In this appendix we perform the S0(1,5} and 50{12}) algebra
necessary for a calculation of Yukawa couplings in the six di-
mensional S0(12) model. The analysis is completely parallel to
ref. 18. We represent the two irreducible Majorana-Weyl spinors
Y, and ¥ in the form of a Dirac spinor with 64x8 compeonents

Y
Y = ( ,W:) (81)
obeying the Weyl and Majorana constraints
r,yve ¥ =% (82)
— -t L
B, B, w» = % {83)

In six dimensions, Yukawa couplings of thisspinor are possible
to scatars in totally antisymmetric tensor representations of
rank one, three and five. The act1on 1nv01ves at most three in-
dependent real Yukawa couplings ﬁ,, {; and f} and can be written
in the form

A A — 1) 5 — —
Sy = (RGN pr A OOy
+f§"9‘;¢“—)w } {84)
A1l terms are hermitean and ﬁ?is defined by
¥ o= ply =g = BB y'=4"CBn (85)

Terms like -;39&“’ ¥, @ugé ?f’ r'¢/¢5 ,3’;0 are exciuded by Fermi
statistics., The matrix C‘ fulfilis
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- ;’4 -1
(r*)7 = - ¢ YR, ()

and cah be written

C, = G B
(y" )T = —C ¥y ¢ s (87]
(re)T = —m B = -R) ; as2

We use index conventions of ref 18.

We are mainly interested in the Yukawa couplings of SU(3)C
X U(l)em singlet scalar fields to chiral guarks and leptons. The
harmonic expansion of the chiral fermions reads

Py = W, Gp) 2% x) (B8)

whereas the electrically neutral colour singlets in the scalars
gﬁfé)are expanded

8 ANy
c;é": (y,x) = Ps,(g) ¢ (x) (B9}

Here the indices ¥ and Srefer to the quantum numbers of S0{12) or
its subgroups with Vv = u, , e, ¥“... etc.and S = 5,, Sz, Sy Sy »
das dy, dy, dy, t,, t, for ;57 {(compare appendix A) and similar
for @7 and g . The index j counts the number of chiral u-
quarks etc. and i labels infinitely many scalar fields with gi-

ven 50{12) quantum numbers,
The acticn {B4) for any given (£} is then written

7 ~ v S r4
= [d’x 3,00 P07 00w Fue)
(810)

) by T §
f oLy TG Kl By By Poi () [ Yty

with
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’V/v’?(x) = (fy/v?cm)rC? (B11]
Ao 4 for &= 45
t%) f'“—; fov £ =3 B12)
A, %, 2 %
% = Fe 0y Gty) (813)

Using the Weyl-constraint {B2) and the follewing definitions
. - : PR - “"_ 5
{ T3 acts on two dimensional spinor indices with =Ty

Y0
(@;m) = sy plo)

V:(W = U+ 1+7) p(y)

Yo lg) = L1+ 717 )1 =T vy (514)
W = f U= 1+ ) wiy)
Woly) = L (1 =77 (=) YY)
one has
= fo/"'xg w"rqps‘yi vy’
ﬁfd;s’g!"(%\g*%vﬂﬁB:f%%(m,wzm )

B15)
+ fd*xgtf ’V’ Cf’ "#

pt d 2 4 + - r —_
&Wﬁg?f(%vﬁ%v,-)BlBacg,f,‘;)( ot )

Using the Majorana constraint (B3) one can show that the second

term is the hermitean conjugate of the first term (compare ref.18),

Using the explicit form B, =(f;)and noting that B, &e; {&) is

an antisymmetric 64x64 matrix we write the Yukawa couplings
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Y vy st rel
So = (A g W Ry s @ W) T L (1)

(B17)

AP 2 Ho2, o+ T — -
Avjv’é"s; "Zﬂfﬂ’/}é‘fG (?ffrv;) Brz,qps«' ffZ) Vv

For a calculation of H we have to specify the normalization of
’{I/V}- and @, . The standard kinetic terms for the fermions is ob-
tained for

% + F
fdy g {0 ) v+ (W,) AP0 R A TN GLY

Correspondingly, we obtain the standard kinetic term for scalar
fields cpf"(x) if

fd jz. G~ LV' CI‘DS S" T4 555’ é'“) (B19)

Note that in cur formalism a complex scalar field and its com-
plex conjugate are treated as different @5'. The normalization
(B19) takes care of the necessary identifications,

To perform the necessary SC{12) algebra we need the matrix
Py &), , .
elements of¢, = B, 9")0 in a physical basis. We decompose -
with respect to SO0(10) x U(l)q

