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course of a typical simulation. Consider the effects of changes inside
LANGEVIN SIMULATIONS OF QCD, INCLUDING FERMIONS the black disc during the first update. Because the couplings are local,

the only portion of the system sensitive to the change is in the circle
Andreas S. Kronfeld

with vertical stripes. During the second update the circle with the hori-

gzontal stripes feels the original changes, but only indirectly, through
Deutsches Elektronen-Synchrotron DESY

the changes to the vertically striped circle. As the updating process con-
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tinues, more of the system feels the changes from the first update of the
Federal Republic of Germany black circle, yet before one can consider a pew configuration te be de-
correlated from the original one, many updates are required. Indeed, for
INTRODUCTION typical algorithms the number of updates needed grows as (E/a)z. Physi—
cally, this critical slow down is due to the reluctance of changes at

Perhaps the first question to ask is, "Why Langevin simulations?" short distances teo propagate to large distances. Numerically, the

One way of answering this question 1is to examine a disease from which most stability of an algorithm at short wavelengths requires a (moderately!

simulation algorithms suffer. The disease is critical slow down (1], and we small step size; critical slow down occurs when the effective long wave-

ancounter it in updating when E/a + = and in matrix inversion {(needed to length step size becomes tiny.

include fermions) when mga = 0. A simulation that purperts to solve QCD nu-
merically will encounter these limits, so to face the challenge in the The remedy for this disease is an algorithm that propagates signals
title of this workshop, we must cure the disease of critical slow down. quickly throughout the system; i.e. one whose effective step size 1is not
reduced for the long wavelength conponents of the ftelds. (Here the

One can describe the disease in several ways. Let's focus on updating effective "step size" is essentially an inverse decorrelation time.) To

first; matrix inversions will be treated in detail below. Figure 1 do so one must resolve various wavelengths of the system and modify the
dynamics (in CPU time} of the simulation so that all modes e&olve at
roughiy the same rate. This can be achieved by introducing Fourier
transforms. I wiil show how to implement Fourier acceleration for
Langevin updating and for conjugate gradient matrix inversion. The
crucial feature of these algorithms that lends them to Fourier accele~

ration is that they update the lattice glebally; hence the Fourier trans-—

FA forms are computed once per sweep rather than ence per hit.

e

SIMPLE LANGEVIN SIMULATIONS

For OCD the simplest Langevin algorithm is given by [21:

LD -f.T ()
= e
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Fig. 1. Illustration of updating. When £ is large, many up-
updates are needed to propagate changes throughout 5
the lattice. -
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where the T, are antihermitean adjoint generators of SU(3). Sg s the
pure gauge action and M is the fermion hopping matrix. The noise fields=,
n and £ have zerc mean and dispersion 2. The index i denotes group and
position indices: 1 = (a, x, p}. Finally the field derivatives satisfy
the Lie algebra: [3,, dp] = -fap; dc. The spatial dependence of ey
allows us to propagate the effects of UJ(X) to all other links, Ui(X+1),

during one update.

The conceptual basis for Langevin updating is the stochastic
quantizatien of Parisi and Wu [3]. #hen €13 is infinitesimal one can use
the Fokker-Planck equation to show that, for large A, the field U is
distributed as desired. Unfortunately when €;j is finite the equilibrium
action differs from the desired one by 0(g) terms. On the other hand, the
nonlocality of €1j effects only details of the new terms. Define S
=Sg - Tr In M. Then

S = (1+ = Cpls + 3 z: £33 4 293945 - 23898 by £ (fermionic headache}
12 413 \ I : 2

where £ = diag(eij). Later in the talk I will present algoriﬁhms whoge
leading corrections to the equilibrium action are 0(62), s0 please ignore
the fermionic headache. Eq.(2) merely emphasizes that the 0(c} terms for
nonlocal €34 are not radically different from those that appear when €44
= Eaij.
FOURIER ACCELERATION OF UPDATING

The idea of Fourier acceleration is to introduce fast Fourier trans-
forms {FFT's) when constructing the drift force f; in Eq.(1). Then €jj 7
€¢p), and we pick elp} so that the decorrelatioa time, Nj.(p}, is the
nearly same for all modes of the field. Te illustrate how the FFT's can
accelerate Langevin updating, consider a free scalar field. In momentum

space the update rule reads

X

B st - eprp? + 201 ¢ N+ depn™M )

$

where p and m are measured in lattice units. For ¢(0>(p) = 0 Eq.(4) has a

formal solution:

e ™My = 21 - ep (2 + 09T ren™ip (ay
v

Then the correlations in %\ are given by

<¢(N+XJ(p)¢{X)(p>> = <¢(x}(p)¢(k){p)> expl - Ns(p)(p2 + mzl} {5

so that the decorrelation time can be defined as
Nge(pd = Letprip? + a1t (6

If € is lecal im coordinate space than €(p) is independent of p. Then the
decorralation time for long wavelengths is Ngo(0) ~ m_2 ~ (E/a)z . How-

ever, if one chooses €(p) = E/(p2 + mz), then Ngelp) = % for all momenta.

