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in Waveguides and Cylindrically Symmetric Cavities 

U .VAN RIENEN AND T. WEILAND 

ABSTRACT. The design of rf accelerating structures nowadays is largely based on mesh-codes that 

solve for fields and eigenfrequencies in arbitrarily shaped cavities. The most developed codes deal 

with structures of cylindrical symmetry. However, no program is available that can solve for fields 

with azimuthal variation in cavities with dielectric and/or permeable insertions. 

Here we describe a discretization method using an "orthogonal triangular double grid". The 

special mesh and the FIT-discretization \11] enable the treatment of cavities and waveguides with 

arbitrary material insertions and combines the features of SUPERFISH [2] (triangular mesh, rotation­

ally symmetric fields) and URMEL [9], [12] (rectangular mesh but fields with or without azimuthal 

variation). 
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1. INTRODUCTION 

1.1 Cylindrical Cavities. In cavities of cylindrical symmetry the electromagnetic fields 
are periodic in the azimuthal variable ( \0) with period 21r. This fact and the harmonic time 
dependence of the fields allow their description by a Fourier series: 

00 

F(r,\O,z,t) = L Re { { Fr(r,z)e'm'Per 
m=O 

(1) 

with the complex magnitude F = E or if and the unit vectors E,., e'P, E, in r,\O,Z direction. 
Furthermore the materials are assumed loss free, i.e. £, J.L are real and the conductivity is 
equal to zero. 
So we may write 

E =VZosinwtE' 
- h7 -H =vYocoswtH' 

with Z0 =,;;.;;;;;;,,Yo =·./£o/J.Lc>, c = 1/y'iiOfO. 

Then Maxwell's equations are given by 

--, w --, 
curl H = fr-E 

c 
---, w ...... , 

curiE =J.Lr-H 
c 

The azimuthal dependence eim<p leads to several groups of modes: 

m = 0: "TE-" or "H-"modes withE= (O,E'P,0) 

m = 0: "TM-" or "E-"modes with if= (O,H'P,0) (accelerating modes) 
m > 0: these so called deflecting or transverse modes are excited by off-axis particles 

(2) 

(3) 

1.2 Waveguides. ln waveguides which don't change their characteristics in the z-direction, 
using cartesian coordinates, waves with pure exponential dependence of z are proper solutions 
of Maxwell's equations. Consequently we may write for waves travelling in the negative z­
direction 

F(x,y,z,t) = Re { { Fx(x,y)eifizex 

+Fy(x,y)e'fizey 

+Fz(x,y)eiP'zez} eiwt} 

with the complex magnitude F = E or if and the cartesian unit vectors ex, ey, Ez. 
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With 

we get for Maxwell's equations 

E = vlz""Z sin wtE' 

if = VYo cos wtfi' 

..... , w ..... , 
curl H = fr-E 

c 
_., W ___,I 

curl E = J.tr-H 
c 
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2. DISCRETIZATION 

Because of the cylindrical symmetry of the cavity (respectively the z-independence of the 
waveguide shape), a two dimensional grid is sufficient. As we will see the azimuthal depen­
dence or else the z-dependence of the fields can be taken out of the numerical computation 
(compare [9], [10],[11]). 

I i\ 

Figure 1 Pillbox cavity with triangular mesh 

The basic ideas of the FIT -method have been transferred to a triangular mesh. This 
mesh has the advantage of approximating well the cavity or waveguide geometry even for 
elliptical or circular structures with relatively coarse grids. 

I 
I 
I 
I 

L----------------

Figure 2 
Approximation with a triangular 
mesh 
(N = 16 mesh points) 

Figure 3 
Approximation with a rectangular 
mesh using also diagonals 
(N = 64 mesh points) 
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2.1 Allocation of the field components to the grid. In the rectangular mesh of uRMEL 
the field components Ero E'P, Ez of E' and Hro H'P, Hz of H' (respectively Ex, Ey, Ez of E' 
and Bx, By, Hz of H') are represented as shown in figure 4 [9] . 

I I I 

I I I 

I I I 
I 

I I Er I 
I I -- --+-- r---1----1--,-- ---

I I 
I E"' 1~Ez 

I I I 
I I Hz =C>-~H!.. -- --~- r---r--~ !---

I I Hr I 

I I 
I I I 
I I I 

Figure 4 Rectangular mesh and its dual mesh with Ero E'P, Ez and H, H'P, Hz 

Two dual grids are used- one for the electric and one for the magnetic field components. 
Different components associated with one mesh point are allocated at different locations of 
the grid. The characteristic and the advantage of this allocation is the preservation of the 
interrelation between the integrals over areas and the line integrals in Maxwell's equations. 
For the triangular mesh we proceed in full analogy. 

