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1. Introduction 

CAUSAL INDEPENDENCE AND THE ENERGY LEVEL DENSITY OF STATES IN It is well known that the general postulates in quantum field theory, concerning 

LOCAL QUANTUM FIELD THEORY 

Detlev Buchholz l) and Eyvind H. Wichmann 
2

) 

II. Institut fUr Theoretische Physik der Universitat Hamburg, 

D-2000 Hamburg 50, Federal Republic of Germany 

2 Department of Physics, University of California, 

Berkeley, California 94720, USA 

Abstract: Within the general framework of local quantum field theory a physically 

motivated condition on the energy-level density of well-localized states is proposed 

and discussed. It is shown that any model satisfying this condition obeys a strong 

form of the principle of causal (statistical) independence, which manifests itself 

in a specific .algebraic structure of the local algebras ("split property"). It is 

also shown that the proposed condition holds in a free field theory. 

Dedicated to H.J. Borchers on the occasion of his 60th birthday. 

locality, Poincare covariance, and the spectrum condition, do not exclude models with 

manifestly unphysical properties. Examples are the generalized free field with con-

tinuous mass spectrum, which does not describe particles, or models with an infinite 

number of particles in the same mass multiplett, for which the familiar relation 

between spin and statistics need not hold. It has been a long-standing problem in 

the theory of local algebras [ 1 , 2) and in the standard version of quantum field 

theory [ 3 ], to find conditions of a "local" character which would guarantee an 

interpretation of the theory in terms of asymptotic particle states. 

A first step towards the solution of this problem was taken by Haag and Swieca [4], 

who pointed out that in any theory with a reasonable particle interpretation the 

number of states occupying a finite volume of phase space should be limited due to 

the uncertainty principle. Based on this physical input Haag and Swieca proposed a 

11 compactness criterion 11 T.fhich every quantum field theory ought to satisfy if it is 

to describe particles. They also showed that their criterion excludes the above 

mentioned examples of physically unreasonable models. But the difficult problem of 

whether the compactness criterion ensures a particle interpretation remains open 

to date. (For some partial results cf. [5].) One may surmise that the compactness 

criterion is still too general and does not fully reflect the specific phase space 

properties of a particle theory. 

In the present article we therefore propose a sharpened version of this criterion~ 

The precise statement requires a discussion of some technical points, but the under-

lying physical idea can roughly be stated as follows: the number of states which one 

can accomodate within some bounded region of configuration space should grow with 

the total energy available in a specific manner, suggested by the energy-level 

density of an arbitrary number of indistinguishable particles confined to a container 
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("box") of finite volume. In Sec, ·2 we give the proper formulation of our level 

density condition {the "nuclearity condition"), and we will shmr in the Appendix 

that our condition is satisfied in the free field theory of a spinless massive 

particle. 

In the second part of this study {Sec. 3) we will demonstrate that our condition 

has implications for the structure of the physical states which resemble the tensor 

product structure (Fock structure) of collision states in theories ·~·ith a particle 

interpretation, To be more specific: let Ol((9>1) be the algebra of local observables 

(respectively fields) associated with any bounded region (91 of Minkowski space. 

Then there exists another batmded region (92... :J (91 such that the physical Hilbert 

space ~ can be represented as a tensor product, ~ c ;Je,, ® 'Je,_ on which the 

operators l) A< (t(('),) 1 BE 01_((9
2

/ act according to A~ A
1 

® i, and 

B ~ 11 & B2 

<:p E ~ such that 

, respectively. In particular, there exists a total set of vectors 

(cp,ABijll (cf?, A c!?llc!?, Bc!?l ( 1.1) 

for all A E OlU1\ l and BE CllC02 ) 1
• Thus the vectors ~ describe states 

for which alJ measurements in the regions 01 and {9~ respectively, are uncorre-

lated. For further discussions on this strong form of causal (statistical) indepen-

dence see the publications [6-8]. 

It is a remarkable fact that the presence of this specific property of the 

theory manifests itself in a clearcut way also in the algebraic structure of the 

local algebras [ 8, 9]. Namely, for each pair of regions 011 ) 0'2. related as above 

there exists a factor JvL of type I (i.e. a von Neumann algebra which is algebraically 

isomorphic to the algebra of all bounded operators on some Hilbert space) such that 

l) If 6 is any- algebra acting on :J(; we denote by J!/ its commutant in J3(trf;), 
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(X((t), )" c )II. c Clll0~l". I 1. 21 

The question of whether the nets of local algebras do have this "split property" [9] 

in general was originally raised by Borchers. The split property was later established 

for theories of non-interacting particles in [ 8 J and [ 10] ( cf. also l11]), and by 

this means also for interacting theories which are locally Fock, such as the P(r.P)
2 

modeJs [12] and the Yukawa theory in t'HO dimensions [10]. But there exists also an 

abundance of models which do not have the split property. Examples are all theories 

with a non-compact global symmetry group and models of an infinite number of free 

particles such that Lhe number of species grows very rapidly with the mass [9]. Note 

that the Haag-Swieca compactness criterion still holds in the latter case. 

It is a common feature of these counter-examples that they describe systems with 

a large number of local degrees of freedom. (This is discussed in a more quantitative 

manner in Sec. 2.) Our present results indicate that it is precisely this number 

which is of decisive importance for the question of whether the split property holds 

in a model. 'rhey also suggest that the split property is a quite general characte-

ristic of theories with a sensible particle interpretation. In view of the "local" 

nature of the feature in question this is a very useful piece of information. For 

applicaLions of the split property to the construction of local current algebras and 

a quantum version of Noether's theorem, see the publications [13-15]. Some implica-

Lions relating to the superselection structure of models are discussed in [16, 17] 

and [10]. 

It follows from these investigations and the present results that our nuclearity 

condition distinguishes a class of models exhibiting many physically desirable pro-

perties. There is also evidence that this stengthened version of the Haag-Swieca 

compactness criterion is relevant to the problem of asymptotic completeness [18]. 

!vloreover, as was demonstrated in [ 19], the nuclearity condition is connected with 
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thermodynamical properties of field theoretic models, Thus it seems that this con-

dition provides a natural basis for the investigation of problems involving consi-

derations of phase space. 

The discussion in this paper is within the algebraic framework of quantum field 

theory l1, 2]. We shall be concerned with a net of local algebras on a separable 

Hilbert space ~, containing the (up to a phase unique) vacuum vector S2 . Speci

fically we shall assume that to every Open double cone (!) in Minkowski space there 

corresponds a von Neumann algebra Ctl(0) for which the vector~ is cyclic. The 

standard conditions concerning Poincare covariance, locality and isotony are assumed, 

and we also assume the usual spectrum condition for the translation subgroup of the 

Poincare group. 

2. The nuclearity condition 

The intuitive idea underlying the paper by Haag and Swieca quoted before [4] 

can be stated roughly as follows: let ;G-t- C % be the set of vector states descri-

bing in some local field theory all excitations of the vacuum which are localized at 

timet= 0 in the ball ~T::. {~ec /R3
: !~[.e: '~},If one applies to L-rthe 

orthogonal projection PE onto the states with total energy less than E one obtains 

a set ~ E of states of limited extension in configuration and momentum space. In ,, 
theories with an asymptotically complete particle interpretation in terms of a finite 

number of species of particles, these states should describe systems evolving within 

a characteristic time interval r into configurations of freely moving particles 

which, because of the maximal propagation speed C = 1 are localized in the region 

~ 'f+ c; 
So the number of linearly independent states in :/._,"1" E should not exceed 

' 
the number of different configurations of non-interacting particles which ~an be 

placed in the region a ..,...+'"C and have total energy less than E . Applying now the 

rule that the number of quantum states of a particle which can be associated with a 
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finite volume f' of phase space is equal to r I ('LT()\ setting t1 1) there should 

be only a finite number of such configurations. Hence by this heuristic argument one 

is led to the conclusion that in theories with a reasonable particle interpretation 

the number of independent states in l,-r,E ought to be "finite". 