For interacting theories one can pursue one of two strategies. If
the dynamics is in or near a perturbative regime {as in QCD when B - =}
one can set £(p) as above, albeit with a renormalized mass. Otherwise,
one can study the correlations of Eq.(6) numerically as the simulation
evolves; optimally,this will be done adaptively during the simulation.
Both of these strategies have been successful in the XY model. In
particular, the numerical determination of the optimal €5 j has worked in

the phase of the XY model with vortices,

Another illustrative example of how modifications to the Langevin
dynamics can accelerate a simulation is given by a reundabout derivation
of our fermion formulation. Instead of writing one Langevin equation for
the gauge field, consider the equations derived from the action § = Sg +
S¢ where S¢ = ¢+H_2¢, which generates the two flavor theory [4]. The

Langevin equation for the auxiliary scalar field is then [5]
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Cne wants to pick €4; so that the ¢ field decorrelates az quickly as

poasible. The obvieus chofece is €54 = Eﬂijz . Then detailed balance can
-

be used to show that the equilibrium aclion ix S¢ = % 1 - ; £) S¢

exactly. By picking o, the dispersion of §, properly one can also set ¢ =

N
1 S0 that the update rule becomes ¢i‘k B Mighj « the new 4 iz complete-

v independent of the old, and S¢ is simulated exactly! When this express-
ion far ¢ is substituvted into the gauge field Langevin equaticon, Eq.(1:
regults. A an added bonus one can then adjust the coefficient of Che
bilinear noise term to give any number of flavors: even, odd, or even

fractional.
Gauge fields

Next, let's consider Fourier acceleration of the gauge field update.
For several reasons one has be fix the gauge. The most physical reason is
that short wavelength gauge artefacts can totally obscure our intuitive
notion of momentum, and hence spoil the Fourier decomposition of the
field inte modes, some of which require acceleration. Another point of
gome importance is that a nonlocal € without gauge fixing breaks gauge in-
variance; this could be solved by setting € = £[U], but then the
equilibrinm is determined by the U dependence of £ as well as the U depen~
dence of S, Consequently, we fix the gauge completely after each update.
Numerical experiance has shown that axial gauge gives unsatisfactory
performance an an Ra Tatticn in the pure gange theory; it is bettar to
smooth the axial-gauga—-fixed configurations by appiving several iter-

atinns of a T.andan gauge fixing. Defails will be pouhlishad elzewhere.
HTGHFER ORDFR ALGORTTHMS

The prohlem with the algorithm presented in Eq. (1) is that £ must bhe
quike small when the pracedure 18 Fouwrier accelerated. When £ 38 Incal,
the leading rorrections tn the equilibriom action de not affect the conti-

mum limit. (See Ref. 1), However, whean £ ix nonlocal this iz no longer

true, zo ane neds a higher order differencing scheme for bhe Langevin
entiabion. Such schemes generally require mare memory. For systems without
fermions The most efFicient methoeds are aimilar to the Runge-Kntta
algarithms for deterministic differantial aquations [A]. For simplicity I
will Yeave off the indices needed for Fourier aceeleration; they can he

foond in Ref.{7].

The Runge—Kutta tricks do nnt quite work far the hilinear nnise term
in Fq.t1) that introduces fermions, but Batrewni [8} has feund a way
areund the prohlems. Firat ane caicnlates a "tentative vpdate” via the
simple Fuler role:

v —f+T %)

=P Ux,]l

Fyo= deny 4 €[Sy = = ETAE] (aa)

1
4

followed hy the final vpdate, which has drift force

£ cr S &, - Lptar - - ctagr
Fio= ~ (1 4+ Cp — VD48, + A(S, - — F AjE = = [ AT +
i 7 A a ivg i9g 4 i 4 i
1 + +
Jeqj{ﬂij - ;;g RelF, AyrL AjE]] (8h)

Tn these equations Ay = M BiH'H_1 , I, is an additinnal fermionic nnise,

and a tilde fmplies that Sg ar A is evaluated using the tentative update, .

An alternative procedure, which avoids the tentabive update,

requires a drift force with higher derivative of the action {7]:

{x+1) -f.T ()
Ueyp = e I&:V

€ 1 L P
fy =2 g1 + Oy ?-; H {aisg - ; Re(E M "d;MED] 4+
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Although this rule is not =impie, it atbains 0(€2) acruracy for the (D

with fermion Joops with onty twe matrix inversions.
L)
FOURTER ACCFLERATION OF MATRTX TNVERSTON

Ta compite any of the drift foraes in Fqe. (1), (9} or (10) ecne needs
tn snive the linear system of equations My = £, where M is =ome latbice
veraion of ygi(P + mq); the yg is inclnded a0 that M is hermitean. We have
used Wilson fermions. The matrix inversion is the most time consuming
part of the update, sa it is important te caonsider ways of accelerating
rontines tike the ennjugate gradieet method [9]. OF course, matrix inver-

sion i8R ailse important for quenched hadron spectroscopy.

