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Abstract: Within the general Tramework of locel quantum field theery a physically
motivated condition en the energy-level density of well-localized states is proposed
and discussed. It is shown that any model satisfying this condition obeys a strong
form of the principle of causal (statistical) independence, which manifests itself
in a specific slgebraic structure of the local algebras {"split property"). It is

also shown that the proposed condition holds in a free field theory.

Dedicated to H.J. Borchers on the occasion of his 60th birthday.

i, Introduction

It is well known that the general postulates in guantum field theory, concerning
locality, Poincaré covarisnce, and the spectrum condition, dc not exclude models with
manifestly unphysical properties. Examples are the generalized free field with con-
tinuous mass spectrum, which does not describe particles, or models with an infinite
number of particles in the same mass multiplett, for which the familiar relaticn
between spin and statistics need not hold, It has been a long-standing problem in
the theory of local algebras [1, 21 and in the standard version of quantum field
theory [3], to find conditions of & "local" character which would guarantee an

interpretation of the theory in terms of asymptotic particle states.

A first step towards the solution of this problem was taken by Haag and Swieca [h],
who peinted out that in eny theory with a reasonable particle interpretation the
number of stetes occupying a finite volume of phase space shonid be limited due to
tﬁe uncertainty principle. Based on this physical input Haag and Swieca proposed a
"compactness criterion" which every quantum field theory ought to satisfy if it is
to describe p&rticleé. They also showed that their criterion excludes the above
mentioned examples of physically unreasonable models. But the difficult problem of
whether the compactness eriterion ensures a particle interpretation remains open
to date. (Fo? some partial vesults cf, [5].} One may surmise that the compactness
criterion is still too general and does nobt fully reflect the specific phase space

properties of a particle theory.

In the present article we therefore propose a sharpened version of this criterion.
The precise statement requires a discussion of some technical points, but the under-—
lying physical idea can roughly be stated as follows: the number of states which one
can accomodate within some bounded region of configuration space should grow with
the total energy available in a specific manner, suggested by the energy-level

density of an arbitrary number of indistinguishable particles confined to a container



{"box") of finite volume. In Sec. 2 we give the proper formulation of our level
density condition (the "nuclearity condition™), and we will show in the Appendix
that our condition is satisfied in the free field theory of a spinless massive

particle.

In the second part of this study (See. 3) we will demonstrate that our condition
has implications for the structure of the physical states which resemble the tensor
product structure {Fock structure) of collision states in theories with a particle
interpretation, To be more specific: let Cm{&h) be the algebra of local observables
(respectively fields) associated with any bounded region Ga of Minkowski space.
Then there exists ancther bounded regicn G%ﬁ) Ga such that the physical Hilbert
space % can be represented as a tenser preduct, #@ = gfq@ '}69_
N A aLo,) ,Be O-f_(@zy act according to A = A,r @ ii and
B = 1% & Eﬂl , respectively. In particular, there exists a total set of vectors

$e ¥ such that
(8, AB &) - (@A HD,BD)

, on which the

operators

(1.71)

for all

A € OL(@,O and B 3 O(((DQ_Y

. . . 4 .
for which all messurements in the regions Gll and @91 , respectively, are uncorre-

Thus the vectors é? describe states

lated. For further discussions on this strong form of causal {statistical) indepen-

dence see Lhe publications L6—8J.

It is a remarkable fact that the presence of this specific property of the
theory manifests itself in a clearcut way also in the algebraic structure of the
local algebras [8, 9]‘ Namely, for each pair of regions @4 )C}L related as above
there exists a factor M oof type I {i.e. & von Neumann algebra which is algebraically

isomorphic to the algebrs of all bounded operators on some Hilbert space) such that

/

1 ir 15 is any algebra acting on g@ we denote by 33 its commutant in j}[?@]_

GloN" <« M < Oll@l)!f. (1.2)

The question of whether the nets of local algebras do have this "split praperty" [9]
in general was originally raised by Borchers. The split property was later established
for theories of non-interacting particles in [8 ] and [10] {ef, alsa [11]), and by
this means also for interacting thecries which are locally Fock, such ass the ?)(LP)Z
models [121 and the Yukswa theory in two dimensions [10]. But there exists slso an
abundance of models which do not have the split property. Examples are all theories
with a non-compact global symmetry group and models of an infinite number of free
particles such that the number of species grows very rapidly with the mass [9]. Note

that the Haag-Swisca compactiness criterion still helds in the latter case.

It is a common feature of these counter-examples that they describe systems with
a large number of local degrees of freedom. {This is discussed in a more guantitative
manner in Sec. 2.) Our present results indicate that it is precisely this number
which is of decisive importance for the question of whether the split property holds
in 2 model. They also suggest that the split property is a quite general characte-
ristic of theories with & sensible particle interpretation. In view of the "local”
nature of the feature in guestion this is a very useful piece of informaticn. For
applicalions of the split property to the construction of local current algebras and
& quantum version of Noether's theorem, see the pubiications [13—15]. Some implica-
tions relating to the superselection structure of models are discussed in [16, 1T]

and [10].

I follows Trom these investigations and the present results that our nuclearity
condition distinguishes a class of models exhibiting many physically desirable pro-
perties. There is also evidence that this stengthened version of the Haag-Swieca
compactness criterion is relevant to the problem of asymptotic completeness L@S].

Moreover, as was demonstrated in {19], the nuclearity condition is connected with
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thermodynamical properties of field theoretic models, Thus it seems that this con-—
dition provides a natural basis for the ipvestigation of problems involving consi-

derations of phase space.

The discussion in this paper is within the algebraic framework of quantum field
theory [1, 2]. We shall be concerned with a net of local algebras on a separable
Hilbert space % , containing the {up to a phase unique) vacuum vector Q. Speci-
fically we shall assume that to every open double cone {  in Minkowski space there
correspends a von Neumann algebra OU_(D) for which the vector &L is cyelic. The
standerd conditions concerning Poincaré covariance, locality and isotony are assumed,
and we also sssume the usual spectrum condition for the translation subgroup of the
Poincaré group.

2. The nuclearity condition

The intuitive idea underlying the paper by Hasg and Swieca quoted before [h]
can be stated roughly as follows: let of),f, c Mo be the set of vector states descri-
bing in some local field theory all excitations of the vacuum which are localized at
time t = 0 in the ball B = {xe R*:ixl<v] . 1r one appiies to &, the
orthogonal projection PE onto the states with total energy less than E one obtains
a set IJH‘_1E of sbates of limited extension in configuration and momentum space. In
theories with an asymptotically complete particle interpretation In terms of a finite
number of species of particles, these states should describe systems evolving within
a characteristic time interval T into configurations of freely moving particles
which, because of the maximal propagaticn speed ¢=41 , are localized in the region

50 the number of linearly independent states in &;FJ‘_‘_ c should not exceed
3

}_3_'1'4-’(:

the number of different configurations of noa-interacting particles which san be

placed in the region -B-"t’-t-t and have total energy less than E . Applying now the

vrule that the number of quantum states of a particle which can be associated with a

c . . 3 L

finite volume | of phase space is equal to F/(‘Uﬂ (setting B = 1) there should
be only a finite number of such configurations. Hence by this heuristic argument one
is led to the conclusion that in theories with a reasonable particle interpretation

the number of independent states in ‘f’-r,E ought to be "finite".

