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quantum field theories

I. Stable particle states

M. Lilscher

Deutsches Elektronen—Synchrotﬁon DESY, Hamburg

Abstract

Due to polarization effects, the mass M of a stable particle in a quantum
field theory enclosed in a large (space-like) box of size L and periodic
boundary conditions in general differs from its infinite volume value

m. As L increases, the finite size mass shift Am = M - m goes to zero
exponentially with a rate, which depends on the particle considered and

on the spectrum of light particles in the theory. This behaviour follows

from an apparently universsl asymptotic formula, already presented earlier,

which relates Am to certain forward elastic scattering amplitudes. A
detailed proof of this basic relation is given here to all orders of

perturbation theory in arbitrary massive guantum field theories.
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1. Introduction

From experience with large scale numerical simulations of lattice gauge
theories over the past few years, it has become plausible that with this
method a reliable calculation of the hadron masses and other low energy
parameters in 9C0 will ultimately be possible. Because of the limited
capacity of today's computer systems, the lattices one can simulate are
however rather small so that, for example, a lattice of size L = 5 fermi
and spacing a = (2 Ge\.’)_1 would already be considered huge by present
standards. Hadrons contained in such small volumes occupy a significant
fraction of the avéilable space and one therefore expects that the cal-
culated masses show some dependence on L. Thus, for the correct inter-
pretation of the data abtained from Monte Carlo simulations, a theoretical
understanding of these finite size effects is needed and studies with

variable L must be mede to check the theoretical expectations.

Finite volume effscts are also interesting in their own right and their
investigation may prove useful for purposes other than merely controlling
a systematic error source. The reason for this is that they probe the
system at distances large compared to the lsttice spacing. In genersl,
they are therefore universal (i.e. independent of the form and magnitude
of the ultra-violet cutoff) and often contain useful information on the
infinite volume system. In statistical mechanics this observation has
long been converted intc a powerful tool for the numericzl calculation

of critical exponents at second order phase transitions, for example

(see Ref. f1/ for a review and Ref. /2/ for a recent paper in this field).

More recently, the finite size method has also been applied to asymptotically



free field theories in an attempt to calculste the spectrum of the low-
lying stable particles analytically /3,4,5/. When combined with data
obtained from Monte Carlo simulations, this approach may result in a
significant test of scaling and a determination of the A-parameter,

which is free of extrapolation ambiguities /6,7,8/. Finally, in the
present work the volume dependence of energy values is related to scatter-
ing amplitudes, which makes it possible, in certain cases, to compute
3-particle on-shell coupling constants /8,10/ and scattering lengths

/11/} by numerical simulation.

In this and the following paper /11/, massive guantum field theories
enclosed in an L x L x L box with periodic boundary conditions are con-
sidered (time remains unrestricted). Due to the finite volume, the spectrum
of the Hamilton operator (i.e. of the transfer matrix in lattice theories)
is then discrete and the corresponding energy values depend on L in a

way, which apart from some gross features, is dynamically determined.

For large volumes one expects that there are distinguished zerc momentum
gigenstates of the Hamilton operator, which can be interpreted as states
of 8 single stable particle at rest. The corresponding energy values
‘Mi(L) {i labels the different particles) are close to the rest masses

m, of these particles as defined at L =00 . This paper is devoted to

the question of how exactly Mi(L) approaches m in the 1limit where L -+ 00
and all other parameters of the theory are kept fixed. Note that this
limit is different from the usual finite size scaling limit, where L

is made large but the parameters in the Lagrangian are tuned in such

a way that L/¥ is fixed, where ¥ is a correlation length.
\
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The physical origin of the size dependence of the mass Mi of 8 "pointlike"
stable particle is that such particles polarize the vacuum eround them,
i.e. they are accompanied by a clcud of virtual particles. In the simplest
case, the diameter of the cloud is roughly equal to the Compton wave
length X, of the lightest particle in the theory. When enclesed in a

box, the energy of the particle starts to deviate from its infinite volume
MESS M. as soon as the cloud is squeezed by the box, i.e. for 1mf3 L.

This physical picture can be translated inte an exact asymptotic formula
relating the size dependence of the masses Mi to certain forward elastic
scattering amplitudes (cf. eqg. (2.22) beloh). I have already presented
this formula some time ago together with a number of applications /12/.
In this.paper, a detailed procf of the formula is given within the frame-

work of Feynman diagrams.

A seemingly different physical situaticn occurs, when the particle con-
sidered is a bound state of two other "pointlike" stable particles with

a binding energy small compared to its mass. The wave function cof the

bound particles then falls off exponentially with a characteristic length
A., which may be substantially larger than )uo . One therefore expects

that finite size effects on the binding energy are large up to sizes

L= XA and only then go to zero exponentially as L +ec . An exactly soluble
2-dimensional example displaying this behaviocur has recently been discussed
in Ref. /13/. Here it will be shawn (Sect. 3) that the bound state situation
is actually not so different from a2 squeezed polarizaticn cloud as dis-
cussed above, since in both cases finite size effects arise from particle
exchange "around the world” and are described by similar relativistic

amplitudes, the main differences being of a kinematical nature.
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The stable mesons and baryons in QCD are bound states of quarks, but

the situation here is quite different from the one just discussed, because
quarks are confined. As suggested by simple models, this presumably implies
that the wave functions of the valence quarks inside a hadron are going

to zero more rapidly than exponentially as the distance between them
increases *). One therefore expects that the prchability for a single
guark tc separste from its partner(s) and walk around the periodic box
is quickly going to zero for growing L so that, in unquenched QCD, the
leading finite size effect on the hadron masses at large L is not due

to this process, but arises from the squeezing of the virtual pion cloud
around these particles as discussed above. Only this latter mechanism

was taken intc account for the estimation of the size dependence of the

pion and nucleon masses presented in Ref. /12/.

As already indicated above, the proof of the basic relaticn between finite
size mass shifts and elastic scattering amplitudes will be given to all
orders in pertutrbation theory, i.e. I shall assume that the dynamics

of the particles considered can be described by a Lagrangian quantum

field theory, where all fields are massive and the couplings are small.
The interaction Lagrangian can be arbitrarily complicated and the theory
may also have a fixed vltra-violet cutoff. In all cases, the resulting
formulae are independent of these details and refer only to the physical
masses and scattering amplitudes of the particles. In view of this uni-
versality, I believe that the result is in fact true beyond perturbation

theary.

—_—
J Velikson and Weingarten /14/ have recently calculated Coulomb gauge

quark wave functicns in quenched lattice QCD and find that they are decaying

rapidly, although, in the limited range of distances available, a devia-

tion from an exponential law is not seen.
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Another impcrtant question is whether the relations so derived are also
valid in pure non-Abelian gauge theories and {CD, where perturbation
theory in the gauge cocupling censtant inveolves massless fields and the
arguments given in this paper cannot immediately be applied. However,
one can always describe the low energy properties of these theories by
effective Lagrangians *), which, for an accurate description, are perhaps
very complicated, but are of exactly the type tractable by the Feynman
diagram technigue of Sect. 2. Note that because of the universality of

the final result, the precise form of the effective lagrangian is never

needed, i.e the effective Lagrangian only catalyses the proof.

These arguments suggest that the mass shift formulae proved in this paper
are of a basically kinematical nature and that they are valid in arbitrary
massive quantum field theories, a conclusion, which is also supported

by exactly soluble models /12/ and a recent numerical study of finite

size effects in the 0(3) non-linear ¢ -model in two dimensicns /7/.

) At least in principle, such effective lLagrangians could be constructed
by "integrating out" the hiah frequency modes in the functional integral.
Alternatively, one may adopt Weinberg's point of view /15/ that the class
of all effective lLagrangians reproducing the global symmetries and the
spectrum of low lying particles of an underlying field theory contains
no more information, than would be implied by basic principles (locality,

analyticity, etc.) anyway.
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Although this paper is self-contained, the reader is advised to first
consult Ref. f12/ for an overview and illustrations (noc concrete applica-
tions will be discussed here). To keep the presentation as simple as
possible, proofs will only be given for spin-less particles and the dimen-
sionality cof space-time is set equal to 4 throughout the paper. Also,

I shall assume that the ultra-violet cutoff {if any) does not break
Lorentz invariance. All these restrictions are in no way crucial to the
argumentation and can easily be relaxed, in particular, with appropriate

modifications the results also hold in lattice theories /[9/.

