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Abstract: Using recently derived explicit formulae for the 2- and 3-cochains
in SU(2) gauge theory, we are able to integrate the Chern-Simons density ana-
Iytically. We arrive - in SU(2) - at a local algebraic expression for the
topological charge, which is the sum of local winding numbers associated with
the corners {lattice points) of the cells covering the manifcld plus contri-
butions from possibTe jsolated gauge singularities which manifest themselves
as "vortices" in the l-, Z- or 3-cochains. Among others we consider hypercubic
geometry - i.e. covering the manifold by hypercubes - which is of particular
interest to lattice Monte Carle applications. Finally, we extend our tesults
to SU(3} gauge theory.

I. Introduction

Differentiable SU{N)} gauge fields on a compact manifold M carry a topo-

legical chargel)
g S G T LT T 0
where
= -0 (2)
Fw = YA, -0, A+ A/.,A_\,Y. .

The charge Q is a measure for topological]& non-trivial properties of the
gduge fields, which have been argued to play an important role in the physics
of the vacuum of QCD and SU{N) gauge theories.

Preliminary resulits of calculations of Q in SU(2) gauge theory on the
tattice?*3) hold out hope  for a quantitétive resolution of the U{1} prob-
Yem4). The recent fiédings) that the vacuum of the quantized {pure) su{2)
gauge theory possesses-an underlying instanton structure brings us furthermore

in touch with semi-classical ideas of the QCD vacuums) and a possible mecha-
nism for chiral symmetry breaking7), which could be the beginning of a better

understanding of the non-perturbative phenomena of these theories.

So far these investigations have been limited to smaller Tattices and
hence to smaller values of ﬁ . The difficulty invoived is that a meaningful
transcription of the topolegical charge (1}, as it stands, onto the (periodic)
1attice8] is mathematicé]]y voluminous and very f£ime consuming to compute,
since the transition functions and their derivatives must be constructed .

everywhere on the boundary of each hypercube.

We realize, however, that the 4-dimensional integral in egq. (1) can be
performed analytically with the help of the cochain reduction given in réf.9.
The outcome is a local algebraic expression for the topological charge (1} in
the continuum, which is relatively easy to implement on the lattice and fast
to compute. The derivation of this result, which we believe is also of
interest beyond the scope of lattice gauge theory applications as it allows a
simple geometrical interpretatios of topology, will be given in the present
paper.
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The paper is organized as follows. Sections T1 and III deal with the con-
tinuum: in section II we do the integral for SU(2) gauge fields covering the
manifold M by a "generic” set of cells, while in section [II we take M to be
the 4-torus and cover it by hypercubes. In section IV  we briefly outline
what it involves to evatuate the new expressien fer (¢ on the Tattice. In
section V we extend our results to gauge group SU{3}. We finish with some con-

cluding remarks in secticn VI.

II. Continuum SU{2) gauge fields and generic geometry

The derivation in this section will follow the cochain reduction of the
Chern-Simons density given in ref.S.

We cover the compact manifold Mby a set of cells s, i.e.

M:UC,.; (3}
A

with

C' . = . L
] G? vc, n ’DC’? (4}

The cells are chosen such that 5-n cells ogverlap in an n-dimensional inter-
section. This we refer o as generic geometry. The topological charge (1) can

then be written
o -4, Z [d% e AN (5)
axt T4, Gavge 17 L Tpe

where the index i on the fields refers te the gauge in the cell €y In each
cell we may gauge transform the gauge fields into a complete axial gauge by

D=9l AL+, (6)

Making use of the fagt that the Chern-Pontryagin density is a total diver-

gence, i.e.
! p T [?7 ] or |
P= = gmr vev 7 ,»-v - /u r.‘(ﬂ (7)
with
2 < 2 ataq 8
-Q/u("')‘ rv\rrﬂzﬂt (?r T+S'AfAT]; ( )
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we obtain
(or
QR = 2 fo( _Q_"’;_,') = Z: fﬂﬂ (—Q. (aJ Q. (?)) (9)
< e, r - acﬂce

where N Cj has the crientation of Oc]..