[6’(&

"/’={$;) =| %w (820)
{6y
6 -4

The scalars ¢H) give
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= 15, + 1.y,

220 = 420, + ¥$g, + 10, (B2l)

792 > 126, + 126, + 210, + 12,

e
In an obvious notation we can write @“’) as blocks of léxle
matrices

o e @, o o o Off’f
~r i +
.H) ¢Ml+ ¢iﬂ= 0") (] O Aia ; o o ¢ [ (322)
._qao o o oo o _mr)roo
€4} -
o -1, ¢ o/ \@)o 20
o ﬁ o C o (E; oo %(]JO
Y Y T 7 o0 o o ’ co o v
¢ =¢D;¢ r P¥= fv ¥ v ge + Yoo
" 2% o 0 (&t Te o ,; (B23)
P F.)Je o e o
1) _
o C0) MWgroed \o 7(,;’00
- {5l
o _
o cp;%o oo 0& oo glo
N! ~ { o + o o s}
s ¢,;* ) érr; o p P ¢ o o o ¢ XAps | (B24)
0 0o o +{gt)eo ‘F,’zf)o e e
o- o0 -T ic)
e 1%»)0 oo 2 X ©F
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It is checked easﬂy that q7 ;{’f},@,& and @z are symmetric

matrices whereasqV and X:u are antisymmetric,

Let us now concentrate on the electrically neutral ceclour
singlets in the fifth rank antisymmetric tensor representation
@ . These fields are given explicitely in (A8Q) where we write
now explicitely

oy = 0/4&-(3)5/4'.“‘) (B25)
[dy g‘f’s‘af;a@‘u = &0 (826)

and similar for the other fields. Using (A84), A(85), the expli-
cit representation (A 93) for the matrices I;’V and

B, =!G eT, eT.eT, ®T, 7T, (B27)
one has

t

,‘:“R-,-B:g,rjb = = Toé?'t;aa'ccz'r@fc‘ avT,

(B28)
( pares
w=Bull, = mer ez
@
+,Z;@fcagfc;(a’r@'t‘ tT
We now can give explicitely the Yukawa couplings for the doub-
lets d,, d,, dy and d,. The non-vanishing couplings for the

quarks, antiquarks, leptons and antileptons are (we omit coup-
lings to mirror particles here}:

Aoty = e f Sy 0 ATl oA
Aogdoli = A [ Yy 9.8 6 ol Ay ot
' fof;gzﬁ‘—s—;e +e€ ot

&
= %4 et S
Aejoiy =ed Ay ghetef ST

!
*\ N

A e"e{ o(ﬁ =
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A % 2 B
—ff— 716g 956" ey oAy,

3/ 186" vy o

;%;d/fd‘*m a vz e

- Py %Qﬁlﬂ?ﬁflﬂf

i

1

SR le TN

W
29

p

b g 2267 ot A,
f?)f‘{ g0 “";' feg oty
Jel'y g ef e bl
dﬁfﬁgz “y” g Ay
Ay 26" af wy oy
LT AT
[oly gt e® w* v che
e T A
¢y e
raf f 53 eé A
/'y 9.%6° ¢; e;‘a/;,,

&~
7

2

s

3
\\

\

\
“—\

>

Kook {o[\ ¥R
1“%

(B29)
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Here a;and g are shorthands forgp‘;‘&and%’:é, respectively.
We note that the Yukawa couplings of the doublets in 120 give
no contribution to diagonal terms in the mass matrix (J = k)
only if the functiocns a;’- and «jr etc. are the same. (This is
necessarily the case if $0{10} symmetry is unbroken.)

The singlets 5, and the triplet 4, contribute to Majora-
na-masses for the right handed and left handed neutrinos, re-
spectively. Using (A84) and cbserving

i + :
7B l,5, = TmegeLeget et

L =— T T @T @TD (T
= Be 1], S Ty @y ® LT T o (B30)

{ = T @T@T @ (T,

E‘BQ [_—.12, S4 "C'&/@’S( ‘< “ -~
®T 2 (T,

= By, f:z S:- =—7®Te T2 *

one finds the following non-vanishing Yukawa couplings:

-~ y - *
— 2 CP I R
Av;v,;s,,“ = 2 f fdﬁﬁz & 1)2 Vg 54

- % o2+ = *
* = ;9(2 3,"'6'-1/ ?).é 7-14
Vj Y ta ef [ 7. (B31)