The bulk of this paper is devoted to the proof of the finite size mass
shift formula alluded to above (sect., 2). Although the details are worked
cut for simple scalar theories only, the method can easily be generalized
to more complicated situations. In particular, the volume dependence

of bound state masses can be caiculated and one finds, in the non-relati-
vistic limit, that the leading finite size effect on the binding energy
is correlated with the fall off properties of the bound state wave func-
tion in the expected way (sect. 3). A few selected remarks are included

in the final sect. 4.

2. Volume dependence of the mass gap in simple scalar theories

2.1 Basic definitions

We here discuss theories of a real scalar field ¢(x), which, in infinite
volume, describes the physics of a single self-interacting particle

("meson"} of mass m and spin 0, For the study of finite size effects,
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it is convenient to work with the connected euclidean correlation func-
tions (tb(x*)... ¢(Xﬂ)) of ¢ rather than time-ordered vacuum expec-
tation values. The normalization of ¢ is chosen such that the meson

)

pole in the euclidean propagator has unit residue, i.e. we have

4 .
2.1y {40040 = Sg_;u etpx a(p),

2.2y Glp) = m 4 pt- L{p),

3 - 2 2
@n X (p) g,.E(p)— 0 for pt=- ml.
Since it is assumed that there are no bound states or other additional
stable particles, the meson pole at p2 = - m2 is the only singularity

of G{p) below the 2-particle threshold at p2 = - 4m2.

In a finite volume of size L and periodic boundary conditions, the field

¢ satisfies

- - . 3
@a ¢(x%,X+Ln) = ${x°X) for all Re 7.
Denating the connected euclidean ccrrelation functions at L <0 by

<¢(X1)... qS(xﬂ))L , we have

(2.5) (cb(x)dD(O))L'-‘ TN y‘i}?‘.’ e‘lPX GL(p),

> n

—
) Euclidean 4-vectors are written as pp =ph = ( 0,5}, 3 = (pl,pz.Pa).

(=T = ]
]

and the euclidean scalar product is p-q = p g +$~
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(2.8) G (p) " =nm" +p° -F (p),
where the momenta E take values
3
(2.7)'\5=7—'3:?{ ne Z°.

For large L, we expect (and shall later show) that EL(p) is close to

2 (p), in particular ZL(p) and 81" .Y_‘L(p) are nearly vanishing along
P

the mass shell p2 = - m2. Thus, for every fixed B of the form (2.7),

GL(p) has a pair of poles in the complex energy plane at

(2.8) 0% =7 1w (B,

22

@9 w () v @)= m* 4 B2 > 0.

> 00
The meson mass M in finite volume is now defined by

%y,

(2.10)y M :wL(
or, equivalently, through the leading exponential decay of the 2-point
function at large times:

- Hx°

(2.11) <¢(x}¢(o)>l_ o e

X'=w 00

The asymptotic formula to be proved in the fﬁllowing subsections relates

the finite size mass shift

(2.12) Am =M -m

to the {(infinite volume) elastic meson scattering amplitude T. To write

it down explicitly, some further preparation is needed. First of all
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we note that the scattering amplitude T can be expressed through the
euclidean 4-point functien in the follcowing way. Define full propagator
amputated correlation functions G(pl,...,pn) by

do  d'p, e'i (PX to b PaXy)

(Bix) . dix, ) = Sm)'*"' o

(2.13)
x (om)t S{p+.*p,) GIp).. Glpy) GIP,,..pn)-

For z < 0, set

(2.18) G, (py,-.-,p) = BBy, 80, B = (22°.3).

n
Then, using the spectral cendition, one may show that for every fixed,
real momentum configuration ParesaPpps Gz(pl,...,pn) extends to an analytic
function of z in the half-plane Rez <0. Furthermore, the elastic scattering
amplitude is given by

1oy . - Y [
eas T($,§18.9) = f‘_’;“o Gie (9.9, -p.,~q),
where p,q are the momenta of the incoming mesons and p',q' those of the
outgoing particles. The energy components of the 4-momenta in eq. (2.15)
are p°= WEH), ‘p"’ = W(P') , etc. The normalization of the scatter-

ing amplitude sc defined is such that the optical theorem reads
-
2.18) b T{B,515,3) = As(s-tm?) o, (s),
where s denotes the centre of mass energy squared and cftut(s) is the

total cross secticon.

The relation between Am and T involves the forward amplitude

(2.17y F = T(‘ﬁ}?ﬂ ?.4).
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F depends con a single Lorentz invariant, which is conveniently taken 2.2 Statement of result and outline of proof

to be the crossing varisble

We are now in a position to write down the long heralded asymptotic

@218 v = {wB e -Fg)/ m.

formula for the finite size mass shift:

it follows from general principles that #(v) is a boundary velus of

3 , 13 I PO -wmlb
a function, also denoted by F, which is analytic in the cut plane shown (2.22) Awm = — mL {;\ ez mlL +% S dla e 4 F(ué) + O(e )}
-0
in Fig. 1. Crossing symmetry implies that this analytic function is even

in y. Besides the physical cuts, F has no singularities in the simple Here, m is some mass larger than m, i.e. the error term in eq. (2.22)

N - . =+i
theories considered here except perhaps for @ pair of poles at ¥ - 2‘h1' is exponentially small compared to the first two terms. In perturbaticn

These arise from 1-particle exchange reactions as follows. Let theory, we shall find

F(pl,...,pn} be the 1-particle irreducible part of the amputated n-point
- 3
function 6(p,,...,p ). Using the graphicel notation of Fig. 2, the 4- - eEm moe 41‘ m.
point function (and hence the scattering amplitude T) can be decomposed If A% O , this bound is actually ssturated, but in other cases like

inte it-particle irreducible parts as shown in Fig. 3. The poles of the the ¢4—theory with an ultra-violet cutoff, M is expected ta be larger.
forward amplitude F at v = * %ﬁn stem from the first two 1-particle

reducible diagrams in Fig. 3, because for these values of ¥ the momentum Tne implications of eq. (2.22) have already been discussed at length
flowing through the middle propagators is just on the mass shell. For in Ref. 12/ so that here we directly proceed to the procf of this for-
the residue of the pole, we thus have mula. Deferring details to the following subsections, the argumentation

is as follows. As explained in the introduction, the basic assumption

y T 4,2 w A n?
(2.19) Y=+ im (v - T}-m ) F(V) 2 A ] is that the correlation functions of ¢ can be expanded in a series of
2

Feynman diagrams with mementum space propagators

where the 3-meson coupling constant X is given by
2.28) Bipim) = (0 + py7!
2.200 A= [p,q,k),
) . and arbitrary local vertices (the set of vertices must include mass and

2.21) pra+k=0,p =q -k =0 wave function rengrmalization counter terms to insure the validity of

(the complex point (2.21) is away from the singularities of the 3-point the normalization cendition {2.3) to all orders cf the expansion). If

function, cp. subsect. 2.4). desired, the free propagator (2.24) may alsc be replaced by a propagator

with an ultra-violet cut-off, for example
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(2.25)  KMpymt) = (»m"+pi)_1 - (N A > am. (2.30) Am=—£‘;’ 2.8+ Ofe

In the course of the discussion, it will become clear that the validity _
to all orders in perturbation theory (here and below, m denotes some

of eg. (2.22) is not affected by such a modification independently of
mass satisfying the bound (2.23)}.

how large A is.