It was pointed out by Haag and Swieca that the above considerations give only 

a rough idea of the actual situation in local field theory. In particular, there 

does not exist a notion of localization of states which has all the properties 

familiar from non-relativistic quantum mechanics. If one adopts, for example, the 

concept of strict localization introduced by Knight [20] (cf. also the discussion 

below) one is faced with the problem that the linear span of the set ~~ is dense 

in the physical Hilbert space. Consequently the sets ~~ E cannot be finite dimen

' 
sional. But a careful estimation of the long range correlations of the states in 

~~,E led Haag and Swieca to the conclusion that, at least in massive particle 

theories, these sets should be (strongly) compact, Moreover, using the concept of 

approximate dimension, they were able to estimate the "size" of these sets as a 

function of the cutoff energy E 

If one follows the reasoning of Haag and Swieca in detail one finds that their 

conclusions are in two respects unnecessarily conservative, Firstly, it follows from 

their arguments that the sets ~~ E should not only be compact, but even nuclear 

' 
(cf. the definition given below). And secondly, the size of the sets~~~ was over

' 
estimated, since the indistinguishability of particles was not taken into account in 

the discussion. 

Instead of directly modifying the reasoning of Haag and Swieca, we will present 

here an alternative, likewise heuristic argument, shedding some light on the pro

perties of the sets ;L-r)E , For the subsequent analysis it is actually more appro

priate to consider the sets <e-f)H £,.;, ()>0 where the energy H has been cut off 

smoothly. 
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Our considerations are based ~n a rough analogy between the sets e_-0H :t,-c 

and the grand canonical ensembles appearing in statistical mechanics. Using this 

analogy we will motivate a condition on the size of these sets which rests upon the 

assumption that the theory in question has decent thermodynamical properties, as 

one may expect them in models with a realistic particle spectrum. Our heuristic in-

put consists of the following three premises. 

1. Boundary effects should play a secondary rOle for the problem at hand, so 

it seems reasonable to assume that the size of the sets e-f>H ~-t- remains essen-

tially unchanged if one proceeds from the given {infinite volume) theory to the 

corresponding theory for finite volume V , provided \{ is sufficiently large com

pared to T 3 • A weakened version of this hypothesis can be stated as follows: let 

rev and Hv be the Hilbert space and the Hamiltonian of the finite volume theory, 

respectively. Then it should be possible to identify the set e-JSf-1:£ with a subset 
1" 

of e -~Hv :lev,' where IJeV
1 1 is the rmi t ball in :Je V . Namely, for each l'j 

and ~ there should exist a similarity transformation~ (i.e. a bounded, invertible 

operator) mapping ifeV onto 'Je , such that 

- (ll-i :r, e r c s e- -fll-lv :JCVd (2.1) 

The norm of S should, for fixed {!J , converge to 1 in the limit of large V/ -r-3. 

2. In statistical mechanics the operators e -f;l-lv describe, for any given 

volume V< co and temperature p-1 
)> 0 , the Gibbs equilibrium states, and in most 

theories of physical interest these operators have a finite trace. The few exceptions 

to this rule are theories with a "maximal temperature" such as the so-called string

theories (cf. for example [21]), But disregarding these models, the sets e-J3Hy ~Vi 
' 

appearing on the right hand side of (2.1) are the images of the unit ball in ~if 

under the act~ons of some trace-class operators. Such sets are the simplest examples 

of nuclear sets, as defined by Grothendieck [22]. 
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Definition: A subset Jf of a Hilbert space Je is called a nuclear set if there 

exists a sequence of linear functionals £'11 ) 'Yl E [)\] defined on the linear span 

of J{ , and a sequence of unit vectors 1? -n 
1 

'11 E IN' such that 

i I L': A,., < co , where A.~ <J! eJ.I'} ' 
~ 

ii) L, (~(<(!) · <])~ o ljJ for all 

sup \ I ~ n l <!J ll 

ljJ E }f. 
~ 

The nuclearity index of Jf' can then be defined, setting ..Y(Jf] = inf Z: A<n , 

"'" where the infimum is to be taken with respect to all functionals E~, ~e ~ 

and vectors 4? '~"> , '11 E JN" complying with the above conditions. 

It is easy to verify that similarity transformations ~ map nuclear sets Jf onto 

nuclear sets, and that --y($.Jf) ~ 1\SII y(J[). Therefore it follows from the previous 

assumptions (cf. in particular relation (2.1)) that the sets e-()HX c~ are nuclear. r 

Moreover, since clearly -v(eflHv:J£, ,1 ~ T.,- e.-flHv we obtain 

' 

1(e-0Hx; l >liS II T-r e-flHv .,. 
(2.2) 

Bearing in mind that 1/S II should be close to 1 if V/ -r 3 is sufficiently large, 

one can derive from this estimate bounds on the nuclearity index 

if one has sufficient information on the level density of HI/ 

-v C cflH :r, 1 .,.. 

3. It is also obvious from relation (2.2) that the dependence of the nuclearity 

index -v(e..-f.>H .t.,) on --t and p is linked to the thermodynamical properties of 

the theory in question: since TT" e-~Hv is the grand partition function (for 

zero "chemical potential") the quantity 

P ~ C (3 Vl- 1 · T.,- e.-flHv ( 2. 3) 

is to be interpreted as the pressure of the grand canonical ensemble occupying the 

volume \T at temperature r- 1 • Now in theories of physical interest the pressure 
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should stay bounded (for fixed 0 ) in the thermodynamic limit V ___,. oo . In this 

generic case it then follows from (2.2) and the remark following it that for all 

-r :;::.: -t-0 •,;rhere ')0 is some arbitrarily fixed length, 

-v(e-~H:t:,_,_l ~ e"''·</>c(ll (2,11) 

Here 4> is some model-dependent function which tends to infinity as {?> approaches 0. 

If both, )I Sll and p would converge uniformly for small /) in the limit of 

large V /1-3 
and V , respectively, one could replace c/JCfol in (2,4) by Poo C~), 

where Poo is the pressure in the thermodynamic limit. But in general it might be 

necessary to modify this expression by some additional 0 -dependent factor, which 

subsumes the boundary effects. 

The dominant contribution to cp should, however, be due to the pressure Poo. 

For non-interacting particles one obtains in the limit of small ~ (neglecting the 

particle masses and using Stefan-Boltzmann's law) p,.,"' C· (3-lf . We note that this 

relation holds irrespective of the particle statistics. A similar be-

haviour of the pressure is expected in theories which are asymptotically free [231. 

So in these cases cfJ should have an at most power-like singularity at /)=:.Q. 

On the other hand there exist models where p_ , and therefore also cP , has an 

essential singularity at [3"' 0 . (An artificial example is the theory of an infinite 

number of non-interacting particles, the number of which grows sufficiently rapidly 

'Nith mass.) But the bound (2.4) with cpCfll o c · ('J-n for some 'Yl > 0 is ex-

pected to hold in most theories of physical interest. We will therefore restrict our 

attention to these cases. 

Having thus explained the heuristic basis of our nuclearity criterion, we can 

proceed now to its precise formulation. To this end we must merely" specify the sets 

~T of well localized states. We distinguish these states by the following condi

tions: firstly, it should be possible to generate these states from the vacuum by 
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some operation inside the region §. 1' at time t = 0, Hence the vectors <;]2 repre

senting these states should be of the form CJ? "'"WQ for suitable operators W 

from the algebra CJl((0T") ; here (91" denotes the "double cone" with base fi-r at t "' 0. 

And secondly, it should be impossible to distinguish the well-localized states from 

. . 1 ~/ 
the vacuum by measurements ln the spacellke camp ement ~~ of bT . Thus the vee-

tors q? must satisfy 

(cP,A<l?l (Q, A Ql (2.5) 

for all observables A which are localized in 0; As was shown by Knight [20] and 

Licht [24], this condition implies that the operators ~ generating the vectors q? 

from the vacuum must be isometries, We therefore identify the well-localized states 

with the set of vectors 

:toe [WQ wE 0t.c0~ 1 , w• w < 1 ~ . (2.6) 

This is essentially the class of states considered by Haag and Swieca [4}. 

We now formulate our nuclearity condition, which we expect to be satisfied by 

any local quantum field theory admitting a particle interpetation and having regular 

thermodynamical properties. 

Condition of Nuclearity: The sets e-f)H£.-r must be nuclear for all {)>0 and 

--t>O • Moreover, there must exist positive constants CJn and~ 1 00 such that 

-v ( ,-fiH z~l ~ e C'l30-TI 
( 2.7) 

for all 't" 2: 1 0 and 0 < {) :::{5 0 

We show in the Appendix by a direct computation that this condition is satisfied 

in the field-theory of a non-interacting spinless, massive particle. This result 
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provides evidence to the effect that the boundary effects alluded to in our heuristic 

discussion play indeed the secondary rSle which we anticipated. 