We introduce transition functicns relating the gauges i, in the cells

c].,c:i by

Nal _ ."" N‘\- D ’U_I'
A/h = 7, (A/"+f“) g (10}

Comparing this with eq. (6) one finds

-7

=93 - 11

“la ?‘l g? ( )
We recognize now that the integrand on the r.h.s, of eq. (9) is the coboundary

gperation (ot

) (o 0 L.
o . ¢ ..(2 (2 421
Q. G R/ﬂfgﬂ = AL, 63 = ,w 2y (12)
which is again a total divergence. This excludes singular points
x € (qaey) \VCeeney) (13)
at which
> - -
Ty = exp ~WT = cor + 2 sonx T , X € Lo%] (14)
¢
becomes -1, j.e. X =7, whereg)

"O'/'""(" §) = ~ g (AT s G "J’“‘g (?re kofe")(ls)

e}a‘.’s&'ﬁ S 1? 1? Z ]
has a "vortex"
- L = oD (16)
Fo PP '(?Feﬂ"ore*() :
Applying Gauss' theorem, eq. {9) then reduces to
¢
Q="+ a’ (17)
with
Lz ds., 0 © )
QZ‘ 2! :?’D(Cnc) f‘v /“ 7 (18)

o0 &)
Z j d’“"v[—{z v("?’"‘Qf“’(";” +'Q)‘“’ (?.’b]
,?,k C'ncanc‘&



and

TR R e BN 05 W LN Y>
Q ! Y "‘E(C-.'“Cj)‘o@;"ci)sea; /“VJ’R, IMVJ L3 J’Q %) (19)

2 2
where SEC") is a sphere of radius € around x and where c;ac;ncy and S‘etx)

have the orientation of ¥ (cin cj).

The integral in eq. {19) gives

{ a% oo e Guspr e (% 6,7 &) = 249 5 (20)
S a;
where n“) is the 52 winding number associated with the singularity at x. In
the vicinity of x we can write

’U::i-:—'/'/"&‘/‘?‘,‘/g 0[’*‘,('3{47""‘ ) (21)
which for det M # 0 results in
n"’(x;*i,?') = 54'941 (oletf?) = 2/, (22}
In total we them abtain
o) &)
= n (J( 4
Q7= Z ol (23)
where the sum is over all singular points x, i.e.
A < U [xe€c nca)\’t)c’chnc ). (24)
s

From eq. (11) we derive the cocycle condition
vy AP, = , (25)
71;3 ’Uék - ﬂ-—r.i_ 3
which, writing

._b.J, R fatd .—b--i
’U‘;;?-=exr(1p<r))qj3&=e~f(1f3'l7)’fd;.&ea-\-f(nd’f), (26)

defines a spherical triangle as has been shown in ref.9. The integrand on the
r.h.s. of eq. {18) is the coboundary aperation

@
/m)(a,g) £ v(-uU +Qf" (;,L)— f“" ,3,4_) %_g‘r 9,&) (27)

which again is a total divergence. This excludes singular points

x € (C._'nc‘a'nc&_) \O(C."ﬂca'flci) , (28)
at which
T e s - = =S
RA-IE, = (Rop4)8 == (K4f-§) ey = = 2T, (29)

i.e. where the spherical triangle defined by the transition functions (26) -

degenerates to a circle, whereg)

@ -
—Q-/w_p(‘;?':‘—) = "d-'l;zz é/‘uva' (1+ 2""5“@/4”’3("‘9\'2“\’ "f—‘-"-l';ll ~er 8 ) ’

. ; ‘;*F'?)'("’;‘“a)[gr‘“‘;t‘ﬁ)'(\ﬁér%)—(mﬁ@)%@&;)]
L G- (o) [, o ABY (o0 inB AR

{30)

has a "vortex" - — 3...
(K48 , €, (%8x8
== .

- gha G S* =i U = 0 31

b . . o m - e . B s -
S -_-c.,\;o(.s‘mﬁ&mre;ﬂxérf' Y T erxe_‘-fml‘-"wo(-l‘wﬁe*x% , 8’%"% .