It was pointed cut by Haag and Swieca that the above considerations give only
& rough idea of the actual situation in local field theory. In particular, there
does not exist & nction of localization of states which has all the properties
familiar from non-relativistic quantum mechanies. If one adopts, for example, the
concept of strict localization introduced by Knight [20] {ef. also the discussion
below) one is faced with the problem that the linear span of the set I’»r is dense
in the physical Hilbert space. Consequently the sets fjf’g cannct be finite dimen-
sional. But a careful estimation of the long range correlations of the states in
faﬂg led Haag and Swieca to the conclusion that, at least in massive particle
theories, these sets should be (strongly) compact, Moreover, using the concept of
approximate dimension, fhey were able to estimate the "size" of these sets as a

function of the cutoff energy L .

1f one follows the reasoning of Heag and Swieca in detail one finds that their
conclusions are in two respeets unnecessaerily conservative, Firstly, it follows from .
their arguments that the sets 3\9)1_,5 should not only be compact, but even nuclear
(cf, the definition given below). And seccndly, the size of the sets I‘~r,E’ was over-
estimated, since the indistinguishability of particles was not taken into account in

the discussion.

Instead of directly modifying the reasoning of Haag and Swieca, we will present
here an alternative, likewise heuristic argument, shedding some light on the pro-
perties of the sets Jiv,E’ . For the subsequent anslysis it is actuslly more appro-
priste to consider the sets \e,—ﬁH ;E,*_ 5 r5>O where the energy H has been cut off

smoothly.



Qur considerations are based on a rough analogy between the sets Q,‘ﬁH 364,
and the grand canonical ensembles appearing in statistical mechanics. Using this
analogy we will motivate a condition on the size of these sets which rests upen the
assumption that the theory in question has decent thermodynamical properties, as

one may expect them in models with a reslistic particle spectrum. Cur heuristic in—

put consists of the following three premises.

1. Boundary effects should play a secondary rdle for the problem at hand, so
it seems reascnable to assume that the size of the sets e,"l'?’H‘f,'{_ remains essen-
tially unchanged if one proceeds from the given (infinite volume) theory to the
corresponding theory for finite volume V , provided V ig sufficiently large com-
pared to 1'3
J‘@V

respectively. Then it should be possible to identify the set Bﬁﬁ’Hx,f_ with a subset

. A weakened werslon of this hypothesis can be stated as follows: let

and HV be the Hilbert space and the Hamiltonian of the finite volume theory,

of E‘,‘ﬁHV g@V‘!’ , where %V'f is the unit ball in g@v . Namely, for each A
3 H
and fS there should exist a similarity transformstion J" (i.e. a bounded, invertibie

operator)} mapping gﬂV onto J’@ , such that

—AY ~3H
=P ;g)rrc‘g"eﬁvggvji,

(2.1)

. . . 3
The norm of ,S should, for fixed [3) , converge to 1 in the 1imit of large V/‘f' -

2, In statistical mechanics the operators e_ﬁHV describe, for any given
valume V<=’0 and temperature {3_4> O, the Gibss equilibrium states, and in most
theories of physical interest these operators have a finite trace. The few exceptions
to this rule are theories with a ''maximal temperature" such as the se-called string-
theories (ef. for example {21]). But disregarding these models, the sets e*ﬁHV 'J{i’vf

H
appesring on the right hand side of (2.1) are the images of the unit ball in Q’ﬁv

under the actions of some trace-class operators. Such sets are the simplest examples

of nuclear sets, as defined by Grothendieck {22].

Definition: A subset J\Iﬁ of s Hilbert space H-@ is ealled & nuclear set if there

’YIEN

CJTQQ,L y e N  such that
5 T AL < oo, were A, - sup {13 Ped)
ii}) Z En(@)@m = LI{' for all @E N

exists a sequence of linear functionals ﬁ,,n , defined on the linear span

of N , and a sequence of unit vectors

The nuclearity index of J(‘ can then be defined, setting '\?(Nﬁ‘ = inE Z ;\,n ,
n

L, melN

where the infimum is to be taken with respect tc all functionals

,melN

and vectors Cbm complying with the above conditicns.

It is easy to verify that similarity transformations d’y map nuclear sets J\F onto
nuclear sets, and that V(JS'\N\} é“S”w?(Jﬂ Therefore it follows from the previous
. ; . : —ﬁH e
assumptions {of. in particular relation (2.1)}) that the sets € £+C are nuclear.

Moreover, since clearly q?(@,—ﬂ’HV g«@v 1) < T+ Efﬂ’HV we obtain
3

~ -fAH 2.2
\')(eﬁHﬁf)s"J”-T}eﬁv, (2.2
Bearing in mind that "J"“ should be close to 1 if V/'r3 ig sufficlently large,
one can derive from this estimate bounds on the nuclearity index -\?(P_—I‘)’H ;f,()

if one has sufficient information on the level density of HV .

3. It is also obvious from relation {2.2) that the dependence of the nuclearity
index 'v(e,“i%H;ﬂ_{_) on + ang {3 is linked to the thermodynamicsl properties of

—AH . .- .

the theory in guestion: since T+ e F’ v is the grand partitlion function {for

zero "chemical potential”) the quantity

- -3 H
p=(/3V)4-T+aﬂV (2.3)
is to be interpreted as the pressure of the grand canonical ensemble cccupying the

volume V at temperature f?)— . Now in theories of physical interest the pressure



should stay bounded (for fixed ﬂ } in the thermodynpamic limit V— s . In this
generic case 1t then follews from (2.2) and the remark following it that for all

+ 2 A, , where T, is some arbitrarily fixed length,

3
(e ig,) o o TEE (2

Here qb is some model-dependent function which tends to infinity as [3 gpproaches 0.

If beoth, HJ“ and p would converge uniformiy for small [5 in the limit of
large V/"?’g and V , respectively, one could replace (b(/&] in (2.4) by Pw[/ﬂ ,
where D is the pressure in the thermodynemic limit. But in general it might be
necessary to modify this expression by some additlonal fS ~dependent factor, which

subsumes the boundary effects.

The dominant contribution to CP should, however, be due to the pressure P, .
For non-interacting particles one obtains in the limit of small /.’; {neglecting the
particle masses and using Stefan-Boltzmann's law) P~ C- [5‘4 . We note that this

relation holds irrespective of the particle statisties. A similar be-

haviour of the pressure is expected in theories which are asymptotically free {EBl.
8o in these cases q{) should have an at most power-like singularity at /5=O.
On the other hand there exist models where Pos > and therefore also d) , has an
essential singularity at 'B=O . {(in artificial exemple is the theory of an infinite
number of non-interacting particles, the number of which grows sufficiently rapidly
with mass.) Bul the bound (2.4} with (i)(,’b) = c- ﬁ'ﬂ for some m > O is ex-

pected to hold in most theories of physical interest. We will therefors restrict our

attention to these cases.

Having thus explained the heuristic basis of our nuclearity criterion, we can
proceed now to its precise formulation. Te this end we must merely specify the seis

L

tions: firstly, it should be possible to generate these states from the vacuum by

+ of well localized states. We distinguish these states by the following condi-

scme operation inside the region ET at time t = 0, Hence the vectors c]j_ repre-
senting these states should be of the form (P =W for suitable operators W

frow the algebra O‘u@fﬁ ; here (91, denotes the "double cone" with base B_+ at t = 0,
And secondly, it should be impossible to distinguish the well-localized states from
the vacuum by measurements in the spacelike complement @ﬂ:, of (91— . Thus the vet—

tors (:D must satisfy

(O, APY= (Q,AR) {2.5)

. . R /
for all observables A which are leocalized 1n (91, . As was shown by Knight [201 and
Licht {:21&1, this condition implies that the operators w generating the vectors (i)
from the vacuum must be isometries, We therefore identify the well-localized states

with the get of vectors

L, = {WQ_: We Ol(@ﬂ,w*w=i}_ {2.6)

This is essentially the class of states considered by Haag and Swieca [h]

We now formulate our nuclearity condition, which we expect to be satisfied by
any local quantum field theory admitting a particle interpetation and having regular

thermodynamicael properties.