Our criterion is clearly stronger than the condition proposed by Haag and Swieca. 

In particular, it restricts the admissible particle spectrum at high energies, Yet 

since a physically acceptable theory should not only allow a particle interpretation, 

but also exhibit a realistic thermodynamical behaviour, we believe that our condi-

tion characterizes within the general setting of quantum field theory a relevant 

class of models, 

3. The split property as a consequence of nuclearity 

We will show now that the local algebras have the split property outlined in the 

Introduction if they satisfy the nuclearity condition. Our goal is the following 

Theorem 3,1: Let (r)-- OLU9) be a local net of von Neumann algebras subject to 

the standard conditions mentioned in the Introduction and the condition of nuclearity. 

Then there exists for any bounded region 01 another bounded region (9'L J tJ
1 

such 

that: 

i) (Existence of product states) There is an isometry V mapping dg onto ~ ® ~ 

such that 

VAA 1 V- 1 
1 ~ A1 ®A~ 

for all A,< ()[[(9,) and A~ E (')(_(0/. 

ii) (Split property) There exists a factor Jvl of type I such that 

OlC0, 1 c Jvt c OlC0~). 

For the derivation of this result one actually does not need all the properties of 

the net 0 __;_ ().(6) mentioned in the premises of the theorem. In particular, the 

specific dependence of the nuclearity index on the radius ~ of the localization 
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region given in relation (2.7) is inessential; all what matters are the limitations 

on the level density of localized states at high energies. In order to reveal which 

properties of the net are relevant for our argument as well as for later reference 

we give below a list of the specific assumptions on which our proof of the theorem 

is based. 

1, We will make use of the fact that the von Neumann algebras (1(0) constitute 

a net with respect to the open, bounded regions 0 C [Rlf- ; thus ()[_({01) C (1((9'2.] 

whenever ~1 C (9~ . We remark that the spacelike commutation properties of the 

local operators do not enter into our argument. But it will be essential that the 

continuous, unitary representation x~UCx) of the translations IRI!- acts covariantly 

on the net, 

Ulo:l Ct(C?) Ulcrl-' c ()L[0< rl, I 3.1 l 

and that the joint spectrum of the generators of x ~ Ulxl is contained in the 

closed forward lightcone V+ . Moreover, we will rely on the fact that there is an 

(up to a phase unique) unit vectorQE ~ which is invariant under the action of 

UC_::c.-) and which is cyclic for each OUJ!J). 

2. We require in our argument the existence of some vector cJ? E IJf5 which is 

cyclic for the algebras 0LC01 )
1 

n CJLL02 ) whenever the closure of (01 is con

tained in the interiour of 02 , i.e, ~ C (!)2... In the present case of a local net 

it is obvious from the preceding assumption that~ satisfies this condition. But 

the existence of vectors <;P with the desired property can also be established for 

non-local nets, provided the algebras 0tC01)
1 

n CJl((b'l.J are properly infinite l26]. 

3. We also rely on the following property of algebraic independence of the 

algebras (t(Co11 and 0tC0'l_)' where 
I I 

A
1 

< ()[(0,) and A, E Cll10,l ie zero, 

0, c (9, ' 

then either 

I 

if the product A, A of < , 

A1 ~ 0 or A~=- 0 . This 

operators 

property 

was established for local nets by Schlieder [6], and by a slight modification of his 
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argument it can be established for any net satisfying the preceding two conditions. 

4, Besides these standard properties we will use in our argument the following 

weakened version of our nuclearity condition: let 1ll0J be the group of all unitaries 

in 0L[(9) and let H be the positive generator of the time translations t -U(f:·e), 

where e E lR lj. is a timelike vector fixing the time direction. Then we assume that 

the set of vectors e -011 '11(0) Q is nuclear for any {) > 0 . Moreover, we 

require that for small f.> 

.Y ( e-I'H UC0lQ) :S e. c. 0 -"Tl (3.2) 

where C and ~ are positive constants which may arbitrarily depend on 0 , 

We emphasize that the statement of the theorem holds true for any net 0- lt((O) 

satisfying tliese four conditions. 

We turn now to the proof of Theorem 3.1 which will be given in several steps. 

Let 01 , 02.. be regions such that ~\ C 0'2. , and let ~(01 ; 02..) be the *-algebra 

which is generated from {)_((01) and rJ...(0.J1 
by taking all finite sums of products 

of operators in these algebras. We will consider two representations of the algebra 

e, ((1\ j 0!.) The first one, denOted by T( , acts on~ and is given by 

where 

n:(['.AKA~) 
K 

I: 
K 

I 

AK AK • 

A K E OLUD,) and A: E lJL[0~)
1 

( 3.3) 

, So T( is the identical represen-

tation. Note, however, that T( depends on the choice of the regions 01 and 02.. 

Yet in order not to overburden the notation we do not indicate this dependence ex-

plicitely, The second representation of e-c01; 0'L) to be considered is denoted 

by TCP and acts on ~ ® Je , It is defined by 

n:P([AA~)= LAK®A~ 
K K 

(3.4) 
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for A~ E LU0~1
1 

L_AKA~"-0 implies f: A'r< ®A~:: 0 

AKeOlC01) and , That this defi~ition is consistent, i.e. 

that is a consequence of the algebraic 

K K 1 

independence of OLL0-1) and CJL[0,_) , as was shown by Roos [ 1]. 

It is our aim to show that for any bounded region 0
1 

there exists another 

bounded region (!)2 ") b1 such that the representations i( and Ttp of ~ ({!)
1

; f!J'2.} 

are unitarily equivalent. This is exactly the statement in the first part of the 

theorem, The second part is then an immediate consequence: namely,. let V be any 

isometry of :fe. onto ~ ® ~ implementing the equivalence of T( and T( p. Then 

Jl =- v- 1 
( :P.J(1f;,) C?J f) V is clearly a type I factor. From the trivial in-

elusion 

v-' r lltc0,l"' n v c v-' c !8c~1"' 11 v c (v-' c 11illllLC0/lV)
1 

( 3-5) 

it then follows that the split property holds. 

It was pointed out in (8] that the problem of establishing the equivalence of 

the representations Tt and Ttp can be reduced to an estimate of the norm-difference 

of two specific functionals W and CJP on the algebra teU!J
1

; 02..). These functionals 

are, for (E EC01 ; 02..), given by 

wCC-l o (Q, rc(ClQ), 
( 3.6) 

Wp(C) ( Q®Q, rrp(C) Q .,Q). 

We denote the norm difference of these functionals by 

II cu- cu1 L. 0 = sup r lcuCC.l- cuP CUI : CE 'eC0,. 0 ) IIC II< 1}. (3.7) 
lJ1,'2.. l. )2..) 

The following proposition provides the basis for the subsequent investigations. 
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Proposition 3.2: 2 ) Let (Qa..l (9b be open, bounded regions such that 0a_ c (Jb, 

and let 

II w- "'P 110 . (9 < L 
~· b 

I 3.8 l 

Then the representations IT and TIP of f(: ((01 ; 01.) are unitarily equivalent for 

any pair of regions 01 , 01 satisfying 0; c (Oct. ( (?b C (9
2

• 

P~oof: The proof of this statement is based on standard arguments and may be omitted 

in a first reading. It consists of the follmring three steps. 

i) Let IT and n_ be the representations of e ::::: E U9a.. i (fJ b) defined according 
p 

to relations (3.3) and (3.4), respectively, It then follows from the definition (3.6) 

of W and U)p , and from the assumption (3.8) that these representations are non

disjoint (cf. the Appendix of [25]). This means that there exist non-trivial subre-

presentations of IT and ITP , respectively, which are unitarily equivalent. 

ii) Let TES be any non-trivial subrepresentation of Tt . We want to show next that 

if 04 , 02. satisfy the premises of the proposition, then the restrictions of IT5 , 

respectively rr to the algebra 'e:-;::'[((9"; (Q'l)c E" are unitarily equivalent. To 

that end we must verify that the projection f
5 

onto the relevant subspace ife
5 

C ~ 

reducing TI: can be represented in the form £
5 

= ~V5* 
isometry, i.e. V/ V

5 
" 1 

where vs E IT ( e )1 
is an 

It is well known that such an isometry exists if there is some vector q? E ~ 

which is cyclic for Tt (e) and which has the property that Es rJ? is separating 

for IT ( '('; ) 11 
• Because then it follows from a Radon-Nikodym type of theorem [26, 

Thm. 2. T. 9] that there exists another vector ~ E ~ which is cyclic for f( ( 'f,), 

and 

2 ) Th l . . . . e nuc earlty condltlon lS not needed here. 
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( <JJ, 'it (C) <j)) ([,cp, 'it(Cl E5 pJ 

for all ( E 'e . Taking into account these features of tf' and <f? as well as the 

fact that Es E. IT ( re) I c IT ('G) I 

operator V 5 defined by 

, it is then easy to verify that the 

v, . 'it (cJ <j) ftCC) E, ip for c E E 

is an isometry '..rith the desired properties. So it remains to establish the existence 

of <!) 

