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Abstract 

1SSN 0418-9833 

Volume dependence of the energy spectrum in massive 

quantum field theories 

I. Stable particle states 

M. LUscher 

Oeutsches Elektronen-Synchrotron DESY, Hamburg 

Due to polarization effects, the mass M of a stable particle in a quantum 

field theory enclosed in a large (space-like) box of size L and periodic 

boundary conditions in general differs from its infinite volume value 

m. As L increases, the finite size mass shift ~m M - m goes to zero 

exponentially with a rate, which depends on the particle considered and 

on the spectrum of light particles in the theory. This behaviour follows 

from an apparently universal asymptotic formula, already presented earlier, 

which relates ~m to certain forward elastic scattering amplitudes. A 

detailed proof of this basic relation is given here to all orders of 

perturbation theory in arbitrary massive quantum field theories. 
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1. Introduction 

From experience with large scale numerical simulations of lattice gauge 

theories over the past few years, it has become plausible that with this 

method a reliable calculation of the hadron masses and other low energy 

parameters in QCO will ultimately be possible. Because of the limited 

capacity of today's computer systems, the lattices one can simulate are 

however rather small so that, for example, a lattice of size L = 5 fermi 

and spacing a = (2 GeV)- 1 would already be considered huge by present 

standards. Hadrons contained in such small volumes occupy a significant 

fraction of the available space and one therefore expects that the cal-

culated masses show some dependence on L. Thus, for the correct inter-

pretation of the data obtained from Monte Carlo simulations, a theoretical 

understanding of these finite size effects is needed and studies with 

variable L must be made to check the theoretical expectations. 

Finite volume effects are also interesting in their own right and their 

investigation may prove useful for purposes other than merely controlling 

a systematic error source. The reason for this is that they probe the 

system at distances large compared to the lattice spacing. In general, 

they are therefore universal (i.e. independent of the form and magnitude 

of the ultra-violet cutoff) and often contain useful information on the 

infinite volume system. In statistical mechanics this observation has 

long been converted into a powerful tool for the numerical calculation 

of critical exponents at second order phase transitions, for example 

(see Ref. /1/ for a review and Ref. /2/ for a recent paper in this field). 

More recently, the finite size method has also been applied to asymptotically 
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free field theories in an attempt to calculate the spectrum of the low-

lying stable particles analytically /3,4,5/. When combined with data 

obtained from Monte Carlo simulations, this approach may result in a 

significant test of scaling and a determination of the A-parameter, 

which is free of extrapolation ambiguities /6,7,8/. Finally, in the 

present work the volume dependence of energy values is related to scatter-

ing amplitudes, which makes it possible, in certain cases, to compute 

3-particle on-shell coupling constants /9,10/ and scattering lengthS 

(11/ by numerical simulation. 

In this and the following paper /11/, massive quantum field theories 

enclosed in an l x l x l box with periodic boundary conditions are con~ 

sidered (time remains unrestricted). Due to the finite volume, the spectrum 

of the Hamilton operator (i.e. of the transfer matrix in lattice theories) 

is then discrete and the corresponding energy values depend on l in a 

way, which apart from some gross features, is dynamically determined. 

For large volumes one expects that there are distinguished zero momentum 

eigenstates of the Hamilton operator, which can be interpreted as states 

of a single stable particle at rest. The corresponding energy values 

Mi(l) (i labels the different particles) are close to the rest masses 

mi of these particles as defined at l ~ 00 . This paper is devoted to 

the question of how exactly Mi(l) approaches mi in the limit where L-.00 

and all other parameters of the theory are kept fixed. Note that this 

limit is different from the usual finite size scaling limit, where l 

is made large but the parameters in the lagrangian are tuned in such 

a way that l/f is fixed, where ~ is a correlation length. 
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The physical origin of the size dependence of the mass Mi of a "pointlike" 

stable particle is that such particles polarize the vacuum around them, 

i.e. they are accompanied by a cloud of virtual particles. In the simplest 

case, the diameter of the cloud is roughly equal to the Compton wave 

length A0 of the lightest particle in the theory. When enclosed in a 

box, the energy of the particle starts to deviate from its infinite volume 

mass mi as soon as the cloud is squeezed by the box, i.e. for A0 ~L. 

This physical picture can be translated into an exact asymptotic formula 

relating the size dependence of the masses Mi to certain forward elastic 

scattering amplitudes (cf. eq. (2.22) bela~). I have already presented 

this formula some time ago together with a number of applications /12/. 

In this paper, a detailed proof of the formula is given within the frame-

work of Feynman diagrams. 

A seemingly different physical situation occurs, when the particle con-

sidered is a bound state of two other "pointlike" stable particles with 

a binding energy small compared to its mass. The wave function of the 

bound particles then falls off exponentially with a characteristic length 

A , which may be substantially larger than ~0 . One therefore expects 

that finite size effects on the binding energy are large up to sizes 

l ~ /... and only then go to zero exponentially as l -+ oo . An exactly soluble 

2-dimensional example displaying this behaviour has recently been discussed 

in Ref. /13/. Here it will be shown (Sect. 3) that the bound state situation 

is actually not so different from a squeezed polarization cloud as dis-

cussed above, since in both cases finite size effects arise from particle 

exchange "around the world" and are described by similar relativistic 

amplitudes, the main differences being of a kinematical nature. 
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The stable mesons and baryons in QCO are bound states of quarks, but 

the situation here is quite different from the one just discussed, because 

quarks are confined. As suggested by simple models, this presumably implies 

that the wave functions of the valence quarks inside a hadron are going 

to zero more rapidly than exponentially as the distance between them 

increases *). One therefore expects that the probability for a single 

quark to separate from its partner(s) and walk around the periodic box 

is quickly going to zero for growing L so that, in unquenched QCD, the 

leading finite size effect on the hadron masses at large L is not due 

to this process, but arises from the squeezing of the virtual pion cloud 

around these particles as discussed above. Only this latter mechanism 

was taken into account for the estimation of the size dependence of the 

pion and nucleon masses presented in Ref. /12/. 

As already indicated above, the proof of the basic relation between finite 

size mass shifts and elastic scattering amplitudes will be given to all 

orders in perturbation theory, i.e. I shall assume that the dynamics 

of the particles considered can be described by a Lagrangian quantum 

field theory, where all fields are massive and the couplings are small. 

The interaction Lagrangian can be arbitrarily complicated and the theory 

may also have a fixed ultra-violet cutoff. In all cases, the resulting 

formulae are independent of these details and refer only to the physical 

masses and scattering amplitudes of the particles. In vievl of this uni-

versality, I believe that the result is in fact true beyond perturbation 

theory. 

*) Velikson and Weingarten /14/ have recently calculated Coulomb gauge 

quark wave functions in quenched lattice QCD and find that they are decaying 

rapidly, although, in the limited range of distances available, a devia-

tion from an exponential law is not seen. 
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Another important question is 'rJhether the relations so derived are also 

valid in pure non-Abelian gauge theories and QCD, where perturbation 

theory in the gauge coupling constant involves massless fields and the 

arguments given in this paper cannot immediately be applied. However, 

one can always describe the low energy properties of these theories by 

effective Lagrangians *), which, for an accurate description, are perhaps 

very complicated, but are of exactly the type tractable by the Feynman 

diagram technique of Sect. 2. Note that because of the universality of 

the final result, the precise form of the effective Lagrangian is never 

needed, i.e the effective Lagrangian only catalyses the proof. 

These arguments suggest that the mass shift formulae proved in this paper 

are of a basically kinematical nature and that they are valid in arbitrary 

massive quantum field theories, a conclusion, which is also supported 

by exactly soluble models /12/ and a recent numerical study of finite 

size effects in the 0(3) non-linear~ -model in two dimensions /7/. 

*) At least in principle, such effective Lagrangians could be constructed 

by "integrating out" the high frequency modes in the functional integral. 

Alternatively, one r.my adopt Weinberg's point of view /15/ that the class 

of all effective Lagrangians reproducing the global symmetries and the 

spectrum of low lying particles of an underlying field theory contains 

no more information, than would be implied by basic principles (locality, 

analyticity, etc.) anyway. 
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Although this paper is self-contained, the reader is advised to first 

consult Ref. /12/ for an overview and illustrations (no concrete applica-

tions will be discussed here). To keep the presentation as simple as 

possible, proofs will only be given for spin-less particles and the dimen-

sionality of space-time is set equal to 4 throughout the paper. Also, 

I shall assume that the ultra-violet cutoff {if any) does not break 

lorentz invariance. All these restrictions are in no way crucial to the 

argumentation and can easily be relaxed, in particular, voith appropriate 

modifications the results also hold in lattice theories /9/. 

The bulk of this paper is devoted to the proof of the finite size mass 

shift formula alluded to above (sect, 2). Although the details are worked 

out for simple scalar theories only, the method can easily be generalized 

to more complicated situations. In particular, the volume dependence 

of bound state masses can be calculated and one finds, in the non-relati-

vistic limit, that the leading finite size effect on the binding energy 

is correlated with the fall off properties of the bound state wave func-

tion in the expected way (sect. 3). A few selected remarks are included 

in the final sect. 4. 