Condition of Nuclearity: %he sets e“BH(,\d* must be nuclear for all [5>O and

4 >0 . Moreover, there must exist positive constants €M and‘r;)ﬂ such that
a9

e p"

olePle ) < e (2.7)

for all +: T, aend O<fb £ f .

We show in the Appendix by a direct computation that this condition is satisfied

in the field-theory of a non—interacting spinless, massive particle. This result
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provides evidence to the effect that the boundary effects alluded to in our heuristic

discussion play indeed the secondary rSle which we anticipated.

Our criterion is clearly stronger than the condition propesed by Hasg and Swieca,
In particular, it restricts the admissible particle spectrum at high energies. Yet
since a physically acceptable theory should not only allow a particle interpretation,
put also exhibit & realistic thermodynamical behaviour, we believe that our condi-
tion characterizes within the general setting of quantum field theory = relevant

class of models,

3. The split property as a consegquence of nuclearity

We will show now that the local algebras have the split property cutlined in the

Introduction 1f they satisfy the nuclearity condition. Qur gosl is the following

Theorem 3.1: Let (9 — GLL@) be a local net of von Neumann algebras subject Lo
the standard conditions mentioned in the Introduction and the condition of nuclearity.
Then there exists for any bounded region (91 ancther bounded region @1') @1 such

that:

1)  (Existence of product states) There is an isometry V mapping 5‘@ onte é[e & %

such that

VAA VT A e A

ror w1l A e QUO) ana Ap e (UG

i1} (Split property) There exists a factor ._NL of type I such that

SLB) < M GLib,) .

Por the derivation of this result one actually dees not need all the properties of
the net (0 —»O{((ﬂ mentioned in the premises of the theorem. In particular, the

specific dependence of the nuclearity index on the radius 1 of the localization

region given in relation (2.7) is inessential; all vhat matters are the limitations
on the .level density of localized states at high energies. In order to reveal which
properties of the net are relevant for cur argument as well as for later reference
we give below & list of the specific assumptions on which our proof of the theorem

is based.

1. We will make use of the fact that the von Neumann algebras (1[(0) constitute
a net with respect to the open, bounded regions @ C [P\HL 3 thus O[(@ﬂ C ﬁ_(@?}
whenever @4 c @1 , We remark that the spacelike commutation properties of the
local operators do hotenter into our argument. But it will be essential that the
continuous, unitary representation o —s [ J(x) of the translations IRQ' acts covariantly

on the net,
Ul) (Ue) U ¢ Ollbex), (3.1)

and that the joint spectrum of the generaters of € —r L) is contained in the
closed forward lightcone V+ . Moreover, we will rely on the fact that there is an
(up to a phase unique) unit veetor G2 e ;C@ which is invariant under the action of

J(xY and which is cyclic for each O(.[.@]

2. We require in our argument the existence of some vector @ I3 ?@ which is
cyclic for the algebras OT_C(Q,,)JF\ O(,(@,l) vhenever the closure of @4 is con—
tained in the interiour of @2 , 1.e. ‘@—1 C (97_. In the present case of a local net
it is obvicus from the preceding assumption that G¢  satisfies this condition. But
the existence of vectors i) with the desired property can also be established for

/ PR
non-local nets, provided the algebras &[@1) n @[(@1) are properly infinite L26].

3. We alsoc rely on the following property of algebraiec independence of the
’ — I
algebras &(@ﬂ and 0[_((91§ , Where (91 C @9. ¢ 1f the product A4~A1 of operators
! ! 1 .
Arle &(@4'} and Ale O[[(Dilis zero, then either A,l:O or A,L =( . This property

was established for local nets by Schlieder [6], and by a slight modification of his
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argument it can be established for any net satisfying the preceding two conditions.

%, Besides these standard properties we will use in our argument the following
wenkened version of our nuclearity condition: let IL(() be the group of all unitaries
in OLHQ-) and let H be ﬁhe positive generator of the time translations t —"U(t-e),
where £E€ [Rq' is & timelike vector fixing the time direction. Then we assume that
the set of vectors e‘l@H UBYEY is nuclear for any [5>O . Moreover, we

require that fer small [5

-
gl Puma) ¢ P, (3.2)

vwhere ¢ end N are positive constants which may arbitrarily depend on b,

We emphasize that the statement of the theorem holds true for any net @'—" Ol(@)

satisfying these four conditions.

We turn now to the proof of Theorem 3.1 which will be given in several steps.
Let [')“(99_ be regions such that —61 < (D?_ , and let 8((0“(01} be the ¥-zlgebra
which is generated from OL[(O,Q and C}(((Oi)' by taking all finite sums of products
of operators in these algebras. We will consider two representations of the algebra

#, ((91 5 @L) . The first one, denoted by TCL , acts on H6 and is given by
/
Tl AN = L AA, (3.3)
K K

where AKE OLL(DQ and A; € OLC@‘)M)’ . 8o TC is the identical represen-
tation. Note, however, that TU depends on the choice of the r.egions (94 and (99_ .
Yet in order not to overburden the notation we do not indicate this dependence ex-
plicitely, The second representation of 8'6(94; (Dq_-) to be considered is denoted

by TCP and acts on g‘E’tX} J@ ., It is defined by

m, (L AA) = 1L A® Al (3.4)
K K

- 13 -
’ ' .
for AKeo’Lﬁ(ﬁﬂ and AK € OU_@?_) » That this definition is consistent, i.e.
’ . . .
that iAKAK:O implies Z AK ® A;; = , is a consequence of the algebraic
K

K
independence of O[(.OA} and Ol_[ﬂ)l)! , as was shown by Roos [7]

It is our aim to show that for any bounded region @{ there exists another
p of (@ ((04 H @1)

are unitarily equivalent. This is exactly the statement in the first part of the

bounded region @13 (94. such that the representations TU and T¢

theorem, The second part is then an immediate consequence: namely, let V be any
isometry of é@ onto SL& &x 3@, implementing the equivalence of 7T and U

M=V '3y 1)V

clusion

pe Then

is clearly a type I factor. From the trivial in-

vt cope DIV c VB e Y ¢ (VI (4o®e))V) G

it then follows that the split property holds.