Now according to our assumptions on the net {!) __, ()[_((!)) there exists a vector 

4?E lJ£ which is cyclic for C:X..U.?<X )
1 

f\ Ol(.(O~) 

4? is cyclic for TI:(f:.):::: re, That E; <!) 

, whenever 0,... C {!Jf.:. • In particular 

is separating for Tt(t )
11 

can be seen 

- I -
as follows; since 01 c (!)a. c (D'l. it is clear that ce n ~ 

so p is separating for IT l '-8 )u V Tf C te )1 
= ~~~ V re 1 

') OLCI9,l 1
n OLUD.l, 

Hence if l. · E
5 

q? "'0 

for some projection l. E. IT ( Cf, )!I ::: if, 11 
, we obtain l. · E 5 == 0 Moreover, with 

the notation lf..::ci"" UC..r:) C Ul:x:.J- 1 , we have [2'.(x.), E 5 ] == 0 for .x: in some 

open neighbourhood of the origin in /R lf- the latter assertion follows from 

Es E rr c rG )1 
=:; ~I and the fact that U(::r) r..e UC:r.f

1 
c '[, 

fying ~t:x c 0a. c 0bc 0
2

-t::c. 

for all :c satis-

It is a well-known consequence of the above relations between "l. and E5 and 

the assumed spectral properties of Ul:x.) that lUCxlE
5

=0 for all :x_ E [R !!-

[2'(]. Since E5 commutes with the operators AI<C:::cK))k~1r .. n if AK E Ln._l01 ) 

and ::r:. k is contained in some sufficiently small neighbourhood of the origin in ~~ 

it is also clear that 

l: U lxl A,Cr,) Ahl:c~-) E 5 :::: 0. 

But this equation extends, by the edge of the wedge theorem, to arbitrary :r, r
1

, .•• :X: 11 

because of the spectral properties of UCo::.-~ • Now the von Newnann o.:5 .,-ora generated 

by CJL((Q~) and UC::c.) is the algebra S(~) of all bounded operators on 'JG. (Recall 
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that Q is cyclic for OU_(I)_.) and the only state in :Je which is invariant under 

translations. ) So we conclude from the above discussion that l· .1>(. lJe ) · E 
5 

::: 0 . 

Since f 5 t 0 this is only possible if l. = 0 , which proves that the vector E
5 

4? 

is separating for TC" ( <e, )11
, 

iii) Finally, let ltps be any non-trivial subrepresentation of fCP , Arguing as 

in the previous step one can show that the restrictions of these representations to 

the algebra e are equivalent: the counterpart to the vector cp is' in the present 

case, the vector 'I? ® cf? , which is cyclic for T[ (~)and separating for 
p 

n:,l'Cl 11 v rr,l'f:) 1 the rOle of the translations x~ UC~) is now played by 

"'-~U,lxl•~ Ulocl& Ul>Ol which also satisfies the spectrum condition. 

Making use of the facts that Q ® Q_ is a cyclic vector for ()[((91 ) ® (j{_((D-1} 

and the only state in at ® ~ which is invariant under up (x.) • the previous 

argument can be taken over almost litteraly. 

Summing up, we have seen in i) that there exist subrepresentations TC 5 and T(pS 

of Tr and TCP , respectively, which are unitarily equivalent: - -
IT 5 "' Tips . From 

ii) we know that IT = IT ~ 'f, ""TI'
5 
~If, 

Hence we conclude that IT ,...., K p • I 
and from iii) that T(p ;:; rrp ~ re, ""' reps r re. 

By the above proposition the problem of establishing the equivalence of n: and 

rtp has, so to say, been reduced to a "computational" problem. Making use of the 

nuclearity condition (3.2) we shall now carry out this computation and show that for 

any given bounded region 0a. there exists another bounded region (~.\ "J ~ such 

that I[ W - Wp II (9 • 0b < 2. . , 
Let Co be a fixed bounded region and let, for any 't > 0 , t?J T be another bounded 

region which is sufficiently large such that 0+t·~c0 ..- for all ft-1 < '1 ; 

here e. € IR'i- is the timelike vector appearing in the formulation of the nuclearity 

condition ( 3. 2). Picking arbitrarily a finite number of operators A K E CXJ0) and 

At 
K 

E C{(0..,. )1 
for which 

Lt<o as follows, 

II L, A, A: II ,; 1 

' 
, we define two functions f+(~) and 

f+ ('C.~ 

f (<l 
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L (Q,A
1
, (1-PQ) e''HA,Q) 

K 

L (Q, A, (1-P"-) e-c<H AiQJ 
K 

for -2::. E ( , IYn t:_ ;:>: 0 

for :cEIL) Im1:.~0. 
(3.9) 

Here H is the positive generator of the time translations i.tH e ~ Ulte) ,\:EIR, 

and PQ_ is the projection onto Q. 

The function f+(c) is continuous on the closed upper half of the complex 2-plane, 

and analytic for Im ~ > 0 . Similarly £ (1:.) is continuous on the closed lower half 

of the complex z-plane, and analytic for Irn~ < 0 , Since Q is invariant under 

all time translations, and since AKlt-e) 

that ft-l-!:J~f_t-1::) for \t\<-r. Let 'PT 

I 
commutes with AK for It\ < 'f" , it follows 

be the cut plane 

'P, C'\{c. Im::c=:O 1 \ Re~\ ~ + }. (3.10) 

From what was said above we can conclude that there exists a function fTL~) , defined 

and analytic on Pr 1 which coincides with ft- ('t.) when ~ E Pr and l'fr"l c ]! Q , and 

similarly coincides with f_(1:.) when "l_E P-r and IWl'i: < 0 

f ,lol w([,A,A1
,) 

K 
lJplZ::A,A~) 

K 

• Notice that 

(3.11 I 

Hence if we can show that there exist constants "t" and S < 2. such that \ f..,..(O~\! h 

for any choice of the operators AK E 0L(0) and 
I I 

AK E Ol.(ib,) with 

II[, AKA; II ~ 
' 

, the desired bound Jl (U- (J 11 0 . '" < 2 follows. The pivotal 
p ,v.,..-

point in the proof of this is expressed in the following lemma, which depends in an 

essential way on the nuclearity condition (3.2). 

Lemma 3.3: The analytic functions £,_ defined above satisfy the condition 

I £,loll < f>(llmcl]· e c[Imcl-" 
for l:m&t 0. 
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Here C and l'1 are positive constants and hls) S-?!. 0 is a continuous function 

which tends monotonically to 0 as 5 tends to infinity. The quantities C , n 

and h depend only on (0 • 'l'hey are in particular independent of 't and the specific 

choice of the operators AK E Ctl0) and A~ E (){_((9t- )
1 

, provided that 

ilL:, A, A~ II,; 1. 
K 

Proof: We begin with some preliminary remarks about two simple algebraic facts. 

Firstly, let 4?, 1' E IJe, and let llp denote the operator norm on _B(~)®BCJGJ. 