Figure 5 
Triangular mesh and its dual 
(hexagonal) mesh with Ea, Eb, Eeo 
E'P and Ba. B,, Be, B<p,, B'P, 

Figure 6 
Triangular mesh with dual mesh 
and Ha. Bt .. He, H'P, Da, Db, Deo 
D<p,, D,, 

But here we have to distinguish two cases: 

(1) If all triangles of the mesh inside the cavity have angles less than or equal to 1r /2 
we choose as dual mesh lines the perpendicular bisectors of the sides (see figures 5 
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and 6). These intersect in the center of a circle drawn through the three vertices of 
the triangle. 

(2) The program starts with a mesh of regular triangles and varies it in order to ap­
proximate the given boundaries as well as possible. In this process it can not always 
avoid triangles with an angle over 7r /2. 
If this happens the use of the above-defined dual mesh points would lead to the 
following problem: Some dual mesh points are outside the proper triangles. 
In this case we use the centres of mass as dual mesh points. 

It should be noted that the F -component in this dual mesh is in general not per­
pendicular to the F-component (see figure 8). 

In the following we will denote the dual mesh with perpendicular bisectors for sides as 
GM, that with centres of mass as Gs and the triangular mesh as G. 

Figure 7 
For fiat triangles the center 
of the circumscribed circle lies 
outside 

Figure 8 
Dual mesh with centres of mass as 
mesh points; (F,F)=(E,B) or (H,D) 

The numbering of mesh points and the allocation of the triangles to these points is 
explained in the following. The numbering of the mesh points is done analogously to URMEL 
as may be seen in figure 9. This picture also demonstrates that there are two kinds of triangles 
alternating in the rows: one has the vertex on top while the other one is standing upright. One 
of each kind is associated to each mesh point k ( k = (j -· 1) · J + i with j = 1, ... , J, i = 1, ... ,I). 
The triangle of the first kind is named (1, k) and the second (2, k). As figure 9 demonstrates 
the order of the triangles starts with one of the first kind in the rows with an odd number 
(i) and with one of the second kind in all rows with an even number (j). 
Figure 10 shows for a general mesh point k all adjacent triangles, triangle-sides and mesh 
points. Evidently a part of this is nil for boundary points. 
In some places in the formulas, following here and in the appendix, superposed indices are 
used. The upper one always refers to the formula for a point k = (i ~ 1) · J + i in row j with 
even j (type I) , while the lower one refers to the formula fork in row j with odd j (type II). 
The allocation of the all field components, associated to a mesh point, is illustrated in figure 
11 for the points l of the type I and k of type II. 
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Figure 9 Numbering of the mesh points 

c(k-1 I 

k-1 

b(k-J-1) 

J •J a It • J I J +J + 1 

12.!1 

bill elk) 

11. k-1) I 1. k I 

a I k-11 k a(k) 

(2,k-J-1) I 2. k- Jl 

c(l-J) b(k-J) 

I 1,1- J I 

L-J a(! -J I 

with k = I j -1) · J • i 

and 1 = {k~ 1 }tor { j 

1-J•1 

even} 
odd 

b(!•11 

k+1 

cll-J•11 

Figure 10 Points, sides and triangles adjacent to a mesh point 
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triangle (1,k) triangle ( 2, k I 

row j + 1 

triangle(2.tl 

triangle (U) row j 
with j even 

Be, I 
point L=(j-1)·J•i 

Figure 11 Location of the field components and 
the triangles associated with one mesh point 

2.2 Allowed material properties in the different grids. As mentioned above, the per­
mittivity and the permeability shall be real. For GM as dual mesh any inserted material may 
have llr of 1 and (r of 1 and either E or H could be chosen for F(see figures 12 and 13). In 
figure 12 it may be seen that only continuous components (i.e. tangential E and normal B) 
occur so that triangles of G may be filled with materials with llr of I and <r of 1 and varying 
from triangle to triangle. Similarly in figure 13 only tangential H and normal D occur at the 
triangle boundaries. 

Figure 12 Figure 13 
Eon G, Bon GM, llr of 1, (r of 1 H on G, D on GM, llr of 1, (r of 1 

If only the dual mesh Gs can be used we have to place a restriction to assure the 
continuity of the field components: Only insertions with llr i 1 but <r = 1 or (r i I but 
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11-r = 1 are allowed and F will be taken as shown in figures 14 and 15. In figure 14 it is 

seen that (continuous) tangential E occurs at the triangle interfaces, and so (r can vary from 

triangle to triangle. However since on the dual mesh the magnetic field component is not 

normal to the interfaces, Mr can not vary from triangle to triangle . Similarly, in figure 15 it 

can be seen that, with H on the mesh G, 11-r can vary whereas (r cannot. 