-
The vector S defines the orientation of the great sphere (in group space)
spanned by the tramsition functions (26) and winds around by 2X as one runs °
round the singularity. ‘

Applying Gauss' thecrem, eq.(18) then reduces to

o (&3]

Ry =Q + GZZ-_ 32)
with
2 L5 I
Rz =3 Z j 2y 3’(1’7’“
‘J ; Cflct)
o @ (33)
l;‘ Z_ I FAp Vf[ .,‘PC'I,?, )-_Qrvf(ﬂ,a,()

ey @
¢ Q4,8 -y (7.4,0)]
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and

@, ‘ (9 ng)
Q% 3§ Ty veteomrbenemn ST e g | s

/ . .
Pdk xe(ng 0N Neinciney) sm
!
where 3 &) s a circle of radius € around X and where c, jncincne and Se(x)

have the orientation ofg c]nan Ck}

One realizes that the integraI in eq. {34} gives
—t -
o, L o (%8x8 P L
\{X’Q’. WP oy Ve —-—- =N (x,-a,?,oi) , {35}

2) . s
where n( ) is the S1 winding number associated with the singularity x which

assumes the values
(z)

Osv,p,k) =24 (36)

o 3

- 4 . +
depending on whether S, wind around in the positive or negative sense. We
then obtain

¢ (2}
Q= Z =n (X;2,7,4) (37)

/\Cz.)
with
/l(z) = U {X €, 4canCL) \'D(C,_qcanq,)j
J?:

Expression (33) brings together 4 spherical triangles, which build a spherical

(38)

tetrahedron as illustrated in ref.9.

The descent continues:

_Q/,,Cj; C-:;?',A) 'Q/-\{r(""e'() + Qrc;,(s;é,{) /“'V_f (?,4. L)
. {39)
= A _Q./., (2,7,4,4) = g-%-vfr(’a?»“ Z).
In ref.9 we have shown that
[}
.Q_Nﬁ_ca,;,.c )= L Gver Vix,3,4,¢) | (40)

where V{i,j,k,1) is the voiume of the spherical tetrahedron defined by the
transition functicns relating the gauges i,j,k,1. We realize that ¥(i,j,k,1)

has a discontinuity at points

x € (Cincincyaly) \’D(c;nc’-nc&n ), (41)
where the spherical tetrahedron degenerates to a sphere. Applying Gauss'
theorem we then obtain two contributions to eq. {(33):

2y 1) ¢3)
Qy = Q& + &y . (42)
The first contributions gives
»n° (x 4, ¢ (43)
Q 5,“%) 174 )
with
(3}
A L{“ [ x € (incjacunCNV@acinCuny) ] (44)
J?:

where n(3) accounts for the change of the orientation of the spherical tetra-

hedron at the point x, i.e.-

77. ("f 1,3‘,‘. C) z_ /nyfr A V('I;?'Jd"t){’ = i /. (45)

For the second contribution we obtain

= 4 o~ L, V(i,54,¢)
Rz ° & Ueineacyale) an? U

L2 S v L Ve ) -Vagha)

= Ay C‘:nd?'n(_“‘_necncm
# Vi, ¢m ) = Vink, G ) + Vigh, Gam) |

where @ = t 1 is a sign factor, which denctes the orientaticn of O(C,-ncfncknce),
The intersection of 5 4-dimensional cells defines a point which naturally

leads to the notation of the "lattice":

(47)

A= U encgaceacens,, .
Gk,



Thus we can rewrite eq. (46) in the form

(5) P
Ay = Z N(AG3,4,¢,m) (48)
A
with

Nl Gm) = 2, [Ves7,6,8) ~ Va3, 4,9m)
(49)
+ Veigiom) - Vish Gm)+ Vig ) ],

Note that the 1/5f factor in eq. (46) has disappeared because of the implicit
summation over all permutations of cells. As we have discussed in ref.9, n
combines 5 spherica].tetrahedra; which wind around 53, the group space of
SU(2). Since the volume of 53 is ZI?'and the 5 spherical tetrahedra together
are compact and so cover 53 (but at most once), we find

n=07=/. {50)
The catculation of n(i,i,k,t,m) proceeds as follows. We take the
transition functions qrij’1gk' ... and determine the angles between adjacent

spherical triangles intersecting along a "hinge" of the spherical tetrahedra
(cf. ref.9). In Fig. la we have illustrated this for a particular "hinge" with
which are associated 3 angles, Al, A2 and A3, betonging to 3 different
spherical tetrahedra. For geometrical reasons

@Jf%f:ﬂ) =02/, (51)
B

a special example of which is given in Fig. 1b, If one of the 10 p's is zero,
then evidently n = 0. If all p's are + 1, then n = +1, and if all p's are - 1,

we will have n = - 1.