2. Volume dependence of the mass gap in simple scalar theories 

2.1 Basic definitions 

We here discuss theories of a real scalar field ~(x), which, in infinite 

volume, describes the physics of a single self-interacting particle 

("meson") of mass m and spin 0. For the study of finite size effects, 
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it is convenient to work with the connected euclidean correlation func-

tions (</J(X,) .. cj>(x.,l) of <P rather than time-ordered vacuum expec-

tation values. The normalization of ~ is chosen such that the meson 

pole in the euclidean propagator has unit residue, i.e. we have *) 

(2.1) 

(2.2) 

(2.3) 

<cf>lxlcj>lol) = 
d4p 

l (2tr)"-
eipxG(p), 

-1 
Glpl ~ tn

2 +-p2 - L'(pl, 

2:: (pl a 
apP L ( pl = o fo~ p" - m2.. 

Since it is assumed that there are no bound states or other additional 

stable particles, the meson pole at p2 
= - m2 is the only singularity 

of G(p) below the 2-particle threshold at p2 4m2 . 

In a finite volume of size Land periodic boundary conditions, the field 

4> satisfies 

(2 .4) ~(x•,x+Ltil </>(x 0
, X) far aU ~ 713 

flE/L. 

Denoting the connected euclidean correlation functions at L < 00 by 

< <P ( x,). .. <P ( x1'l) \ • we have 

(2. 5) (<J>(x) cj>(O))L = L- 3 2:: 
? f <!f 

2'Jt 

-ipx 
e GL(pl, 

*) Euclidean 4-vectors are written asp ~ p~ ~ (p0 ,p), p 
~ 

and the euclidean scalar product is p q = p0q0+P·q. 

(p1,p2,p3), 
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(2.6) -1 2 2 '"' GL (p) = m + p - LL (p), 

where the momenta P take values 

(2.7) -to 21r ~ 
1' = L n .n " zl. 

For large L, we expect (and shall later shml) that 1\ (p) is close to 

E.(p), in particular l\ (p) ~nd ~0 EL Cp) are nearly vanishing along 

the mass shell p
2 =- m2 . Thus, for every fixed P of the form (2.7), 

GL(p) has a pair of poles in the complex energy plane at 

(2.8) 

(2.9) 

0 + . 1:: 
p =-~WL(iJ}, 

WL (j3) ~ 
L~oo 

W("p) = ,[ tn2 + jF > 0. 

The meson mass M in finite volume is now defined by 

(2.10) M = w, (0), 

or, equivalently, through the leading exponential decay of the 2-point 

function at large times: 

(2.11) < 4>tx)<j>(Ol\ oc 
X0+oo 

- Hx0 

e 

The asymptotic formula to be proved in the following subsections relates 

the finite size mass shift 

(2.12) Am=M-m 

to the (infinite volume) elastic meson scattering amplitude T. To write 

it down explicitly, some further preparation is needed. First of all 

- 10 -

we note that the scattering amplitude T can be expressed through the 

euclidean 4-point function in the following way. Define full propagator 

amputated correlation functions G(p1 , ... ,pn) by 

< <t>Cx1 J .•. <P ex,.)) = 

(2.13) 

\ ~1 !£., 
l (2-.:)' ... (2~1' 

i (-p1 x1 + ... + ?.,x., l 
e 

• (2.1n" s(,,+ ... +p,l G(,,J ... G<p,.l G<?., ... ,p.,J. 

For z < 0~ set 

(2.14) G,(p1 , ... ,pn) = G(p1 , ... ,pn), p = ('p0 ,p). 

Then, using the spectral condition, one may show that for every fixed, 

real momentum configuration p1 , , .. ,pn, Gz(p1 , ... ,pn) extends to an analytic 

function of z in the half-plane Rez<O. Furthermore, the elastic scattering 

amplitude is given by 

(2.15l T(~',~'l~,;p .t.:m 
•~o 

Gi-e (f>',q',-p,-ql, 

where p,q are the momenta of the incoming mesons and p' ,q' those of the 

outgoing particles. The energy components of the 4-momenta in eq. (2.15) 

are -p0 = W(,P) J 'P'o = w(-P') , etc. The normalization of the scatter

ing amplitude so defined is such that the optical theorem reads 

(2.16) lm T(j'i,q I j),ql = ~s(s-lt-m'-l d~o<(sl, 

where s denotes the centre of mass energy squared and C(tot(s) is the 

total cross section. 

The relation between 6m and T involves the forward amplitude 

(2.171 F= T(j5,~1j'i,q). 
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F depends on a single Lorentz invariant, which is conveniently taken 

to be the crossing variable 

(2 .18) )I ( w (~) w (~ l - ? . 9 ) / m 

It follows from general principles that F ( V ) is a boundary value of 

a function, also denoted by F, which is analytic in the cut plane shown 

in Fig. 1. Crossing symmetry implies that this analytic function is even 

in y, Besides the physical cuts, F has no singularities in the simple 

theories considered here except perhaps for a pair of poles at V = ± !~· 

These arise from 1-particle exchange reactions as follows. Let 

rcp1, ... ,pn) be the 1-particle irreducible part of the amputated n-point 

function G(p1 , ... ,pn). Using the graphical notation of Fig. 2, the 4-

point function (and hence the scattering amplitude T) can be decomposed 

into 1-particle irreducible parts as shown in Fig. 3. The poles of the 

forward amplitude F at V = ± fm stem from the first two 1-particle 

reducible diagrams in Fig. 3, because for these values of V the momentum 

flowing through the middle propagators is just on the mass shell. For 

the residue of the pole, we thus have 

(2.19) fM... 
v~±. ~m 

( "2_ t....,') F(v) = i.'t 
2 ' 

;-1here the 3-meson coupling constant A. is given by 

(2.20) A.= r<"f>,q,k), 

(2.21) p + q + k 
2 

0 ' p q2 k2 2 -m 

(the complex point (2.21) is a1~ay from the singularities of the 3-point 

function, cp. subsect. 2.4). 
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2.2 Statement of result and outline of proof 

We are now in a position to write down the long heralded asymptotic 

formula for the finite size mass shift: 

3 {' -~ml ,_""1 -Jm'+~'L . 0(-liil)j 
(2.22) Am--

16
.,<-rn'L A e 2 +it d.'! e F(t~) + e 

-oo 

Here, m is some mass larger than m, i.e. the error term in eq. (2. 22) 

is exponentially small compared to the first two terms. In perturbation 

theory, we shall find 

(2.23) - f3 -m ~ "i1,m. 

If A+ 0 , this bound is actually saturated, but in other cases like 

the ~4-theory with an ultra-violet cutoff, m is expected to be larger. 

The implications of eq. (2.22) have already been discussed at length 

in Ref. /12/ so that here \"Je directly proceed to the proof of this for-

r:1ula. Deferring details to the follO\~ing subsections, the argumentation 

is as follows. As explained in the introduction, the basic assumption 

is that the correlation functions of $ can be expanded in a series of 

Feynman diagrams 1~i th momentum space propagators 

(2.24) - 2 2 -1 /).(p;m) (m +p) 

and arbitrary local vertices (the set of vertices must include mass and 

I"JaVe function renormalization counter terms to insure the validity of 

the normalization condition (2.3) to all orders of the expansion). If 

desired, the free propagator (2.24) may also be replaced by a propagator 

\·Jith an ultra-violet cut-off, for example 
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(2.25) /l'(~;m'l = 
-1 -1 

(m'+ p' l - (A'+ ;:?l , II » ""' . 

In the course of the discussion, it will become clear that the validity 

of eq. (2.22) is not affected by such a modification independently of 

how large 1\ is. 

The Feynman rules for the finite l correlation functions are exactly 

the same as in infinite volume except, of course, that the space-like 

components of the loop and external momenta are restricted to the dis-

crete values (2.7). This immediately implies that, as asserted above, 

~L (p) converges to L{p) as L ~ oo, because in this limit, the sums over 

loop momenta can be replaced by integrals. The finite size mass shift ~~ 

is therefore small for large l and the pole equation 

(2.26) 
-1 

GL (ifl, D) = 0 

can be solved by expanding in powers of 6 m, which leads to 

lim=- "E.L(f>l/ (2-m+ tf,.,r\(~l) + 0((Mnl'l, 
(2.27) 

p = (im,D,O,O). 

~Jith the help of some abstract graph theory summarized in subsect. 2.3, 

it may now be shown (subsects. 2.5-2.7) that diagram by diagram one has 

(2.28) 

(2.29) 

-13 L 
L.L(f>l- l::C.pl = O(e-T"" ), 

.. 
~1'· 

L (6) _2_ l:(A) = 
L I op• ~ 

.[3 
0 ( e- T ml) . 

In the sum of all diagrams of a given order, r. (f)) and 1..
0 

E {A) vanish 
a~ ~ 

because of the normalization condition (2.3), and it follows that 
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(2.30) lim-- 2~ L:LC?l + O(e-inl) 
.[3 L 

O(e-T"' ) 

to all orders in perturbation theory (here and below, m denotes some 

mass satisfying the bound (2.23)). 