Although the constants 11-o and (Q are shown in figure 14 and 15, in fact if the cavity or 

waveguide were completely filled with a medium with constant. Mr or constant (" respectively, 

only continuous field components would occur. 

Figure 14 Figure 15 

E on G, B on Gs, 11- = !1-o, (r f 1 H on G, Don Gs, Mr f 1, ( = (o 

However for nearly all structures it is possible to find a mesh which renders GM possible 

as dual mesh. 
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2.3 Deflecting modes, m > 0. On the given presumptions the electromagnetic fields can 
be written as: 

00 

E(r,rp,z,t) =VZosinwt L{ Em,r(r, z) cos mrp er 
m=O 

+ Em, 9 (r, z) sin mrp e9 (7) 

+ Em,z(r, z) cos mrp e', } 
00 

H(r, rp, z, t) =fro cos wt L{ Hm,r(r, z) sin mcp ir 
m=O 

+ Hm, 9 (r, z) cos mrp e9 (8) 

+ Hm,z(r, z) sin mrp e. } 

As in (2) we will useE' and H'. For (F',F') =(H',D') we choose rp = rp + 1rj2 in (7) and 
(8). For each azimuthal mode number m Maxwell's equations in integral form read then as: 

f ~ w J ~, ~ 
H' · ds = ~ lrE · dA 

f E' · ds = ~ j PrH' · dA 

j j frE'. dA = o (9) 

j j PrH 1 
• dA = 0 

These equations are solved for a chosen m > 0 in the following way: 

They are discretized on the triangular mesh G with Gs (respectively GM) for 

(F',F')=(E',B') or (H',D'). The boundary conditions are implied in the dis­
cretization. The details are given in the appendix. 

In the resulting equations all F'-components and the azimuthal F'-component F9 
are eliminated. 
This leads to a linear algebraic eigenvalue problem connecting each field component 
Fa, F 0 , F, with ten neighbours: 

(~ ) 2 
Fa,k = CXaa,k,oFa,k 

+ O:aa,k,l Fa,k+ 1 + CX.aa,k,2Fa,k-l 

+ CXab,k,C!Fb,k + IY.ab,k, 1 Fb,k± 1 

+ 11ab,k,2Fo,k- J + 1 + Gab k 3Fb k-J ' ' ' 
(10) 

+ O:.ac,k,OFc,k + O'ac,k,l Fc,k+l 

+ aac,k,2Fc,k-J±l + CXac,k,3Fc,k-J 

( ~) 2 
Fo,k = CXob,k,oFo,k 

+ abb k 1F6 lt+.T-l 
, ' ' k+ .1 

+ CXbb,k ,2Fb, k :_~~ J 

+ O.ba,k,oFa,k + aba,k,I Fa,k+J 

+ CXba k 2Fa k+J -1 
' ' ' + Ciba,k,3Fa,k+l (11) 

+ O:bc,k,OFc,k + 11bc,k,1 Fc,k+J 

+ 0.bc,k,2Fc,k=f-l + fibc,k,3Fc,k- J 
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('Z)
2 

F,,k = O:cc,k,oFc,k 

+ Ctcc k 1F k+.T+l + Ctcc,k,2Fc k-.J 
' ) c, k+ .1 'k- .T-1 

+ O:ca,k,oFa,k + O:ca,k,1 Fa,k+J ± 1 

+ O.ca,k,2Fa,k+J + O:ca k 3Fa k-1 , ' ' 
{12) 

+ O:cb,k,oFb,k + a,b,k,!Fb,k+J 

+ CXcb,k ,2 Fb,k± 1 + a,b,k,3Fb,k-J 

This relation between the field components is schematically illustrated in figure 16. 

Figure 16 Illustration of the connection to ten neighbours 

by the difference equations for Fa,k and Fb,k 

The equations (10)-(12) which are given for every mesh point k correspond in their 

matrix representation to a linear algebraic eigenvalue problem. Thus an eigenvalue problem 

with the wave number 
w 

k =­
c 

(13) 

remains to be solved. Its eigenvalues are the squared wave numbers of the resonant frequencies 

and the eigenvectors 

give the corresponding electric and magnetic fields. Here an advantage of the FIT-method 

becomes obvious: While other methods (e.g. SUPERFISH [2], PRUD [1]) don't solve a linear 

problem and need an estimation of the frequency sought this method solves a linear problem 

of which the solution gives the resonant frequencies. 

Since pure TE- and TM-modes (see section 2.4) exist as deflecting modes only for the pillbox 

cavity all six field components have to be calculated. 
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Figure 17 Matrix of the eigenvalue problem for m > 0 

The matrix of the eigenvalue problem is sparse and the non-zero elements lie on a few 
off-diagonals as shown in figure 17. The matrix is 3N x 3N. 