The analysis of the L-dependence of the self-energy diagrams which leads

The Feynman rules for the finite L correlation functions are exactly

to egs. {2.28), (2.29) also allows to identify the class of graphs, which
the same as in infinite volume except, of course, that the space-like ]

contribute to the leading exponential decays on:L(ﬁ) at large L. These
componente of the loop and external momenta are restricted to the dis-

graphs can be summed uvp in closed form and cne obtains
crete values (2.7). This immediately implies that, as asserted above,

2 (p) converges to X(n) as L > oo, because in this limit, the sums over =
? (2.31) D (p) =3 (T, + Ty + L) + 0(e™™),
loop momenta can be replasced by integrals. The finite size mass shift Awn

is therefore small for large L and the pole equatlon

d'&—
a2y I, = \ 4 EZ cosq;: L. Glg+ip)Gl-a+3 18)
(2.26) G (in0) ! =0 ! S (2—.:)“ jos 4 4 47z
can be solved by expanding in powers of Am, which leads to x P('ﬁ;‘:{"'%f’ :“‘:l*'%f’} P(.«'F‘)J..q % ,4- iz.f;,)
am =—- D (B} (2m + i FQZ(p))Jr 0 {(am)),
(2.27) d 3 .
b = (im,0,0,0). .33 T, S ) 2 5?:4 cos q; 1. G(q) G(0) M (-q,q,0) " (-3,9, 0},

With the help of some abstract graph theory summarized in subsect. 2.3,

it may now be shown {subsects. 2.5-2.7} that diagram by diagram one has
a9 I, = V&4 2 £ sl Glq) C(# ).
) Sw B oeosgil 6@ C(R.q,-p.-q

{3
@28 L (H)- L) = O(QFTHL)J

The graphical representation of these integrals is displayed in Fig. 4.

(2.29) ml.) The proof of the mass shift formula (2.22) is now easily completed
. a a - i

TP - 59;0 T = 0(e

(subsect. 2.7) by using complex contcur integration to extract the

X ' . . asymptotic behaviour of I, I, and I, at 1 L. Th 1ytd i
In the sum of all disgrams of a given order, X (p) and 'a%o £{H) wanish yip 1 T2 3 8t -arge e analytic properties

) o . of the vertex functions, as far as they are needed for this last st
hecause of the normalization condition (2.3), and it follows that Y step,
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are established to all orders in perturbation theory in subsect. 2.4
(the discussion there also serves as a simple illustration of the abstract

graph theory developed in the following subsection).

2.3 Some ahstract graph theory

The proof of the statements made above requires some control over the
topology of an arbitrary Feynman diagram. To facilitate this task, some
notions and results from abstract graph theory are summarized here

(a2 fuller account can be found in Nakanishi's book /16/).

(a) Abstract graphs

An (abstract) graph % consists of a set of lines fl, a non-empty set
of vertices ¥ and two mappings i and f from & into ¥ called incidence
relations *). For every line fe & , 1 (£} is called its initial vertex
and £(£) its final vertex. i(#) and £(f) are also referred to as the
endpoints of £. It is possihle that i(£) coincides with () in which

case £ is called = loop line.
{b) Paths

A path P in a graph Cd' connecting the vertices atb is a subset of ¥
with the property that there exists a seguence a = Vi Voresos vy = b
of pairwise different vertices v, and a labelling 81' 82, R n-1 of
the lines in P such that v

v are the endpoints of fk. Note that P

k' Tk+l

S
Ju‘f. and ¥ are assumed tc be finite.
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is a set of lines and does not ceontain the vertices Vi In particular,

two paths intersect if and only if they share a common line.

A graph (i is connected, if for any pair of vertices atb there exists
a path ® in fé connecting a and b. In a connected graph, every vertex
is an endpoint of some line except in the case, when there are no lines
at all and a single vertex only. A general graph always divides into

a number of connected components in the obvious way.
{c} Loops

A locp £ in a graph % is a non-empty subset of & with the property

that there exists a sequence VisrenaVy of pesirwise different vertices
and a labelling 81,..., CN of the lines in ¥ such that Vo Vp,q OTE
the endpoints of fk (k =1,...,N-1) and Vs ¥4 BTe

the endpoints of 'EN' In particelar, € = {4} is a loop if € is a loop

line.

It is possible to define an orientation on a loop € in % . This amounts

to assigning & number, denoted [e:1] , to every line £ € such that

[e:¢]

]

{4,-11,

z.35) [e:4)={e:8'] i ()= §(&",

[e:1]

1l

On every locp, there asre two orientations, which differ by an averall

sign.

-le 'l s i) =) or Ji= {02 (EL).



17 -

A first result of abstract graph theory we shsll rely on later is the

following

Lemma 2.1: Let ath be two vertices in a connected graph (& and €, ..., %€,
a set of (pairwise) disjoint lcops. Then there exists a path P
in % cennecting a and b such that Pn '35 is either empty

M.

or & path in (& for all j = 1,...
For a proof, see Appendix A,
(d) Trees

A tree T in a connected graph (é is a maximal subset of & not containing
any locp in % . For every tree T, we define T* to be the set of lines
not belenging to T. Tt may be shown that trees always exist and that

the number of lines in T* is the same for all trees (and equal to the
number of independent lcops in (S). If T is a tree and afb are two vertices
of (5 , there exists a unique path P<€ T connecting a and b. Further-
more, for every line 4 € T* . there exists a unigue loog in % , which

is contained in Tulél. This loop necessarily passes through £,

{e) N-particle irreducibility

8y deleting a line £ from a graph % , a new graph denoted by %\ {8}

is cbtained. Thus, the set of lines of the new graph is £ ~{€1 ,

its set of vertices is ¥ and the incidence relations i and f are inherited
in the obvious way. Similarly, a number e‘,..., fN of lines can be deleted.
If (& is initislly connected, the mutilated graph q ANE R ZUNSINE A

in general decompeses into several connected components. A graph g is
called N-particle irreducible between two vertices a,be¥, if a and b
always belong te the same connectivity compenent of Cé S Bt

no matter which lines 8“..,,€N are deleted.

- 18 -

M-particle irreducibility of a graph % implies a certain amount of
analyticity of Feynman integrals associated to (& . To establish analy-

ticity domains, the following result will be helpful.

Theorem 2.2: Suppase % is a graph, which is N-particle irreducible

between two of its vertices ajb. Then there exist N+l disjoint

paths P, ..., Py,, in § connecting s and b.

For a proof see Ref. /16/, p.37ff.

{f) 13 gauge fields on a graph

As on regular lattices, it is possible to define gauge fields on an abstract
graph % Tn particular, if the gauge group is2? (which will later turn
out to be the relevant choice), a gauge field an q is an assignment

of an integer vector 'E(ﬂ) to every line f e . Another field h'(£)

is then called gauge equivalent to T(£), if

(2.35) B = A + 1({(83) - %Gy for all fe &,

where i(v), Ve '\‘, is some field of integer vectors. Eg. (2.36) is also
referred to as a gauge transformation. If ¥ is an oriented loop in

9, one can define a gauge invariant quantity

03 Wle®)y= L (€81 %),
et

which is analogous to the Wilson lecp in lattice gauge theories.

A useful way to label the gauge equivalence classes [h1 of gauge fields
on a connected graph % is the following. Choose some tree T in % and

for every class ("1a representative field (€)Y such that
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(2.38) T(8) =0 forall £&T. (h) Feynman diagrams and abstract graphs

Fields satisfying (2.38) are said tc be in the axial gauge (relative
Suppose & is a Feynman diagram contributing to an n-point vertex func-

to T). It is trivial to show that in every class [ ] there exists a unique )
tion, After assigning some arbitrary orientation to its lines, § defines,

member (£}, which is in the axial gauge. The class (71 can thus be
in @ natural way, an abstract graph (S consisting of a set of vertices

characterized by the values assumed by this field along T*.
¥, =z set of lines &£ and incidence relations i and f. We distinguish

]

(g) Simple gauge fields between an abstract vertex veV and its coordinates in space-time, which

will be denoted by x(v)“. A vertex of (& is called external, if one

. . . or more external momenta are leavin entering) the correspeonding vertex
As usual, gauge fields on a graph %, which are gauge equivalent to gl 9 P 9

in @ . Apart from this qualification, all the vertices in are treated
A(¢) = 0, are referred to as pure gauge configurations. Another important P quatiticati %

. . . R on an equal footing independent of whether they correspond to vertices
class of gauge fields are those, which are gauge equivalent to a ccnfigura- 4 9 P Y P

. : . £ diff in® . Similarly, lines describing th ;
tion A4} with B(£) = 0 for all lines £ € & except far one line -C*, which of different type ind . Similarly, lines describing the propagation

: . ; . of different particl i re not distinguished in .
is contained in at least cne loop in % and where one has |7 (¢*)| = 4. * P cles in & a 9 %

These fields are called simple.
2.4 Analyticity properties of vertex functions

A set of gauge independent simple fields can be constructed as follows.