Then it is obvious that 

II[ l<JJ, A, <Pl·A~ II< 
K 

Ill[! llll<P II II [ A,0 A; lip. 
K 

Making use of the existence of the representation f[ of 't (0. (Q"~"') 
p , defined 

in (3.4), it is also clear that 

II [A,"' A~ 11," II Tr, [[A, A~) \1 ,; 
' ' p 

II[A,A; 11. 
K 

Hence, taking into account that liZ:: A, A: II, , we arrive at the useful esti-
k 

mate 

ll[l<J:;,A,<i>l <II< II l[! II II cp II . 
K 

Secondly, we note that any operator A € CH0J with !lA\\.::; 2 can be represented 

as a sum of four unitaries in 6ll0) , since Oll0) is norm closed. Hence if for 

some linear functional C on OUb} and a fixed ::\.2.0 the bound \HU)\~ A holds 

for all unitary u t ()(_(_(?). it follows that I ec A)\~ LA· II A II for A f- OlC0). 

After these preliminaries we can now discuss the consequence of the nuclearity 

condition for the problem at hand. By the condition (3.2) and by the above remark 

there exist, for any 6 > 0 , a sequence of linear functionals 1!.-rn on 

e. -GH OU0 ') Q and a sequence of unit vectors tJ?m in 'JG such that for any 

A €. Oll0) we have 
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-G"H ;;" ( -aH , -"' 
e A Q - L t, e A Q 1 · ""~ , 

m=-t 

where the swn is absolutely convergent. In fact, setting 

?c,lG)o Sup{\t,(e-GHAQ)I, Adlll01,11.~11c1} 

>ie have for sufficiently small 6' > 0 the estimate 

= L A,lGJ ' 
If e. CG'-n 

h'>"1 

where C and h are the constants appearing in the nuclearity condition (3.2). 

Nowlet ~o:t+LS where -t E IR and s ~o . Then it follows from the de-

finition of f.,_ that (,O;tis) = f+(~+-isl and with the arbitrary decompo-

sition 5"'- ~ + "'C where G'>OlT::-cO we obtain from (3,9) the equality 

)' ' lct-c1H -G'~ \ 
f,lhis1 ~L (Q,A, e (1~PQ.) e A,Q 1. 

K 

Making use of the above mentioned properties of the functionals e~ and the vectors 

cl>m , we can convert this expression into the equalities 

f (b c is) ., 
~ 

o[L 
K 1\'\""1 

(Q, A~ .,(ctc-<:)Hl1~Pg_l<±_l~) tm(e-"~A,QJ 

= 
[ t~( e-G'H Ac~\ Ql 
lv1d 

where the operators 

A(m') 
\ ' lct~c1H 
L(Q,AKe [1~Pn.)cpm).AK 
K 

are elements of the algebra cJl[(j} . From the above preliminary remarks it follows 

that 

II A'~' II ' II e-cH (1- PQ.l <Pmll, 
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and hence we arrive at the estimate 

If lc+isll ~ 
" 

co 

L :Amt<Ol II - c:H I P ' e 1- QJ cpmll. 
i'l1 =-1 

Setting first c5 =. S J T"' 0 
~ 

as well as the bonnd on L 
and taking into account that II 'Pm II 

). m l<D) we obtain 
WI :o-1 

If lt+ is)\ 
T 

~4-·e..cs-n 

for 0 < s ~ so , provided 5
0 

is sufficiently small. If 0 ~ S 0 we set 

G S
0 1 T ::. S- 5

0 
, and we then have 

'>' II -Cs-s 1 ~ II I f,lt+iS) I~ L :\mls,l e ' (1-PQ) <j.lm . 
h'l "-1 

The right hand side of this inequality is continuous for 5 ~50 and tends monotoni

cally to 0 as S tends to infinity, because each individual term 

II ,-ls-SolH (1-PQ) <l.Jmll has these properties (recall that~ is the only 

invariant state under translations) and the sum over all coefficients :\..., [50 ) 

finite. By a combination of these bounds on I f-rll:.+ is)\ the assertion of the 

lemma follows for S > 0 • To see that this assertion also holds for 5 < 0 '"e 

note, with reference to (3.9), that for S < 0 

f,lt+<S)~ f_(his) ~+(t-is) , 

where g+ is obtained from f+ by replacing the operators ' AK, AK 
by their adjoints A* K and A/* 

K , respectively. Since 

II L. A: A~* II " II(L:_ A'K A K )* II " \\ L AKA~ II ~ 1 
K K K 

the conclusion then follows from what has already been proved. II 

in ( 3.9) 

Let C , n be the positive constants and~ be the function appearing in the 

is 

formulation of the previous lemma. We consider for any T > 0 the family :F of all ,. -· 
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functions f which are analytic on the cut plane 'j) 
• and satisfy the inequality 

I fl"' 1 I ~ I, II Im" I) . ~ ~ I r~" 1- n I 3.121 

for all 7!:_ E ([ ,Im,to • The functions £.., considered earlier are clearly 

elements of T 
;-

. The desired bound on I f r ( 0) I now follows from the next lemma, 

which is based on a Phragm€n-Lindel0f type of argument. 

Lemma 3.4: For any S > 0 there exists an ,.-(t;")>O such that \£to)\ <:... 6 for 

all f ·E ;r.tfl · 

Proof: Let 'i > 0 be fixed in the following. We will show that the family :f:';- of 

analytic funct,ions on JJ ;- is normal (i.e. uniformly bounded on each compact subset 

of JDr ). Anticipating this result, the proof of the lemma can be completed as 

follm:rs: if the statement very wrong, there ',Wuld exist a sequence of functions 

§-n E j:: n·-r , n E JN such that ~~Yl(O) I ~ S' • We then consider the scaled func-

• A ( 
bans ~n('C.) ::::: ~Y\ h l:.) ' -2:. E. j)+- which are all elements of J: 

T 

since the bound on the right hand side of (3.12) decreases monotonically if \Im~\ 

increases. Moreover, since this bound converges to 0 as llmr.:\ approaches infinity, 

it follows that (I..LI'Y! d. ( l: ") 
'" d n 

if IImi'ol + 0 Making use now of the fact that 

2rT is a normal family of analytic functions it is then an immediate consequence 

that il_L.Wl ~n (_"l;:) =- 0 
" 

for all 1:.. €: J>T , But since 0 E P-r and 
~ 

g"l0l" 3,(o) 

this result is incompaticle with the assumption that I ~Yl(O) \?: (). 

For the proof that 3(-r is normal it suffies to show that the functions in 

are uniformly bounded on some neighbourhood of each real point t ~ JP~. To this 

end we introduce for any given E. with 0 < E.< -r the auxilliary function 

Q4l ~) Qo(-t""-£.+ C)· Qo(-t"-E..-Z.Z:)' l: + ±.l-t--£.) 

where 

a.<)Ll::.l ""P l-Ite <I< J zd o. 

:r~ 
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It is obvious that the restriction of Q
1 

to the open set 

]) { "' ' I Ret I + I I"l" I 112 
< 'l-- c l 

is analytic; moreover, this restriction extends in a continuous fashion to the 

closure D of D . We denote this extension of a
1 
~ D 

a.l-t"'-E-)"- a.l-1"""+£.)=- 0. 

by 0.. and note that 

Now let £ E- :J:"'_, and let Slc)oQ[i'o)·fc>cl for C E- ]) Since ll c P,_ it 

is clear that ~ is analytic on .D , continuous on D 

The maximum modulus principle is then applicable, and hence 

and gc-r-£)" gc-r• C)oO. 

l§l~ll~ MCgl, where 

M ( ~) is the maximum of I~ ("t:) I on the boundary '0 J5 of D ; this maximum is 

assumed at some point different from r_ = ± (T-£) On the basis of the bound 

(3.12) on the functions f E: 1',.- and the specific properties of the auxilliary 

function 0.. We obtain by a straight-forward calculation the estimate 

M c~ l ~ Su.p 
t>o 

t etp (- e 1/t l . ~Ct'letc- 2"} , 

where M is a constant independent of the particular choice of f E J""',.. . Since a_ 

does not vanish on the open set ]) we thus arrive at the bound 

lfconl o M I Q("\-
1 

, "< D 

which holds for all f E ~-r • This result implies in particular that the functions 

in 'F t- are uniformly bounded in some neighbourhood of any real point t with 

It I < T- t_ • But f. > 0 was arbitrary, and taking also into account the a priori 

bound (3.12) it is then clear that ~he functions in ~T are locally bounded on 3D~. 