2.4 Monopole modes, m = 0. Here we have to distinguish two classes of modes: 

TEO-modes transversal electric fields with Ez = 0; 
Er = 0, H'P = 0, H, Hz and E'P have to be calculated. 

TMO-modes transversal-magnetic fields with Hz = 0; 
Hr = 0, E'P = 0, E, Ez and Rep are calculated. 

Maxwell's equations (9) are solved for m=O as follows: 

They are .?iscretized on the triangular mesh with (F', F')= (E', B') for TM-modes 

and (F',F')=(fi',D') forTE-modes. (See appendix for details) 

In the resultin~-equations all F'-components are eliminated . F <pi and F 'P2 are the 

only non-zero F'-components. 
Again we o~tain a li~ear eigenvalue problem - in this case connecting each field 
component Fcpl and Fcp2 with three neighbours: 

(~) 2 i~l,k= O:tJ,k,oFrpt,k + CXtz,k,oFr.pz,k 

+ "'12,k,l Fcp2,k± I + a 12,k,zF <p2,k-J (14) 

2 -
(~) Fcpz,k = O:.zz,k,oFr.pz,k + <>z1,k,oFcp1,k 

+ O:zt,k,JFr.pt,k":f-1 + O:zt ,k,2Fr.pl ,k+J (15) 

Figure 18 shows a schematic representation of the relation expressed in (14) and (15). 
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- -
Figure 18 Connection of F <pl and F <p2 to three neighbours 

by the difference equations 

As form > 0 a linear eigenvalue problem (13) is to be solved. The eigenvectors are now 

The 2N x 2N- matrix A is sparse, can be made symmetric and has only some off-diagonals(see 

figure 19). 

~~ 
I 

i ~~ 
------1 ------~ 

Figure 19 Matrix of the eigenvalue problem for m = 0 
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2.5 Waveguides and cavities of translational symmetry. The difference equations for 
the waveguide problem are similar to those for the deflecting modes. Instead of a certain 
azimuthal dependence we have the longitudinal dependance 

E(x, y, tlz) = E0 (x, y)eif36.z (16) 

which is in first approximation 
Eo(x,y)(I + i{Jtlz) (17) 

with the propagation constant {3. The same is true for cavities that are not cylindrically 
symmetric but don't change their geometry in z-direction for 0 ::; z < L where L is the 
longitudinal length of the cavity. 

Again Maxwell's equations are written in integral form and_ discretized in full analogy 

to the case of deflecting modes (compare appendix) with (F', F')=(E', B'). Then all B'­
components and the longitudinal E'-comporrent Ez are eliminated . The resulting linear 
algebraic eigenvalue problem has the squared propagation constants for a given frequency w 
as eigenvalues. 

This option of URMEL-T renders it possible to compute the functional relationship 
between the frequency and the propagation constant for e.g. dielectric loaded waveguides. 
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3. SOLUTION OF THE EIGENVALUE PROBLEM 

We use the same method as in URMEL [7], [8], [9]. Since we are only interested in 

the n lowest eigenvalues the problem can be solved using a basis transformation which leads 

to a much smaller dimensional problem. The matrix of this problem acts over the subspace 

spanned by the n eigenvectors of the n lowest eigenvalues. This small eigenvalue problem is 

then solved by a direct conventional method (e.g. EISPACK-routine, [6]). 
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4. EXAMPLES 

We will present calculations for several realistic cavities and waveguides with and without 
material insertions. To check the accuracy we consider first the pillbox cavity and a spherical 
cavity where we compare the results of URMEL-T with analytically calculated frequencies 
and with the results of llRMEL. 

4.1 Pillbox cavity and sphere. A detailed error analysis is not given here because of 
its extent. Besides the fineness of the mesh the quality of the approximation of the cavity 
geometry influences the error and this quality depends heavily on the given cavity. 

To get an idea of the magnitude we choose the pillbox cavity for which no error due to 
the approximation of the geometry occurs and for which the exact resonance frequencies are 
analytically known. We compared an URMEL-run with N 1 points with an URMEL-T-run 
with N 2 points where 2N1 and 3N2 have about the same magnitude (because URMEL-T has 
three field values associated with each mesh point, while URMEL has two) for the calculation 
of deflecting modes (compare 2.3 respectively [9]). These runs used single precision, which 
gives on IBM about seven decimal digits. It is obvious that the rounding errors overcome the 
better discretization at some point. If very accurate results are needed the code can be run 
in double precision where the influence of rounding errors is much smaller. 

mode 
TMllO 

TEllO 

Table 1 Lowest transverse mode frequencies in a pillbox of radius 1m 
and gap length 2m 

] ; 1 ana .,:3J URMEL URMEL-T 
f I MHz 2NI f I MHz error 3N2 f I MHz error 
182.82 242 182.17 -3.6. w- 3 216 182.43 -2.1 . w- 3 