It was pointed out in [8] that the problem of establishing the equivalence of
the representationas T and TEP can be reduced to an estimate of the norm—difference
of two specific functionals (B and C.JP on the algebra %6@4 3 (Dl) These functionals

are, for Ce 8(@45 (91) , glven by

wlC) = (&2, eltY@) ,
(3.8)

Wp(0) = (ROQ, T (YR eR).
We denote the norm difference of these functionals by
o -wplg. g = sup { [ty ~ w (O] CeBE,;06,),IC 1], (3.7

The following proposition provides the basis for the subseguent investigations.
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Proposition 3.2:2) Let fﬂtm (Qb be open, bounded regicns such that @a < @b .
and let
ho- wplly g < 2. (3.8)

Then the representations TU and TCP of (6'{'@15(91) are upnitarily equivalent for

any pair of regions (94 ,(91 satisfving @f c @Q < @b < (99_-

Proof: The proof of this statement is based on standard arguments and may be omitted

in a first reading. It consists of the following three steps.

i} Let T and 'FCP be the representations of E e E((Qa_-, @b) defined according

to relations (3.3) and (3.L), respectively. It then follows from the definition (3.6)
of w and wp , and from the assumption (3.8) that these representations are non-
disjoint {cf. the Appendix of [25]}. This means that there exist non-trivial subre-

presantations of T and TCP , respectively, which are unitarily equivalent.

ii) Let F_[5 be any non—trivial subrepresentstion of TC . We want to show next that
if (‘)‘, ,(91 satisfy the premises of the proposition, then the restrictions of TTCS y

respectively TC , to the algebra f:: EC(D,'; @?_)c g are unitarily equivalent. To
that end we must verify that the projection Es onto the relevant subspace 365 C g@
reducing TC can be represented in the form Es = \é\/s* , where Vse T (8 ), is an

isometry, i.e. V: \/5 = 1.

It is well known that such an isometry exists if there is some vector (@ € 5’@
whieh is cyelic for ﬁ(E} and which has the property that Es@ is separating
for ﬁ(f;)” . Because then it follows from & Radon-Nikodym type of CLhecrem [26,
Thm. 2.”!’.9] that there exists anocther vector U & I which is cyelic for T (‘6),

and

2) The nuclearity condition is not needed here,

- 15 -
(@, 7Y ©) =(Ed, m{C) Es)

for a3l L€ % . Taking into account these features of ‘P and (:b as well as the

— 5 — / . .
fact that ES € TC(‘@)/ c TlE) , it is then easy to verify that the

operator VS defined by
VST?C((\,)LP = TLCCY E5© for (ef

is an isometry with the desired properties. 5o it remains to establish the existence
of Cb .

Now according tec our assumptions on the net (9 — Ou@) there exists a vector
@E'S'@ which is cyclic for @L(@d)’n Otu.')&) , whenever —(9; C @',5 . In particular
@ is eyclie for T(BY=% . That ES@ ig separating for ﬁ(%)ﬂ can be seen
as follows: since 6; c @QC (91 it is clear that (e)"r‘\ (E > O’f_(@d)/n 6((@&)1
50 @ is separating for TRV T (gy-8"v @f . Hence if ZES@ =
for some projection £ € Tl )H = ‘6” , we obtain E'ES = {} . Moreover, with
the notation Z(x)Y= Ulx) & Utxj_f, we have [Z(ar_), Es] =0 for x in some
open neighbourhood of the origia in [RL{' ; the latter sssertion follows from
et (&) = @' and the fact that x)¥ UtaY'c ¥  ror all x satis-
fying '64* x c @a < Eb C @11-:(.

Tt is a well-known consequence of the above relations between £ and ES and
the assumed spectral properties of Jlx) that Z Ula) Es =0 for all X ¢ [Rq-
[2'{]. Since ES commutes with the operators Akl'_.r“))k:’l,_,,n if AK € 01(@4)

s . R L2
and X is contained in some sufficiently small neighbourhood of the origin in 18

it is also clear that
ZUG Az Ale) E =0

Bub this equation extends, by the edge of the wedge theorem, to arbitrary X,X,,... X,
because of the spectral properties of UlxY . Now the von Neumann algevra generated

by @u@ﬂ and J{x) is the algebra 3(?@) of all bounded operators on ?(2 . (Recall
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that @ is eyelic for O!.(ff);) and the only state in ¥, nien is invariant under
translations.) So we conclude from the above discussion that 2Bl ES =0,
since E,$ 0 ¢his is only possible if Z=0 , which proves that the vector Es@

is separating for (% )U.

iii) Finslly, let L'TEPS be any non-trivial subrepresentation of T‘CP . Arguing as
in the previous step one can show that the restrictions of these representations to
the glgebra €  are equivelent: the counterpart to the vector @ is, in the present
case, the vector & @ $ , vhich is eyclic for T[P(‘@) aend separsting for

npt‘ﬁ, b} . TTPUE )/ . the rdle of the translations o> Ulx) is now played by
X — UPL:O'-: Ulx) @ Ulx) which also satisfies the spectrum conditiom.
Making use of the facts that €3 @ &2 is a eyclic vector for O((@{) ] OT_{(D‘)
and the only state in 4, ® W which is invariant under UP {x) , the previous

argument can be taken over almost litteraly.

Summing up, we have seen in i) that there exist subrepresentations ?(-s and T—[’PS

of TL and EP , respectively, which are uniterily equivaient: ﬁs I ﬁps . From
i1) we know that TC = ¢l 6 vvﬁslwe, , and from iii) that 7T, = -ffP[\"f, ~ rrm[psl\‘ﬂ_

Hence we conclude that TU T'L'P - l

By the gbove proposition the problem of establishing the equivelence of TC and
T, has, so to say, been reduced to a Ycomputational™ problem. Meking use of the
nuclearity condition (3.2) we shall now carry out this computation and show that for

any given bounded region {OQ_ there exists another bounded region (Ob b (f)a_ such

that I w - “’P“(oa-,(ob <2,

Let (0 be a fixed bounded region and let, for any +>0, @1— be another bounded
region which is sufficiently large such that O+ t-e < (91_ for all [kl <+ 4
here ¢ € |Ru' is the timelike vector appearing in the formulation of the nuclearity
condition (3.2). Picking arbitrarily a finite numver of operators AKE (5 ena

7 . . .
Ak'r e OUO,Y for which HZK; AKA,; § ¢ 4 , we define two functions £+(2) and

f (27 as follous.

...]T_

f.(zy = Z(Q>AIK (4-Pg) e—LEHAKQ-\j for 2€C, Tmz 20
K
. {3.9)
[ = 7@, A U-B) e pl0) for zel, Tmz 0.
K
fiere H 1is the positive generator of the time trenslations ELH'{ =Ulke) . teR ,

and PQ is the projecticn onto G .

The function £+LZ-) is continuous on the closed upper half of the complex z-plane,
and analytic for Tmz >0 . similarly f,[i) is continuous on the closed lower half
of the complex F-plane, and analytic for Tz <0 . Since &2 is invariant under
gll time translations, and since AK(t-a\ commubes with Aé for [l <+ , it follows

that £{_ f:ﬂrE_U:) for El<r . Let rpf be the cut plane

P - C\ {z+Imz=0, [ Rew i+ (3.10)

From what was said above we can conclude that there exists a funcetion £T(‘e\ , defined

and anslytic on 731_, which coincides with f+(13 wvhen 2e P and Tmz 20

T , and

similarly coincides with f (2) when z¢ fP* and Im=z < O . Notice that
- / 4 W11
f to) = w(‘[K: A AN —wp[gAKAK)_ (3.11)

Hence if we can show that there exist constants + and 8( 2 such that ||fT(07ll E S
. '
for any choice of the operators AK € OT.C(.")) and A';E Ot((ofﬁ with

<2 follows. The pivotal

T

I Z:r Ax A(i < 1 , the desired bound flw-w_ il
K P b0

point in the proof of this is expressed in the following lemma, which depends in an

essential way on the nuclearity condition (3.2).
Lemma 3.3: The analytie functions fq__ defined above satisfy the condition

-n
[fﬂ_(—a]s‘}1(|Imz|)-ecn:mz1 for Imz#$ 0.