. . . . . ti i b . 2.2, ici i f
Define ‘Y'c to be the set of lines £€ &, which are contained in at least As already mentioned in subsect. 2.2, some analyticity properties o

. ; . . h - -pei i i h h
ore loap in S Two lines in ¥, are called independent if there exists the 3- and 4-peint vertex functions are required for the proof of the

a loop in %; which contains one of them but not the other. Now choose mass shift formula (2.22). The analyticity domain established here derives

. . : : he 1-particle i i 111
s maximal set {e“..., EN} of pairwise independent lines in ¥q and consider from the 1-particle irreducibility of the vertex functions and wi

the 8N simple fields ?1(85 51‘9’) (3 = 4., N, ge 72} ) iZ1=14) be sufficiently large for our purposes.

defined by

Define a complef domain

i b oo 2
(2.39) 2.00) D= {(p,qle €x¢ I (lmP_t lmq) < lq..mi}_

= 0 otherwise.
Then we have

Then, it is easy to show that these configurations are a complete list

of gauge independent simple fields.
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Thearem 2.3: To all orders in perturbation theory, the vertex functions
1 1
M p,-a35p.a-3p)
F(P,q,*p»‘Q).
(Y
which are initially defined for (p,q)€ R'x R’ analytically

extend to the whole demain D .
Proof:

We consider only the 3-point function, the proof being similar for the

4-point function.

Let & be a Feynman diagram contributing to the 3-point vertex function
and-% the associated abstract graph. (.d‘ is 1-particle irreducible between
any two of its vertices and has 3 external vertices, denoted a,b,c,

where the external momenta p, Aq—%p, q—%p leave the diagram & .

Because (3 is 1-particle irreducible between b and ¢, theorem 2.2 applies
and it follows that there exist twe disjoint paths Pi’ '}7“2 cennecting
bandec (set B =7, = & , if b = ¢). Suppose now we add an extra
vertex z to (i and two extra lines fb, fc connpecting z with b and c.
Then, this augmentad graph is i-particle irreducible between a and z

and hence there are disjoint paths ?3 s Pu connecting these vertices.
Releting fb and Cc again, we are left with disjoint paths pbv Pc

in (5 . which connect s with b and c, respectively(P = ¢ , if a-b,

and B,= @, if a=c).

The paths 'P1 , 'Pz and 'Pb, 'Pc can be used to define a flow of external

92 .

momentum through the diagram & in such a way that the momenta k(&)

carried by the lines £ in g satisfy

k(e):‘-‘%p if £e (PuP )~ (RUR),
k(&) =¥ 2q i Le (RuBI~ (P UR),

A ey -t T X it e (PuP)in(Rul),
k(£) =0 otherwise,

In other words, the momentum carried by P, F, is %q and the momentum

flowing through % ,P. is - %p

When the gdiagram @ is evaluated in momentum space, the total momentum
flowing through a line £is k(£ ) + (£ ), where ¥(£) is a combination

of loop momenta. Thus, as long as
2
Re k(&) +v(€}) > - m?

for all lines € and all loop momenta, the Feynman integral associated

to® is not singular. Since *(£) is real, the condition

(Im k(£))° < m° for all L€ &£,

is therefore sufficient to guarantee regularity. In view of eq. {2.41),

this criterion is satisfied for (p,q)€ D thus proving the theorem. O

2.5 Large L behaviour of self-energy diagrams

To study the L-dependence of Feynman diagrams at large L, it is useful
to werk in position space rather than momentum space. Thus, the infinite

volume propagator is

i i _
(2.42) Alx;m) = S%—f}.‘ e P’ (s o) 1,
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and for finite L we have the well-known representation

(2.43) A (x;m) = 2 Alx+nl;m), n= (0,7%).
> 3
neld
This series converges rapidly, bescause A(x;m) decays exponentially
at large x. In a position space Feynman integral, the vertex "factors"
are homogeneous partisl differential operators with constant coefficients
acting on the arguments of the propagators in the diagram. An important
point to note is that these differential operators follow directly from

the Lagrange density and are hence independent of L,

Suppose now that & 1is a Feynman diagram contributing to EL(ﬁ) {the

results obtained below also hold, with appropriate medifications, for
2
ap°
purely imaginary energy components). The abstract graph % associated

}'_'L(fa) and arbitrary n-point vertex functions at momenta with

te £ is l-particle irreducible between any two of its vertices and
has two external vertices, denoted a and b, where p flows in and out,

respectively. It is possible that a and b coincide.

In position space, the contribution HL(E)) of the diagram & to EL(ﬁ)

is an integral of the general form

T (@)=

am (% (b)°- x(aY)

ey M dw VT {e T A (xG@n-x(e);m)],

ve'® fedt

RxL?
where ¥ = ¥~ {b} and"¥ is the product of the vertex "factors"

as explained above. The integrand in eq. (2.44) is a periodic function
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of the space-like coordinates of every vertex ve ¥' and the integration
over X{v) is accordingly restricted tec a periodicity cell of volume
L3. The external momentum § flowing through the diagram is accounted

for by the exponential factor in eq. {2.44).

To cbtain a more tractable expression, we now substitute the series
(2.43) for the propagators AL in eq. (2.44). For every line te

we then have a summation variable W ({) € Z°  and, interchanging
summations and integrations, '}L(&)) becomes a sum of terms one for
each 13 gauge field configuration {K(fﬂ on % (cf. subsect. 2.3).
This summation can be split into two independent summations, ane over
the ga‘uge equivalence classes (71 of gauge fields and the other over
the gauge transformations -i(v) , VeV | uith —i(h) = 0. The latter
can be combined with the integrations over ')?(v), ve W , and one then

obtains

(2.45) :]L(E))= Y JL(éb,?L),

(h3
g —
1 (@,%) =
(2,482 {x(b)°- x(@)
—— b4 - X{a
I S dl”x(v)V{em ™ A(x(g(en—x(am)m(c)L,-m)}.
vey! RY fe¥

Note that now the vertices are integrsted over all of R‘i. :h_ (50, )
is therefore gauge invariant and the summation over gauge equivalence

classes in eq. {2.45) is a well-defined operation.
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for i = G, }L(ﬁ,"ﬁ) is independent of L and equal to ‘}(33) , the substituting t-»t L/2m, x(v) > Lx(v}, and working out the vertex "factors",
contribution of the diagram & to the infinite volume self-energy &(p). the integral (2.44) assumes the general form

Thus, for the contribution of  to the difference 23,_(;5) - 2(p), we

. @ pt.x ) ~mLRE,x,A)
h 2.50 9.8)=T \df, T dix vy | TR
ave ( / ’(}L( ? ) fed S: t vet’ §R’.“’ xtv L Q) ’
{2.47) }L(g)) - 3[&)) = 2> JL(g)’ 7). where s is some power, P and Q are polynomials and
[R1+13)
Ty = ©_ ° 1 +i - %[ z
The leading large L behaviour of the integrals ’[}L(m,ﬁ) is described R(t“x’n) x(bY-x(a) +.€e£at 2 { t" tt [X({(C)) X(tte))+ﬂ(8)] }

by the follewing theorem. It basically asserts that }L(ﬂb_,?l) falls
The integral (2.50) is of the saddle peint type and can be evaluated,
off exponentially for non-trivial gauge fields hi, the rate £ (%,‘ﬁ)
for large L, by expanding. about the minima of B. This yields eq. (2.48}
being determined by the topology of the diagram and the "strength" of "
wit
the gauge field K (see subsect. 2.8).