The analysis of the L-dependence of the self-energy diagrams which leads 

to eqs. (2.28), (2.29) also allows to identify the class of graphs, which 

contribute to the leading exponential decays ofEL(p) at large L. These 

graphs can be summed up in closed form and one obtains 

n 1 ~L 
(2.31) ~L(Pl = ~ (11 + 12 + 131 + O(e ), 

(2.32) I 1 
-

(2.33) 11. = 

(2.34) 13 

d' 3 
\ ~~ 2. L. cos qi L l (21() i ., G(q+t?lG(-q+Hl 

r( A 1A 1A)r(' 1o 1') ' -~,q+2p,-q+zr ?,-q-2-p,q-z-?, 

d" I f.;;), 
3 

2.L. 
i =~ 

cos 9i L GCql G(o) r(-q,q,ol r(-f>,f>, ol, 

l ~ 2. f:_ cos qi L G (q) r ( f>, q,- p , - q) · 
(2.1':)1 j=1 

The graphical representation of these integrals is displayed in Fig. 4 . 

The proof of the mass shift formula (2.22) is now easily completed 

(subsect. 2.7) by using complex contour integration to extract the 

asymptotic behaviour of 11 , 12 and 13 at large L. The analytic properties 

of the vertex functions, as far as they are needed for this last step, 
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are established to all orders in perturbation theory in subsect. 2.4 

(the discussion there also serves as a simple illustration of the abstract 

graph theory developed in the following subsection). 

2.3 Some abstract graph theory 

The proof of the statements made above requires some control over the 

topology of an arbitrary Feynman diagram. To facilitate this task, some 

notions and results from abstract graph theory are summarized here 

(a fuller account can be found in Nakanishi's book /16/). 

(a) Abstract graphs 

An (abstract) graph ~ consists of a set of lines 'i-, a non-empty set 

of vertices Y and two mappings i and f from :l into 'Y' called incidence 

relations *). For every line .f E tl. , i (t) is called its initial vertex 

and f{l) its final vertex. i(l} and f(f) are also referred to as the 

endpoints of~. It is possible that i(t) coincides with f(l) in which 

case .f is called a loop line. 

(b) Paths 

A path '.P in a graph ~ connecting the vertices afb is a subset of ;I!. 

with the property that there exists a sequence a= v1 , v2 , ... , vN = b 

of pairwise different vertices vk and a labelling f1 , £2 , ... , I. N-1 of 

the lines in "P such that vk, vk+1 are the endpoints of (k. Note that 1>_ 

*) £ and 'V" are assumed to be finite. 
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is a set of lines and does not contain the vertices vk, In particular, 

two paths intersect if and only if they share a common line. 

A graph ~ is connected, if for any pair of vertices a~b there exists 

a path~ in 1 connecting a and b. In a connected graph, every vertex 

is an endpoint of some line except in the case, when there are no lines 

at all and a single vertex only. A general graph always divides into 

a number of connected components in the obvious way. 

(c) loops 

A loop 'e in a graph ~ is a non-empty subset of £ with the property 

that there exists a sequence v
1

, ... ,vN of pairwise different vertices 

and a labelling l 1 , ... , .f. N of the lines in 'e such that vk, v k+1 are 

the endpoints of ~k (k = 1, ... ,N-1} and vN, v1 are 

the endpoints of ~ N. In particular, 'e = { ~ 1 is a loop if e is a loop 

line. 

It is possible to define an orientation on a loop ~ in ~ . This amounts 

to assigning a number' denoted [ re : ! ] ' to every line € E. 'e such that 

['e<tJ 6 f~ -1\ 
' ' 

c2. 35) [ <e' o = [ <e , e' J if WJ=f(tJ, 

[<e, n -['e:e'l il WI=W'Jo.,- fW=f(t'J (Ht'l. 

On every loop, there are two orientations, which differ by an overall 

sign. 



- 17 -

A first result of abstract graph theory we shall rely on later is the 

following 

Lemma 2. 1: Let afb be two vertices in a connected graph ~ and t'
1 

•..• , ..'CH 

a set of (pairwise) disjoint loops. Then there exists a path 1' 

in ~ connecting a and b such that '3' n lf'j is either empty 

or a path in ~ for all j = 1, ... , M. 

For a proof, see Appendix A. 

(d) Trees 

A tree T in a connected graph ~ is a maximal subset of ae not containing 

any loop in ~ . For every tree T, we define T* to be the set of lines 

not belonging toT. It may be shown that trees always exist and that 

the number of lines in T* is the same for all trees (and equal to the 

number of independent loops in~). If Tis a tree and atb are two vertices 

of '3 , there exists a unique path 1> c T connecting a and b. Further

more, for every line .e E T* , there exists a unique loop in 1 , which 

is contained in T u { t 1 . This loop necessarily passes through .e . 

(e) N-particle irreducibility 

By deleting a line ~ from a graph ~ , a new graph denoted by ~' { ~} 

is obtained. Thus, the set of lines of the new graph is ;£ ' { t 1 

its set of vertices is 'V and the incidence relations i and f are inherited 

in the obvious way. Similarly, a number <\, ... ,.eN of lines can be deleted. 

If 'i is initially connected, the mutilated graph ~' {.f1 , ••. _, ~N} 

in general decomposes into several connected components. A graph ~ is 

called N-particle irreducible between two vertices a, beY., if a and b 

always belong to the same connectivity component of ~' f { 1 1 ••• , iN 1 

no matter which lines l1 1 ... , .fN are deleted. 
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N-particle irreducibility of a graph ~ implies a certain amount of 

analyticity of Feynman integrals associated to ~ . To establish analy

ticity domains, the following result will be helpful. 

Theorem 2. 2: Suppose ~ is a graph, 1<1hich is N-particle irreducible 

between two of its vertices afb. Then there exist N+i disjoint 

paths 'P1 ..... '.PN+1 in ~ connecting a and b. 

For a proof see Ref. /16/, p.37ff. 

(f) z3 gauge fields on a graph 

As on regular lattices, it is possible to define gauge fields on an abstract 

graph 1. In particular, if the gauge group is~3 (which will later turn 

out to be the relevant choice), a gauge field on 1 is an assignment 

of an integer vector net) to every line e E ~ . Another field h'(t) 

is then called gauge equivalent to ~(t), if 

(2.36) n'lil = •t~t1 + 1i~tw-1<ittll for all e e £. 

\<Jhere l(v), VG 'Y_, is some field of integer vectors. Eq. (2.36) is also 

referred to as a gauge transformation. If ~ is an oriented loop in 

~· one can define a gauge invariant quantity 

.... 
(2.37) 'W ('e,nl r. ['e•lJ ti(il, 

£< 'e 

which is analogous to the Wilson loop in lattice gauge theories. 

A useful way to label the gauge equivalence classes (n) of gauge fields 

on a connected graph ~ is the following, Choose some tree T in ~ and 

for every class (hJ a representative field h(t) such that 
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(2.38) ~(el 0 for all i. E T . 

Fields satisfying {2.38) are said to be in the axial gauge (relative 

toT). It is trivial to show that in every class [n] there exists a unique 

member n(~), which is in the axial gauge. The class(~] can thus be 

characterized by the values assumed by this field along T*. 

{g) Simple gauge fields 

As usual, gauge fields on a graph 1, which are gauge equivalent to 

~(~) = 0, are referred to as pure gauge configurations. Another important 

class of gauge fields are those, which are gauge equivalent to a configura

tion it(.t) with h(t') = 0 for all lines l E >1.. except for one line l*, which 

is contained in at least one loop in ~ and where one has \ ~ ( e*) \ = 1. 

These fields are called simple. 

A set of gauge independent simple fields can be constructed as follows. 

Define :tc to be the set of lines .i € <l , which are contained in at least 

one loop in~· Two lines in ic are called independent if there exists 

a loop in <i, 1vhich contains one of them but not the other. Now choose 

a maximal set { t
1

) ... J iN l of pairwise independent lines in 'i.e and consider 

the 6N simple fields ;n(t; j ,e) (j = 1, ... ,N, e E Z 3 , jeJ = i) 

defined by 

tt(t31.~e) e if e e. 
l' 

(2.39) 

0 otherwise. 

Then, it is easy to show that these configurations are a complete list 

of gauge independent simple fields. 

- 20 -

(h) Feynman diagrams and abstract graphs 

Suppose dD is a Feynman diagram contributing to an n-point vertex func-

tion. After assigning some arbitrary orientation to its lines, 8) defines, 

in a natural way, an abstract graph ~ consisting of a set of vertices 

V, a set of lines :l and incidence relations i and f. We distinguish 

between an abstract vertex v E Y. and its coordinates in space-time, which 

will be denoted by x(v)IJ. A vertex of ~ is called external, if one 

or more external momenta are leaving (entering) the corresponding vertex 

in fJ) . Apart from this qualification, ali the vertices in ~ are treated 

on an equal footing independent of whether they correspond to vertices 

of different type in~. Similarly, lines describing the propagation 

of different particles in QJ are not distinguished in ~ . 