A K T+ e T
- »z/faﬁyﬁz 6 Vi Ve Sa

Il

4

45;- Vg S
y, -+ o -

4 2 [y gt

5;1;& ta

Finally the singlets S.z.’ Sy and Sy (and also the triplet f¢)
have Yukawa couplings between fermions and mirror fermions. They
are easily worked out using

7
}'L;B,lf;’é: T,® T, 7T, 91‘4@(100 )
. & B32
LBy J] LeneT ET, el e
7z o e -

o



APPENDTIX ¢

The Mass Matrix for Scalar Doublets

In this appendix we calculate the mass terms for the various
colour singiet weak doublets of cur model. This will determine
how these scalars mix to form the low energy Higgs doublet. We
restrict the discussioen to the mass terms for the electrically
neutral components of weak doubiets coupiing to the chiral quarks
and leptons. They are given by H;, H;, ds, d,, d3 and d,.(Compare
tables 1 and 2.) The carresponding higher dimensional fields are
contained in internal components of the six dimensional gauge

Fields'®)

Ay = ey At (c1)
Age= izl Aa s iAc) (c2)
Ag, = (Hilgx) Equs + (Hg0E 510 (c3)
Ad. =i Hy Oy Y gy = Ml 00 E g (A, )T 1)

and in the six dimensional scalar fields

(}54 = aﬂ,(tg,x)ﬁj, rolé,(y,,r)ﬁ; +o {g,x)ﬁ; roly(ig,x) Dy

(€5}
+ 4 c,
where we read from (A80)
- L L
I’,, - FEey r3 ([14_*4_2._3*3*/:’41"4 vy T f:’4+4-2,-'5"fr
"!:L _4,+¢_s-45'_/j;,—3+3~r+r—rzz—h‘l—‘*“"“) {C6)
L o _.’.L
D"a G—J: f—;(cw—z—y‘s +r::f+-z-.2,’(f+\f+r:’4f'f""2"s—'r

o L oy )
=it =SS * R . Py “’n-.a_ Lt s

124
D= L Lo o - )
3 Y32 13 b 1234364 Rrreseé RS -ErE (ce)
D"' = -t J7
2 i3 ' ~are 2 —-6+C

We make the harmonic expansion according to the U(l}ﬁ symmetry
discussed in the main text

Hj[b‘/*” = HJM, ~y (Z)‘q"’ﬁ(r”’!;?) H; / (x) (7

ﬂ/;. (7/ x) = d{‘”‘?"’*f" (}r) %(}qup) p‘{:‘r'.’"‘(x)

The index n labels different states with a given charge q. For the
sphere, this quantum number would label total angular momentum,
but for the more general ¥ dependence of our solutions the choice
of eigenfuncticns for the harmonic expansion is somewhat arbitra-
ry. As discussed in section 6 we make a choice so that only the
Towest (n = 1) field gets a vacuum expectation value and we drop
the index n from now on. After dimensional reduction the mass
terms for the four dimensional sca]arsf%”v, d?ﬁf read

q
S, = -f'p/"x 3?’/’“ c;a(.m'"{x)* C‘Gm’.(x) M:';’M,'Mj (C8)
where we use
@ = oAy for  i=A...
F= Hy (cs)

¢5=H4

It is the purpose of this appendix ta calculate the hermitean

mass matrix M@”W“i'



There are different sources for doublet mass terms in our
model

2
Sy = — fﬂf"ng'(ﬂ.% Le ) (C10)

The first contribution comes from the kinetic term for the gauge
bosons and contributes to Mg and Mg

L, = éi; fd‘;paay% D(G?%G"‘)o{ (ci1)

where (Gn;a e Ly 15 the contribution quadratic in the fields
A-(at‘ The next terms come from the scalar kinetic term

R N0s Ta 2t Lk [ %8s 3 o
"5 [ A, ¢d]/94¢,/ '?[Ag,@][ﬂs/,«, ¢d]§
EIAY S e G T - 25 [ A, B51 3o o
TG LA, #5 T Ase, Bor 1

i

(c12)

(C13)

™~
-
1

_ifaﬁ? 6—?’4?"’?‘ T;{—Zc'j[ﬂom, ¢43}’¢3
- 2§LEAd¢,¢9/]LA}" ¢‘]S

(c14)

L= §5 0% & ¢ 57 T A4 L Ags, 4118

(C15)

Here /43,,‘ and ¢, denote the vacuum expectation values of SU(S)C
X SU(2)L X U(l)Y singlets. In the Timit of U(l)af invariance they
correspond to the solutions of the field equations in section g4:
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Asp = OGO Hy+Hh,) t PN Byt w4 ) +(x)Hy
B, = S0 %pl5)S, + suCp) mplizmer) S, (c18)

*S3(x) ﬂ-?a(.r};;‘,_qp)i *+ Sy (x) ﬂep(f'a'—:jcp)_é;_ +X. <.

e '
—_— o !