£(G.A) = M Rk R

Theorem 2.4; At large L, we have Finally, eq. {2.49) is obtained by performing the trivial minimization

2.48) {In }L(@Jﬁ) = -mlLe {g’a) + 0(enl), over the variables t, first. [

4 - -
where £ (%,h) is given by 2.6 Properties of £(G,%)

(2.49) e(%,%‘i) = mfn{x(b‘)"-x(a)"nﬂglx({(e))—x(im}+n(£)l},
€

The basic result is
the minimum being taken over all possible positicns X(w) € “Q.u'
of the vertices ve& V. Thecrem 2.5; Suppose f“.__,‘CN is a set of (pairwise) disjoint loops

in (j Then, we have

Proof :

N >
(2.51) E(%ﬁ)} "{—E Yobw(e, i,

h i»
i=1
Using the heat kernel representation
©a 2 where W(t,ﬁ) denotes the Wilson loop (2.37).
-2
alxym) = §dt (smt) enp - (wit + X°),

o
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Proof: -
S e ECE,R) > D W e, R
According to lemma 2.1, there exists a path P in % cennecting a and for all j = 1 N
b such that Pa ‘ei is either empty or a path in q for all j =1,...,N
(set® = @ if a = b). To every line £ assign a number Cpeed Suppose first that Pn ‘Ci = @ and let Voo -aVy be consecutive vertices
which is 1 if the orientations of P and € coincide, and -1 otherwise. along €: . Then

i '
Thus, [P: 4] satisfies the same relstions (2.39) as the lcop orientation

H
R : s - ! .

numbers [€:4] and, in addition, E(‘Cj,ﬂ) = m;n {kz;'_4 i X(VkH) - x{v )+ [Ei' 'ek] .h(.ek)‘ }’

(P:tl=4 it il&)=a,

P:d1=-1 if }(8) = a. where VMs1 E Y1 and fké Ei is the line with endpoints Vier Ves1: By

repeated application of

Next, for every subset & of lines, define
(2.53) Ix-y+nl+ly-z+nml3 Ix -z +n+ml,

E(p, &)= min { 2 [P [x()°= x (i@’ ]
X tedn?P :

one finds

+£Zy [x {21} - x (i)} + n(e) | | E{e;, &) > l\—:}(fi,ﬁ):,

which is an even stronger ineguality than {2.52}.

(E(¥,A) =0 if $=¢ ). It is then easy to prove that

Now consider the case Pn €; & $ and let v,,..,vy and L7

be as above. Since Pn €; is a path contained in Ei , it connects
E(EP ﬁ) > E(&P ?L) i‘f bﬂ 5 ¢ two vertices vr#vs. Thus, we have

Ble,8) =

E(Quy, ,7) » E(8, %)+ 5(4,%) o ¥ny =¢g. j

. M
i { X (1= xtuy "+ L Ixivn) - xvo + 1 4,1 ng0! ]
In particular, we have k=4

N .
U 2.53), it foli th

E(%,E)? _2_11 E(Eﬂ-,ﬁ), | sing { ), it fo OwsJat

= £(e,R) > “""-;“{x°+lxl+ 1x+wl},

3 -~
and (2.51) follows, if we can show that where w = (0,\»](&‘1,1'*1)}. Furthermore, applying the triangle inequality
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once more, the bound there exists an integer unit vector & and numbers

E(t, #) > min { x°+ ,f(p_xof.l.;;i} s(¢ye {0,4,-11 such that A (€)= s(8)& for all
¥ e
teT*

is obtained, and the inequality (2.52) is now easily established by
determining the minimum over x? by differentiatinn.D

Proof:

An easy consequence of theorem 2.5 1is
y a Suppose £€ T™ and 1let € be the loop in % with €~{81c T.

Then,
Theorem 2.6: If § is not a pure gauge configuration, we have
-> -
(G, %Y > 43/2. - IW e, &) = 1R@)],
and since E((i,"ﬁ) < N3/2 , theorem 2.5 implies
Proof:
1Rl e {011,
Let T be a tree in (é and choose the axial gauge for 1 (subsect. 2.3},
Let
Because ® is not a pure gsuge configuration, there exists a line LeT*
such that B(£€) # 0. For the loop € with EN{f£1< T | we therefore {2.54) T* = {€1 e, fN 1

-
have |W{%,#)1 3 4 , which by theorem 2.5, impiies E(%,‘?"l) >4J3 /2.0
be a labelling of the lines in T* such that

The class of gauge fields &, which make the leading contribution to ,Tn_’ g. r i =
g i 1 for j i,...,M,

the sum (2.47) at large L, is identified in the following (2.55)
4] otherwise.

Theorem 2.7: Suppose B is not a pure gauge configuration and

Because ™ is not a pure gauge configuration, we have M 2 1.
8((%,?1) < J3/z2 . Then, T is a simple gauge field.

. . . n. .. . If M = 1, there is nothing left to prove. On the other hand, if M2 2,
The proof of this theorem is complicated and is therefore divided into

we must show that
digestible pieces. In what folleows, we assume that Tis a gauge field

an %, which is not a pure gauge configuration and which satisfies

a(%,ﬁ) < 3],

(2.56) () = f*n'(ej) for all i,j¢M, i #j.

Let €; be the loop passing through ‘fi with € ~{4,3 €T . Then,

temma 2.8: Let T be a tree in C‘; and choose the axial gauge for . Then
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Ei n ‘65 + ¢ , bacause theorem 2.5 would otherwise imply
E((‘ﬁ’ﬁ) > 3. e~ 141, f’i\ ”i} and hence €;n ‘ei are paths

contained in T. We can therefore construct a composed loop Eij by

@.57) Ly = (e v e (g n ).

Eij passes through 'E,i 'ei anc no otner £€ T*. Thus,
-> >»
W ey, 70 = EACARSATAIN
where the sign depends on the relative orisntation of Ei and tj in

Eij' Applying thecrem 2.5 once more, we have
1R £ Aegte {041,

and since "r'\'(li) and ﬁ({j) are integer unit vectors, (2.36) follows. ]

In the following discussion, T always denotes & tree in % and A is

assumed to be in the axial gauge. Furthermore, the elements of T* are

labelled as in egs. (2.54), (2.55}. For j = 1,...,M, define vertices
Uj‘ Vj through

uj = i(tj), 7 f(ej) if n(fj) =),
{2.58)

uy = f(cj), vy = i(tj) if n(cj) = - fe)).

Tt is also helpful to introduce the reduced graph
(2.59) % = (3 ST

which contains the tree T and is hence connected. By definition,

a3
%) = 0 for all lines £ in g .
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Lemma 2.9: If M22, the following statements hald.

(1) uy +vj for all i,j€ M.

~
(2) Suppose P, ,'Pz are paths in (i connecting Ugivy and

U, Vy, respectively. Then, EAI AR &,

-~
(3) Suppose P, ¥, are paths in % connecting uy, v, and

Uy, vy, Tespectively. Then, PP, +4g.

Proof:

{1) As above, let Ej be the loop passing through Cj with *ei\ {fi} cT.
Suppose u; e vy for some i. Then, ei is & 1oop line and ?i n ‘Ei = ¢
for all j % i. Since M2, such j exist and theorem 2.5 implies
E(%,ﬁ) 2 ﬁ , which contradicts our assumptions. Thus, Ui#vi

for all 1.

Suppose now that u; = Vj for some i 4 j. Then, the compocsed loop Eij
-t
(eq. {2.57}) passes through fi and {'j in such a way that |W (t’"i AM=12,

which also leads ta e((&,ﬁ) 243 . Thus, U # vj for all i # .

(2) P, and P, were disjoint, the loops Fuifl and P, u{L,}
would alsc be disjoint and hence S(%,ﬁ)? NEY by theorem 2.5, which

is a contradiction.

(3) We again assume '374 n 'Pz = @ and show that this leads to & contra-
diction. If 'Pl and ?2 do not cross (i.e. if there is no vertex, which

1s an endpoint of a line in '}’1 and of another line in¥F, ), the set
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£ = ?1 1] Pz U {3“ 31} is a loop in g . Furthermore, the orienta-
tions of -81 and £, in € are such that IW{e, B = L and hence

£ (% R nyz NEY , which is a contradiction.

If Pi and P2 cross, there exists a vertex z, which is an endpoint of
some lines in 'P1 and :Pa. This vertex divides 'P1 into two paths 'Pl(ulsz)

and Pi(z:vz) cennecting u,,z and z,v,, respectively (it is possible

i) ’ 2!‘
that z coincides with Uys for example, in which case we set Pl(ui:z)= ?).
Similarly, 'P2 divides into pZ(UZ:Z) and Pz(z:vi). Because Pl and P2

are disjoint, so are the sets

£1 'Pl(ui:z)u ?2(2:\:1),

12 = 'Pz(uzzz)u Pi(z:vz).