2.4 Analyticity properties of vertex functions 

As already mentioned in subsect. 2.2, some analyticity properties of 

the 3- and 4-point vertex functions are required for the proof of the 

mass shift formula (2.22). The analyticity domain established here derives 

from the 1-particle irreducibility of the vertex functions and will 

be sufficiently large for our purposes. 

Define a comple( domain 

(2.40) [)= {C?,q)E i['x I[~ J ( lm 1" ± 1""9 J' < 4-.,• 1. 
Then we have 
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Theorem 2.3: To all orders in perturbation theory, the vertex functions 

1 1 r Cp.-q2i',q-?l, 

r'(p,q,-p,-q), 

which are initially defined for (-p)~)e IR(j.x IR4-, analytically 

extend to the whole domain [) . 

Proof: 

We consider only the 3-point function, the proof being similar for the 

4-point function. 

Let I> be a Feynman diagram contributing to the 3-point vertex function 

and. ~ the associated abstract graph. ~ is 1-particle irreducible between 

any two of its vertices and has 3 external vertices, denoted a,b,c, 

where the external momenta p, -q-b, q-b leave the diagram 3). 

Because ~ is 1-particle irreducible between b and c, theorem 2.2 applies 

and it follows that there exist two disjoint paths 'P 1 , P 2 connecting 

b and c (set ~ = 'Pa = ¢ , if b c). Suppose nm~ we add an extra 

vertex z to ~ and two extra lines tb' tc connecting z with band c. 

Then, this augmented graph is 1-particle irreducible between a and z 

and hence there are disjoint paths ~3 ) P~ connecting these vertices. 

Deleting .fb and ec again, we are left with disjoint paths J\, 'PC 

in ~ , which connect a with band c, respectively( "P6= ¢ , if a=b, 

and 'Pc"" ¢, if a"'c). 

The paths ~ , 'P1 and Yb, 1>c can be used to define a flow of external 
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momentum through the diagram 3:> in such a way that the momenta k ( i ) 

carried by the lines l in ~ satisfy 

t + 1 
k( ) = - '"' if e E (1'bUJ'0)' (1'1UJ'1 ), 

e + 1 k()=-2" if l E (1', U J'2)' (J'b U J>,), 

(2.41) .e +1 +1 
k( ) = -'"' - 2" if t e (J>b u J>,) (\ (1', u J>, ), 

k( l) = 0 otherwise. 

In other words, the momentum carried by ~ • 'Ji is ~ and the momentum 

flowing through 'Pb ,Pe is - b. 

When the diagram g) is evaluated in momentum space, the total momentum 

flowing through a line l is k ( i ) + 'f (.! ) , where "t( l ) is a combination 

of loop momenta. Thus, as long as 

Re (k(l) -I-'Y(l))
2 

>- m 2 

for all lines ~ and all loop momenta, the Feynman integral associated 

to 3J is not singular. Since 't ( l ) is real, the condition 

(1m k(.f)) 2 < m2 for all-! E :f., 

is therefore sufficient to guarantee regularity. In view of eq. (2.41), 

this criterion is satisfied for (p,q)E [) thus proving the theorem.[] 

2.5 Large L behaviour of self-energy diagrams 

To study the L-dependence of Feynman diagrams at large L, it is useful 

to work in position space rather than momentum space. Thus, the infinite 

volume propagator is 

(2.42) b.(X;-1'11.) ( ~ ei?x ('rn'+?'l-1 
) (211:)~ 
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and for finite L we have the well-known representation 

(2.43) liL(x,.,) = L. 
-he z3 

D.(x+nl; m), 1'!= (0,1li). 

This series converges rapidly, because A(x;m) decays exponentially 

at large x. In a position space Feynman integral, the vertex "factors" 

are homogeneous partial differential operators with constant coefficients 

acting on the arguments of the propagators in the diagram. An important 

point to note is that these differential operators follow directly from 

the Lagrange density and are hence independent of L. 

Suppose now that 3) is a Feynman diagram contributing to l:L (j)) (the 

results obtained below also hold, with appropriate modifications, for 

.1_ f.L( {)) and arbitrary n-point vertex functions at momenta with 
al'• 
purely imaginary energy components). The abstract graph ~ associated 

to 9:J is 1-particle irreducible between any two of its vertices and 

has two external vertices, denoted a and b, where p flows in and out, 

respectively. It is possible that a and b coincide. 

In position space, the contribution JL(.O) of the diagram t:J to .EL (p) 

is an integral of the general form 

l (§)) = 

I 
m(x(b)0 -x(a)0

)_ } 

(2.44) TI ) d~x(vl V e II 1\.L(x(~W)-x(l(tl),m) , 
VE"/" 1 

"a tE£ 
IRxl 

where ¥' = "t' { b} and V is the product of the vertex "factors" 

as explained above. The integrand in eq. (2.44) is a periodic function 
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of the space-like coordinates of every vertex VE 't' and the integration 

over !(v) is accordingly restricted to a periodicity cell of volume 

L3 . The external momentum p flowing through the diagram is accounted 

for by the exponential factor in eq. (2.44). 

To obtain a more tractable expression, we now substitute the series 

(2.43) for the propagators lll in eq. (2.44). For every line -!e af, 

1"e then have a summation variable :t'i ( t) E 7L 3 and, interchanging 

summations and integrations, 'J- L ( IJ)) becomes a sum of terms one for 

each 1.3 gauge field configuration {.n{.l)) on ~ (cf. subsect. 2.3). 

This summation can be split into two indePendent summations, one over 

the gauge equivalence classes [hJ of gauge 

the gauge transformations 1 ('I) J \1 E Y. 

fields and the other over 
~ 

, with 'A(b) 0. The latter 

can be combined with the integrations over !(v), 'IE~' , and one then 

obtains 

(2.45) l (§)) L JL(lll,rt), 
rtJ 

JL(!ll,rt) = 
(2.46) 

- \ o { m(x(b)
0

- X(Q)
0

) 1 
I\ J d x(vl V e 11 ll(xtr<tl)- x(i(tl)+n(tlL,m) . 

'IE"If-
1 IR"' iei:. 

Note that now the vertices are integrated over all of IR 4 . 'JL (:lJJ ti.) 

is therefore gauge invariant and the summation over gauge equivalence 

classes in eq. (2.45) is a well-defined operation. 
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For 11 "' 0, 1L (:l~ :fi) is independent of L and equal to 1 (§:l) , the 

contribution of the diagram i) to the infinite volume self-energy run. 
Thus, for the contribution of tJ to the difference Ll (f'i} - l:(p), we 

have 

(2.47) dL(.P)- JC.P) L'... 
CrtH [oJ 

dL(.P,h). 

The leading large L behaviour of the integrals JL (;;nJ fi.) is described 

by the following theorem. It basically asserts that $L(~J.fi) falls 

off exponentially for non-trivial gauge fields~. the rate E (~J-t1) 

being determined by the topology of the diagram and the "strength" of 

the gauge field~ (see subsect. 2.6). 

Theorem 2.4: At large L, we have 

(2.48) 

(2.49) 

Proof: 

{n JL (g),n) = - ml £ (~,ft) + 0 (& L)' 

where E (~);,) is given by 

€(~,ti) = ""'i"{x(bl0-X(al0 +~~>llxqtel)-x(Wl)+nltli}, 

the minimum being taken over all possible positions X (y) e tRI+ 

of the vertices V E. Y.. 

Using the heat kernel representation 

00 

I - 2 x1 
) L\(X;'I"n) = J dt (41rtl e!<p- (m't + 4-t , 

0 
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substituting t_.,.t L/2m, x(v)-"' Lx(v), and working out the vertex "factors", 

the integral (2.44) assumes the general form 

~ 

(2.50) }L(ro,:n)- lf \dt~ 11 \ d.'x(vl ls P(t,x,ti) -ml 1W,x,fi) 
te>l o 'eV' IR• Q(t) e ' 

where s is some power, P and Q are polynomials and 

R(t,x,ti) = x(bl0
- x<al" + L H t, +f [x({<tl)- x(Wl) +n(tl]

1
}. 

~·>l t 

The integral (2.50) is of the saddle point type and can be evaluated, 

for large L, by expanding_ about the minima of R. This yields eq. (2.48} 

with 

d~.•n = ... .... 
t,x "R(t,x,-Yil. 

Finally, eq. {2.49) is obtained by performing the trivial minimization 

over the variables tl first.[] 

2.6 Properties of e(!f).ti} 

The basic result is 

Theorem 2.5: Suppose 'f1 , ..• ) 'el-l is a set of (pairwise) disjoint loops 

in ~ . Then, vJe have 

(2. 51) £ ( ~, n) ;;, ~ .r I 0 ( 'ei, 11) I , 
J=1 

where w(~.n) denotes the Wilson loop (2.37). 
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Proof: 

According to lemma 2,1, there exists a path ':P in ~ connecting a and 

b such that 'Jln ~1 is either empty or a path in 1 for all j = 1, ... , N 

(set 1> = ¢ if a = b). To every line -€ € :P assign a number [:P: .e] 

which is 1 if the orientations of 'P and e coincide, and ~1 otherwise. 

Thus, [P:t) satisfies the same relations (2.35) as the loop orientation 

numbers (~:t] and, in addition, 

[:P•O = 1 if i(t) =a, 
[1',0=-1 if j<tl=a. 