968 182.67 -8.2. w- 4 864 182.73 -4.9. w- 4 

2178 182.76 -3.3. w- 4 1944 182.76 -3.3. w-4 

3872 182.79 -1.6. w- 4 3348 182.77 -3.7. w-4 

6050 182.76 -3.3. w·- 4 5016 182.73 -4.9. w-4 

173.7 4 6050 173.67 -4.0. w- 4 5016 173.72 -1.2. w-4 

Double precision runs lead to the following relationship between accuracy and the number 
of mesh points: 

D.f 1 
I T [~ 2.2. N 12 ( 18) 

The dependence of the error upon the number of unknown quantities is also illustrated m 

figure 20 for URMEL-T as well as for URMEL. 
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' ' ' ' ' 

1-¥1 

100 

' ' ' ', 
' ' ' ' ' ' 

-URMEL -T 

--- URMEL 

' ' ' " 

lOCO 

' ' ' ' ' ' ' . ' 
' ' ' 

number of unknown quantities -

Figure 20 Relative error of the frequency in dependence upon the number of unknowns 

For the spherical cavity a comparison of URMEL and URMEL-T makes evident the 

influence that the quality of the geometrical approximation has. This influence obviously 

depends on the special mesh used. Here we compared an URMEL-run with N 1 points with an 

URMEL-T-run with N2 points where N1 and 2N2 have about the same magnitude because 

URMEL-T has two azimuthal field values per mesh point while URMEL has one for the 

calculation of monopole modes (compare 2.4 respectively !9]). 
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Table 2 Lowest mode in a spherical cavity of radius 1m. Due to the spherical symmetry 
the mode EEl with the exact frequency 130.911 MHz ([3] ) can be calculated as 

TMO-EE-1 or as 1-ME-1; compare [9] for mode notation 

URMEL URMEL-T 
mode N f I MHz error 2N f I MHz error 
TMO-EE-1 121 128.972 -1.5. 10- 2 144 130.750 -1.2. 10- 3 

484 130.733 -1.4·10- 3 576 130.879 -2.4. 10-4 

1089 130.762 -1.1. 10-3 1296 130.892 -1.5. 10- 4 

1936 130.655 -2.o. 10-3 2232 130.885 -2.0-10-4 

3025 130.721 -1.5. 10-3 3510 130.929 + 1.4. 10- 4 

4.2 Dielectric loaded cavity. A new feature that URMEL-T offers is the possibility to 
insert dielectrics in the cavity. To investigate the accuracy of the program referring to this 
subject we examined the frequency shift caused by a piece of Teflon in a DORIS-cavity which 
has been measured. 

vacuum 

Figure 21 Dielectric loaded cavity 

The DORIS-cavity with the inserted small Teflon cylinder is shown in figure 21. The 
computed frequency shift caused by this Teflon cylinder (dielectric constant Er = 2) shows a 
good agreement with the measured data [13]. The reasonable difference found is due to the 
slightly modified cavity shape taken for the URMEL-T calculation where the flanges are left 
out. 

Table 3 Frequency shift by a small Teflon cylinder inserted in a DORIS-cavity (N=968) 

calculated measured calculated measured 
original original frequency frequency 

mode frequency frequency shift shift 
TM010 498.406 MHz 498.488 MHz 6.356 MHz 6.614 MHz 
TMOll 739.302 MHz 745.667 MHz 7.419 MHz 8.399 MHz 
TM110 775.286 MHz 775.870 MHz 4.606 MHz 5.980 MHz 
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4.3 Waveguide. For a dielectric waveguide we computed the relation between the frequency 

w and the propagation constant (J. The highest (J's have been computed with URMEL-T for 

different frequencies. The result is illustrated in figure 22, which fits a few douzen distinct 

values of ko ( = ~) each representing a different URMEL-T run. 

f3 / ko 
1.250 

1.125 

1.000 

0.875 

0.750 
0.0 

Figure 22 

50.0 100.0 150.0 200.0 

ko 

Relation between the wave number k0 (ko = ~) 

and kfi for the dielectric loaded waveguide 
" 

Figure 23 shows a cut through the dielectric waveguide together with a possible triangular 

mesh. The corresponding transverse fields for the fundamental mode with frequency 3 GHz 

are plotted in figure 24. 

Figure 23 

dielectric c, :5 

f = 3 GHz vacuum 

Dielectric waveguide with mesh for the part 
which is essential for a run of URMEL-T 
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Figure 24 Field maps for the fundamental mode 

4.4 A multi-cell cavity. To simulate the influence of the beam pipe it is usual to tune 
the last cell of a multi-cell cavity: The radius of this cell is modified to achieve a uniform 
field distibution in all cells. The triangular mesh is able to follow even very small deviations 
between the radii of the middle cells and the outer cell while a rectangular mesh needs to 
be very closely spaced to allow the representation of such an input geometry and to fulfill 
stability requirements. This causes a steeply increasing number of mesh points in rectangular 
grids for small changes in the radii of only a part of the cells, whereas for the triangular mesh 
the mesh size may be left unchanged. 