3'1 itself may not be a path, but it contains a path @, connecting Uy
and v, (note that 31 $ @ | because uy # vy by (1)), Similarly, there
is a path (’,11 contained in cfz, which connects u, and v,. Since ('21(1 ('11= B,

there is a contradiction with (2), which has already been established

above. D

A A ~ A
Lemma 2.10: If M2, there exists a line & in C:i such that (3 ~ e
~
decomposes into two disconnected components, one, denoted cﬁ” .

~
containing the vertices Uyibg and the other, %v' centaining

Vl,\v‘z.

Proof:

A

We assume that such a line £ does not exist and derive a contradiction.

- a4 -

Suppose we add 2 extra vertices U,V to g and 4 extra lines connecting

U with Ugilg and V with VisVge The absence of E implies that this enlarged
graph is 1-particle irreducible between U and V. Thus, by theorem 2.2
there exist two disjoint paths ?1. T’z connecting U and V. Deleting ;
the extra vertices and lines again, 51 and ?52 are reduced to some disjoint
paths 'Pl, ?2 in E; each of them connecting some u; with some vy with

i,j € {1,2} (note that because of (1) in lemma 2.9, the sets Pl' PE

are nct empty). Necessarily, the situation is then as in {2) or (3)

of lemma 2.9 so that 3)1 nyg = e is & contradiction. [

The proof of theorem 2.7 is now easy to complete. Choosing the tree
T and all the other notation as above, we nesd only consider the case
M2 2, because for M = 1, eq. (2.55) already implies that 7 is simple.
Let E be the line in q, whose existence is guaranteed by lemma 2.10.
fis an element of T (§\ {Ei would otherwise be connected). Thus, a

new tree T' can be defined through
T = (T~@)uitl.

Relative to this tree, ® is not in the axial gauge, because T{f)# O.

Set

—i(w) = ﬁ(fﬂ if w is a vertex of ?&u’

b d
Alwiy= 0 if w is a vertex of Q\r*

and let %' be the gauge transform of kil by ‘i {cp. eq. (2.36)). It is

trivial to show that h' is in the axial gauge relative to T'. Further-

more, we also have ﬁ'(ez) =0 and 'ﬁ'(Zj) = 0 for all j = M+1,...,N,
A ~
because these latter lines belong either to cJu or to %v' The number
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M' of elements £ of T'* with 'ﬁ(!) # 0 is therefeore strictly smaller

than M,

The procedure leading from T to T' can now be iterated and a series
of trees is obtained with decreasing numbers of lines £ , where 'r'{(!) + 0.
After finitely many iterations, this number will have decreased to 1

and T is thus found to be a simple gauge fieid. a

2.7 Proof of the mass shift formula (final steps)

As already explained iﬁ subsect. 2.2, the proof of the mass shift formula
(2.22) proceeds via eq. (2.31), a relétion, which we can now prove to
all orders of the Feynman diagram expansion using the results on the
large L behaviour of self-energy Feynman integrals obtained above. Taken
together, these results imply

Ry
{2.60} r(}'l_(ﬁ,ﬁ) = (e ? } if ® is not pure gauge,

—ml
(2.61) }L(so)— 1) = z '[}L(m,ﬁ) + Ofe )
[#] stmple
for all diagrams £ , in particular, eq. (2.28) (and, similarly, eq.
(2.29)) follows immediately. After summing over sll diagrams, eq. (2.61)

becomes

ze2) o ()= ¥ 2L (D, R) + O(e'ﬁk‘),
P D (A simple }L

where -Z‘_(f)) = 0 has been used. Now recall that the simple classes

{#1 can be labelled by the set of fislds (2.3%) so that eq. (2.62) may
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be rewritten in the form

L

2.6 L )

3

A & -m
Apr= IOZ G+ Ol

where 4 runs over all lines in &, which are contained in at least
one leop and which are independent of each other {i.e. lines carrying
the seme momentum for all configurations of loop meomenta are counted
as one independent line). In momentum space, @L(&aE) is exactly
equal to the infinite volume Feynman integral associatsd to & , except

that the integrand is multiplied by the extra factor
’ 3
2.6y 2 E cos (PiL)’ p: momentum flowing through {.
1=1

These integrals are thus exactly of the type shown in Fig. 4 and, without
great difficulties, one can prove that in fact the series (2.63) matches

term by term with the Feynman diagram expansion of the rhs of eq. (2.31).

Having established the basic relation (2.31), we now proceed to evaluate
the integrals 1'1, 12 and 13 for large L using complex contcur integration.
Consider first the simplest case, the integral 13. Due to rotational

invariance, it can be written as

" .
= d ig,L 2 A
e T,= 6198, &'V 6lq) M(pLq,-B,-q).
By theorem 2.3, P'(p, g9, - #, -q) has no singularities in the complex
q,-plane for 0< lm q, < m3 (and Teal q_, g, q3). The pro-

pagator G{q) is also analytic in this domain except for the meson pole

at
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_ oz 2 2 2 . + _ J 2 2 4+ 1
(2.68) Q= u}m+qj_+q° , a, = (q,,q,). (2700 qy = 1N M+ qy + (g5 m)
If we now shift the Qy integration path from the real line to the line They are not purely imaginary and happen t¢ coincide for q, = 0, which
bm. Ch = m ﬁf?_ , one obtains two terms, one from the meson pole is a potential source of difficulty below, To avoid it, we first deform
(2.66) and the other from the integral along the new integration path. the q, integration path around q, = 0 into an infinitesimal half-circle
The latter contribution is more rapidly decaying at large L than the in the complex lower half-plane. Then, noting
error term in eq. {2.31) and is therefore negligible. Thus, we have +
0< bmq,l < mAfF/2 if (q,q,) ¢ B,

dg.d%, -lg,iL _mL (2.71)
(2.67) I,= 6 S q_ag_q_ e M(g,q,-$,-q) + 0(e” "), +

(2m) 21,1 : lm qs > m N3/2 otherwise,

where ay is given by eq. (2.66) and B is the ball the shift of the G, integration path can be performed as above and one

obtains
B = {{ ye R®| g2+ q% < 2w} ;
(2.68) Qe» Qs 9o ¥ 9L = ¥ (2.72y I, = I+ I + 0(eT™),
(only when (C{o. q_\_‘) e B is the meson pole inside the strip 2 L
£ dg.d Pt
0= !'mq,lé. m JF[/2 ). Note that g is now on the meson mass shell (2.73) '.1:_1 = 6&%{2—% eq1 G(%{: ;q)
4 4
and that, contrary to the oscillatory integral (2.65}, the representa- B
, o . . B.qedh —qedd cq-45 -1
tion (2.67) immediately reveals what the large L behaviour of I, is. » [ B.q+3h, q+'§,P) rl(ﬁ, Q-19,9-1% )}

+ .
W= 44

The integral 12 can be treated in exactly the same way as I3 and one .

obtaing The integrals I1 are not yet of the desired saddle point type {as eq.
(2.67), for example) and further contour shifting is needed. Consider
2
da. d -1 JL -mL . . + . 2,5, .2 . ;
(2.69) Iz= é g (2333“21 e q Glo) P(q,-q.O) 1—-'(13’_13’0) & 0(6 ) first the integral Il' At fixed q,, q. Mmoo the q, integration
b4
L

path is along the real line from point A to point D in Fig. 5, A and

D being characterized by

(2.74)  go= % J%m"- qi -

The integral Il’ on the other hand, is more complicated. There are two

meson poles in this case located at
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We now deform this integration path to the curve ABCD shown in Fig. 5a,

which is possible because qz and the other entries in the integrand

are analytic inside the rectangle ABCD, as one may gasily show using

theorem 2.3. Note that the meson pole of the propagator in the integrand

is at 9y = 0, which is outside the integration contour. After the deforma-

tion of the integration path, II is a sum of 3 integrals corresponding

to the straight lines AB, BC and CD. The centribution of AB and CD is

however negligible at large L, because frm q: 2 m43/2 along these

lines. In other words, the result is

If = b S0 °adz s MM g
B (ax) 21q,l

2.7%) _

« T{-$.9,-q+$) T(p,-q,q-) + 0le™ "),

where g; is given by eq. {2.68) (we have replaced q, by q - %m a5

real, along BC).