Hence ~ is a normal family of analytic functions . I 
Swnmarizing the results of the previous discussion '~·e have seen (cr. equation 

(3, 11), Lemma 3.3, and the definition oi the families ~~ that 
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II w- [Jp 110; 0, "' oup~l pol\' ? E :r, }. I 3. 13 I 

From Lemma 3.4 it then follows that II w - we II 0 . 0 < 2. • provided r 
, ' 

(and consequently 0T is sufficiently large. We have thus established 

Proposition 3.5: Let (Q~ be any open, bounded region. Then there exists another 

open bounded region 0b J va such that llw-wpiiCJ . 0 <2.. 
"' b 

'!'he proof of Theorem 3.1 is now accomplished by combining Proposition 3.5 and 

3.2: given 01 , we can choose two open, bounded regions (!) , (!)b such that 0 :;. {D 
Q_ Q 1 ' 

f)b ~ [f},u and liw- Qp\1
0

. < 2._. It then follows that the representations IT and IT of 

~·· p ~ (01 j 02.) , where {!)'1. is any region containing (?}b in its interiour, are 

unitarily equivalent. As already discussed, this implies the theorem. 

It is obvious from our arguments that these results can be generalized in 

various •,;ays. For example, we never depended on (!)---+ ()!..[(?) being a net on [F( If- , and 

accordingly the theorem holds in any number of space-time dimensions. 

It is also clear that the bound given in the nuclearity condition (3.2) could 

be relaxed. The actual border line, where the theorem breaks down is not known. One 

can show, however, that the conclusion in Lemma 3.4 is false if the bound (3.12) 

entering into the definition of the families 'F,_ is replaced by ~ (e_1(1Imc\) 

in a neighbourhood of the real axis [30]. Our particular approach is thus not appli-

cable in this case. 

Finally, '"e ·,;auld like to point out that, by a refinement of the argument in 

Lemma 3. 4, one can derive an estimate on the size of the region (92- in the theorem 

i:--, terms of the parameters G , 1'1 and~ in (3.12). We have refrained from doing 

so since the size of (!)'L obtained in this •my is far from optimal. In fact, on the 

basis of a slightly more restrictive version of o:1r nuclearity condition, it has 

recently been sho',;n [31] that the statement of t.he theorem holds true for any region 

(!)2.. containing ~ in ::ts -inter_:our. 
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4. Concluding remarks 

In the present investigation we have focussed attention on certain configuration 

space aspects of our nuclearity condition. We have seen that the asymptotic energy 

level density of the well localized states, which can be read off the nuclearity 

index 'V(e-0H £,+) for small {?, and fixed -T governs the nature of the corre-

lations between observables in spacelike separated regions of Minkowski space. In 

models where the nuclear index does not grow too rapidly as ~ approaches 0 

one can represent all physical states as superpositions of "product states" which 

do not exhibit any correlations between certain pairs of spacelike separated regions. 

By a straightforward generalization of the present methods one can extend this 

result to any number of spacelike separated regions 01 , .• f!J 11 -provided these 

regions are bounded (with the possible exception of one member), and their mutual 

distances are sufficiently large. Namely, given any such collection of regions, 

which may be regarded as lacunary paving of some spacelike surface, there exists 

an orthogonal basis of product states <£ E 8{; for which 

n 
(<j) ' A, .. A" cj))cTC 

k"'-1 
(<iJ,Ak <P) (4.1 I 

for any choice of the operators A!< E ()(((OK) , k =- 1, ... n . In all models 

satisfying our nuclearity condition the physical states can thus be interpreted in 

terms of completely uncorrelated subsystems which are localized in the panels of 

such lacunary pavings of spacelike planes, 

In collision theory one is interested in the properties of the subsystems 

appearing in these resolutions of physical states at asymptotic times. In this 

connection it is of particular interest under which circumstances these subsystems 

can be interpreted as particles. We expect that the Volume dependence of the energy 
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level density of the well-localized stateB, which likewise c8.n be read off the 

nuclearity index, is of decisive importance in this context. 

Because of the additivity of the energy of multiply localized states (i.e. states 

consisting of several localization centers) [33], it is clear that the 

index -v(.-flH ;e,
1
_) increases in all models at least as rapidly as 

nuclearity 
c.,, 

e in the 

limit of large 't and fixed {'J, If, on the other hand, the nuclearity index would 

grow considerably faster, this would mean that there exist excitations of fixed 

energy E in the model, occupying arbitrarily large regions of space, which are not 

composed of several localization centers whose total energy adds up to E . It is 

evident that such states cannot have a particle interpretation. The ~ -dependence 

of the nuclearity index stated in our nuclearity condition therefore seems to be a 

necessary condition for a theory to have a complete particle interpretation. In 

fact, there are indications [18] that this condition is also sufficient, if one 

d-efines a single particle state as a state singly localized at all times [5]. This 

more general concept of a particle can also be extended to infra-particles [18}, 

(i.e. particle like excitations which do not correspond to discrete points in the 

mass spectrum l34}). 
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5. Appendix 

In this Appendix we show that our nuclearity criterion is satisfied in the 

theory of a free hermitian scalar field associated with a single spinless particle 

of mass m > 0 This is the simplest example of a large class of free field thee-

ries which can be treated by similar methods. 

We begin with a brief review, partly to establish-·our notation. The Hilbert space 

~ is the Fock space over the Hilbert space of all single particle states, which •,;e 

identify with the space e-ctR3) of momentum space ~ave functions fcp) equipped with 

the scalar product 

<£I~> j d3
p feEl gcp). 

The generator GJ of the time translations on the single particle subspace is given 

(on its natural domain) by 

cwfHpl (IE_\z.r rr?)m. f(e_). 

The global space-time translations UC:::c) are then fixed by the Fock-space struc

ture of J:e, 

To each f E L1CIR3) corresponds a creation operator a*(£) and a destruction 

operator a(£) as well as a unitary Weyl operator 

wen 
L (Q*tf) +- Q(£1 )

e 

The creation and destruction operators satisfy the usual canonical commutation re-

lations, which are equivlent to the well-known law of composition 

Wlfl· WC~l Wlf + ~ )· e '\:(<~It>- <£1j>) 

for the Weyl-operators. 
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To each double cone 0,:::. t X E fRI!-: l:r
0
l+lt_\ < T} there corresponds a 

real subspace K(0-r) of L2..([R~) consisting of all wave functions of the form 

(\EI1 +m1 l-111 tcEl +, (l~t1 +m1 lm~CEl, 

where f , ~ are testfunctions whose Fourier transforms are real and have support 

in the ball I~ I < i- . The local 

Neumann algebras generated by all 

algebras CJt((0-T I are then defined as the von 

Weyl-operators we~ J with ~ E KCb ), i.e. 
< 

Clll('J<) 0 t WCI,)' !'. E \{((r)< 1\ 11 

With the aid of these special algebras and the translations we can define the alge-

bras corresponding to arbitrary bounded regions (9 by addi ti vi ty, The res-...11 ting net 

('] ~ (jl[(')) has all the standard properties mentioned in the Introduction. 

Our goal is the following theorem which shows that our nuclearity condition is 

satisfied for the free-field theory under consideration. 

Theorem: In the free field theory of a single spinless particle of mass 'YYl >0 

the sets 

-flH "' e. "-'..- te-~HUQ, U E Oll0<), U*Uo 1} 

" -< are nuclear for any T and any I-'> 0 , Moreover, if -r- ~ m and 

-v ( e- 0H :£ I " ,.-
cc~;~l' i""l~ _ e:-il"'f"")\ 

e 

where C is some constant (independent of 'I , ~ , and m ) . 

fl"-r , then 

Remark: Our estimate for the nuclearity index is rather crude and can be improved 

at the price of added complications. 

For the proof that the set of vectors -ilH ~ 
" ~-r is nuclear we must exhibit 

a sequence of unit vectors Pn and a sequence of linear functionals ~n with the 



- 28 -

properties given in Sec. 2, Our construction of these quantities depends on a proper 

choice of an orthogonal basis e,.: ) k E iJ.'i 

fine for all finite sequences {'Yl-1, ... Yip) 

numbers") the vectors 
p 

c(in n: 
K,.1 

Cl-*( eK) YlK 

( 'ftK l) 1/'l. 
Q 

in l\R?'). Given such a basis we de-

of non-negative integers ("occupation 

where Y\ is the label of the sequence ( n 1 , . . n p) in an appropriate enumeration. 

These vectors form an orthogonal basis in ~ The associated linear functionals t~ 

are defined on all of ~ by 

fn llJ!) (eli,, <Ill for 'I> e'le,. 