To illustrate this fact we show the tuned 1 GHz PETRA nine-cell superconducting cavity. 
The radius of the middle cells is 139.595 mm while the last cell has a radius of 138.345 mm. 
Figure 25 shows the cavity together with the triangular mesh of 1960 points. To approximate 
this geometry in a rectangular mesh many more points would be necessary. Figure 26 shows 
contours of r · H'F = const of the 1r mode. These lines show the direction of the electric field. 

Their density is proportional to r · E. An arrow plot of the electric field of this mode is also 
shown in figure 27. The countours of constant r · H 'P of an higher monopole mode can be seen 
in figure 28. Figures 29, 30 and 31 present arrow plots of the electric respectively magnetic 
field of two Dipol modes. The calculates frequencies are compared with measured frequencies 
i5'. The measurements have been done with a cavity with only very small differences in the 
cavity shape. 
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Figure 25 Tuned PETRA nine cell cavity with mesh used 

Figure 26 Contours of constant r · H'P for the 11'-mode of the tuned nine cell cavity 

L.__. A ' ¥ ' --.,.___.._ J( " ~ ' -.. -"' .... • . . 

'--------------~-----------------------

Figure 27 Arrow plot of the electric field for the 11'-mode. 
The measurements gave 1000.1 MHz as frequency, URMEL-T calculated 1007.5 MHz. 
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1--------------------------------------
Figure 28 Contours of constant r · H'P for the TMOll-871" /9-mode. 

The measurements gave 1983.7 MHz as frequency, URMEL-T calculated 1975.3 MHz. 

I . 
I 
I - - ' ' t 

~tl/ \ifl \tt ,~. 
I 
I' r 

::_.:...:_,_t_tJJJ_LlJJ_LL.1J_tl1J' ~ t ~ • · · · · .· · -------------
Figure 29 Arrow plot of the electric field for the "TE1ll-27r/9"-like mode. 

The measurements gave 1271.2 MHz as frequency, URMEL- T calculated 1289.8 MHz. 

,. 4-a."t, 

I . 

I . 

" \ 

_,It ,.,,,-.,./~ ..... \r.,-../11-""--. ....... ' \' ... 

'--------------------------------------

Figure 30 Arrow plot of the magnetic field for the "TE11l-27r/9"-like mode. 
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' 

Figure 31 Arrow plot of the electric field for the "TM110-7r j9"-like mode. 
The measurements gave 1428.i MHz as frequency, lTRMEL-T calculated 1432.i MHz. 
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5. THE PROGRAM 

The code of URMEL-T is available at DESY. The structure of the input data is com­

patible with that of URMEL. For the features that URMEL-T offers in addition some new 

parameters have been introduced. The interface routines (e.g. for plotting) are the same as 

for URMEL and TBCI [10] so that the code can be installed easily. More detailed information 

about the program is given in the user's guide ! 4]. 

6. SUMMARY 

The computer code URMEL-T enlarges the two dimensional scope of application of the 

FIT-discretization method in two directions: 

First it allows the calculation of resonant modes (including the TEO-modes) in cylin­

drically or translationally symmetric cavities with dielectric and;or permeable in­

sertions as well as the calculation of propagation constants in waveguides. 

Herewith l-Rli-1EL- T offers a new feature in the domain of computational evaluation 

of RF -fields. 

Second "CRMEL-T is well suited to structures with elliptical or circular parts in 

their geometry, and for tuning multi-cell cavities. This is based on the properties of 

a triangular mesh combined with the powerful FIT-method. The latter makes sure 

that the solutions fulfill all Maxwell's equations, i.e. they are physically significant. 

So URMEL-T presents a widely useful extension of the program group for the solution 

of Maxwell's equations. 
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7. APPENDIX 

The discretization of Maxwell's equations (9) is shown in this chapter. The derivation of 

the difference equations includes the incorporation of _the boundary conditions. To elucidate 

the principle it is sufficient to consider the case (i\ F')=(E', B'). 

7.1 Integration for Ea,k, Eo,k and Ec,k· We integrate 

f -, 1 -, -H · ds = k €rE · dA 

over the area shown in figure 32 (for cavities) or figure 33 (for waveguides). 