The corjugate gradient method only works for positive definite
2
matrices, @n in practice we consider My = & = M. - The convergence 18

2
gnvarnad hy the ratio of the largest and smallest eigenvalues of M.
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since H2 ~ p2 + qu . Tha gauge interaction pradiuces teras that are off-

diagonal in momentim space (the background gauge field exchanges momentum
2

with the fermians), and gainge artefacts can obscure the p dependence of M.

We pre—condition M2 hy Fourier transforming (symbolized hy F):

acmf-‘n? Ft Fir = ARy = £ (D)IFd i1y

The pre-conditioner eip) is chosen g0 that the diagnnal elements of A are

all wvnity., Tn a =month gauge we expect that

1/72
}Almgx

77 = 1 (A2
HAlpin

As in the anrceleration of updating there are twuo ways to determwine the

pre—conditionar. Tn a perturbative regime £i{p) ~ (p2 + qu)’1, which

explains the ¢ notation. Alternatively, one can compitte the components nf
H2 fdiagonal in momentum space and set eip) = ‘qu’pp- Tn fact, this
approach gives a dramatic i1lustration of the practical necessity of
fixing the gange. Figire 2 shows the mmerically determined £(p) for »
propagator calonlation in sevaral gauges. All of the results are for SI3)
oA Ra lattice. Curve (a) shows the resnlt for the free theary (all

Tinks are =et equal te 1). Curve (h) shows ei{p) for a B = 5.8 configu-
ration without ganuge fixing; evidently a witd gauge artefact has ob—

saured any correlation between momentum and the diagonal elements of Hz.
2 ! ! ' }(d)

(c)
(b)




Fig. 2. Numerical ecomputation of the pre-conditioner £(p).
ta) Free field. (h) No gange fixing. {c)} Axial gauge.
{d) Fandau gange.

Thus,; although all diag{(A) = 1, the spread of esigenvalues of A remains
enormoug. Fixing the same configuration to axial gauge improves this
situation, as shown by corve (), hut not dramatically. However, Landau
gange, curve (d), produces a pre-conditioner that is gualitatively the

same as for the free theory, as desired.

The aceeleratinn provided hy this technique is significant on an 84
tattice, and will hecome more signif1naﬁt on larger Tattices, Figore 3
shows how many ennjugate gradient iterations are needed to obtain

convergance tn fixed precision with and withont Fouriaer acceleration.
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Fig. 3. Performance of the conjugate gradient with and with-
out FFT's. As X approaches the critical value, the

gain with FFT's is impressive.

Near physical values of the hopping parameter the accelerated algorithm
needs 3 or 4 times fewer iterationa, Owing to Fq.{114) this improvement
factor shonld scale with the volume. The overhead for the FFT's is not
serions: with everything except the FFT package optimized, a single
iteration of the FFT conjugate gradient took only twice the CPU time of
a normal iteration. Putting these factors fogether, we predict that the
accelerated algorithm will he ahont 30 times faster for a 164 Tattice;

in practice, this means that smaller quark masses will he tractible.

CONCIUDTNG REMARKS

T.et me sanmmarize. Fourier acceleration is designed to reduce
critical slow down. To make real progress towards the mmerical =snlution
of OCD we need algorithms for updating and matrix inversion that attack
this problem. The FFT techniques are well suited to the attack, hecause
they exploit our intwition (based on perturbhation theoryl, and because
they spread the effects of Jocal changes throughout the system 1n the
rowwrse of ane iteration. Since the FFT's are inserted beafore and after
erarh update, it is necessary to have an algorithm where "one update”

means Yone sueep,”

rather than "one hit."” For matrix inversion this im-
plirs an algorithm such as the conjugate gradient, and for updating this
implies Langevin or microcanonical [10] simulations. Fourier accelera-—
tion has been successful in simolating the XY model and 1n énmput1ng tha
quark prapagator in quenched QCD. A complication when gange fields are

invnlved is the requirement. of gange fixing.

Finally, let na consider the prospects for a simnlation of OCD (in=
cluding vactm polarizatinn} on a 83x16 lattice. We expret Fourier ance-
leratinn teo improve the matrix inversion by a factor of 4 and the up-
dating by a factor of 16, so that the nverall aceceleration will he ahout
a factor of RO. More generally, the number of operations needed Fnr.a
simulation hased on Eq.(1}, or on the higher order generalization=, will
he
Ny (£, 10

R e (%)
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where [. is the Tinear size of the system in lattice wnits. Withont RFFFRENCFS

Fourier acceleration bath Ng. and Npg grou dramatically as 1. increases,

as indicatad in Fags_ (2) and (411}, respectively; this is eritical slow 1. . Parisi in Progress in Gange Field Theory, edited hy

doun. The aim of our investigations is develop algarithms for which Nqn G. 't Hoaft, et al, (Plenum, New York, 1984.
and Npg are at warst slow furctions ef T.. Then the simalation time will
grow only as the vnlume of the system, which is wnavaidahle. 5. G.G. Ratrouni, 0.R. Katz, A_S. Kronfeld, G.P. Lepage, B. Svetitsky,
and K.G. Wilson, Phys. Rev. D32 ¢1985) 2736.
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