Collecting our results now, we obtain for the topological charge

. &
= S N(p4,m) + 2 N (x;4,F
k=3 7 ! AD) # (52)

@) [&?) .
o Znegund) ¢ 2y nUeiAh
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which is the sum of local winding numbers and, consequently, assumes integer
values. Expression (52) is gauge invariant by construction. It furthermore has

a simpie, geometrical interpretation.

In the continuum we can arrange that neitherﬁf} .= -11n (b{rle)\OGquh
S ] e * ..
(® 18 ¥ €, = ZK in (C:nCgnCy NOENCGACE)  nor AVEGA4O] = £an®
at x € (c;nc?-ncknc_'é)\T)(c;aca~nc‘4_nc_c) , in which case the topological
charge takes the simple form

QA = i_f N (+,7,4,&,7m }. (53)

For a further discussion see section IV,

ITI. Hypercubic geometry

So far we have considered a generic geometry of cells covering M. Now we
come to the case of a hypercubic geometry, which is of special interest to
lattice gauge theory calculations, and where M is the 4-torus Ta.

The "lattice” is now defined by
A=fseM [ €2, p=0123], (54)

The cells covering M are the hypercubes (of length 1},

M= U ce (55)
wWith seA ]
Cs) = §4 e bt ] Sp<gpsSutt g (56) °

The topological charge (1) can then be written

Q=2 [d% 7, (57)

SeA oc
where P is the Chern-Pontryagin density given in eq. (7). Using
(o)
P =D L, C8) (58)

A
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we can perform ope integration as before and obtain

=2 2. foC [.Q te) I;)(«'/O] (59)

SEA M {'G:J}q)
where f{s,u} are the faces )
-
1[{4',/1) = €C$) n OGS4 (60)
which have the orientation of /\)CCS) , and P is the unit vector in the
p-direction.

Following the discussion in the previous section we can write

(p, (9) " (0) " O a C.[‘.S‘ ) (61)
'Slf" (-S‘)-SD_ (Sﬂfn) = A.Q./M (S,STA) = /Iq\) /I"

except for a set off;ingular points x € f{s,p)\ D f({s,p}. As before the topo-
logical charge receive§ contributions from two terms, Q = Qm + QZ , where
now
Q N A Sy [12,,\,6:47«) _971 (s-v s ] (62)
z €N i PCp)
with

pespv) = c'csm_c(s»/:')n ces-3) (63)

being a plaquette, which was the orientation of’Df(s,p). The contribution Q(’:‘

which is independent of the particular geometry, is precisely the same as in
the previous case,

%, n (X_,-T,S/ﬂ) (64)

where the sum is over all singular points

A" (j §xefes /u)\D,f(-“/")j X (65)
Noticing that (cf. eq. (15))

o 42} n n) Q(r; " A)

P (S v} = — (8, =gy

5 ’ g (o5
¢

~ (4] ~ L
Qe 0B = - _szur @B, 5-p-0) |

17 -

1 ]
QEE can be rewritten
€7] ¢ A
@, =z z | dg, [97, YR -(2\,(‘,‘7‘"")1" S0 ]

SeA fo,v ap(:,f.,v;

¢ A o
- 2. 2 f a(zqf—w AR 3(5,3-/-,~r7--v} (67)
SEA vy T’“’}"‘"”’

Z 2: _f d /D-Q‘;f(ssfa-f/h"\-’)’
fEA pyw 'f’(‘f"")
_ m @ (@)
which gives as before GZ: =0 4+ QZ: , where
(44

&, = Z 2 I 0(‘\" [ (.: ,: u)_Q. (-r-f:/.ﬁs v (68)
E o seA pig Leopup a Ff re r

with
Lespo,p) = CEONCCsH ACCT) nCesP) (69)
}
being a link, which has the orientation opo{s,p,\D). The contribution QCZ has
the form
2) ¢2) -
Q( = 2. 7 (ac.:)s-a,.r-/:-v) S (70)
A(Z) 4
where

A® - _";;/9 {xe€ P ey \'Df:(:,/u,v)_f. (71)

Making use of the fact thatg)

@ A mma 2} A o oaa
“Qf«vr ("Js'f'n-f‘t"“":f’) == /.ruc‘)STﬂ,Sr-V-f ),

c2r A "o € W ey
Kol (J‘SL[L'HQ’&/‘-\,T) = - "Q‘V/n? (“‘J*“'f"h"’) -S'-—/n-l?-f)} {12}

s
) P FY ﬂ (2} P P PO R
Dopup G SFFSPE) = D oS f P,
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eq. (68) can be written