"’ E—i‘ L B S

~ fl

2 T !‘}‘:{;— P

" . (€17)
= Jd_. A

53 = fﬁﬂ(,j“*9‘§¥r¥61'{1%3—$¥9?6f‘[1f3‘¥1*f4 )

X,

. 4.
% 5 fa (rj/rw ~343+6 +/:,+4 el *f_j'ffd —SH+é

g vanerne 71 i

R —z-f-a_-r+s*+5)
Finally there are contributions from the scalar potential V(¢)

which we split into the mass term and additional terms invoiving
vacuum expectation values of §;:

Ly~ L M [Ay 0% T, Gy ot (c18)
Ly = [dy st avig) (e

The appropriate normalization to obtain the standard kinetic term

for the four dimensional scalar doublets is {without summation
over indices)

T fé’/XG"?//b H;;:,' (x) g (X) 7

4 . (c20)
20 [AXE Q™ A e (X)) O ey (1)

1
Q
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We first study the mass terms which are independent of
the scalar singlet vacuum expectation values 5;(y). Using the
trace relations '

Ly =0
N (cz21)
St = .

LD B 2 54
the mass terms from (C18) are

A &
HF.) = M* S,} 5,,,’.,,,;_ fﬂ/zﬁ'?%aﬁm;"/;ﬁ ﬁy,;,f:/..i‘(c22)

fj"”i”’:‘ rdx G—P%d/":r'd(jmj
The term (Cll) reads

_ 4 L S _ o3 2
Ly = 3:,(”‘/?(’_5’ b’“’{(af'qdz 25 At ’5£A‘?/A"'X]> (c23)

-!'lfjg}s/qs?[:’qdq’,/%(xji

With the ground state values of the vielbein

o 2 2 o .

&7 =g 0@, 27 = ¢lx) s con)

o 2.

GK" = 1:',_‘? P éx - (M?
we have

- L - w)o”
Ad? = 5 (/40{+,ufoegv + A fﬂ!f;'—'f?)? .

Ay = 1= (Aot epe iy = Aot 5epp =1 )

We insert the harmonic expansion {(C7). Using the relations
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[:ASC(JE-M-&] = (H’”‘(X)*”"(XJ)E—L-:-G
CAS?/E'H,*é]: (’”"‘(7{) *”1(76)) E*—Li“é
[AS?, En ]=(”"‘()U"""‘(K)) Eeyeg (C26)
[Asg, & g 1= = (wmlogprmin) &=y

F Esr»w Cawa ﬁf’swaivh@. = 46 [gwqwx (Sg,—s: S‘VIVV. 582,-!'—1*

— cz7
5‘%% ‘gf»’f,ﬂ 5vzw3 55:,-—:3 ) ( )

~1{H, [ancm’}gmm&wﬁ = 16 (£, 5w, + € Siu, )

. (C28)
(J’Vavz éﬂ;-cs 5&4‘4 582/_@—'5%%‘ 5.‘:4/—9,. J%W‘; éz‘z,—cs )

we easily can perform the integration over ? and obtain the feol-
lowing mass terms

H;;) =TS, )’n’xoj’{ H,mh/z:b

L g et = G lomrmtp)- £ ¢7007 )= 25 om0} ]
- (m+4_?—(m(;{)f,,,(x;)—3"; F%P))(l“/zm /7!42:—:) “'Huil Hé:" )
A AR

MM} v
6 s =T S [Ay 52 { o Hgmr, 1629}

- _ -, -

Te {2 #4 + Gy -ml)=5 ¢ % )”*23 (wmlog-=p))]
= (o +a +g (o) 'm(}i))’%f%?))( Hpams A/,,:,}-f/{,,,i Hopoe )
vy ) i

t4]
g apomn = O ctherwise



We have checked this formula by inserting the moncpclie solution
of ref. 17 with& = 1, P= L,%am*(3/a), n(y) = 3 m (1) -

2—%: (J—Co»sg—o ) for the field H,z,,.-(?f) (m: )%M X a

One recovers the tachyon Wlth M:sin =2 We expect ne-
gative values for the lowest Ms‘s* and M‘z entries for a large
variety of more general solutions. There is finally a contribu-

tion from Z.z: Using
E’%,¢4?=*”ﬂwd.‘ﬁ+m(>{)ﬂﬁ* Dt . {€30)

the contribution to the mass matrix for i, j = 1...4 is

f2)

lJM,

8o, p)
= 2T 4 S SAX S (9"t A,

(C31)
# 0 (o + G )] Aol )