It is then obvious that 

<l' ~ L, ~" l<l!l <I>, , 
Yl "'" 

the sum being defined in the sense of strong convergence, It will be shown in the 

remainder of this section that for any given 'I and {)>0 one can find an orthogonal 

basis eK J k E !N in L'l.(tR.3 ) such that the corresponding sequence 

?c, su.ptltnl,-~I-1UD.)\o U e 01.l0~) ,U*Uo1} 

is summable. This means that -~1-1 ~ ' ~_,_ is a nuclear set. Moreover, the sum 

over all An will provide the upper bound on the nuclearity index -~H ~ 
e """ 

stated in the theorem. 

The proof of this assertion involves mildly cumbersome combinatorial problems 

which we will handle by generating function methods of the kind which are standard 

in Fock space theory. To begin '"ith we define for any ~ e IJe the functional 

Glt;Y!I l ~ a_"H \ Q_' <I! I r c L,liR3 l, 
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where the exponential function is understood in terms of its power series expansion. 

In view of the relation 

e a-*Cfl Q 

it is clear that 

I G-l £ 'I! l I ~ 

e ',:\If II~_ WC-i £ l Q 

t II£ II~ 114! II , e. 

where we have put [I£ \1' ~ < £ I £) , and this bound is optimal if 4! is arbitrary. 

The following observation is now important: if, for some set of vectors ..}[ c ~, one 

can establish bounds on the functionals GC £,lJ!l ,<J!EJ{' as stated in the 

next Lemma, then it follows that j[' is a nuclear set. 

Lemma 1: Let j[ be a subset of vectors in the unit ball of ~ . If there exists 

a (selfadjoint) trace class operator T;::: 0 on L'LUR?) with norm 1\T\\ <.1 such 

that 

IG-lf;ll!ll < L[[T£ II~ t < L'l1R3 l e" , 

for all 4! E .}.{' , then Jf is a nuclear set. Moreover, 

,Y (}{) < det ( 1- T) _,. 

Proof: Since T is a positive trace class operator in l.:-C!R3
) there exists an 

orthogonal basis of eigenvectors eK , k E IN corresponding to the eigenvalues t K 

ofT . From the fact that liT\\< 1 and T ~ 0 it is also clear that 0 ~ t-K < 1. 

Now let t£ and e be the unit vectors and functionals, respectively, constructed 
n n 

from eK, k E IN as described above. We desire a good estimate on the quantities 

l.n l <J.> ) cJ! • Jf 

Let (Yt 1 , .. 'Ylp) be the sequence of integers corresponding to the label ~ 

Denoting by l!:f_:o(W~ 1 ••• Wp) and by£.::: (t::..,, ... l:p) arbitrary p -tuplets of positive 
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and complex ntunbers, respectively; we introduce the auxilliary 

fnnction 

fc~,<£1 
p 

L. l:KWK. e_K • 
I< =1 

C" ( fR3
) -valued 

Using the notation l:.K"'XKt-i'::JK with XK,YKE-IR d'h: dx,.· dx,dj, djp, 

and \;tl'l.=l'l111 +-···+ \~p\'2. , we obtain, through a straightforward calculation, 

the equality 

( 'Yl1 \ 

~ tw.c 
E.\ 0 

"l)m w"• ··Wv;' o (<!;) 
p • ~ • ? A...\'\ 

.:!., 5dp>c -c:' .. en' G-(Elc Wl. ,T,; e-I?J'-~1"'1' 
IT p -•- )'.:tJ 

for any ~ 6 ~ . (Note that due to the presence of the term e-<1£1' one may 

interchange the integration with the summation, involved in the definition of 

G ( f (?;.)Vi~ j ti:) ' for any choice Of w" ' ... wp. ) Applying the Cauchy-Schwarz 

inequality to.the integral we thus arrive at 

W 2n< ... W ln p I t ( ljJ) [2 
1 p " 

~ _1__ 5 d '-c I G- ( f (ie Wl . tjJ) \2 e- I£ 
12 

n::P -,- ' 

provided that the right hand side of this inequality exists. Now for vectors \Y E.J[' 

it follows from the premises in 

[G-(fto_,"'"l;'±'llt,; 

the lenuna that 
p 

I:; l<"w"t"l" e Ks1 

This leads, after integration, to the estimate 

p 

1 e~C'l'il " n: w"-~". (1- cw"t:"l")- 112 

K"'1 
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which is valid for all WK satisfying WK> 0 , WK l:K <: -1 • Calculating the minimum 

of the right hand side of this inequality with respect to w1' ... wp we finally 

arrive at the bound 

l~"l<l.>ll ~ 
p 

n: (-nK+1) 
K"'-1 

"'" CK 

which holds for all ~ E: J.f . We note that this bound is not optimal, but we 

selected this form in the interest of simplicity. Setting 

A."o su.d\e"l'lJ)\,,b.)f} 

and taking into account that the sequence tK is summable as well as the fact that 

0 ~ 1:, ~ II T II < 1 if follows that 

= 

LA" " IT (1-tK)-2 : de1:(1-T)- 2 
< =· 

K"'1 l1 o::.1 

This estimate shows that Jf is a nuclear set and it provides the bound on the nuclearity 

index of Jf given in the lemma. Jl 
We will now exploit the specific properties of the sets e -~H :f..,-t- and show that 

they are of the type considered in the previous lemma. We first note the trivial 

identity 

G-lf:; "-~HUQ): G-(e-~"'f; UQ) 

which holds for any bounded operator lJ . The analysis of the consequences of the 

aSSllillption that U f dtU.O.-r) is somewhat more complicated. Let K((9,... )1 
be the closed 

real subspace of l'L(Jp__3) which is conjugate to K(0-r-') in the sense that 

K(0,)1= i~E L\IR'), <.~If)= (fl~) forallfcK(0,_)}. 

I 

In view of the composition law for the Weyl operators we then have VJC% ~ E CJL((9'~"") 

forany ~EKL6-r-J 1 . 
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On the basis of this composition law it is also easy to establish the equality 

of the various representations of the function F(l:) l r_ to ([ given by 

FCc)· e"'ll~ll"•i:><f.l~> 

cc*(1,• ,;;:\l-1 Q, U· l "-
a.*[iie~) Q) 

e 

!,: II 1\ II~+ I c t" II g ll'l. • i 2: <\\I~> 
e (wc2:~)wC~i?,lQ, u Wc"~lQ) 

!:>I"ll a 111 + il'<\\,t~> (W _ a."(e,l '·T( Q' 
e o (c~) e Q, Uw cgl !. 

These equations hold for any ~ 1 ~ €- L'2..LIR3
) and any bounded operator U • By 

inspection of the first (defining) equality we see that FC.eoJ is an entire analytic 

function. If l:=X is real, ~ e K((!J-rJ',and U E Oll(!)), then WC.x~)commutes 

with U , and thus it follows from the second equality that FCx) is constant. But 

this implies that F(c.) , ~to ([ is constant, and setting r:.=O in the third 

member we find that FCc.)= G-(f;;U.Q.). Setting now ?::=-L/'2,~"'e.--{3cuf,and using 

again the second equality we obtain the estimate 

[GC£; e.-~HUQ.ll ~ 
!;: II .,_-~w f - 'J II' 

e 

which holds for all £ E L"CIR') , all ~ f KU'I.l
1 

, and all operatore U eCJllC'l) 

of norm less than 1 (i.e. in particular for all isometries). 

In the next step we select for every £ E C" ( [R_-~ J a ~ E k(0-r)
1 

such that 

e-- ~tv f - <J 1\ is "as small as possi.blen. To this end we define an antiunitary 

involution J on L\[~:~) by 

lJI; lltl M- £1 

i.e. J induces complex conjugation of the vave functions in configuration space. 
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KtH ,'l 3 
We also consider the closed complex-linear subspace ~ of L l~ ) which is the 

1/l < 
closure of the set of functions UO f , where L runs through all testfunctions 

which, in configuration space, have support in the ball I~ I< -t- • Similarly, K~) 

is defined as the closure of the set of functions W112 £ with f as above. 