Next, for every subset ~ of lines, define 

e (o",-itl = mt-n 
X 

[ L [1': tJ [ x(ftti)
0

- x(i(tl(] 
t• ':l'n'P · 

+ L. I x (!<tl)- x(Wl) + tl(tl I] 
l• !)' 

(~(':l',i'i) 0 if~=¢). It is then easy to prove that 

d~,rtl = Ht,-i'il, 

e(~,-i'il ~ t:UP,,ft) iJ ~ => ""· ' 

t(~ u !l',,ti) ';!. ~(~,fi) + ):'(:1',,-i'i) if S:: rl\:1'2 = ¢ . 

In particular, we have 

" dV1l ~ l2 
1=1 

e ( ~i, :n l , 

and (2.51) follows, if we can show that 
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(2.52) c C t:J , -t'i l ) ~ I w C -ei, 11 l I 

for all j 1, ... , N. 

Suppose first that 'Pn 'e3 = ¢ and let v
1

, .. JvM be consecutive vertices 

along ~ i Then, 

H 

e c t:1. , .n l = .,,:, { E. 1 x < v k+' 1 - x < v,) + [ t:i • t" J, a, l 1 1, 
X k ~-1 

where vM+l e v1 and ike 'ei is the line with endpoints vk, vk+l' By 

repeate.d application of 

(2. 53) I x - y + n I + I y - z + m \ ~ \ x - z + n + m \, 

one finds 

c ( t:1 , -t'i ) ) I 0 ( ~1 , -rt l I , 

which is an even stronger inequality than (2.52). 

Now consider the case "Pn ~:\ + ¢ and let v1 , .. ,vM and .e1 , ••• J .tM 

be as above. Since 'Pn re3 is a path contained in 'ei, it connects 

two vertices vr • v
5

. Thus, we have 

~('tV'tl = 

H 

""i1'1. f X(v,t-x(vyl
0 + L lx<v,+1)- X(vk)+[<ei:ik]n(!,ll1. 

k•1 

Using {2.53), it follows that 

~('e;,nl ~ ""-~"! X
0 + lxl + lx+wl1, 

where W-= (OJ ~(lt1).ft)). Furthermore, applying the triangle inequality 
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once more, the bound 

e(tl.::n);. mi,n { X0 + ~ (2X0
)
2 + ;;;•j xo 

is obtained, and the inequality (2.52) is now easily established by 

determining the minimum over x0 
by differentiation.[] 

An easy consequence of theorem 2.5 is 

Theorem 2.6: If~ is not a pure gauge configuration, we have 

e(~,til ~ .fJ/2. 

Proof: 

LetT be a tree in ~ and choose the axial gauge for 't (subsect. 2,3}, 

Because t is not a pure gauge configuration, there exists a line (, E T* 

such that ii ( .t ) :/: 0. For the loop ~ with ~ ' { .t 1 C T , we therefore 

have I \4 ( 'e • -Y'i ) I ~ 1 , which by theorem 2. 5, implies C. ( ~) .t'i ) ~ -J3 /2. 0 

The class of gauge fields~. which make the leading contribution to 

the sum (2.47) at large l, is identified in the following 

Theorem 2.7: Suppose~ is not a pure gauge configuration and 

e(~.~) < J3/2 Then, tis a simple gauge field. 

The proof of this theorem is complicated and is therefore divided into 

digestible pieces. In what follows, we assume that tis a gauge field 

on ~ , which is not a pure gauge configuration and which satisfies 

£t ~ ,.n l < -f312. . 

lemma 2.8: let T be a tree in ~ and choose the axial gauge for~. Then 
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there exists an integer unit vector e and numbers 

Proof: 

s(t)e {0,1,-11 

!e T*. 

such that ti(t) = S(l) ~ for all 

Suppose .fe T* and let ~ be the loop in ~ with 'e' {t1 cT. 

Then, 

i\4t~;,itll = lti<ell, 

and since £ ('a ~ ~) < ~ , theorem 2.5 implies 

l-it(!) I e l 0,1}. 

Let 

(2.54) T"; U,, ... ,e" l 

be a labelling of the lines in T* such that 

1-\t(eill 1 for j 1, ... ,M, 

(2.55) 

0 otherwise. 

Because tis not a pure gauge configuration, we have M ) 1. 

If M = 1, there is nothing left to prove. On the other hand, if M ') 2, 

we must show that 

(2.56) 1;(1 ) 
1 

:!:1i(/.) for all i,j~M, i::l=j. 
J 

let 'ei be the loop passing through ti with ~i' f.et 1 c T . Then, 
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~; (l rel -4: ¢ because theorem 2. 5 would otherwise imply 

E(~,~) ~ {3. 'ei' Uil J ~j' Hjl and hence reinre1 are paths 

contained in T. We can therefore construct a composed loop t .. by 
lJ 

(2.57) ~ij ('e; u 'ei)' ('e; () 'ei). 

'eij passes through ti , .i3 and no other f € Tit-. Thus, 

10 t<e1i,nll = 1 nt~;l :t:. :ri(t1li, 

where the sign depends on the relative orientation of rei and rej in 

e.. Applying theorem 2.5 once more, we have 
lJ 

In ( e, l ± n ( ~i l I e ! o ,11, 

and since ~(-l.) and it(.(..) are integer unit vectors, (2.56) follows. 0 
l J 

In the following discussion, T always denotes a tree in ~ and his 

assumed to be in the axial gauge. Furthermore, the elements of T* are 

labelled as in eqs. (2.54), (2.55). For j "' 1, ... ,M, define vertices 

uj, vj through 

uj = i(.tj), vj = f(ijl if 1ictj) = tct1 J, 

(2.58) 

uj o f(tj), vj o i(tj) if i'i(tj) o- i'i(t1). 

It is also helpful to introduce the reduced graph 

(2. 59) ~ = ~ ' {t, , . , £ H 1 , 

~~hich contains the tree T and is hence connected. By definition, 

~(.t) = 0 for all lines t in ~ . 
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Lemma 2. 9: If M ) 2, the following statements hold. 

Proof: 

(1) ui 'f. vj for all i,j~ M. 

(2) Suppose 1'
1

, 1'2 are paths in ~ connecting u1 , v1 and 

u
2

,v2
, respectively. Then, 1'~n 1'

1 
rf:: ¢. 

~ 

(3) Suppose :P1 , 'P1 are paths in ~ connecting u
1

, v2 and 

u
2

,v
1

, respectively. Then, 1>
1 

n'P'1 .f s;2S. 

(1) As. above, let 'ej be the loop passing through tj with rei' { ~i l cT. 

Suppose u. "' v. for some i. Then, .e. is a loop line and re · () <e1.
 = ¢ 

l l l t 

for all j + i. Since M ~ 2, such j exist and theorem 2 5 implies 

£ ( r., .;'li: ) ~ 43 , which contradicts our assumptions. Thus, u. :fv. 
~ l l 

for all i. 

Suppose now that ui = vj for some i + j, 
(eq. (2.57)) passes through .f. and!. in 

l J 

Then, the composed loop ~ij 

such a way that I W ( ~ii, fi )I = 2, 

which also leads to £ ( r. , ~) ~ ,J3 . Thus, u. + v. for 
~ ' J 

all i -4: j · 

(2) Ifl\ and P2 were disjoint, the loops J; u{t1 1 and 'P1 U {-e 1 1 

would also be disjoint and hence €(~,11)~ {3 by theorem 2.5, which 

is a contradiction. 

(3) \~e again assume 'J; f1 'P2 
= ¢ and show that this leads to a contra

diction. If 1\ and P 
2 

do not cross (i.e. if there is no vertex, which 

is an endpoint of a line in P
1 

and of another line in 'P2 ) , the set 
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~ = 'l', u 1', u { t,' t, l is a loop in ~ . Furthermore, the orienta-

tions of .t
1 

and t2 in ~ are such that \Ci{'e,.\1.}1 = 2.. and hence 

£ (~, .fl) 3 4'3 , which is a contradiction. 

If P
1 

and P2 cross, there exists a vertex z, which is an endpoint of 

some lines in l\ and P2 . This vertex divides Pi into two paths l\ (ui ;.z) 

and Pi(z:v
2

) connecting ui,z and z,v2 , respectively (it is possible 

that z coincides with u
1

, for example, in which case we set Pi(ui:z)= ¢ ). 

Similarly, P
2 

divides into P
2

(u
2

:z) and P
2

(z:v
1
). Because P1 and P2 

are disjoint, so are the sets 

.e1 
>l2 

1'1 (u1:z) U :P2("v1)' 

:P2(u2:z)U :P1(z:v2). 

~1 itself may not be a path, but it contains a path G1 connecting u1 

and v
1 

{note that t 1 + ¢ because u1 +vi by (1)). Similarly, there 

is a path Q
1 

contained in.l
2

, which connects u
2 

and v2 . Since C21 n &1 = ¢ .. 

there is a contradiction with {2), which has already been established 

above. 0 

,.. ,.._ ,.._ ,.. 
Lemma 2.i0: If M~2, there exists a line t in 1 such that ~' f€l 

Proof: 

decomposes into two disconnected components, one, denoted ~ u , 

containing the vertices u
1

, u
2 

and the other, ~ v, containing 

vl,v2. 