This contribution gives positive diagonal entries. As a conse-

quence, the mass matrix M“’ + Mm

occurs for vanishing expectation values of the scalar singlets 5;
The masses for d; may be positive, whereas the lowest H;‘ could be

tachyons,

How do expectation values S; change this situation? There
are additional contributions to the mass matrix for H;‘ from

Le=-35"Sd'y o [t T e, 41 E0 s & ]
P T [y )BT E e, 5]
FHH T [y B Ene, &5
FHHE Tr L& ve, B e, %13

(€32)

We use the relation

+ M g diagonal. No mixing
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IEC4W4£;W¢, ) E3Wr Euwng Etvg- .. ]

f"] _ .
5 s 54,-53 T 0 Ly Esrgs, [g"’z“’a(sé'z,-iz Caviy Ephf Lo -
(€33)

+16 Sea,-t4 L -t
wopwy OCa, ~Ey £y £ 04 Totge. . T Mwﬁgfz,"&fgau/,zqufr"’i"“

+i' S, R TR B wy— 18
e £y 'ﬂ-u Wy o i %ws—és;,-a:s'fg‘:.,g £y Ll - -
e e

to calculate the commutators

[ “ite ) gﬁ ] - l'—E 54 /_:4+'5+!++s-+6
sy /7

—A+i-3 —ErE

A
¥ 3z

1 e
= +
rs * E( e el et /:?1“3+3—$—+S-*/:1—3+3 g )

£ g~ c3
YT Se /Z(rj4+4~z.-3+3+/_-,-4+4-3—9-+@* Il g g msos (C34)
+,:1 “34X-64E /-1—3 r—it6 T -.a -G +é )
= - 1L
- 32 34 r14+3 +e+S¥h
e & a'd L . y]
+15, D, + £ 5 (94—})%)_,&”35‘(94-.»1)”/31)3)
A #*
[: 24 ¢5] F‘;;’ S g —g
- A s *
F32 7% 'cavavz-g e
(C35)

/7

Vo
+ ~343 "f+S"'+ FLE Y vt

r1:53 /"( *G ety -sH§

¥
¢ TZ;( —dpd 42, -3 43 I ity AR

-]

P2 -3+ 644 +LHEE -G rE T r:z_s_,r_s‘s )
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*

i1 Sa /:»’4—3—9-—5‘?6

: A . o~ et Bt

-1 3; Dapf*‘i_fz‘sar(Dd*— B.;+)_%S'I‘(Df+ﬁ:' ED_; )(C35)

[ En,é, Cé_e,j = _[E—z,%; ¢s]+

1

- . (C36)
[E—z_-—é, ¢5] _[__6+z,+z;¢s]

For the evaluation of the traces one uses ({21} and the fact that

the trace is an S0(12) singlet and, therefore,

3,) (4.)
yol /" z;:f*‘*‘

n
Lawly € it o EqWh gt -

enly if for each weight w; the sum aver all &;

under the trace
vanishes, One finds

Fr[Euie, Qés L&, -6, ¢s] = r’[ﬁapz/@][&:z-c, ¢s]

(€37)
”
= m 2 (eSSt s8] #55y +e s )

Efﬁbﬁ,ﬂlﬂia-a,@]= EZEﬂw,@][élm%FO(m)
One obtains th.e following contributions to the mass matrices

Ity = ! ’
MSS‘»}”—”.,J = 2,?7'3 2,5”%” ’ fdxf}é(s} S+ 5.5+ 5355 *Sy 5“‘)‘%‘“ H,

]

s} - 2 i *
Hé‘émm’ = 2’”—? * - {’CT (s, ERELR A A H oy o,
1y
iz pri b

(C39)

= o otherwise

In centrast to M

t these contributions are positive and the

tachyens become stable for large enough St"Si. At this point
there is still ne mixing.