Here ¢ and N are positive constants and fq(s) , 5= (0 is a continuous function
which tends monotonically to 0 as 5 tends to infinity. The quantities ¢ , M ,
and h depend only on 0. They are in particular independent of 4 and the specific
- { ! -
cholce of the operators AK € Ol((’)) and AK (S O[{@‘r) , provided that
/
I{EAKAK {154 .
K
Proaf: We begin with some preliminary remarks about two simple algebralc facts.
Firstly, let &,V e ¥ and let [ . llp

Then it is obwvious that

I, A YA e 1O LI Aeh

Making use of the existence of the representation TCP of ‘ﬂ(@) @1_7 defined
in {3.4), it is also clear that
’ v ’
IR Al = I (D AAN < 1T Al L
K K K
Hence, taking into account that H‘E AKAK/ I <1 , we arrive al the useful esti-
K

mate

I5p A YA Y < 1D 1HY

K

Secondly, we note that any operator A € a(_(’)) with “AHS 1 can be represented
as a sum of four unitaries in &Uf)\ , 8ince CUOY  is norm closed. Hence if For
some linear functionazl { on O‘L((D) and a fixed A>  the bound lE(UﬂE A holds

for all unitery e U(B), it roilows that [L{AYI € 2 1AL ror Ae OLID).

After these preliminaries we can now dlscuss the consequence of the nuclearity
condition for the problem at hand. By the condition (3.2) and by the above remark
there exist, for any @ > O , a sequence of linear functionals Ly, on

~agH . )
e (Rl G2 and a sequence of unit vectors &, in 3¢ such that for any

A e OLLOY  we have

denote the operator norm on .’BU&@)@ B(}G)
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e Maa Y (e aa) b,

m=1

where the sun is absolutely convergent. Ln fact, setting

A le) = sUp{lam(e“GHAmh Ae OULLEY L AK < 1 }

we have for sufficiently smell & >(Q  the estimate

oo G—h
oA ie) £ e © ,
=4

where ¢ and " are the constants appearing in the nuclearity condition (3.2).

Mow let 2=t + 15 where £ € R and s> . Then it follows from the de-

Finition of £1— that ff(kris\ _ f+(t+[5) , and with the arbitrary deccompo-

siti

on

=@+ T , where >0, T =20 we obtain from {3.9) the equality

ik - TIH
e

—gH
fokrisy = (R, A/ (1-23)¢e ° A Q).
K

Making use of the above mentioned properties of the functionals Q’m and the vectors

@m , we can convert this expression into the equalities

flevinn=) ), (9, Ay LM B Y0 L, 0)

K m=1q
. E Em( R-GH AT ) ’
bn

where the operators

(it —T)Y

AP LT A e (-p )b, VAL
K

are elements of the algebra O-[.(@) . From the above preliminary remarks it follows

that

Pac g < e ™ t-p) &0
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and hence we arrive at the estimate

[T evisa) = ;. Aate e"tH U-PaYd I

m=1

Setting first =5, T &} and teking into account that ﬂ @m“ =1

e

as well as the bound on Z lmL63 we cbtain
w1
-n
. £ s
[£ (kvisd] € e
-
for 0<5 &85, , provided 5, is sufficiently small. If &> 5, we set
G=5,,F = §-53, , and we then have
oo
. —~(5-8,3H
e tkeisdl 2 ) ants ) he 2% opd &, 0.
m=a

The right hend side of this inequality iz continuous for 53 5, and tends monotoni-
cally to 0 as 5 tends to infinity, because =ach individual term

I EFCS#SO)H (A-Poy @m i has these properties (recail that (2 is the only
invariant state under translations) and the sum over all coeffieients A, (3 is
finite. By a combination of these bounds on I fth% is)1 the assertion of the
lemma follows for S > O . To see that this assertion also holds for 5< 0O we

note, with reference to {3.9), that for 5 < O
{'{Lti—:s) = {4(t+i5) = 8+(f“i3) ,

/
where 8+ is obtained from E+ by replacing the operators AK , AK in {3.9)

by their adjoints A%: and A;* , respectively. Since
AN R R R
K

the conclusion then follows from what has already been proved. .

Let ¢ , 1 be the positive constants and fr be the function appearing in bthe

formulation of the previous lemma. We consider for any T >O the family 55? of all

functions T which are analytic on the cut plane j)+ and satisfy the inequality

e Tmzt™"
eyl 2 hliTmel)- e (3.12)
for a1t =z ¢ € N Tim 2 {: 0 . The functions ff considered esrlier are clearly
elements of ?:* . The desired bound on [ff(o)l now follows from the next lemma,

which is based on a Phragmén-Lindel&f type of argument.

Lemma 3.4: For any &3>0 there exists an T{&)Y>0 such that l£(0)'l < 8 for

a1 fFo2 F

+HEY T

Proof: Let 7% (O be fixed in the following. We will show that the family 3:;_ of
analytic functions on :P,,_ is normal {i.e. uniformly bounded on each compact subset
of p'r ). Anticipating this result, the proof of the lemma can be completed as
follows: if the statement very wrong, there would exist a seguence of functions

4, € 3:‘“‘4, y ME I such that !%h(o}I > & . We then consider the scaled fune-
tions ﬁn&‘ =g, {n2) , & e P which are all elements of o
since the bound on the right hand side of (3.12) decreases monotenically if |Tmzl|
increases, Moreover, since thiz bound converges to 0 as (Tmzl approaches infinity,
it follows that E’q:m %H(Zﬂ if ‘IME\ + (0 . Making use now of the fact that
S:"r is a normal family of analytic funetions it is then an immediate consequence
that Q,\E\m %ntzw =0 forall ze \‘PT . But since D€ P and é‘h (o) = gh(o)

this result 1s incompaticle with the assumption that [gnﬁm 1> 5.

For the proof that @r‘;_ is normal it suffies to show that the functions in g;

are uniformly bounded on some neighbourhood of each real point L € {PT . To this

end we introduce for any given £ with (< £ <1 the auxilliary function

a2y = qlrer ey a+t-e-2Y, 23 £0+r-g)

where

/E)

1
a,tzy = e (—te

, B3 0.
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Tt is obvicus that the restriction of @&, to the open set

D= {2 [Rezl «1Im2 i < voe ]

is analytic; moreover, this restriction extends in a continuous fashion to the
closure [0 of D . We denote this extension of aﬁ‘ D by a =rd note that

a(r-ey= al-++ey=0,

Now let fe ?'; and let  4(z)= az) £izy ror zeD | since ]—j < SD-F it

is clear that % is analytic on D , continucus on D , and 8[«1—-5); g(—f«- =0,

The maximum modulus principle is then applicable, and hence !g(&) [« M(gj , where
M(g\ is the maximum of i%ti)l on the boundary @1 of I} ; this maximum is
assumed at some point different from 2=+ (1~£Y . On the basis of the bound

{3.12) on the functions f e F

 and the specific properties of the auxilliary

function @ we obtain by a straight-forward calculation the estimate

-2
M(%} £ Sup {exp(—e””k)- pury g et 1

t=0 ?

where M is a constant independent of the particular choice of T e g':_. Since @

does not vanish on the open set D we thus arrive at the bound

[fezyt ¢« M- tareyt™ |, 2 e D

which holds for all E e F

+ + This result implies in particular that the functions

—
in \}‘,’, are uniformly bounded in some neighbourhcod of any real point T with
£l ¢ +=-¢ . But £ > 0 was arbitrary, and taking also inlo account the a priori

ve s . . . ey Q0
bound (3.12) it is then clear that the functions in J are locally bounded on JT_

Hence G’: 1s a normal family of analytic functions . l

Summerizing the results of the previcus discussion we have seen {cf, equation

{3.11), Lemma 3.3, and the definition of the families 3:; ] that

”(U*(AJP”@i{DT £ 5up{l i[Oﬂ: ﬁe S‘-;_} {(3.13)

From Lemma 3.4 it then follows that lw- We I[@ . < 9 , provided
P

(and consequently (91_ ) is sufficlently large. We have thus established

Propeosition 3.5: Let @a. be any open, bounded region., Then there exists ancther

open bounded region @b ) (_9; such that [ w - W fl 0,50, < 2,
a

The proof of Theorem 3.1 is now accomplished by combining Proposition 3.5 and
2.2: given (94 , we can choose two open, bounded regions {00', @b such that @QD @,
> @Q, and Hwﬁ@?“@g@ji' It then follows that the representations 1T and TCP of
e (@4}- [91} , where @,}_ is any region containing a) in its interiocur, are

unitarily equivalent. As already discussed, this implies the thecrem.