Now let Ett) E <..-) . . K'') 
~ and ~ be the orthogonal proJectlons onto T KH and ..,... , re-

spectively. Since K~~ and K~1 are invariant under J it follows that E~) and t~) 

commute with J . It is also easy to see that 

is an 

~ " t (-1- E~)l(1+ J )~ + t (1- E~))(1- J)~ 

I 
element of K ( (0"1"") for any choice of the function ~ E L"l...l\R3

) • Hence if we 

put ~~e.-0"'£ and choose 3 as above, we obtain from the earlier estimate 

on G-lf. e-fiHUQ.) the bound 

' 
IG-lf; ~-[>H UQ)\" e 

t liT+ \-C1+J H II"+ 'i liT~ ~(1-Jlf 112 

where T+ 

T, 

T_ denote the bounded operators 

El+) -0w 
.,. e , T~ " EH e ~0"' .,. 

For further progress we need estimates on the norms and trace-norms of these operator.s, 

and we thus consider 

I,emma 2; If 1""2: m-1 and 0< {),.;.. + , then 

II T + II ' e - ~"' and II T, 11, ' c c~ 1 ~ ,, e-flm/'L 
' 

where C is some constant which does not depend on ") , ~ , and h"\ • Here \\ l\-1 

denotes the tracenorm of the operators on L"'l. C.!R 3) . 

Proof; (In the following I"Yl is set equal to 1, i.e. the quantities '], (3 are 

given in units of m-1 . ) The bounds on the operator norms of T+- and T_ follow 

from the trivial inequality II T± 1\ ~ 1\ e.- Bw II and the fact that c.;<:. 1 For the proof 
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that T+ and T~ are traceclass operators we proceed as follows. 

Let ';( (~J be any real testfunction on configuration space with the property 

that Xlc)o 1 for !'il ~ 1 and /((~) :o 0 for \ 0._ l ~ 'L . We then consider the 

scaled function 1'1-t~J :: tj_ ( T-1.~) and define the boundej, selfadjoint operator 

X.+ on the momentum space wave functions R E- L'L([R3 ~, setting 

~ ~ 

C;(,_· ~ l lJ<. 1 X~c"-l~c"-l 

Here the tilde denotes the Fourier transforms of the respective functions, 

It follows from the definition of the space K~) introduced above that 

El+) =- Ec+). w-1n -v c.u~''l. , so '"e have the trivial identiLy 
~ ~ ~~ 

T+ o 

o E~'. £w-'1':X, wm (1+~"1E'I"r 1J [11+/'>'lt'l")w- 111 1. w1 "e.~f'w} 
c ' 

where P ' ' denotes the momentum operator in L ( lR ) • It is also easy to verify that 

the two operators in the curly brackets are in the Hilbert-Schmidt class, hence T+ 

is in the traceclass. Moreover, on the basis of the simple inequality 

(IE\1.,_ 1) 111 (1 1i"",.. n- 112 ~ 1 + le_- '!_I 

for all r ' q E: !R 3 ' we obtain after a straightforward calculation the following 

bound on the Hilbert-Schmidt norm of the first operator: 

llw-"'X,_ w"" (1+/01 1~11 )- 1 11
1

, c,- (,/~)3n 

for -r;:: 1 and 0 < 0~1"". Here c 1 
is a constant which only depends on the specific 

properties of the function 'JC~) selected above. Making also use of the estimate 

e-2.0 (1 + ie\2..)~'"2. ~ e-(3. e -01~1 

for E e- [R3 , we likewise obtain for the second operator 
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~(1+~"1~11 1 w- 11~'/.,.w"~ ~~w II~ e. 2 
c,· l-r/(ll'l" e-f'l'-

for '1"" ~ ~ • 0 < 0 ~ T , and another constant C 2 . Combining the above identity for 

T+ •rith these estimates of the Hilbert-Schmid·t norms we now have 

liT+ 11 1 " c1 c2 h-/~ 1' e.~ f"I'L 

for "1 ?!.1 and 0..:: {3::; t". This is the desired bonnd on the tracenorm of T+ . The same 

considerations apply to ll_ • so the proof of the lemma is complete. II 

With this information at hand we can now continue our analysis of the fnnctionals 

G-Cf i e-D>HUQ). Let "12. m- 1 '0< (1~-t"", and letT+) T_ be the operators 

considered in the preceding lemma. We then define the positive, bounded operator T 
by 

T (lT:T+)"+ lT!LI") 1
/

1
" , 

where h. is some positive intee;er. It is obvio'-.ls that 

liT II~ 2.112"· M""' (liT+ II ,liT_ II) "2.;/Ln e~m~, 

hence if we choose Yl sufficiently large we have II T II c e -m(l/'- , We next note 

that for positive operators ft , B and o~o( -s1 

II ( A + B ) "' II -: II A"' II + II B" II 
~ 1 -1 ' 

provided A« and Be( are in the traceclass, (cf. for example [35}). We thus con-

elude that ~ is in the traceclass, and we have 

II T II, ' liT, \1
1 

+ II L 11 1 < lc c..-/1' 13 e ~m~/"-

From the fact that X ---'>- X -1/YI , X 'e; 0 is an operator-monotone function for n ?. 1 
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it finally follows that T+-,::T+ ~ T'l. and T..: T _ ~ T 2 
, and consequently 

liT+ ~ U + J l f II~ + II T_ t l'- J l t II" 

-: 1\T t l1 + :l l f II 1 
+ liT t l1 - :J l f II' \\HI\" 

' 

where in the last equality we made use .of the fact that -r commutes with J . On 

the basis of the previous estimate of G-(f;e~fJHUQJ we thus arrive at the in-

equality 

I &lf. c-~HUQ)[ "-, ~ tiiH II" 

We are now in a position to complete the proof of the theorem. Since lr is a trace-

class operator and 1\ T II < 1 it follows from the above bound on G-(f. ,-flH UQ) 
' 

-~H and Lemma 1 that the sets e.... '1.,-t- are nuclear for small ~ ::> 0 and large T • But 

it is then clear that these sets are nuclear for all 'I and !'<.> 0 because :£ c 'f., 1 I" ;- 'C 

if Tf."t"/, and Q.-(0-r-/)H is a bounded, invertible operator if 0 "2.{) 1
• 

According to Lemma 1 we also have 

"l(e-f"H.:e,T)" de±o (;-n-~ 
-2T" .£,.c({-T) 

e 

and making use of the fact that the function )(----'>- x-1.£M.(1-X), 0 :f.";( C:. ~ 

is monotonically increasing, we can obtain the more convenient estimate 

..y (e-0H :£,I ' 
-~ IITII- 1 fnl1-IITII) IITII 1 

~ 

Taking into account the explicit bounds on 11-r II and Ill[ I\ given above we conclude . 1 

-1 {I that, for "!"" ~'m and 0 < ::; t"" 

-v(e-0H:r,~), 
C (T/f' 13 I 1m l1- e-{1">/~l\ 

e 
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where C is some number. This completes our proof of the theorem. 

In conclusion we would like to point out that our methods also apply to "many-

particle theories" with a countable number of free spinless particles with arbitrary 

masses 0 < m 1 £ \'n'l.. ~ .• S. \'l'\. £ · ·· . They are obtained from the present theory by 

a standard tensor-product construction (cf. for example [9]). This class of models 

is of some theoretical interest because it allows a simple study of the effects of 

a more complicated particle spectrum on the properties of the sets -{IH "' . e ""T 
By a slight generalization of the previous arguments one can show that the sets 

e- f6H '!:.; are nuclear for any 1 
~ 

theory is such that 
~ 

and 

L e.-~IYl~ <: oo for all 

t <.oj 

0>0 , whenever the particle spectrum of the 

f>>O. 

Moreover, for the nuclearity index of these sets one has 

"'(e-I'H:t~l < 
c (4"/(l 13 

~ 

L,\ i>M.l1- e.-{lheJ~l\ 
l"=1 e 

v 

for all -t";:,... 'rr"l~~) 0 <: {) :<:: ""I and some constant ( • (This result can also directly 

be deduced from the present theorem if one uses the following general fact [36]: the 

nuclearity index .Y(e..-f!>H,:e)is, in the "tensor-product theory" constructed from a 

given set of models, bounded from above by the product of the corresponding nuclearity 

indexes in the respective underlying models.) It follows from the above estimate· that 

a many particle theory satisfies our nuclearity condition, provided the number of 

particles in the theory of mass less than Yn does not grow faster than some power 

of m . 
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