Mixing between different doublets is induced by the term
L=~ 7 [y ete™
[rpiy T LAy BB 57 B35 TR, 80T) 00,
+3pli9) T [, T4y + 64 4 G 5 LA, B0 13

We integrate over @ and obtain for i =1 ... 4
) (T 2
f.é”’l;m; h _ﬁg R Ry +”-;!~,4‘ +4,0 f”/&" & -

* — ~+ “ 'v+
. {?I/"‘ 0/,5,,,,‘_’ +(4'1!-+§4’1(7(J)0{,‘:(_EH4M‘7; Di [E‘_zﬂ;} Ss S§+S§‘ Sé ]
('t;‘in‘-fms»f' _'—Cr"—g-:' 3 g—o-r,--mn; Forty —d, O _(0/;[’ 6‘?'-
5 ! LA {cd1)
. {?f/a df-:“(.) —~ (om; +3 ﬂ-.»(){))&(,:,..,'. j H"v‘”"’r

T+ D LE e, Save e R

Mﬂ] :{H‘(” )*

M

Here we use Tﬁk =m,, -m

&t g Y 1 722, oty

3) 3} *
S e = (M[S"o-q,'r’*rg' )

. *
L s W, -m, for Sy, S5,., (3,, Sy, Sy) er

(Sf, S;, S;}, respectively. Employing the commutators (C34) to
(C36) and

I~ 5{[ Ei-z,r_-é, 5¢ 1= T';D('[Eﬁté/ 5,*]'; o (c4z)

one finds the following mixing terms in the mass matrix:
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77-5 é_m"’,m‘,,”"qu,f’o fﬁ/z 6—2’ .

: J: glad4:"4) +(M4+3'M(7(})%:”4—}H4m6(5;- f%‘ S

&)

)
— z
gy 5T F‘? {-m1+m‘—512+4,0 f&{z CHE

'[?%dz:ni + (o, "'5’””(7( ))‘9/2:“’.1]'}_/"’”'5 ( 5'3"*‘ le S:)

3} — ‘
= “'79 cs-—mqs.;-wé—-‘ﬂ-;af-zf/o fﬁ:’{’é—z’

3Gy,

M

M

— € )
L ‘Z”af%ﬁ 1“'(/)”:3-*;—/”7(;())0/31,5? Hopong, S,:

(3) — 2
Y6907, 1y = E”.?' é;”'?yymé—';;rzwf}o fd;(é_ ’

Y ¥ ) -
T ’zp/w__% ""(””9“’“9””(){’)&/5‘:'7;,3 Haomg Sg,

&l = s 2
R A R I“/ZG ' (c43)

. ¥ ) - e #
[ ’Qd»rm‘ = (7 *?’””(«’())‘9@»14] oy (s3-7% S¢ )

31
25y e

R 174 ¥ ) - *
L § Arom, "/””L*?m[ﬁ))%:wz]HZ,—wr (Sy+ 7 Se)

ﬁ_ﬁ’ 5#»-«4#»:5-4-34—4,0 fa")( e

(3}
HS?””;"’”S‘ = “77_5’ 5"”’73""”"’3“*”;4"4,0 fffz &%,

A * ) —
Le éaf;,,,,s —{#y "’3””{1))4;37 Hz,’:'-rs- S¢

(3} :
= fZra 2
sy v~ T T ? 5"""’%*‘”‘?’5‘-#’;3 -7, 0 5”/%’ & -

pi
L% Ay = (ot Fomip)tyn (1, o S,
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The next term is
Ly =-7=F (A"36"

{app i T [ Ay, By 1" b +1 2 + LA, &) (cat)

+agqe-ip Fr LAg, G (-o% oy v i+ LAy, &1)5

One obtains for 1 =1 ... 4, k =2, 3, 4:

) (T 2
H = LG S im0 [AH T Wy

l;éf”’l'm‘

|

o T L B, B I3 S Tl &7

) 2 g% a5
..4/,,]’4,7[6" hf&,-—m;'( )

H“f”’?,"’"r = ™

Al T [ e, T Ti%50 S (7 i) 5050 )

3 5-"4"‘,' + Ms.i-f'-;Q

iy

{v) _ (v) *

Gi gy~ (Ganiamr
gy *

MS'I.MS-H”?,‘ = MfS'm;r»v&.

We evaluate the commutators

T . ~ i g
[g‘—b‘*é} D?.]” “r”,—i* 34";,_( ¢ 7l (C46)
[E—z,+-e, D3+]'_ %(SP—K)