[t is obvious from our arguments that these results can be generalized in
: . ¥
various ways. For example, we never depended on @*"’ Ol[@) being a net on [R , and

accordingly the theorem holds in any number of space-time dimensions.

It is also clear that the bound given in the nuclearity condition (3.2) could
be relaxed. The actual border line, where the theorem breaks down is not known. One
can show, however, that the conclusion in Lemma 3,4 is false if the bound (3.12)
entering inte the definition of the families ?;, is replaced by MP(EM\Im}l)
in a neighbourhood of the real axis [30]. Our particular approach is thus not awppli-

cable in this case.

Finally, we would like to point out that, by a refinement of the argument in
Lemmz 3.k, one can derive an estimate on the size of the region (DZ in the theorem
in terms of the parameters C ,™M and & in {3.12}). We have refrained from doing
50 since the size of @z obtained in this way is far from optimal. TIn fact, on the
basis of a slightly more restrictive versiocn of our nuelearity condition, it has
recently been shown [31] that the statement of the thecrem helds true for any region

(Oz containing @1 in its interiour.
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4. Concluding remarks

In the present investigation we have focussed attention on certain configuration
space aspects of our nuclearity condition. We have seen that the asymptotic energy
level density of the well localized states, which can be read off the nuclearity
index V[e_ﬁkiii*) for small  and fixed 4 , governs the nature of the corre-
jations between observables in spacelike separated regions of Minkowski space. In
models where the nuclear index does not grow too rapidly as ﬁ approaches ¢ o,

one ean represent all physical states as superpositions of "product states" which

do not exhibit any correlations between certain pairs of spacelike separated regions.

By a straightforward generalization of the present methods one can extend this

result to any number of spacelike separated regions mf, e Gjn provided these
regions are bounded (with the possible exception of one member), and their mutual
distances are sufficiently large. Namely, given any such collection of regioms,
which may be regarded as lacunary paving of some spacelike surface, there exists

an orthogonal basis of product states d? € 5& for which

n
(@, Ay An ®)= TU (0,4, @) o

for any choice of the operators AK € @([(DK) , K=1,...n , In all models
setisfying our nuclearity condilion the physical states can thus be interpreted in
terms of completely uncorrelated subsystems which are lovalized in the panels of

such lacunary pavings of spacelike planes.

In coliision theory one is interested in the properties of the subsystems
appearing in these resolutions of physical states at asymptotic times. In this
connection it is of particular interest under which circumstances these subsystems

can be interpreted as particles. We expect that the volume dependence of the energy

,25_

level denmsity of the well-localized states, which likewise can be read off the

nuclearity index, is of decisive importance in this context.

Because of the additivity of the energy of multiply localized states {i.e. states
consisting of several localization centers) [33], it is clear that the nuclearity
index fﬁ(g“ﬁH ;E,,,_J increases ih all models at least as rapidly as QCTS in the
limit of large + and fixed f&. If, on the other hand, the nuclearity index would
grow considerably faster, this would mean that there exist excitations of fixed
energy E in the model, oceupying arbitrarily large regions of space, which are not
composed of several localization centers whose total energy adds up to E . 1t is
evident that such states cannot have a particle interpretation. The -t -dependence
of the nuclearity index stated in our nuclearity condition therefore seems to be a
necessary condition for a theory to have a complete particle interpretaticon, In
fact, there are indications [187 that this condition is also sufficient, if one
defines a single particle state as & state singly localized at a1l times [5]. This
more general concept of a particle can also be extended to infra-particles (187,
{i.e. particle like excitations which do not correspond to discrete points in the

mass spectrum LBhl)-
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5. Appendix

In this Appendix we show that our nuclearity criterion is satisfied in the
theory of a free hermitian secalar field associated with a single spinless particle
of mass m>Q . This is the simplest example of a large class of free field theo—

ries which can be treated by similar methods.

We begin with a brief review, partly to establish-our notation. The Hilbert space
9¢, is the Fock space over the Hilbert space of all single particle states, which we
identify with the space Lﬂ'([Rl) of momentum space wave functions f(p) equipped with

the scalar product

<tlg>= ECPPETEJ)Q(E)‘

The generstor ¢J of the time translations on the single varticle subspace is given

(on its natural domain) by
iy = Qpte "™ £0p),

The global space—time translations [J(=) are then fixed by the Fock-space struc-
ture of }& .

2 . ¥ .
To esch fe L ([R?') corresponds a creaticon operator a ( £) and a destruction
operator alf} as well as a unitary Weyl operator
. Lo -
L{a®egy+ alfy)
W) = ¢
The creation and destruction operators satisfy the ususl canonical commutation re-

lations, which are equivlent to the well~known law of composition

4 - <Elg>)
W(E)-W{%):WLer%)-e2(<%1E> <tlg

for the Weyl—aperators.
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To each doutle come (D_ = lx e {Rq’: X, |+ix] <+ there corresponds a
T al*i2

real subspace K((ﬂf\ ef !_2(@3) consisting of all wave functions of the form
(lpt*+ mty VT %(E) o {lptts m"‘)”?'%(E),

where 'E , % are testfunctions whose Fourier transforms are real and have support
in the ball f&l < 4 , The local algebras OI(@T\ are then defined as the von

Neumann algebras generated by all Weyl-operators W(g\\J with B\ c K(@g, i.e.
OO, = (W) : e KON,

With the aid of these special algebras and the translations we can define the alge-
bras corresponding to arbitrary bounded regions (_r) by additivity. The resulting net

(5 — (DY nhas &11 the standard properties mentioned in the Introduction.

Qur goal is the following theorem which shows that our nuclearity condition is
satisfied for the free-field theory under consideration.

Theorem: In the free field theory of & single spinless particle of mass Y >0

the sets

ey <{ePluq. ueowo,), UrU- 1}

4

i

are nuclear for any T and any 13>O . Moresver, if *+x wit ana Ber , then

3 — /e
'\?(G_HE’H éﬂ,\ﬁ eC{'r/{S) Al (4~ eIy ,

where 0 is some constant {independent of =+ , p.and m ).

Remark: Our estimate for the nuclearity index ig rather crude and can be improved

at the price of added complications.