Figure 32 Area of integration for Ea,k: cavities 

The left-hand figure is the mesh drawn in a plane 'P =const, while the right-hand figure 

is in the plane used for the integration of Ea,k· 

z=O 

Bz1,k 

rn~nr/7 

.t 
" 11 

~ 

L/.J~~/....L.,(.L/. 

ll 
Bz2,k-J 

Figure 33 Area of integration for Ea,k: waveguides 

The left-hand figure is drawn in a plane z =const, while the right-hand figure is in the 

plane used for the integration of Ea,k· 
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(a) Cavities 

1,;, cos m<p 
k · Ea,k · cosak · (£1,k · 7r ·l1 · (ro + r!) + €z,k-J · 7r ·lz · (ro + rz)) · 

0 2
7r d<p 

21rr1 27rrz 1 ,p cos m<p 
= (Bpl,k · -- - Bpz,k-J · ) · d<p 

Jll,k l-'2,k-J 0 27r 

( 
l1 l2 ) - Ba,k · -- + ·sin m,P, 

1-'1 ,k l-'2,k-J 
(19) 

with 0 < 1/J ::::.; 27r, and ak is the angle between Ea,k and the normal to the plane 
used for the integration. 
Thus we have an equation of the form, Jetting 1/J -> 0, 

(20) 

with formal coefficients al,b az,k and a3,k· In the same way we get linear equations 
for Eb k and E, k: ' , 

kEb,k = b1,kB"' 1 ·'~' - bz,kBpz,k + mb3,kBb,k, 

kE, k = -c 1 kBp 1 k + Cz kB 2 k + mc3 kB, k, 
' ' ' ' rp 'k -l ' ' 

(21) 

(22) 

where the superposed subscripts indicate values to be used for mesh points of type 
I or II, respectively (upper=type I; compare section 2.1 and figure 11). 

(b) Waveguides 
To first order in ll.z, and where ak is the angle between Ea,k and the normal to the 
integration-plane, 

i · k · Ea,k · cosak · (£1,k · ll.z ·l1 + €z,k-J · ll.z ·lz) 

1 I 
= (Bzl,k · -- - Bz2,k-J · ) · fl.z 

1-'I,k l-'2,k-J 

( 
l1 l2 ) - Ba,k · -- + · i · {3 · ll.z. 

1-'l,k J12,k-J 

This gives, letting ll.z -> 0, an equation of the form 

Likewise we get for Eb,k and E,,k: 

(23) 

(24) 

(25) 

(26) 

where again the superposed subscripts denote values to be used depending to the 
row of the mesh being considered. 
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7.2 Integration for Ba,k, Bb,k• Bc,k, Bcp!,k and Bcp2,k• The Maxwell equation 

f i'. ds= k j ~tJi'. dA 

is integrated over the areas shown in figures 34 (respectively 35) and in figure 36. 

Figure 34 Area of integration for Bb,k; cavities 

The shaded path is perpendicular to the triangular mesh and results from sweeping the 

mesh through an angle 1/J about the z-axis. 

Figure 35 Area of integration for Bu; waveguides 

The shaded path is perpendicular to the triangular mesh and results from sweeping the 

mesh through a distance Ll.z along the z axis. 
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For Bb,k we get 

(a) Cavities 

· 1.;, sin mcp 
k · Bb k · cosf3k · 1r(r ' + rk+J) · d~o k · dcp 

' k+ J , 0 27r 

1.;, sin mcp 
=(-E , ·27r·r k +Eit'k+J·27r·Tk+J)· dcp 

rp,k+J k+J , 0 27T 

+ Eb,k · db,k ·(cos m'!j)- 1), (27) 

with 0 < 1/) ::; 211'. This gives 

(28) 

The integration area is shown in figure 34. 
Bc,k are: 

Analogously the equations for Ba k and 
' 

(b) Waveguides 

kBa,k = dl,kE\t',k- dz,kE\t',k+l- md3,kEa,k, 

kB, k = h kE >+-'+• - fz kE·~ k + mh kEc k· , , rp, k+ .I , .,.., ' ' 

To first order in 6. z 

- i · k · Bb k · cosf3k · 6.z ·db k 
' ' 

(29) 

(30) 

= (-E • + Ez,k+J) · 6.z + Eb,k · db,k · i · (3 · 6.z. (31) z, k+ 1 

Hence, letting 6.z -+ 0, 

(32) 

The integration area is shown in figure 35. Analogously the equations for Ba,k and 
Bc,k are: 

-ikBa,k = d1,kEz,k - dz,kEz,k+ 1 - i(3d3,kEa,k, 

-ikE, k = h kE >+.•+• - fz kEz k + i(3h kEc k· , , z, k+ .l ' ' , ' 

(33) 

(34) 

In order to eliminate the azimuthal (respectively longitudinal) B'-components we inte­
grate this Maxwell-equation over one mesh cell as illustrated in figure 36. 
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Eb. k•l 
k 