s T <
[Eie, Dy 1= 71 5
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e ~ b . ~r
= 7 o - L + { t, 3+
[b“b'6/D4 1= T 73 FL (5T T )
(4} = & 2,7 *
- ) o ' g Y :“_?Tg Ly Fers e o, = Ofd/TG‘H— A, ‘
7 = L ~ L + 35, 37+, 2. L3y
[E-&—G, 'DL] iz S3 . z,( ¢ ",1, ) L 4 T 3
{C46} 4 J — —
o i Iy (S'."-I-__:.\;-;- '[S?Z‘Sg.. r(ow‘z—gm(/‘))sy_]
e e, D=~ (S -T7) (C47)
tv) — » *
"~ - — 2 .
L‘: £ 5’1"] = / t Y, Aty EF? 5"”"1&*’”‘5‘*"“; /] Ofdxﬁ_ Hi.,—’-r,- 04""’#
e, 2
IR J ~ —
L ? .2,52’ # (w1, -gm()())SLI
From this we read L te) .
: We observe that the structure of the mixing terms from M is
te} _5 similar to w3 except for a different;( dependence of the in-
= #*
H,«,m,.m‘, = TG Oty pmmy 7,41, 0 fd,r 6‘2/{,,,.,,‘ af‘fm‘ . tegrands.
&, # _ — . :
'[?"(53 a %5;’)#—(4412—?01(;(})(53{"%—3: )] Finally, the coniribution Ly from the scalar potential ge-
nerates mass terms for the doublets d; which are proportional to
fe) = 2 * an even power of 5 Mixings can onl i i
— - . y be induced if the quantum
Hlém—a&m‘ - ”_? S""“?‘_*”"&"”’Tz o, o fﬂ{)((b_ /7’40-160{2.»«2/' P 4 ‘g / q
numbers of the operator d; d?- appear in some even polynemial of 54'.
.[?%{5;)*1 5;))*(”-‘_&"‘?"1(4‘})[5;*%5:)] The exact form of these mixings, which depends on details of V(p),
~ is not important in our context.
(8) *
L= Y z .
M3‘ﬂ3¢’r‘ ﬂ_? S"”’s way ity O, O [dff(’— /i"”"sd-f”‘@

tv) B , .
M s = ’/_2_:”7“3 5 my.'fﬂ'?‘-‘”_"_&*’f/o fdxs— /7’{’0'1‘0/5‘4";,

(C47)
I ?4, s, )+ (=G (x)) s¥ ]
W - 2z ¥ Ld
H i = —ﬂ-? 5—'”!,, +--?s.+n:;e—4/a fﬂ/"( & H-a,-fms_ 9{4,...,4 )
—_— = A
.[?&(53) - %_ SP‘)) ""(”".3'—3"1(3’)( Sy~ = S.f )]
13

(v} -
M - _ 2
RSy g ” 5"’"1 trgtay =4, & fd/T s Hz/-.,.,‘_ ﬂf*”""z '

an|

Je% s/ £87)+ (F -G53+ sy )]
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Table 2 Electrically neutral colour singlets in 792
|
H1 H2 H3 H4 H5 H6 I3L I3R YB~L SO(lO)xU(l)q SU(4)C xSU(Z)L xSU(Z)R SU(5)
8 1 1 1 1 1 0 0 -1 2 1260 (10,1,3) 1
Sy 0 0 0 0 0 1 0 0 0 210l {(1,1,1) 1,24,75
S 0 0 0 0 o} 1 0 0 0 2101 (15,1,1) 1,24,75
Sy o} 0 0 0 0 1 0 0 0 2101 (15,1,3) 1,24,75
d1 0 -1 0 0 ¢ o -1/2 1/2 90 126O {(15,2,2) 45
d2 0 -1 0 0 0 Q9 -1/2 1/2 0 T?FO {15,2,2) 5
d3 0 -1 0 0 0 -1/2 /2 0 120O (15,2,2) 5,45
d4 0 -1 0 [y 0 0 -1/2 1/z2 © 120O {1,2,2) 5,45
t1 -1 1 -1 -1 -1 o 1 0 -2 1260 {10,3,1) 1%
t, o 0 0 0 0 1 0 0 0 2101 {15,3,1) 24
Table 1 Abelian quantum numbers g and ! for chiral fermicns
a}n=3,m-=p-=1
t! tcn ¢! CC: u' ucl b' bC: g SCI d" dC||‘ T! TC' n' i-ic' e! ecl
I 0 0 -1/2 =172 1/2 172} 0 1 -1/2 0 1/z2 -1 1 Y 0 -1/2 -1 1/2
q I~1/2 -1/2 1/2 1/2_ /2 1/24-1/2 -1/2 172 -1/2 1/2 -1/2|-1/2 -1/2 -1/2 1/2 -1/2 1/2}
b) =4, m=p =2
3! ac| b th ' CC' u' UC‘ 2! b s! d! O’C’ TCI 1J‘:l ecl
I 0 0 -1 -1 0 1 1 0 -1 0 1 0 -1 0 1
q ~-1/2 -1/2 _i/2 1/2 1/2 i/2z 1/2 l/z|-1/z 1/2 1/z 1/2}-1/2 1/2 1/2 1/2
of of 0§ ©0f oY e, E. Es E. Es |3 8
I 2 1 0 -1 -2 2 1 0 -1 -2 0 o !
q -1/2 -1/2 -1/2 -1/2 -1/2|-1/2 -1/2 -1/2 -1/2 -1/2|-1/2 —l/ZL
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Table 3 continued