For the proof that the set of vectors e_—JBH é{..‘_ is nuclear we must exhibit

a sequence of unit vectors @'n and & sequence of linear functicnals ?_,h with the
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properties given in Sec, 2. Our construction of these quantities depends on a proper
. . , Y . .

choice of an orthogonal basis e, , ke N in I {R®) . Given such a basis we de-

fine for all finite sequences {'n,H __.’nP) of non-negative integers ("occupation

numbers" )} the vectors

P K

gl
o*len

IRy
K=1 (‘ﬂkl.){ ’

&, =

where v1 is the label of the sequence (M., ... Tlpj in an appropriate enumeration.
These vectors form an orthogonsl basis in 3& . The associated linear functlonals E,,_L

are defined on all of 5‘6 by
£ ) = (B, ) ror Eel¥h.
It is then obvious that

-lp. - i q—nt@) @n s

the sum being defined in the sense of strong convergence. It will be shown in the
remainder of this section that for any given 4+ and {3>0 one can find an crthogonal

basis € s ke N in Li(&}) such that the corresponding seguence
, ~[3H . ot ¥y
A, = sus{lLale Pl Ue Ol Uty -1}

~fH .
is summable. This means that € PJ fz,f. is & nuclear set., Moreover, the sum
over all )“n will provide the upper bound on the nuclearity index e—ﬁH 0(21_

stated in the theorem.

The proof of this assertion invelves mildly cumbersocme combinatorial problems
which we will handle by generating function methods of the kind which are standard

in Foek space theory. To begin with we define for any @ 3 5[@ the functional

Gle 9= Le"‘*mg,@ , e PLRYY,
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where the exponential funetion is understood in terms of its power series expansion.

In view of the relation

z
o V) o . e%_\tﬁ i WO

it is clear that

lo(s, 0]« e ZEV oy

kN . s . - . .
where we have put Hf_ U. = <Ic. | £> , and this bound 1s optimal if ‘Q 15 arbltrary.
The following observatlion 1s now lmportant: if, for some set of vectors Nc g@ , one

can establish bounds on the funetionals G'( EJLIJ) ) lI’ € .}ln as stated in the

next Lemma, then it follows that J(‘ Is a nuclear set.

Lemmz 1: Let N be a subset of vectors in the unit ball of g’& . If there exists
- z .

a {selfadjoint) trace class operator | = (} on [ [[Ra) with norm [T <4 sueh

-that

JEITEE

|G(f, 0] < , e MR

for &1l @ & N‘ , then Jv{‘ is a nuclear set. Moreover,

Q(NY ¢ det (4-TY T

Proof: Since T is a pesitive trace class operator in l_l([R% there exists an
orthogonal basis of eigenvectors €. , Ké N corresponding to the eigenvalues tK
ot T . From the fact that T ll<4 and T2 0 it is also clear that O <t <.
How let @\'\ and Qh be the unit vectors and Tunctionals, respectively, constructed

from @, . ke N as described above. We desire a good estimate on the quantities

£, (D), e W

Let (“n“ ‘Ylp‘) be the sequence of integers corresponding to the label M

Denoting by W = (W’,‘ Yoo W’Pj and by #= (E4,, - .EF} arbitrary p —tuplets of positive
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. . s T
and complex numbers, respectively, we introduce the awlliary i [Rg)vvalued

function
P
fez o wy =Y T Wi By
K=1

Using the notation Z_ = X, +iYyy with  X.,Y¥x € R, d%—_: c\xd--'dxpdj,‘-‘-dyf, )
- 2 . .
and 1z1%= 2%t iEPlQ , Wwe obtain, through a straightforward caleulation,

the equality

(b DY ™M™ L D) =

e P AR M, —lzl*-elzit
= U S fd 2] 2" GlEe,wr s B) e T TS
£N0
i@
for any ‘-I'_’ & {'}ﬂ . (Note that due to the presence of the term G’_—‘E\%‘ , One may

interchange the integration with the swmmation,involved in the definition of
G( f(_&_}\r_\f_}; &), for any choice of ‘W, ... wp.) Applying the Cauchy-Schwarz

inequality to .the integral we thus arrive at

W W g T

1
e Al 16t ,w e B,

provided that the right hand side of this inequality exists. Now for vectors \L e N

it follows from the premises in the lemma that

)
L
lG(i(g—’\ﬂD;@“lﬁ €§1IEKWK{:K\ -

This leads, after integration, to the estimate

P
I?"‘n(gf)l = KTL Wy R (A - (w b, )72
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which is valid for all W, satisfying W, >0 , WKtK <1 . Calculating the minimum

of the right hand side of this inequality with respect to W, ,... W, ve finally

P

arrive at the bound

p -
1, (8« TU (ner - by
K=1

which holds for a11 We N . We note that this bound is not cptimal, but we

selected this form in the interest of simplicity. Setting
A= s DL B e X

and taking inte account that the sequence tK is summable as well as the fact that
0= t, ¢ ITh <4 ir follows that

AR
=4

(-5 % = deb (4-TV? < o0

8

k3

=1

This estimate shows that N' is & nuclear set and it provides the bound on the nuclearity

index of N’ given 1n the lemma. .

We will now exploit the specific properties of the sets e,‘ﬁH;f_)'t_ and show that
they are of the type considered in the previous lemms. We first note the trivial

identity
o8, e PHugy- ¢l U@

which holds for any bounded operator U . The analysis of the consequences of the
{
assumption that Ue O'LL@,Q iz somewhat more complicated. Let K(@,‘j be the closed

real subspace of L‘LUP\’S) which ig conjugate to K[@Q in the sense that
KoY~ {ge AR gl £ >= {E1gD> forant fe K@)},

!
In view of the composition law for the Weyl operators we then have W(%E € @t(@*)

for any % € K((’ijl
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. . . . {4+ A 3 . s
On the basis of this composition law it is alsc easy to establish the equality We also consider the closed complex-linear subspace K,f, of L (R ) which is the

i . 112 R
of the various representations of the function F(Z:\ - eﬂ: given by tlosure of the set of functions w £ , Where £ runs through all testfunctions
. . - . . .. S
which, in configuration space, have support in the ball [X| £ 4+ . Similarly, K*
. . - . ~ifz -
£e) 22'“%“1*‘11 <311%\z‘ is defined as the closure of the set of functions W / f with f as above.
(z)-e
o ~ . . &3 -3
Nie Now let E"r and Eg} be the orthogonal projections onto K"r\ and K(,r_ , re-
a.*(l’ﬂﬂz%ﬂ ol Uf%) )
= {e Q, U e G

. . Sa} o . . . S
spectively. Since K'T' and K,J are invariant under J it follows that E:) and E,f,

N N l “‘L B <%1 > commute with J . It is also easy to see that
C ARt ztilg e iz <Rig (E )W, U Wizg)62) -
- o1 (Wizg) ; 3 g = LU-E:IIh ¢ FU-EDU-DR

X

eia”-nguh iz <higD

h

(Wizgre )Q_,U-W(zg)g‘n.

