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Introduction

The vertical "PETRA instability" was theoretically described in terms of
transverse mode coupling 14253}, In the meantime, transverse mode coupling has
been extensively treated by several authors*1%153758) Since current limita-
tions still present in PETRA are connected with satellite resonances?), the
question arises whether localized structures can couple the transverse
head-tail medes to the longitudinal shape-modes near satellite rescnances and
can this lead to an unstable collective motion,

The mathematical properties of transverse mode functions leading to transverse
mode coupling hold also in the case of longitudinal-transverse mode coupling.
The dinteraction between transverse and longitudinal collective motion i3
governed by the transverse impedances and that part of the longitudinal impe-
dance which depends on the orbit position, both related by Maxwell's equa-
tions. The expected effect will therefore strongly depend on closed orbit
deviations, a characteristic property of the observed current limitations in
PETRA. The effect essentially differs from those effects which have recently
been studied for localized structures®»!!),

In this article the effect is studied theoretically in the framework of the
Viasow equation'?),

¥lasow equation

If & denotes the longitudinal angular ccordinate of a particle with respect 1o
the equilibrium particle, the perturbation of the longitudinal distribution F
obeys a Ylasow eguation ’

{%1"”5 'a—?,;'}F = :_,-No(r) mswsin? (1)
hUe
Wo{r) = stationary distribution
wg £ circular sychrotron frequency
h = harmonic number
Hc 2 peak voltage multiplied with cosine of phase angle

F, describes the longitudinal "force"™ as a linear functional of the transverse
distribution that will be defined later.

e tmm o et e e e e



The longitudinal coordinate has been parameterized according to

& = r cos¥ (2)

transverse

In the the transverse case we introduce the "quasi-time" %} defined by

L= Rs(r)) (3)
v
s = longitudinal coordinate along the ring
®(s) = phase advance
wg = wy0p
wg £ circular revolution frequency
Qp £ transverse Q-value

Instead of the transverse coordinate x we intraduce the Courant-Snyder coordi-
nate z with help of the amplitude function B(s)

z = x/vVB {4)
The coordinate z will be parameterized according to
Z=p-rcos? (5}
The Viasow equation for the transverse perturbation &{p,®;r,Y¥ ) then reads

f [F,8,t]

9 2 2 =
{5? + ug = + 75?} G =

3
Wa B2 W ) )
B o{r) FTl UglP) sing  {6)
Ug(p) # stationary transverse distribution

E energy.

The transverse "force" F is a linear functional of the longitudinal pertur-
bation F,

Since the forces F, and | are generated within localized objects, they have
an explicit time dependence as expressed in Eqgs, (1) and (6}, Therefore the
time dependence of F and G is not trivial,

We make the following "ansatz"

time dependence of longitudinal distributien: e'?wt {A)
time dependence of transverse distribution: e"ﬂ-E {B)
with the relation Q= w+ wylpe (¢)

where Qg is the integer part of the transverse Q-value,

The functian e’ﬂt"1“t is periodic in t and t with period 2n/w, because of

the periodicity property of t{t}.
We consider the longitudinal force F,[G,8,t] which can be formally written as
Fo06,0,t1= & F(t,p) ePO5(p) 7 ¥ (7a)
p
Carrespondingly for the transverse case we have
RIF,9,11 = £ E(rp) ePPf(p) ' (7b)
P

Here g{p), ?(p) are Fourier transforms of transverse and longitudinal density
functions to be defined later. The "ansatz" (A), {B}, (C} "solves" (1) and (6)
if we keep only the "dominant" component in the Fourier expansion of F.{t,p],

F (t,p), namely the component of e“(QT -Wt}.

longitudinal .
F(5,t) = f(8) e71®F (8a)
+n o
£§(8) = [ dFf [ dre £(r,9) 8(8 - r cos?¥) (8b)
- 0
- + o ig
fla) = | de f(e) 70 (8¢)
) . ¢
flr¥) = E fp(r) e (ad)
n=-wm
and similarly
transyerse .
G{p,p; r,¥;1) = Gplo,¢; ) en 18 {8e)
6a(ps0; ™¥) = T Ganloses r) et (8f)
e T
Gam = AlP) glr) (cosp + i o, sing ) (89)
+ o +x imw
g{8) = [ ¥ [drr (£ gulr) e™) 5(9 - scose) (8h)
- MS =
~ 4o .
gy = ds g(e) eI (81)



In addition we defire the transverse dipole moment according to

+1 -3
Zgp(r) = [ do [ dooGpple.gs rlocose (9)
-7 o]