Q. = Z Z { dﬁj‘,pf [Q/...f(fﬁ-,m&/a—u) —~_wa (5,5 5rif)
Z  seA pg Lsp v )
[+2) M amn (¢} A A AaaT.
¢ Dpop I D) = Dy I
f ¢z (73)
e 2. 2 dq, v A, 5k, s-40, £ n-v-3)
Sen g Cf*:f',':I)ﬁ (I YAl Al iy s
o " - A AN
= Z Z .[ ‘“;.u_f ,Ou— D}-wfrc‘a&/‘a‘f'ﬁ; -"'/--V-f) )
SeA fvg lﬁf,f',\ff)
This gives, as before, Q;_.z) = QQ)+ Qg), where
a ) ' -~ A " 4 A .
& )=/%%) n (xi")"'f‘*"'f“"’a‘rf""f) (74)
with
{3}
A = t/ Ixe {(.r,/.,a,f}\‘i){’(:, SRR (75)
. ‘r’/"ng
For Q‘_(‘s:)we obtain, together with eq. (40),
) Z. e 1 [ V LY ] A A A
Qp = Z Z, e inr [VCisfosfbsfii)
{76)
- _V(s-&'—, Juﬁ-—t?'-, .':--/C-S.&‘-, “L]""A'E-a‘—) ] 3
where V(S,&-,a,s-j.‘-S,s-;.‘-s-§ },... are the volumes of the spherical tetrahedra

defined by the transition functiens 'IJ; St
’

]
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Again, making use of the symmetry/antisymmetry properties of E/“".f" s
eq. (76) can be written )

(¢}
! - A A A oA
Qp = Z, Z, Cotw i [VessFosfed ofed-f)

- V(‘,S‘T‘:)‘g'ja-s: ‘ghf‘:'s—f-}) + V(S,&‘]:, 372.'-3-}, 4 A-‘;\.F-g—) (77

— Vs, spv, :-‘,"'-3-& S-p-d-p-i) 4 V(s—,’!,sf—ﬁ,.rf-&-},:-/'.‘-S‘.j'.?—)] ’

so that finally we obtain

1) - A - A oaAan
Q_ = zZ 2 ﬂ(*’;"'/“;"f""a SofoUP, SppVpT) (78)
Z  seA py T
where n 1is the winding number associated with the & spherical tetrahedra
cavering 53 as intreduced before with values 0, tl1.

In total, the topological charge then reads

- 2 2 ?1(&&‘71:,:7&'-3,s-/:-ﬁ-f,s-/:—s@-?-)
\S'G/\ f';V,?,“

t . [¢3) A A A
+ I R )c‘x_,-s,.r-/h)-:LZ n (x_;.r,.c-fﬂ,s\-/«-u) (79)
Am A(z)
+ T P, s, 0p s b, 5 5p)
ALY R S st A
Again, it can be arranged that
- - - " A A AN A A
Q = Z Z PSSy SpI St a)
SEA /‘.*}3.6"
The wvirtue of this construction of the topological charge Q is that it
can easily be adopted to any geometry of cells.
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IV. Lattice gauge fields

In sections 11 and I11 we have assumed that the gauge fields are known in
the continuum {of ™). This is no longer true if the theory is regularized by
formulating it on a discrete lattice of points in space-time - usually a
hypercubic lattice, which we shall identify with A (eq. (54)). In this case
the transition functions 1§’S_ﬁ are a priori only given at the corners of the
faces f(s,p), i.e. the lattice points.

for the computation of 0(3) this is all that is required. For the com-
putation of Q( ) Q(z) and Q(3 we need - if no further pruvws1ons are made -
to know whether A.O.,.‘(s s-/n) A.Q,‘ (s S[a Sﬁ-u) and A.(lf, E(N-/«,S/H’ sp-5%)
are singular in (s, pIN9f(s,p), pls,u.¥)ND pls,uv) and € pmgd 0 fs,m0 0,
respectively. The exact positions of the singularities {(xe€ /\( LA Z and A 32
respectively) are, however, not necessary to know. This requires (only} an
interpolation Of?r;,s-ﬁ throughout the plaquettes p(s,u,V} and, possibly, toc a
single (but arbitrary} point in the interior of f{s,u). A potential inter-
polaticn (which satisfies the cocycle conditicn and maintains gauge invariance}

has been given in the 1iterature8}.