The integral Ii can be treated similarly, the integration contour being
displayed in Fig. 5b. The only difference is that now we also get a

contribution from the meson pole at a, = 0 so that sltogether we have

2 _ ) 92
I, =6 S ( dzq‘- o € 't %‘
o @ni2ig) m
deo d'qs  -190L
(2.76) + 6 S an7ia] e G(f+q)
B
$P(-5,q+p.-q) T1H-q-$,q) + ote‘*"L),
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where a4 is given by eg. (2.66), A by eq. (2.20) and

" 3 2
¢ = * N3 Y4,

(2.77)
B - {Ch.e Ll é%ml}-

If we now add up all the integrals, the integrands combine to the forward

scattering smplitude F(¥) defined in subsect. 2.1 and we end up with

R d'qs -ighit
Z ()= 3} P il © Zm
. o

(2.78) S dqod“qJ_ e_'.qqlL F(—iqo)-l- O(e—ﬁL).

(2zm 21q,)

In this equation, we may just as well integrate over gll real a, and

q,, the difference being of the same order as the error term at large

L. Noting
(2.79) Ed—zq* _ A a1 et
' (2m 2o P+ qy bl

we finally get

3 3 — =
~ 3 -l eyl ml
28 L (1= g et +S%L [dye By + 0l )

2

which, in view of eq. (2.30), agrees with the mass shift formula (2.22)

and thus concludes the proof cof this relaticn.
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3. Velume dependence of bound state masses

3.1 The non-relativistic case

For the physical interpretation of the relativistic formulae derived
later, it is useful to first consider the case of two non-relativistic

bosons ("mesons") of mass m, which ferm a bound state of mass

(3.1) Mg = 2m - EB . EB>0 R

and spin 9 {(the mesons are also assumed to be spinless}. The hamiltonian
H describing this system is an operator acting on scalar wave functions
Y¥(%,¥), which are invariant under an interchange of the particle co-

ordinates X and ¥. Explicitly, we choose H to be of the form

@2 H=-L (a4

2

)+ VI(X-T),

4

where A}(, Ay denote the Laplace operaters with respect to % and ?.
The potential V is assumed to be smooth, rotationally symmetric and

of finite range, i.s.
(2.3 V(I =0 for IZl>R.
These assumptions are made for simplicity and could easily be relaxed

without affecting the main results obtained below.

In infinite volume and at zero total mamentum, the bound state wave
function 'Wh depends only cn the distance r = % - ¥1 of the bound

particles. It satisfies the Schrédinger equétign

3.4y HW, = - Eg Vg
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and falls off exponentially at large r:

Y

(3.5 Wy led= A 9-;— (v>R),

3.6) w=AmE,.

As is well-known, bound states give rise to poles in the analytically

continuved forward elastic mescn scattering amplitude Fnr(E)' which is

@ﬁmdmtﬂmofWemH(mmmhﬁnﬂm)mﬂnweTm(ﬁjﬂﬁﬁ)

*)
through

=2
BN Fle)= T, (§,-318,-%), €=1 .
If we choose the normalization
3 = z
@8 (d=z 1V ED = 4,

the residus of Fnr(E) at E = - EB is given by

2
Lo, _ dx 2
(3.9) E+~EB(E+EB}F“T(E] = S AL,
i.e. up to an irrelevent phase, the behaviour of “VB at large r is

entirely determined by spectral data.

R The sign and normalization of an is chosen such that the non-rela-
tivistic optical theorem resds fm Fﬂ,f(E) = - ‘\‘ E/m d%o{-.{E) .
With this convention, the Born approximation is given by
Th?(’af,-ﬁ'l'_ﬁ,-ﬁ)= W(ﬁ‘-'_ﬁ}‘*‘v(ﬁ'*‘ﬁ) , where

Uy = (2 Ry,
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Suppose now that the mesons are enclosed in a box of size L and periodic Furthermore,

boundary conditions. Then, the corresponding wave functions L EA7)
(3.15) H VY, = - £V, + 14,
are periodic in both cocrdinates ?,7 and the interaction potential V

has to be replaced by

(3.18) miE) = 2 V(FE+RL) "lfB(liH‘E'LH = O(e"m‘).
3.1 V (E) = ‘_?123\/('5+EL) s
Mne

Thus, for large L, W, is almost a solution of the Schridinger equation,
te account for the interactions of a meson with the mirror images of and, with an appropriate normalization of the true solution W, one
its partner. Note that because V is of finite range, there are only can show that
a finite number of non-zerc terms in the series (3.10) (at most cne

(3.17) ¥ = Y, + 0{e*h).
if L>2R).

Taking the scalar product of W with eq. (3.15) then leads to

For large L, the finite volume Schrédinger equation

3 »* -7 2l

@.s) dmg = £ §d% W0 VE Y, UZ+ALD + Ole ).
3.1y H YV =-EV, =1

Finally, using egs. (3.3) - (3.8), the integral can be evaluated and

4
.a2) M= -gn (8,4 a,) + VUER-T), the Tesult
- al - Nz el

has a solution with Ex €y and Yo "l-'a . An asymptotic formula for (3.19) Ay = - 2 b lAIIT' e - + O(e v )
the corresponding mass shift

is obtained.
3.13) Amy, = E,-E
can be derived as follows. Define In view of the decay properties of the bound state wave function “VB,

it is no surprise that & formula like (3.19) holds. Still, it is re-

> > > -
(3.14} ’4{,{1) = P 3 Tlfa (l £ +hn Ll)J - X—Fl% . markable that the detailed form of the potentisl V is irrelevant to
fel
- the final result, which only refers to the particle masses m.mp and
W is periodic and hence an admissable finite volume wave function. the residue of the forward elastic scattering amplitude Fnr at the

Q
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bound state pole {cf. egs. (3.6), (3.9}). Ancther interesting feature

of eq. (3.19) is that Amy is always negative, i.e. S-wave bound states

8
get lighter when squeezed.

3.2 Calculation ofAmB in quantum field theory

The class of quantum field theories considered here is similar to one
discussed in sect. 2, except that now we assume that the spectrum of
stable particles contains an additional particle with mass mB-CEm, which
can decay virtually into two mesons. As far as the mesons are concerned,
the notation of subsect. 2.1 is taken over. For the bound state, we
assume that there is a (euclidean) interpolating field X normalized

sych that

|+ »
e x> = (L2, e ¢ ip,

@2y GHpY = ml ot - > (e,

(3.22) Ex('p) = aipf‘ Ex(p) =0 for p° - - m3.

Vertex functions of r meson fields ¢ and s bound state fislds X are
denoted by F(p1,...,pr;k1,...,k8) (cp. Fig. 8). For simplicity, we

shall furthermore assume that the transformation
.23 ¢—>~-¢, XX

is & symmetry of the theory so that
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P(pl,...,pr;ki,...,ks) = 0 for r odd,

3.24) (o Xio)y = 0.

In particular, the coupling constant A vanishes and the bound state

has no virtual decays into an odd number of meseons.

As in the non-relativistic case, the bound state gives rise to poles
in the forward elastic meson scattering amplitude F(y). They stem from

the skeleton diagrams of Fig. 7 and are located at

i+
"

2
3.25) v=tovy, Vg = 7 (mg - 2m®).

The associated residue is

Gos Bm o (oY Fl) = - 2 gt

+
V-&..VB

where the ¢¢x-coupling constant g is defined by

g = Mp,q:k),
13.27)

p+tg+tk =0, g~ =g =-m, k" =-mg.

In finite volume, the meson mass shift Am can be calculated as in the
simple scalar theories considered in sect, 2. The only difference is

that now the Feynman diagrams also ipvolve bound state propagators and
the tasic expression (2.31) for the self-energy I:L(ﬁ) has to be modified

accordingly. If we restrict ourselves to the case of small binding energies,

(3.28) {2m < mg < 2m,
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the result of the Feynman diagram analysis is
a ' 1 -mL
(3.29) E (B) = Tj + 5(I3 + Iy + 0™,

where m and I3 are as before (egs. (2.23), (2.34}) and I, Ié are the
integrals graphically represented by Fig. 8a,b. Evaluating the integrals

as in subsect. 2.7, one finds

1 —J'm‘-uﬁ”l- L

TormL _i d% @ )

(3.30) Awm = - )

Flig) + 0le™

which is idenmtical with eg. (2.22). In other words, the presence of
the bound state has no influence cn the leading finite size mass shift

of the meson, in perticular,
~-mlL
(3.31y am=0(e ")

for all g in the range (3.28).