We assume that such a line i does not exist and derive a contradiction. 
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Suppose we add '2. extra vertices U, V to ~ and 4 extra lines connecting 

' U with u
1

,u
2 

and V with v
1

,v
2

. The absence of ~ implies that this enlarged 

graph is 1-particle irreducible between U and V. Thus, by theorem 2.2 

there exist two disjoint paths P 1 , P2 connecting U and V. Deleting 

the extra vertices and lines again, P 
1 

and J:S 
2 

are reduced to some disjoint 

' paths P
1

, P
2 

in ~ each of them connecting some ui with some vj with 

i,j E {1,21 (note that because of (1) in lemma 2.9, the sets 1'1 , 'P2 

are not empty), Necessarily, the situation is then as in {2) or (3) 

of lemma 2.9 so that p1 n '1'2. = ¢ is a contradiction. 0 

The proof of theorem 2. 7 is n01>1 easy to complete. Choosing the tree 

T and all the other notation as above, \~e need only consider the case 

M ;;t 2, because for M 1, eq. (2.55) already implies that~ is simple. . . 
Let .f be the line in ~ , whose existence is guaranteed by lemma 2. 10. 

i is an element of T ( ~' { l l would otherwise be connected). Thus, a 

new tree T' can be defined through 

T'= (T,ltl)u{~1 ]. 

Relative to this tree, ~ is not in the axial gauge, because n ( t") :F 0. 

Set 

~ 

A.(w)='l'i(t
1

) 
• 

if w is a vertex of Su., 
~ 

A.(w) = 0 if w is a vertex of ~~~, 

and let 1i' be the gauge transform of 1i by 1 {cp. eq. {2.36)). It is 

trivial to show that n• is in the axial gauge relative to T'. Further-

more, we also haven'(l
2

) = 0 andh'{tj) = 0 for all j = M+l, ... ,N, 
' . 

because these latter lines belong either to 1u or to !kv· The number 
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M' of elements ~ of T' * 1~ith ?i ( t) :/= 0 is therefore strictly smaller 

than M. 

The procedure leading from T to T' can now be iterated and a series 

of trees is obtained with decreasing numbers of lines~ , where h(t) ~ 0. 

After finitely many iterations, this number will have decreased to 1 

and~ is thus found to be a simple gauge field. CJ 

2.7 Proof of the mass shift formula (final steps) 

As already explained in subsect. 2.2, the proof of the mass shift formula 

(2.22) proceeds via eq. (2.31), a relation, which we can now prove to 

all orders of the Feynman diagram expansion using the results on the 

large L behaviour of self-energy Feynman integrals obtained above. Taken 

together, these results imply 

(2.60) dL (ID, <tl O(e_q,L) if n is not pure gauge, 

(2.61) Jc(i>) -1(ID) E._ m1 5;,~ 1, ?cUll,nl + O(e-'iiill 

for all diagrams SJ, in particular, eq. (2.28) (and, similarly, eq. 

(2,29)} follows immediately. After summing over all diagrams, eq. (2.61) 

becomes 

(2.62) l',L({J) L: 
:0 

[nlsim~le Jc(:c,fil + O(e--liil) ' 
}'__ 

where L. ( .p) :::: 0 has been used. Now recall that the simple classes 

lrtl can be labelled by the set of fields (2.39) so that eq. (2.62) may 

be rewritten in the form 

(2.63) L L ( f>) r. 
IJ 

L' 
I e iiJ 
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A 

1c(ID,tl + O(e-liil) 
' 

where -l runs over all lines in X> , which are contained in at least 

one loop and which are independent of each other (i.e. lines carrying 

the same momentum for all configurations of loop momenta are counted 
A 

as one independent line). In momentum space, 'JL (£>) -i) is exactly 

equal to the infinite volume Feynman integral associated to ~ , except 

that the integrand is multiplied by the extra factor 

' (2.64) 2 L. 
1=1 

cos ( 'l'; L l , p: momentum flowing through e. 

These integrals are thus exactly of the type shown in Fig. 4 and, without 

great difficulties, one can prove that in fact the series (2.63) matches 

term by term with the Feynman diagram expansion of the rhs of eq. (2.31). 

Having established the basic relation (2.31), we now proceed to evaluate 

the integrals 11 , 12 and 13 for large L using complex contour integration. 

Consider first the simplest case, the integral r
3

. Due to rotational 

invariance, it can be written as 

(2.65) r, = b ) 4 ig,L 
('l:rrl~ e G(ql rq>, 9,-p,-ql. 

By theorem 2.3, rep, q, - P. -q) has no singularities in the complex 

q1-plane for 0 6 \"M. 9.1 < m {3 (and real q
0

, q2 , q
3

). The pro-

pagator G(q) is also analytic in this domain except for the meson pole 

at 
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(2.66) 9< = ;. ~ m1 + q~ + q! q~= (q1.q,l. 

If we now shift the q1 integration path from the real line to the line 

lm q~ = m Jj / 2. , one obtains two terms, one from the meson pole 

(2.66) and the other from the integral along the new integration path. 

The latter contribution is more rapidly decaying at large L than the 

error term in eq. {2.31) and is therefore negligible. Thus, we have 

(2.671 I,= 6 I dq. d1q,_ 
(21<)3 2\q,l 

ll 

-tq,IL -L 
e r(f>,q,-f>,-9) + O(e-"' l, 

where q1 is given by eq, (2. 66) and IB is the ball 

(2.68) 18 = f '9··9~) E IR
3

1 9~ + 9i .,;, t m1 1 

(only when ( qo ~ qJ..) E tB is the meson pole inside the strip 

0 ~ hn q
1 

~ tfl. ~ / 2 ) . Note that q is now on the meson mass shell 

and that, contrary to the oscillatory integral {2.65), the represents-

tion (2.67} immediately reveals \,;hat the large L behaviour of 13 is. 

The integral 12 can be treated in exactly the same way as r 3 and one 

obtains 

(2.691 I
2 

= 
1 

dq. d q,_ 
(, I (l~)3ltq,t 

IB 

-lq,IL -L 
e G(O) r(q,-q,ol r!f>,-p,O) + O(e-"' l. 

The integral r 1 , on the other hand, is more complicated. There are two 

meson poles in this case located at 
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(2.70) ±_.f'l. 2. +i l' 91 - t "/ m + q ,_ + ( 9o- 2: "" . 

They are not purely imaginary and happen to coincide for q
0 ~ 0, which 

is a potential source of difficulty below. To avoid it, we first deform 

the q0 integration path around q0 ~ 0 into an infinitesimal half-circle 

in the complex lower half-plane. Then, noting 

(2.71) 

+ 
0 < \m 91 < m ,ff/2 

± \"" q, > "" ,[372 

if (q.,q,_) E IB, 

otherwise, 

the shift of the q1 integration path can be performed as above and one 

obtains 

(2. 72) 

(2.73) 

+ - -iiiL 11 11 + 11 + O(e )) 

I± 
1 

= 6\ dq.d1q,_ { ..i.. 
IB (21<1' 2q, 

e iq, L G ( H + q l 

, r!-f>,q+tf>,-q+Hl r!f>.-d:f>,q-1?11
9
,=

9
;:. 

+ 
The integrals Ii are not yet of the desired saddle point type {as eq. 

(2.67), for example) and further contour shifting is needed. Consider 

first the integral r;. At fixed q.t, q1 <. * m 1 the q
0 integration 

path is along the real line from point A to point 0 in Fig. 5, A and 

0 being characterized by 

(2.74) - + I.! '1_ '1 q. - - v ~ 'ffi 9~ . 



- 39 -

We now deform this integration path to the curve ABCO shown in Fig. 5a, 

which is possible because q~ and the other entries in the integrand 

are analytic inside the rectangle ABCD, as one may easily show using 

theorem 2.3. Note that the meson pole of the propagator in the integrand 

is at q
0 

= 0, which is outside the integration contour. After the deforma

tion of the integration path, I~ is a sum of 3 integrals corresponding 

to the straight lines AB, BC and CO. The contribution of AB and CD is 

however negligible at large L, because \m q~ ) m {3/i along these 

lines. In other words, the result is 

(2.75) 

I+ 
1 

b l dqo d
2

q~ 
IB (11<)3 21q11 

- lq,IL G (' ) 
e ?-9 

• 1(-p.q,-q+j)l l(f>,-q,q-f>l + O!e-"'Ll, 

where q1 is given by eq. (2.66) (we have replaced q0 by q0 - ~· q0 

real, along BC). 