"-L..<-L...-.~~ B"' 1. k 
respectively 

Bzl.k 
Ea.k 

Figure 36 Area of integration for B'l' 1,k respectively Bz!,k 

(a) Cavities 

Thus we get 

(b) Waveguides 

kB"'!,k = g!,kEa,k + g2,kE;, 'ti - g3,kEc,k, 

kB"'2,k = h1,kE , - h2 kEa k+J - h3.kEb k· 
c, k+ 1 , ' ' ' 

(36) 

(37) 

-i · k · A1 k · Bz! k = Ea k · da k + Eb k+i ·db k+i - Ec k • de k· (38) 
' ' , ' ' k , k ' ' 

This gives 

-ikBz!,k = g!,kEa,k + g2,kEb, •;;1 - g3,kEc,k, 

-ikBz2.k = h1 kE ' - h2 kEa.k+J - h3 kEb k· 
. 1 c, k+ I 1 . 1 ' 

(39) 

( 40) 

With these equations we can substitute all magnetic quantities in the equations (20)-(22) 

or else (24)-(26). 

7.3 Integration for E"' respectively E 2 • Finally we want to get a relation between E"' 

or E. and the other electric field components. Since the third Maxwell equation 

is automatically fulfilled for time-harmonic fields in the FIT-method [11] we will use this one 

to obtain the desired relation. 
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' ' I 
~ 
', 

Ec k-J 
'k-J-1 

Ec,k 

C3L7 
lfu] 

Figure 37 Area of integration for Ecp,k respectively Ez,k 

This equation is integrated over the surface shown in figure 37 and leads to 

Ecp,k · (ftAt + E2A2 + · · · + EsAG) sin m,P 
+Ea,k · (EsFu + EtFt2) fo.P cos m<p d<p 

+Eb k ·(E2F3t+<3F32)f0.Pcosm<pd<p 

+Ec,k · (<tF21 + E2F22) fo.p cosm<pd<p (41) 

'k- 1 
-Ea,k-1 · (E3F41 + E4F42) fo.p cosm<pd<p 

-E k-.J • (E4F51 + EsFs2) fo.p cosm<pd<p 
c,k-J-1 

-Eb,k-J · (EsFst + EsFs2) fo.p cosm<pd<p = 0 

respectively 

i · f3 · Ez,k ·(EtA! + E2A2 + · · · + <sAs) · b.z 
+Ea,k · (EsFu + EtFt2) · b.z +Ec,k · (E1F21 + E2F22) · b.z ( 42) 
+Eb k • (E2F31 + E3F32) · b.z -Ea,k-1 · (E3F41 + f4F42) · b.z 

'k-1 

-Ec k-.J • (E4F51 + EsFs2) · b.z -Eb,k-J · (EsFst + EGFs2) · b.z 
'k- .!- J 

=0 

which gives the following relation 

respectively 

Using this relation we finally get (10)-(12). 
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E,H 

F,F 
Fa,k 

F <pi,k 

Zo,Yo 

JLo 
c 

!Lr 

m 
1-EE-4 

2-ME-3 

k 

G 
GM 
Gs 
,, J 

I,J 

N 
k 

CY.bc,k,p 

a12,k,p 

A 
Aaa 
A21 

i 
ir, erp, ez 

LIST OF SYMBOLS 

electric and magnetic field 

field on the triangular and on the dual mesh 
projection of the ff - field on the triangle side a attached to mesh node k 

azimuthal F - field component at triangle i of node k; i = 1, 2 
free space impedance, admittance 

permittivity of the vacuum, 1~:2 
permeability of the vacuum, 47f · 1 o- 7 

speed of light 
relative permittivity; material constant ' 

'" relative permeability; material constant L 

"" azimuthal mode number,i.e. fields ex cos mrp resp. sin mrp 
mode with electric boundary on both sides, dipole, 
4-th mode found in this subset 
mode with magnetic boundary on the left and electric boundary 
on the right, quadrupole, third mode found in this subset 
wave number, k = "' c 
triangular mesh 
dual mesh with perpendicular bisectors for sides 
dual mesh with centres of mass of each triangle as (dual) mesh points 
running index for mesh lines/points in r,z (x,y) direction 
number of mesh lines in r (x) direction, number of points (in z (y) 
direction) on each mesh line in r (x) direction 
number of mesh points; N = I· J 
as index: mesh point number k = ( i ~ 1) · J + j 
element of Abc where p is 0-3 denoting one of the diagonals 
element of A12 where p is 0-2 denoting one of the diagonals 
matrix of the eigenvalue problem 
submatrix connecting ~a and Fa_ 
submatrix connecting F<p2 and F'P 1 

column vector holding all F resp. F field components 
unit vector in r ,rp ,z direction 
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