We now proceed te calculate the bound state mass shift AmB. As for

the mesons, one shows that

1 X/ a
(3.32) BAmg = —ma 0 (p) + O((A‘h‘la)i],

where Eﬁ is the finite volume self-energy of the X -field and

(3.33) = (imS,U,O,U).

Pg
. : . . . X a
Summing up the lesding Feynman diagrams contributing to ZZL.(Pa)' we

have

-m_L
Gan  EF(B) = 3 T 4 0(e” ),
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the integral I? being graphically represented by the skeleton diagram
shown in Fig. Bc. Provided mg is in the interval (3.28), the error term

in eq. (3.34) is given by

(3.35) g 2 V20,

(3.36) r

I
3
™
]
Bl
3
=3

Finally, evaluating If for large L by complex contour integration, we
end up with
3¢ -pl - Wyl

(3.37)  Amg= - — e + Ofe )

: Abwmg L
(the contributicon of the ¢% forward scattering amplitude is smaller
than the error term). In guantum field theory, the calculation of AmB
is thus very similar to the calculation of the meson mass shift Am
and it is quite clear thot the physical crigin of the size dependence

is the same in both cases.

As far as the dependence on L is concerned, eq. (3.37) coincides with
the non-relativistic formula (3.13). We are hence led to interpret the
length p-l as the relativistic expression for the width of bound state
wave function. An important pcint to ncte is that if Mg is very close
to the elastic threshold, pmi is large and finite size effects on the
binding energy are only slowly going to zero as L increases, in parti-

1

cular, for m < L< p41, such a wide bound state is likely to be misinter-

preted as a stationary scattering state (cf. Ref. /11/).
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In the limit of heavy, weakly bound mesons, one expects that the re-
lativistic formula (3.37) reduces to the non-relativistic expression

(3.19). This is in fact the case, because in this limit we have
(3.38)  p=x+ O(EYD),

(3.39)  ¢'= 542 1t an 1AL+ 0(Ey),

where the second relation has been obtained using egs. (3.9), (3.26)

and F = - 4m2 Fnr to account for the different normalizations of the
relativistic and nan-relativistic scattering amplitudes. Note that since
the praoof of the guantum mechanical formula d;d not rely on perturbation
theory (and could in fact be made entirely rigorous using Green functian
methods), the correctness of the non-relativistic limit provides a non-

trivial check on our guantum field theory calculations.

4. Concluding remarks

The most impartant qualitative result of the analysis presented in this
paper is that finite size effects on the stable particle masses fall

off exponentially with a rate, which depends on the spectrum of light
particles in the infinite volume theory. An asymptotically precise
description of the size dependence of the masses is provided by the
apparently universal formulae proved in sects. 2,3. These relations

are obviously useful to control finite size effects in numerical studies
of quantum field theories on a lattice (e.g. Ref. /7/) and may also
serve to estimate the strength of particle interactions at low energies

/9,107 .

Compared to the simplicity of the finite size mass shift formulae (2.22)
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and (3.37), the proof given in this paper appears to be unduly complicated.

However, it must be sppreciated that s proof of eq. {2.22) requires

to control correlation functions at large times {(to project on the mass
shell) and simultaneously at large space-like distances. Simple transfer
matrix methods therefore do not apply. An axiomatic approach does not
seem promising either, because the condition that "the parameters in

the Lagrangian are independent of the volume" is difficult to account

for,

With little effort, the results obtained in this paper can be extended

in several directions.

(a} To include particles with spin, one assumes the existence of
appropriate (many component) interpolating fields #hd then follows the
steps outlined in subsect. 2.2. A subtle point to be observed is that
the finite volume breaks the full rotational symmetry down to the cubic
graup ® . Since the irreducihle representations of SU(2) with spin

822 are reducible with respect to 8 , the energy of a particle at rest
in general depends on the direction of its spin relative to the box.
The cerresponding set of finite size mass shifts is obtained by dia-
gonalizing the finite L self-energy of the associated field, which is

a non-trivial matrix in spin space in these cases.

(b) If there are several light particles in the theory, their contribu-

tions to the mass shifts must be added. In some cases, this leads to

unexpectedly large finite size effects. For example, in the two-dimensional

0(n) non-linear ¢ -model, the theory converges to a massive free field
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theory as n o0, but finite size effects survive in this limit, because

there are n light particles.

{c) The methads of this paper can also be used to calculate the volume
dependence of the masses of heavy particles, which are stabilized by
conserved guantum numbers (such as baryon number). Unstable particles,
on the other hand, cannot be treated this way, because the wave functicn
of a resonance has an only slowly decaying scattering wave component

and is hence expected to be more sensitive te the boundary conditions

than a bound state wave function.

A calculation of the next to leading terms in the large L expansion

of the stable particle mssses would be a very non-trivial extension

of the present work. Not only would one have to master the topology

of Feynman diagrams to a higher degree than was needed to derive the
leading terms, but a more complete knowledge of the analyticity proper-
ties of the vertex functions would also be rsquired to be able to deform
momentum integration paths sufficiently far away from the real axis

{in the last step of the proof of the mass shift formula). Still, that
the finite volume vertex functicns could be written as an infinite series
of skeleton diagrams of the type shown in Fig. 4, remains an attractive
and logical possibility, which will perhaps be realized one day using

more elegant methods.
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Appendix A: Procf of Lemma 2.1

Let & be an arbitrary path in % . We say that @ is & good path, if Qf\%}
is either empty or a path in 9 for all j = 1,...,M. Furthermore, two
vertices 4%,V € W are called nearest neighbors, if u % v and if

there exists a line € , whose endpoints sre u and v.

Define V' to be the set of all vertices, which can be connected to a

by a good path in % . It is obvious that all the nesarest neighbors of

a are in W'. Our goal is tc show that also bes'. Since % is connected,
it is sufficient tc prove that W€ ¥'if w is a nearest neighbor of some

v E "(A‘I (and w ¥ a}.

Thus, let @ be a good path connecting @ and v, w a8 nearest neighbor
of v {w# a) and ¢ & line with endpoints v,w. Furthermore, let

3= Vg Vo Yy =Y be consecutive vertices along @ and lke @ the line
with endpoints Vi Vi (k =1,..., N-1). Then the following cases can

be distinguished:

a) w = vy for some K2 2.
In this case, & = {8, €y 1 is a good path connecting e

and w.

b) w# v for all k and !aﬁ‘ej for all j.

In this case, & = Qu{fl is a good path connecting a and w.

) w# v, for all k and £€ EJ for some J.

In this case, there exists a minimal K such that Vg is an endpoint
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Figure captions

Fig. 1:
Fig. 2:
Fig. 3:
Fig. 4:
Fig. 5:
Fig. 6:
Fig. 7:

Analyticity domain of the forward amplitude F{¥). There are
cuts along the real line from -o0 to -m and from m to +co.

Simple poles may occur at V= b4 %m.

Graphical symbols used for ({a) the full propagator G(p),
3

(b) the modified full propsgator (2 Y cos PiL ) G(P),
joi

{c) the connected, full propagator amputated n-point function

G(pl,....p y, and {d) the n-point vertex function P(pl,...,p ).

n n

Decomposition of the 4-point function into 1-particle

irreducible parts.

Graphical representation of the integrals Il’ I2 and I3 (£rom
left to right). The notation is as in Fig. 2 and the momentum

flowing into the diagrams is §.

Integration contours in the complex qo-plane, (a) for the

+
1!

calgulation of T 1

{t)} for I

Graphical symbols used for (a) the full bound state propagator

6*(p), and {b) the mixed 3-point vertex function [(p,q;k).

Bound state exchange diagrams giving rise to poles in the

meson scattering amplitude.

Fig. 8:
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Graphical representation of the integrals I, Ié contributing

te X L({3) {diagrams (a) and {b}}. Diagram (c) represents the

integral If,

X
of £ L(DB) .

which is the leading term in the large L expansion
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