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Introduction 

The vertical 11 PETRA instability" was theoretically described in terms of 

transverse mode coupling 1 • 2 •)>. In the meantime, transverse mode coupling has 

been extensively treated by several authors .. ,s, 6 , 7 , 8 ), Since current limita­

tions still present in PETRA are connected with satellite resonances~>, the 

question arises whether localized structures can couple the transverse 

head-tail modes to the longitudinal shape-modes near satellite resonances and 

can this lead to an unstable collective motion. 

The mathematical properties of transverse mode functions leading to transverse 

mode coupling hold also in the case of longitudinal-transverse mode coupling. 

The interaction between transverse and longitudinal collective motion is 

governed by the transverse impedances and that part of the longitudinal impe­

dance which depends on the orbit position, both related by Maxwell•s equa­

tions. The expected effect will therefore strongly depend on closed orbit 

deviations, a characteristic property of the observed current limitations in 

PETRA. The effect essentially differs from· those effects which have recently 

been studied for localized structures 10
, 11 ). 

In this article the effect is studied theoretically in the framework of the 

Vlasow eq•1ation 12
). 

Vlasow equation 

!~~2!!~~i~~l 

If & denotes the longitudinal angular coordinate of a particle with respect to 

the equilibrium particle, the perturbation of the longitudinal distribution F 

obeys a Vlasow equation 

{.!!.. + w - 0
-} F 

at s alP 
a W () F,[G,&,t] 
iir: 0 r WS Sin\f' 

h Uc 
( 1) 

W0 (r) ; stationary distribution 

ws ; circular sychrotron frequency 
h ; harmonic number 

u 0 c - peak voltage multiplied with cosine of phase angle 

F, describes the longitudinal "force" as a linear functional of the transverse 

distribution that will be defined later. 
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The longitudinal coordinate has been parameterized according to 

~ = r coso/ {2) 

transverse ----------
In the the transverse case we introduce the "quasi-time" 2 ) defined by 

fiill.l). 
ws T = 

s ~ longitudinal coordinate along the ring 
~(s) ; phase advance 

WB ; wo QB 
w0 ; circular revolution frequency 

QB ; transverse Q-value 

{3) 

Instead of the transverse coordinate x we introduce the Courant-Snyder coordi­

nate z with help of the amplitude function B(s) 

z = x/ v1l 

The coordinate z will be parameterized according to 

z = p • cos qJ 

(4) 

{5) 

The Vlasow equation for the transverse perturbation G(p, qJ; r, f) then reads 

{
a a a F""[F,&,-r] :y,: 

F-[ + wB aql + ws ~} G = ~ wBB 2 Wo{r) aap U0 (P) sinqJ 

U0 (P} ~ stationary transverse distribution 

E ~ energy. 

(6) 

The transverse "force" li is a linear functional of the longitudinal pertur-
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The function eint- iwt is periodic in t and t with period 2n/w0 because of 

the periodicity property of t(t). 

We consider the longitudinal force F,[G,.:t,t] which can be fonnally written as 

F11 [G,&,t]= E 
.... ip&- -i .lh F,.{t,p) e g{p) e { Ia) 

p 

Correspondingly for the transverse case we have 

ft[F,.&,-rJ= E [ {<,p) eip& f(p) e-iwt (lb) 
p 

Here 9'(p). f(p) are Fourier transforms of transverse and longitudinal density 

functions to be defined later, The "ansatz" (A), (B), (C) "solves" (1) and (6) 

if we keep only the "dominant" component in the Fourier expansion of F,,(t,p), 

f (-r,p), namely the component of e±i(Q-r -wt). 

!~~21~~~1~~1-~~9-~r~~~Y~r~~-~9~-!~~~!12~~ 
For the definition of longitudinal and transverse mode functions we introduce 

!2~21!~~1~~1 
f(&) e-iwt F(&,t) = (Ba) 

+n 
f(&) = I d'f' I drr f(r,~) 6(&- r cos 'I') (Bb) 

-rr 0 

+ro 
d& f(&) e-i&q f(q) = I (Be) 

-ro 

.+ro 
fn(r) ein</' f(r,'l') = ~ (Bd) 

n=-w 

bation F. and similarly 

Since the forces F, and li are generated within localized objects, they have 

an explicit time dependence as expressed in Eqs. (1) and (6). Therefore the 

time dependence ofF and G is not trivial. 

We make the following "ansatz" 

time dependence of longitudinal distribution: 

time dependence of transverse distribution: 

with the relation n = w + w0 QBr 

-iwt e 
e-i n-r 

where QBr is the integer part of the transverse Q-value. 