/ 2
is an element of K(@,,.) for any choice of the function E\ [ L [_\Rz‘) . Hence if we

- W . . .
put 2\ = 2 B £ and choose g 85 above, we obtain from the earlier estimate

2,53 -BH
These equations hold for any % ,E\ ¢ (R ana any bounded operator U . By on CTU.: 5 2 [3 UQj the bound

i . . . - 4 T 4 i 2
inspection of the first {defining) equality we see that F(2) is an entire analytic %“ T, 5—(41-3) T i“T‘ ?_U‘:D; i

Gle, e PHTyer ¢ e ,
function. If # =x 1is real, 8 & K[@T]", and U e O‘{_{_@.ﬂ , then Wi %)commutes l !

with U , and thus it fellows from the second equality that F(K) is constant. But where T+ ) T_ dencte the beounded operators

this implies that F(z) , =z e L is constant, and setting 2=( in the third

T, - 9 P rL g0 he
member we find that F(z)Y= &G (A 3 UQ_) . Setting now Zz—i/‘l ,gﬁefﬁmf', and using * M ! T ’

agaln the second equality we obtain the estimate Tor further progress we need estimates on the norms and trace-norms of these operators,

4 —BQ'E -~ “1 and we thus consider
el e PHug) se ™ ° ¢

Lemnz 2: If +3eil end O<fr<4 , then
i
which holds for all £ € LQC[RB) , all g € K((_‘),,,) , and all operators U EOU.@J

of norm less than 1 (i.e. in particular for all isometries). “ Ti H £t “Pr &nd u Tt u'f s« (1—/{5)3 e_'g‘M/ZJ
In the next step w;e select for every e L}(Rz} a % [ K(UT)" such that where C 1is some constant which does not depend on T , ,'3 , and M . Here H . n,‘
il ef”gfu £ - % It is "as smell as possible. To this end we define an antiunitary denotes the tracenorm of the cperators on [}UR3)‘
involution J on LRURE) by Proof: (In the following m Is set equal to 1, i.e. the quantities o , B are
(JE\ﬁLE') B %TE) ; given in units of m~1 .} The bounds or the operztor norms of 1, =and T_ zollow

from the trivial inequality N T, || £ le B[ and the ract that @2 { . For the proof
i.e. J induces complex conjugation of the wave functions in configuration space.
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that T+ and T_ are traceclass operators we proceed as follows,

Let %(gj be any real testfunction on configuration space with the properiy
that X(xy=4 ror |X1z1 and X(x)= 0 for [X| =2 9 . We then consider the
scaled function Q(d_(g‘) iz 7[ (rr—'f.{) and define the bounded, selfadjeint operator

x+ on the momentum space wave functilons E!E Li(fp\s) , setting
T — ~
By = %, (O hixy.

Here the tilde denotes the Fourier transforms of the respective functions.

s (ST
It follows from the definition of the space K’r\’ introduced shove that

“+) o — I 412 . o : Tis
E, = E"_ - W 7(* @™t , 80 we have the trivial identily

T, =
= E:‘ ) {w—mg(T w'™ (4 pPIP lz)_é} . {(,1+ AHip \1)&)—4{1%( 2 e—ﬁw}

H

T 3
where E denotes the momentum operator in L (R™. 1t is also ensy to verify that
the two cperators in the curly brackets are in the Hilbert-Schmidt class, hence T+

is in the traceclass. Moreover, on the basis of the simpls inequality
1 , —4f2
(1p1e DY (1qi2e DT 2 4+ 1p-qy

for all p,q e R3 s we obtain after a straightforward ealculation the following

beund on the Hilbert-Schmidt norm of the first operator:
ﬂw_m X* w'? (44 {3»1 | E}l)»”l Hl < C,- (1-/]%)319_

for +24 and O<fg?. Here ¢ is a constant which only depends on the specific

4

properties of the function ?C(g\ selected sbove. Meking also use of the estimate

- i i - - |
g=1f Uipi2yt B Blp

for pe (R3 , we likewise obtain for the second operator

_35-

fas ey w o W' o P s ¢, (v/pI3¥? o P

tfor v24 , 0<£7 , and another constant C, . Combining the above identity for

T_;. with these estimates of the Hilbert-Schmidt norms we now have
3, -2
17, 1 2 cpey- (r/pY e L

for + 24 and 0<f3<T. This is the desired bound on the tracenorm of T+ . The same
considerations apply to 1_ , so the proof of the lemma is complete. l

With this information st hand we can now continue our analysis of the functionals
G[‘E; e“!SHUQ_) Lbet ve2mt, 0« p<+ 5 and let T4_ )‘[‘_ be the operators
considered in the preceding lemma. We then define the positive, bounded operator T
ty

¥ n * ny1/th
7= ((TFTO e (TET)

wvhere h is some positive integer., It is obvious that

1T = 27 Max (17,0, 0T 1) = 2772 e ™R

Lo -7
hence 1f we chocse 1 sufficiently large we aave HTH < e ﬂ)/ . We next note

that for positive operators A LB anda 0< o £4

PCa+3Yn, < BA<i, « FB~l,,

o .
provided A and Bd are in the traceclass, {cf. for exampie [35]). We thus con-

¢lude that | is in the traceclass, and we have

P, e 0T 0« U7, = 90 (+/p Y e-m[&/'i’-'

From the fact that x — x/l/\n , X= (0 is an operator-monotone functioen for n =z 1
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* 1
it finally follows that T+*T+ ” Tq' and 1. V. 2 1T, and consequently

[T AU+ D T S G-DF "

s T AU DS ITLU-DRE = 4T

Q
7 b
where in the last equality we made use of the fact that | commutes with J . On

the basis of the previocus estimate of G—(f’ [ (SH UJ &) we thus arrive at the in-

equality

1 2
lGe, e PRyl e o 1T

We are now in & position to complete the proof of the theorem. Since T is a trace-
class operatc—:r and “T” <{ it follows from the above hound on G(*F’ p,_ﬁ’H UQ)

and Lemma 1 that the sets e pH £+ are nuclear for small {5>O and large T . But
it is then clear that these sets are nuclear for all + and [5>0 because ‘fjr 4 f,ﬁ_,

!
if <+’ , and e“([%'{f) Y is a bounded, invertible operator if [%2{5/.

According to Lemme 1 we also have
_(H _9 ~2 T b (4-T)
ole Py Vedee (4-TV 2= e
+
and meking use of the fact that the function X -— - Lt (4-x) , Dgx <« 1

is monotonically increasing, we can cbtain the more convenient estimate

SO T G CA-UTHY BT

gle Pl Y e o

Taking into account the explicit bounds on ”T H and HTH{ given above we conclude
that, for o 2w and O+

—pm /2
DBy ) ecu/mﬁl?mu_a bl

\ -

- 37 -

where ¢ 1s some number. This completes our proof of the theorem.

In conclusion we would like to point out that cur methods alsc apply to "many-
particle theories" with a countable number of free spinless particles with arbitrary
masses 0 < my, em, £... £m 4 .-, They are obtained from the present theory by
a standard tensor—product construction (cf. for exemple [9]). This class of models
is of some theoreticel interest because it allows & simple study of the effects of

a more complicated partiele spectrum on the properties of the sets E_"!BH ZJ,,.'

By & slight generalization of the previcus arguments one can show that the sets

P,‘R)H ;E)* are nuclear for any 1 and {5>O , whenever the particle spectrum of the

theory is such that

o

Z e“ﬁ’mi < pa for all {5>0.

L=4

Moreover, for the nuclearity Iindex of these sets one has.

- o0

pH Cer/pd e 4 - TR
(e s e =i

for all = ‘m;4 ; 0<f3 £ and some constant { . (This result can also directly
be deduced from the present theorem if one uses the following general fact [_361: the
nuclearity index ‘V[ejﬁHﬁjis, in the "tensor-product theory” constructed from a
given set of models, bounded from above by the product of the corresponding nuclearity
indexes in the respective underlying models.) It follows from the above estimate that
a4 many particle theory satisfies our nuclearity conditicn, provided the number of
particles in the theory of mass less than yn does not grow faster than some power

of m .
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