In the "continuum region", where the lattice spacing (which we have set
to 1} becomes small in physical units and the gauge fields contributing to the
functional integral have a small (lattice) action demsity,

Ty [1-VUOp] < € (81}

(U(Vp): parallel transporter around the plaquette p}, the computation of Q =

0(3) + Q(l) + Q(Z) + 0(3) simplifies greatly. Using Lischer's inter-

po]at1on8) of the tran51t1on funct1ons one derives the fo110w1ng {sufficient)

conditions under which ﬁﬂ %s S, A'QP‘ (S-f/'-,sp -)andAQ vj(ssyh,sr-vsw-v-g)
have no gauge 31ngu1ar1tzes.

A, 502, 2) + /arecos(I-§¢) S

e
A0 p09,2) + d ,0p5602) + L, Coa OV g 05900, 2) # Sarecor(fe) < 22,
o (4 , A6,2) 4 max T p 2 al) 82

na s f s el

* G{(TEST:“WV:T.-:;(J)[ 3.5, 5 fi-0-p a)] 1)f+ Sarceas(i-f€) €
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for y,v,9 € §2,3,4} (for y,vorp = 1 the fields that give rise to gauge
singularities are of measure zerc in the functional integral), where dite, v 1is

the metric of SU(2) = S°, i.e.

din,1) = arcces ($7ru) . (83)
This means that for small € it is possible to gauge transform the transition
functions - if necessary - such that the bounds {82) are satisfied. The com-
putation of Q then reduces to the computation of Qg?, and the charge can be

viewed as the sum over local SU(Z2) winding numbers.

For gauge field configurations with larger action density it is also not
necessary to compute all of the Q's. One finds that it is always possib1e to
{explicitiy) gauge transform the transition functions such that Q (2) =
= Q(l) = 0. This then reduces the problem to determine whether‘U; s T T 1 in

¥
f(s,p)\TJ f(s,p), which can be done cn purely geometrical grounds.

It is not the purpose of the present paper to go into further details of
the numerical evaluation of Q on the lattice. This will be the subject of a
forthcoming publication, where we will also present results of a Monte Carlo
calculation of <Q2> on large Tattices.

V. SU(3}

It is not trivial to extend the results of sections Il and III to the
physically wore interesting case of gauge group SU(3). Therefere one is led to
ask the question: can we reduce the problem of computing the topoiogical
charge for SU(3) gauge fields to the case of SU(2)

In the continuum this is possibie by means of the so-called reduction of
the structure gruupll). This means the following. A fibre bundle, which has
structure group G and is therefore in general given by G-vatued transition
functions, may under certain circumstances be described by transition
functions with values in a subgroup of G. By means of the theorems proved in
ref.1i it is easily shown that the structure group of any SU(3) bundle over T4
can be reduced to SU(2)}.



- 17 -

The explicit construction makes use of the fact that SU{3)/SU(2) is equi-
valent to 55. Actually, SU{3) is a SU{2) principal bundle cver 85 (cf. ref.12
for the analogous considerations in case of the unitary groups). The
projection

Ky
SUG) > SUEG)/SUR) = 8 (84)
simply maps a SU{3) matrix onto its first cotumn. Here and in the following we
describe points of 55 by a tripiet of cemplex numbers,

a,6,c) e €, ta) % 161 4 1ciT = 0. . (885)
As S5 minus one point is a contractible space, SU(3} minus the fibre over the

removed point is a trivial SU{2) bundle. for example, any #{ € SU(3) with te, -4
may be decomposed as

l} o 0
»® = WU, un,, u,,) (,, x -&% | > (86)
o p «
where ]0(12 + !‘-’:lz =1 and
¥ i /4o
- -l —
4 b 1+a*
B 4‘_ 2 *
Dabey = |0 g (AR - 28 (87)
i
cb L tipat 2
- =2 +a&=1let
C Tron ﬁhﬂ?( J

for {a]2 + )blz + fc}z =1, a# -1. The first factor in (86) represents a
point of the base space 5% in SU(3) while the secend one describes the fibre
su(zy.