H1 H H3 H4 H H6 I3L IBR YB—L Q state SU(3)CxSU(2)Lrep
X p-1 -1 0 0 /2 1/2 -2/3 2/3|E_; 4 (3,2)
-1 0 0 -1 0 0 172 1/z -2/3 2/3Ey 4
-1 0 C 0 -1 0 1/2 1/2 -2/3 2/3|E_; g
0o -1 -1 0 0 0 -1/2 1/2 -2/3 -1/3jE_, 4
0o -1 0 -1 0 0 -1/2 1/2 -2/3 -1/3E_,
0 -1 0 0 -1 0 -l72 172 -2/3 ~1/3|E, g
X, 0 1 -1 0 0 0 172 -1/2 -2/3 ~1/3E ., 4 {3,2) o
0 1 0 -1 0 0 1/2 -1/2 ~2/3 ~L/3[E, 4
0 1 0 o -1 0 1/2 -1/2 -2/3 -1/3|E,, g
1 o -1 0 0 0 -172 -1/2 -2/3 ~4/3|E 3
1 0 0 -1 ) 0 -1/2 -1/2 -2/3 -4/31E, 4
1 0 0 ¢ -1 0 -1/2 -1/2 -2/3 -4/3|F ) g N
H -1 0 0 0 0 1 1/2 1/2 0 1By 46 (1,2)
Wyl o -1 0o 0o 0 1 -1/2 /2 0 0 E, ¢
H9p o 18 0 0 1 2.2 0 0fE, g (1,2}
HE 1 0 0 0 0 1 -1/2 -1/2 0 -1 By .6
Table 3 Quantum numbers for the adjoint representation 66 of 5S0(12).
States labelled with E ociuuprws 27€ complex. Their complex conjugate states have
opposite quantum numbers and all labels gw replaced by —ew . They are not listed
separately.
Hy  H, Hy H Hg  Hg  Ig Igp ¥ | @ [state ! SU(3) xSU(2) rep
U, 0 0 0 0 0 0 0 0 C | Hg {1,1)
W] -1 1 0 0 0 0 1 0 0 1E ., (1,3)
Wy | C 0 0 0 0 0 0 0 0 0 1/VZ(H-H,)
W | -1 -1 0 0 0 0 0 1 0 1E, (1,1)
Wag 1 C 0 0 o 0 0 0 0 0 0 | 1/¥2(H +H,) (1,1)
Q?TL,;Q,,ﬁflw, 0 0 0 0 0 0 0 |1/ /3 (Hay+H, +H ) (1,1)
G 0 9 -1 1 0 0 0 0 0 1E3 44 (8,1)
0 0 -1 0 1 0 0 0 0 0 1E.3 45
0 0 0 -1 1 0 0 0 0 0 |Eg4,45
0 0 0 0 0 0 0 o 0 0 |~1//Z(H -H,)
0 0 0 0 0 0 0 ol 0 0 1 ~1/VB(H +H, - 2H,)
C 0 0 0 1 1 0 0 G473 F/BNE, s {3,1)
0 0 1 0 1 0 0 0 4/3 2/3|E,5 43
0 0 1 1 0 0 0 0 473 2/3|E 5
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Footnote

This requirement was not made in ref. 18 where we have only
been interested in mass eigenvalues. For a discussion of weak
eigenstates the vole of s* and d' should be interchanged in
table 3 and equs. {(71) and (72) of this earlier paper.

For a very large top quark mass we may release the bound on
(MU)12 and introduce a higher bound A' which is about an or-
der of magnitude smaller than my -

The author thanks H. Bijnens for pointing out this possibili-
ty.

The assumption s; €5y is not necessary. For equal order of
magnitude for Sy and 5y both entries d1.2 and d1.1 appear in
the low energy mass matrices with equal weight.

There is another possibility where Hl mixes with (Hzlf for

Moy = 2.

It may be possible that these restrictions reflect themselves
in terms of conserved four dimensional discrete symmetries or
additional effective global symmetries in the scalar sector.

In addition, massless scalars due to Betti numbers are only
possible if the full scalar mass cperator only involves the
Lapiacian17). In generic theories, including string theories,
we do not expect this to be the case.
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Fig., 1:

Effective mixings induced by doublets K
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Fig. 2:

Fermion mass contribution from doublet mixing
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