1ongitudina1 and transverse forces

The longitudinal forces are determined by the longitudinal impedance z,. This
jmpedance can be written as 13}

Z, = Zou + Zlu (10)

x2
b2
where b is the aperture radius of the object,
The impedance Z,, effects a longitudinal force which depends on the transverse

position x,

If there is a closed orbit deviation xcy 4t the location of the object, then

betatron oscillations of particles lead to a longitudinal force that depends
1u)

linearly on the betatrgn dispiacement xpg according to

Xeo " %6

e {1la)

Fun 2y

Since the longitudinal impedance Z,, leads to a transverse impedance

cZ,,
L= — (1ib)
b2y
w2 spectral frequency
€ 2 velocity of light

a longitudinal collective oscillation can excite betatron oscillations,

With help of the relations (1) to (11) we can write down the fundamental inte-
gral equations for f and g:
21wV By Z Xeo -t n o Z1.(p)
'] — —

(w - nwg}fy(r} = H-—hﬁ;—l;z—*‘ r a7 pfw P In(DV)G(P) (12)
I@CX 1 teo f+ll(p) ~
(o - (g +mug)IT gplr) = Tﬁ[ﬂ"‘ H g (r) X —— In(pr)T(p) (13)

Here Eb, Xgo are the maximum values of the amplitude function and the closed
orbit deviation in the rf-region.

The impedances'ff“ are defined by

- N Bp x
Z::u S S EtA(SE) ’...—E __CLE (14)
2=l By Xco

The index & runs over the positions of localized objects (rf-section) with
impedance Z,,,, amplitude function By and closed orbit deviation xcqg

The function A(s) is given by
Als) = Qr(s) - wt(s) (15)

In the sense of the approximations applied this should be replaced by
4(s) = 9p(s) (16)

where ¢r{s) is the phase advance corresponding to the integer part of the
G-value,

For the derivation of (12), (13), (14) compare for instance ref., 2 ar ref. 3,
Writing
Ap = W - Nug (17)

Ap = - (g + mag) (18)

and making use of

+eo

fip) =2n £ [-i1" [ drirt fo(r) I(pr®) (19)
Ns=o

- +o

3p) =2n £ [-i1" [ drvt gn(r') Inlpr') {20)
n:-oo

we obtain from equs. (12) and (13)

X, i/-f?‘(u 1 7'" . «
Aafp = dunl —-—Ef—;_—?-—sta? Welr) Z'T;_ Iy(pr) 1 " m-1 | dretrt Tplprdgglr)
b*hlU, P n 0
{2la)
B I/g‘ofcoc Zl

Apfn = Holr) ¥ - Iplpr) ¥ rigm-=n-1 T ar'r ' Ia{pr)fa{rty)  {21b)
2] m o]

2E/eZb?



Besides the functions fu(r), g,(r) we introduce the adjoint ones Since the functions h{p), k(p), as a function of p, have the same parity pro-
; - 15 y - perties, the system {26) has similar properties as in the case of transverse
nlr) = -fn = 57 Wolr) (22a) mode coupling, Concentrating on the coupling of longitudinal and transverse
gnlr) = g;(r) W (r) (22b) modes only, one abtains from (26)

. < -Z‘;CO E;LUS _
with 2n [ drrig(r) =1 {22¢) An -1 ————= 0 A,
0 b2 h U
The scalar product of a pair f, f' resp. g, g' is then defined as = =0 (27)
Ib/f?o"coc -k
« - e (D) Ap = A B
(F,£1) = [ drrft*f (23a) 4nE/ezb®
0
(9,9'} = f drrg** g (23v) with 6 =08ug + (m-n)og (28)
0
According to (22}, (23) we put Swp is the circular betatron frequency corresponding to the fractional part
of the Q-value.
folr) = Apep(r}
(24a) We introduce the abbreviation
gm("‘) = Bm'—m(r)
n 12 % Bos © _
Mz = ——2_22_ [p7|2 (29)
with  (Lpefm) = (Lps L) = 1 {24b) 2nEfeb* h U,
for all m. An instability occurs if
Finally we introduce n<?o
o Im| - In| odd (30)
knlp) = Var [ drrag(r) Inpr) {25a) _ - A
0 lMl > [EI
kp(p) = Var [ drrip(r) Ip{pr)  (25b) From (14) follows
0
N .
+ +iAsg) *cot [Py
MuTtiplying equ, (21a) with f, equ. (21b} with L}, and using {25) we find Onm = 9.§1 Dorm © L To 3 {31a)
- 0
Y A =+
2:’:12/5; Xeg Yo n-m-1 Z,.(p) . Zing 4
Aghp = —=<C 2 F [T T S ) kp(p) B, (26a) with  Dgpm = 1 ha(p) kn(p) {31b)
n®n bthC o b P n(P) m(p) m ; ?
s - From the parity properties of h, k as functions of p follows
!l/_-‘x C +
Agbp = rPaXeo & fpgymenel p TR k(o) kn(p) Ay (26b)
dmEfeZb? n p p o h;(p) km(l’)
DR.nm = 2 L R.Q, zlu(P) - (32)