The integral I~ can be treated similarly, the integration contour being 

displayed in Fig. 5b. The only difference is that now we also get a 

contribution from the meson pole at q0 0 so that altogether we have 

(2.76) 

cl'q). 
I-= 6 I (21<)2 2\q~l 

1 IB' 

+ 6 
B 

dqo d'qJ. 
(21<)3 2 lq,l 

e-lq~IL 

e-lq1 1 L 

:~.' 
2m 

G!j)+ql 

, r!-j),q+p,-ql rq>.-q-p,ql + O(e--iiiL l 
' 
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where q
1 

is given by eq. (2.66), A by eq. (2.20) and 

' 91 i H-m2+ 9~ 
(2. 77) 

IB' ! 91 e IR, I 9~ " t m~ l · 

If we now add up all the integrals, the integrands combine to the forward 

scattering amplitude F(V) defined in subsect. 2.1 and we end up with 

(2.78) 

d' ' I ' , ( 9 J. - lq, L :1. 
L'L('!') = 3 J (2~l'tla'l e 2m 

\Br ,1 

+ 3 l 
1B 

dq 0 d'q~ 
(21<)3 21q,l 

e-lq,IL F!-iqol + O(e--iiil) 

In this equation, we may just as well integrate over all real q0 and 

q~, the difference being of the same order as the error term at large 

L. Noting 

(2 .79) 

2 

\ ~ (1'1t)2 

""e finally get 

1 -~ 
2. ~ 2 e ; ~-+ 9" L 

p. + qi lf1<L 

- l' L 
e 

(2.80) LL(j)l= 
3~ -~ml 3 
--e 2 +-
~1<mL 81<1 L 

l d~ e--/m'+~'L F(i~) + Q(e-;;;\ 

which, in view of eq. (2. 30), agrees with the mass shift formula (2. 22) 

and thus concludes the proof of this relation. 
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3, Volume dependence of bound state masses 

3.1 The non-relativistic case 

For the physical interpretation of the relativistic formulae derived 

later, it is useful to first consider the case of two non-relativistic 

bosons ("mesons") of mass m, which form a bound state of mass 

(3.1) m
8 

=2m- E
8

, E
8
>0, 

and spin 0 {the mesons are also assumed to be spinless). The hamiltonian 

~describing this system is an operator acting on scalar wave functions 

~(!,Y), which are invariant under an interchange of the particle co-

ordinates X andY. Explicitly, we choose~ to be of the form 

(3.2) IH = - ; .. ( !:; X + !:; ~ ) + v (X-~ ) ' 

\'ihere l:l. x, 6. y denote the laplace operators with respect to ! and Y. 
The potential V is assumed to be smooth, rotationally symmetric and 

of finite range, i.e. 

(3.3) V(1) " 0 for t'tl> A. 

These assumptions are made for simplicity and could easily be relaxed 

v1ithout affecting the main results obtained bela;,.. 

In infinite volume and at zero total momentum, the bound state wave 

function ~B depends only on the distance r ~IX- Yt of the bound 

particles. It satisfies the Schr6dinger equation 

(3.4) IH '1\fB = - EB '¥,. 

\ 
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and falls off exponentially at larger: 

(3.5) '¥,.( .. ) A 

(3.6) :.t = ~""" E,. . 

_,.,. 
e .. h> R) 

' 

As is well-known, bound states give rise to poles in the analytically 

continued forward elastic meson scattering amplitude Fnr(E), which is 

defined in terms of the full (non-relativistic) amplitude Tn-r ( :P\ il'l .p,q} 
through *) 

(3. 7) F,"(E)= T,.,,(j5,-plp,-p), 
•1 

E = J:... 

If we choose the normalization 

(3. B) 
l 

\ d.3 z I'¥B(Ill)\ = 1, 

the residue of Fnr(E) atE~- E8 is given by 

(3.9) 
J.J...,_ (E+EB) F.,...,.(E) 
£+- EB 

32."
1 

IAI', .,. 

""' 

i.e. up to an irrelevant phase, the behaviour of ~Bat large r is 

entirely determined by spectral data. 

*) The sign and normalization of T is chosen such that the non-rela-nr 

tivistic optical theorem reads lm Fn-r (E) = - ~ E /m a'io-b (E) . 

With this convention, the Born approximation is given by 

T ( ~, ~,, .... l ~v,-· ... l ~v(-' -l ,_,, "P , - P "?,- p = 1' - "P + 1' + "P where 

V(kl= \d'••-i~·tv(il. 
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Suppose now that the mesons are enclosed in a box of size L and periodic 

boundary conditions. Then, the corresponding wave functions ~(!,y) 

are periodic in both coordinates x,y and the interaction potential v 

has to be replaced by 

(3.10) vl til r. v(t+nL) 
tie. 7l3 

to account for the interactions of a meson with the mirror images of 

its partner. Note that because V is of finite range, there are only 

a finite number of non-zero terms in the series (3.10) (at most one 

if L > 2R). 

For large L, the finite volume SchrOdinger equation 

(3.11) IH'1JI'=-E'1JI' 
L ' 

Ill - - ~ ( ) + v (~ ~) 
(3.12) Jnl- 2wt {'.,+ ~~~ L X-'\ ' 

has a solution with E !ll E8 and 

the corresponding mass shift 

"V' ~ '\If 8 . An asymptotic formula for 

(3.13) lim" = EB- E 

can be derived as follows. Define 

(3.14J '1JI'0 (a) = L '1ji'B (I! +.;LI), 
ne1.3 

~ ...... e-x--a. 

~0 is periodic and hence an admissable finite volume wave function. 

Furthermore, 

(3.15) \HL '\lf
0 

(3.16) '((!) 
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-E'\If+t>, 
" 0 ' 

E. V(hilu "VB ttt+il'Lil 
;>[+it' 

O(e- ><L). 

Thus, for large L, 'Wa is almost a solution of the Schrtidinger equation, 

and, with an appropriate normalization of the true solution~, one 

can show that 

(3.17) "lf = '1\fo + O(e-><L). 

Taking the scalar product of 'IV with eq. (3.15) then leads to 

(3.18) Mn" L \d\, '1JI'
8
(\tll*V(!)'o/

8
(i'l+i'iLI) + 0(e-.J1:.eL). 

j;>l\~1 

Finally, using eqs. (3.3) - (3.6), the integral can be evaluated and 

the result 

(3.19) limB - 2.~1\' 

is obtained. 

\AI" e-•L 
ml 

+ 
O{e_{l.eL ) 

In view of the decay properties of the bound state wave function ~B' 

it is no surprise that a formula like (3.19) holds. Still, it is re-

markable that the detailed form of the potential V is irrelevant to 

the final result, which only refers to the particle masses m,m8 and 

the residue of the forward elastic scattering amplitude Fnr at the 
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bound state pole (cf. eqs. (3.6), (3.9)). Another interesting feature 

of eq. (3.19) is that ~m8 is always negative, i.e. S-wave bound states 

get lighter when squeezed. 

3.2 Calculation of Am
8 

in quantum field theory 

The class of quantum field theories considered here is similar to one 

discussed in sect. 2, except that now we assume that the spectrum of 

stable particles contains an additional particle with mass m8 <2m, which 

can decay virtually into two mesons. As far as the mesons are concerned, 

the notation of subsect. 2.1 is taken over. For the bound state, we 

assume that there is a (euclidean) interpolating field ~ normalized 

such that 

(3.20) < X(x) 'X.(ol > ~~ l (2'11:)~ 
ei?x Gtx(i'l, 

(3.21) G"(i'l-< = tn~ + i''- E"'<i'l, 

(3.22) I'x(i'l = 0 
il?~ 

.[x(i'l 0 2 for p 2 
•s· 

Vertex functions of r meson fields 4> and s bound state fields X. are 

denoted by rcp1
, ... ,pr;k1 , ... ,ks) (cp. Fig. 6). For simplicity, \~e 

shall furthermore assume that the transformation 

(3.23) ~-----4>, x-'X. 

is a symmetry of the theory so that 

- 46 -

rcpl' ... ,pr;kl' ... ,ks) 0 for r odd, 

(3.24) 
(<\>(xl X<ol) = 0. 

In particular, the coupling constant A. vanishes and the bound state 

has no virtual decays into an odd number of mesons. 

As in the non-relativistic case, the bound state gives rise to poles 

in the forward elastic meson scattering amplitude F(V). They stem from 

the skeleton diagrams of Fig. 7 and are located at 

(3.25) 'oJ""' ±VB ' "a = 2;,. ( m~ - 2m' ) . 

The associated residue is 

(3.26) 
.e..;,. 

V-+±YB 
( v2 - v') F(v) = 

B 
"• 2 .... ~ ' 

where the 4>~ X -coupling constant g is defined by 

g r<p,q;kl, 

(3.27) 

p+q+k 0, p2 q2 2 
m , k2 2 

mB. 

In finite volume, the meson mass shift Am can be calculated as in the 

simple scalar theories considered in sect, 2. The only difference is 

that now the Feynman diagrams also involve bound state propagators and 

the basic expression (2.31) for the self-energy ~L(p) has to be modified 

accordingly. If we restrict ourselves to the case of small binding energies, 

(3.28) {2m < m8 < 2m, 
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the result of the Feynman diagram analysis is 

(3.29) 1:: L (p) It+ icr2 + r3) + oce-iiiL), 

where iii and r
3 

are as before (eqs. (2.23), (2.34)) and 11, 12 are the 

integrals graphically represented by Fig. 8a,b. Evaluating the integrals 

as in subsect. 2.7, one finds 

00 

(3.30) llm = - 1&'1t'""L 
3 

) d~ 
-~ 

- -/m'+<a' L F(i'!) + e Q(e-mL) 

which is identical with eq. (2.22). In other words, the presence of 

the bound state has no influence on the leading finite size mass shift 

of the meson, in particular, 

(3.31) bm = O(e -ml) 

for all m8 in the range (3.28). 