Now the reduction procedure as given in ref.ll goes as follows. Let P be
an SU{3} bundle over Ta specified by transition functions (we shall restrict
ourselves here to hypercubic geometry}

Vs p @ €SV, € fesp) (88)
anatogous to the case of SU(Z). We first construct a saction of the bundle

PrsU(2) which has T’:L as base space and Ss as fibre. Such a section is des-
cribed by smooth functions
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2z, ccs) > §F
(89)

satisfying
2. = Ty P 2o (90}
for & € f(s,p). The fact that P/SU(2) admits a section follows from
WSS = T, (s =W (sD =0, (o1)

If 2 is not surjective - this condition is generically fulfilled - we

can find a smooth map
-1

2,0 o) = SUQ) (97}
suych that the first column of @_s{y) caincides with a‘q(y) for all ye c{s):

3 4 93

24.(9) : = ES(;). {93)
For example, if?_s(y) # (-1,0,0} for all y e c(s) we can define

24630 = @ (e.lp)- (o8)
For y € f{s,p) we have

2o () = 2 = Ty 020G = T, a0 e_ st ((6).099)
<@ {2 $ a0 T G .s;.r7p.9 w20 (3]

Consequently, if we use the functions Qs to gauge transform the ’l—;; s-i® we
arrive at transition functions with values in SU(2):

- -7 - “ i 0 0
8 Tz s @ = (o 5
0 Tt

As the topological charge is invariant under gauge transformations like {98),

) ) ﬂ;,s_/; &) € SUG) (%)

it can be computed from the SU(2)-valued transition functions T/ s—ﬁ(y)'

Yo carry out the reduction explicitly we need to know E\s(”' In the con-

tinuum, where the SU(3)-valued transition functions QT-S - are explicitly

given in the form

3 ey ' (97)

a8 = $.¢9) A9}
J,S?Aa 94‘3 c?.r-/.a
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(cf. eq.(ll))' for all y & f(s,p}, we may take

2 = F.p7(8) (58)
which, as is easily seen, satisfies eq.(90}{and, as a result of (91}, can be
extended to c¢(s)). On the lattice we follow ref.8 and construct transition
functions at the corners of f(s,y) with help of the standard parallel trans-
porters &

— - — o -

To extend the fi?s 5-j 's to the whole of f(s,u) we may take Liischer's
1nterp01ation8) (wh{ch is trivial to extend to the case of gauge group SU(3)).
It has been shown in ref.13 that this can be written for all y € f(s,u) in the
form {99). The explicit expressions for the parallel transporters Q?yl,yeaccs)

are also given in this reference. We then may define
- ?
2,5 =&y () (100}

which satisfies eq.(90) and provides us with SU(2)-valued transition functions
les_ﬂ(y) for all y € f{s,p).
V. Conclusions

We have integrated the Chern-Pontryagin density completely and obtained a
closed expression for the topological charge Q - which requires fo know the
gauge singularities of:LDﬂO},d (13 andd!l(i) though. This result applies as
well for gauge group SU{3), whose transstion functions can be gauge trans-
formed intc transition functions with values in SU(2). The practical use of
the expression is that it allows us to calculate Q, in the continuum and on
the lattice, without resort to numerical integration.

We have seen that eq.{79) leaves considerable room for the practical
evaluation of Q on the lattice - including the choice of an interpolation of
the transition functiocns. The by far fastest procedure is the first method
described in section IV, in which it is sufficient to compute Q3. This will
be applicable in the “"continuum region" only. But notice that alone in the
"continuum region™ a lattice gauge field configuration can be assigned a
unique topelogical charge8
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While we were preparing this paper we received a preprint by PhilTips and

Stone14), who also were able to compute the topological charge of SU(Z} gauge

fields by analytical means. The amount of algebra to do in their algorithm is

similar to that of the second method sketched in section IV, where one has to

compute Q(l) only. It will be interesting to compare their charge with, e.g.,
Lischer's interpolation of the transition functions on indiyidual gauge field
configurations at various values of the coupling constant to test for unique-
ness of the resuits.
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Fig.1

Figure Capticn

The & spherical tetrahedra covering 5. A, is the angle between the
spherical triangles {i,j,k} and (i,},1), A2 is the angle between the
spherical triangles {3,j,k) and (i,j,m) and A3 is the angle between
the spherical triangles (i,j,m} and {i,j,1}.
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