p=0 P



At this point we must introduce the normalized functions 2(r), L(r) solving
{12}, (13). As an "approximate" solution we put ‘

Lalr) = [TET] L [L]m e (3

vavimjt ©
. O5
with o = 15"'q? (34)
ag & r.m.5. bunch lTength

machine radius

Similarly we put

L
tylr) = V2 "‘ér) (35)
and obtain
1 ag Iml_pz(Fy
k = = R 36
m(p) Vi‘"‘/rnﬂ_!'(pR) e {36a)
and
kn(
hn(p) = VZ ndp) {36b)
with
Re Ziwg = Rung {37}
a
and Ref'f!l, = 21 R“,‘Q‘ E—pz(Ts)z (38)

o o
We can express D by differentiating Refrg (75) with respect to (7502.

Going back to {27) we find lower thresholds if & is small, Putting n = -|n|
according to {30) and specializing m = -|m| one obtains from {28}
= Sug - (Im| - Inl)wg {39)

which becomes small for [m| > [n| if &wp is near a satellite frequency

Supgay = (Iml - [n]) wg (40)

g — A

Since an instability occurs only if |m} - |nl is odd {see 30) a blow-up occurs

only near odd satellite frequencies. Table I shows the relation between modes

and satellite frequencies

transverse m fongitudinal n satellite fregquency
-2 -1 W
-4 -1 3 ug
-3 -2 Wg
-5 -2 3 wg
Tab, 1

In order to make use of the differentiating process mentioned above we put

v = {{m| + |n| - 1)/2

We find from (32) and (38}

Dg,nm =

05 J7im] y”ﬂ”[|/‘m||'/|nlﬂ

vz [ ]I”I“Iml( 1V d¥

(41)

Rerry (42)

If $n a limited range we assume a "power Taw" for Rgrrg as a function of &g

o dg }-2
Reere, = Rerrn [E] sy B> 0

we obtain

v
(-n)¥ —d . pip+1) ...

@7

and therefore

Oonm

VR al T Vi

VT ppHl) . (uty- b g

-2y

(s
{p+v-1) _R'S_ Rarre

(43)

{44)

(45)
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Relation (29) can then be rewritten as

IR,
Ml = e =t "‘C"!F\r‘—' (452)
Eth
with c
w, = Se2n (46b)
b
2 L velnf plp+l).. . (u+v-1) (46c)

20 yml* e ) A VT
Rers is the impedance of the whole structure. The quantity I is given by

N Re 2
r=94{¢ (mmﬁ?cosﬂ(sg‘))a + (=— L ic_:_c_> 35-91 sina(sg))® }i/ (46c)

g=1 Reff gq Rerr Zeoy Bo

Numerical estimates

We apply the maximum value of &, i.e. £ = 1 for PETRA and choose the following

machine parameters:

E = 7 Ge¥ h = 3840
I =5 mA Ue = 25 MV
Xeo = 2.5 mm n=-1
By =20m m = .2

=4 cm 2u = 1.5

= 50 kHz Refr - 1,2+10%/cm® for 56 5-cell and
b2 56 7-cell cavities!®)
This yields
[M[/kHz = 1 or A x 2 kHz

near the first order satellite resonance.

For HERA the effect only appears above the gperational bunch intensities if
one assumes a distance A = 2 kHz,

P
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A "coherent" satellite resonance can be distinguished easily from an inco-
herent ("normal') satellite resonance if the transverse motion is dominated by
a dipole oscillation, An identification of a higher head-tail mode is rather
hard,

For the instabilities treated in this article the higher head-tail modes are
accompanied by collective longitudinal oscillations, Especially in the case
considered numerically the instability leads to longitudinal dipole oscil-
Tations which can be easily detected.

In PETRA longitudinal dipole oscillations or longitudinal shape osciltlations
in coincidence with a transverse blow-up near odd satellite resonances have
not been observed,

The reason for this may be that Z is much smaller than 1 due to the symmetry
of the machine and the symmetric locations of the rf cavities.
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