\'le now proceed to calculate the bound state mass shift A m8
. As for 

the mesons, one shows that 

(3.32) Lima= 2m .1:~ (·f>sl + O(lMn l
1

) a a , 

where .r ~ is the finite volume self-energy of the X -field and 

(3.33) P8 ~ (im8 ,o,o,O). 

Summing up the leading Feynman diagrams contributing to E.~ ( -f>s), we 

have 

(3.34) .L~(·f>al 1 I" - m L z: 
1 

+ O(e a ) 
' 

, 
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the integral r7 being graphically represented by the skeleton diagram 

shown in Fig. Be. Provided m8 is in the interval (3.28), the error term 

in eq. (3.34) is given by 

(3.35) iiiB;?; -f21J, 

(3.36) 
I 2 1 2 

l.l =- 'l m -4mB. 

Finally, evaluating r; for large L by complex contour integration, we 

end up with 

(3.37) 
3 'I!' 

Lima= - 161t .,~ L 
e- ~L + 0 (e- YiisL) 

(the contribution of the ~)'.. forward scattering amplitude is smaller 

than the error term). In quantum field theory, the calculation of 6m8 

is thus very similar to the calculation of the meson mass shift Am 

and it is quite clear that the physical origin of the size dependence 

is the same in bath cases. 

As far as the dependence on L is concerned, eq. (3.37) coincides with 

the non-relativistic formula (3.19). We are hence led to interpret the 

length ~-las the relativistic expression for the width of bound state 

wave function. An important point to note is that if m
8 

is very close 

to the elastic threshold, ~- 1 is large and finite size effects on the 

binding energy are only slowly going to zero as L increases, in parti

cular, for m- 1< L< ~- 1 such a wide bound state is likely to be misinter-

preted as a stationary scattering state (cf. Ref. /11/) . 
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In the limit of heavy, weakly bound mesons, one expects that there-

lativistic formula {3.37) reduces to the non-relativistic expression 

(3.19). This is in fact the case, because in this limit we have 

(3.38) ~ o ~ + O(E 3/2) 8 • 

(3.39) ~· 51211"1 m IAI
1 

+ 0(E1ll, 

where the second relation has been obtained using eqs. {3.9), {3.26) 

and F 4m2 Fnr to account for the different normalizations of the 

relativistic and non-relativistic scattering amplitudes. Note that since 

the proof of the quantum mechanical formula did not rely on perturbation 

theory (and could in fact be made entirely rigorous using Green function 

methods), the correctness of the non-relativistic limit provides a non-

trivial check on our quantum field theory calculations. 

4. Concluding remarks 

The most important qualitative result of the analysis presented in this 

paper is that finite size effects on the stable particle masses fall 

off exponentially with a rate, which depends on the spectrum of light 

particles in the infinite volume theory. An asymptotically precise 

description of the size dependence of the masses is provided by the 

apparently universal formulae proved in sects. 2,3. These relations 

are obviously useful to control finite size effects in numerical studies 

of quantum field theories on a lattice (e.g. Ref. /7/) and may also 

serve to estimate the strength of particle interactions at low energies 

/9,10/. 

Compared to the simplicity of the finite size mass shift formulae {2.22) 
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and (3.37), the proof given in this paper appears to be unduly complicated. 

Hm,;ever, it must be appreciated that a proof of eq. {2.22) requires 

to control correlation functions at large times {to project on the mass 

shell) and simultaneously at large space-like distances. Simple transfer 

matrix methods therefore do not apply. An axiomatic approach does not 

seem promising either, because the condition that "the parameters in 

the Lagrangian are independent of the volume" is difficult to account 

for. 

With little effort, the results obtained in this paper can be extended 

in several directions. 

(a) To include particles with spin, one assumes the existence of 

appropriate (many component) interpolating fields ~d then follows the 

steps outlined in subsect. 2.2. A subtle point to be observed is that 

the finite volume breaks the full rotational symmetry down to the cubic 

group 6 . Since the irreducible representations of SU(2) with spin 

s) 2 are reducible with respect to 0 , the energy of a particle at rest 

in general depends on the direction of its spin relative to the box. 

The corresponding set of finite size mass shifts is obtained by dia-

gonalizing the finite L self-energy of the associated field, which is 

a non-trivial matrix in spin space in these cases. 

(b) If there are several light particles in the theory, their contribu-

tions to the mass shifts must be added. In some cases, this leads to 

unexpectedly large finite size effects. For example, in the two-dimensional 

O(n) non-linear c-model, the theory converges to a massive free field 
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theory as n ~oo, but finite size effects survive in this limit, because 

there are n light particles. 

(c) The methods of this paper can also be used to calculate the volume 

dependence of the masses of heavy particles, which are stabilized by 

conserved quantum numbers (such as baryon number), Unstable particles, 

on the other hand, cannot be treated this way, because the wave function 

of a resonance has an only slowly decaying scattering wave component 

and is hence expected to be more sensitive to the boundary conditions 

than a bound state wave function. 

A calculation of the next to leading terms in the large L expansion 

of the stable particle masses would be a very non-trivial extension 

of the present work. Not only would one have to master the topology 

of Feynman diagrams to a higher degree than was needed to derive the 

leading terms, but a more complete knowledge of the analyticity proper-

ties of the vertex functions would also be required to be able to deform 

momentum integration paths sufficiently far away from the real axis 

(in the last step of the proof of the mass shift formula). Still, that 

the finite volume vertex functions could be written as an infinite series 

of skeleton diagrams of the type shown in Fig. 4, remains an attractive 

and logical possibility, which will perhaps be realized one day using 

more elegant methods. 
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Appendix A: Proof of lemma 2.1 

Let & be an arbitrary path in~ We say that~ is a good path, if Qn ~j 

is either empty or a path in ~ for all j = 1, ... ,M. Furthermore, two 

vertices u. v € "t are called nearest neighbors, if u ~ v and if 

there exists a line ~, whose endpoints are u and v. 

Define~· to be the set of all vertices, which can be connected to a 

by a good path in ~ . It is obvious that all the nearest neighbors of 

a are in 'Y-'. Our goal is to show that also b E Y.'. Since ~ is connected, 

it is sufficient to prove that wE Y.' if w is a nearest neighbor of some 

Y€ Y' (and w .f. a). 

Thus, let & be a good path connecting a and v, w a nearest neighbor 

of v (w ~ a) and € a line with endpoints v,w. Furthermore, let 

a = v1 ,v2 , ... ,vN = v be consecutive vertices along & and !kE & the line 

with endpoints vk,vk+1 (k = 1, ... , N-1). Then the following cases can 

be distinguished: 

a) w = vK for some K~2. 

In this case, &' == ft11 ... ) f 1<- 1 J is a good path connecting a 

and w. 

b) w f vk for all k and .lf 'ej for all j. 

In this case, &' = ~ U { t 1 is a good path connecting a and w. 

c) w =F vk for all k and te eJ for some J. 

In this case, there exists a minimal K such that vK is an endpoint 
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). 

of some line in ~ J . If K 1 set ~~ :o:: ¢ and otherwise 

ra' = { t, , ... , e K-< 1. Furthermore, let Q"c 'eJ be one of 

the paths connecting vK and w. Then, ~'u CQ
11
is a path in ~connecting 

a and w. It is good path, because &'is either empty or a good path, 

and because 'eJ n &' = ~ J ~j f\ Q
11 

= <P for all j l= J. 

Thus, in all cases we have found a good path connecting a and 1r1 and 

hence WE V' as was to be shown. 
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Figure captions 

Fig. 1: Analyticity domain of the forward amplitude F(V). There are 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

cuts along the real line from - oo to -m and from m to + oo. 

Simple poles may occur at v = :!: ~. 

Graphical symbols used for (a) the full propagator G(p), 

(b) the modified full propagator ( 2 .f cos 1'i L ) · G (.p). ,., 
(c) the connected, full propagator amputated n-point function 

G(p1 , ... ,pn), and {d) then-point vertex function r(p1 , ... ,pn). 

Decomposition of the 4-point function into 1-particle 

irreducible parts. 

Graphical representation of the integrals 11 , 12 and 13 (from 

left to right). The notation is as in Fig. 2 and the momentum 

flowing into the diagrams is p. 

Integration contours in the complex q0-plane, (a) for the 

+ -calculation of 11 , {b) for 11 . 

Graphical symbols used for {a) the full bound state propagator 

GX(p), and {b) the mixed 3-point vertex function r(p,qik). 

Bound state exchange diagrams giving rise to poles in the 

meson scattering amplitude. 

Fig. 8: 
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Graphical representation of the integrals 11, 12 contributing 

to E L (p) (diagrams (a) and (b)). Diagram (c) represents the 

integral r[ , which is the leading term in the large L expansion 

of l::~(p8 ). 
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