(A) 

(B) 

(C) 

!r~~~Yi.:r~i.: 
G(p,cp; r,'f';-r) GB{P,<P; r,f) e-i Q-r 

? Gf3n(P,~; r) eim'l' Gs(o,~; r,'/') 

GBm = 
Q- mw5 

A(p) 9m(r) (cos~+ i -w-- sin~) 
B 

+ro +ro 
9m(r) eim'l') 6(~- &eos~) g{&) = I d'l' 1 drr { " 

-ro m=-w 
+ro 

g(q) = I d& g(&) e-iq& 
-ro 

(Be) 

(Bf) 

(Bg) 

(Bh) 

(Bi) 
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In addition we def·ine the transverse dipole moment according to 

+n 
z 9m(r) = I d~ I dpp Gf3m(P,<p; r)p COSq> (9) 

-TI 0 

!2~~!!~~!~~!~~~~-!~~~~~~~~~-!2~~~~ 

The longitudinal forces are determined by the longitudinal impedance z,.. This 

impedance can be written as 13 ) 

x' z, = Z0 u + Z1, t;"2 

where b is the aperture radiu~ of the object, 

(10) 

The impedance Z1 , effects a longitudinal force which depends on the transverse 

position x. 

If there is a closed orbit deviation Xco at the location of the object, then 

betatron oscillations of particles lead to a longitudinal force that depends 

linearly on the betatron displacement Xf3 according to 1 ~) 

Fu'I..2Z Xco•X() 
1" ---· 

b' 
(lla) 

Since the longitudinal impedance Z111 leads to a transverse impedance 

c z 1" z = --
.J. b 2 w 

w ~ spectral frequency 
C ~ velocity of light 

(llb) 

a longitudinal collective oscillation can excite betatron oscillations. 

!~~-!~~~~~~~~~!_1~!~2r~!-~9~~!1~~~ 

With help of the relations (1) to (11) we can write down the fundamental inte-

gral equations for f andg: _) 
1?-- aW +oo Zi II (p ,.. 

2Iw5 vi>0 Z Xco [. 1n-l !'__o " __ In(pr)g(p) 
= 1 r ar P 

hUcb2 p=oo 
(12) (w- nw5 )fn(r) 

[n-
- I~Cxco m-i 

(wB +mw5 )]Z 9m(r) = [i] W0 (r) 
41TE/e b2 

+oo Z"';,.{p) ,., 
" -P- Im(pr)f(p) (13) 

p=-oo 

Here 730 , Xco are the maximum values of the amplitude function and the closed 

orbit deviation in the rf-region. 

·-- '·- -~- --
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The impedances Z~ .. are defined by 

-+ 
Z}u = N ±6(5~) JF~ Xco~ 

L Z1,t e - _ 
t=l B0 Xco 

(14) 

The index !L runs over the positions of localized objects (rf-section) with 

impedance Z1.,9.., amplitude function B!{. and closed orbit deviation Xcoi 

The function t:.(s) is given by 

6(s) = O<(s) - wt(s) (15) 

In the sense of the approximations applied this should be replaced by 

6(s) = ~r(s) (16) 

where fllr(s) is the phase advance corresponding to the integer part of the 

Q-value. 

For the derivation of (12), (13), (14) compare for instance ref. 2 or ref. 3. 

Writing 

An = w - nws 

Am= n- (wf3 + mros) 

and making use of 

(17) 

(18) 

+~ 

f(p) = 2n E [-il" I dr'r' fn(r') In(pr') 
n=-oo 

+~ 

g(p) = 2n E [-ilm I dr'r' 9n(r') In(pr') 
n=-oo 

we obtain from equs. (12) and (13) 

( 19) 

(20) 

Anfn Zxcolli';; "'s }.-'._ w (r) L z~ .. I (pr) L [i]n-m-1 7 dr'r' Im(pr')gm(r') 
= 41Tnl - r ar o P n n o 

b2 h Uc P 

Amfm 
/;;' - zt,, < l ' IV~0 Xco< w (r)'- Im pr L --:-:=;:- o t. P m 

2E/ezb' P 
[i]m-n- 1 j dr•r•In(pr•)fn(r•.) 

0 

(21a) 

(21b) 
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Besides the functions f 0 (r), 9n(r) we introduce the adjoint ones 

fn(r) ~ -f~ } :r W0 (r) (22a) 

9n(r) ~ g~(r) W0 (r) (22b) 

~ 

with 2n I drrW0 (r) ~ 1 (22c) 
0 

The scalar product of a pair f, f' resp. g, g' is then defined as 

(f ,f') 

(g,g') 

f drrf+* f 
0 

J drrg+* g 
0 

Accor-ding to (22), {23) we put 

fn(r) ~ An!On(r) 

9m(r) ~ Bmlm(r) 

with (!Om,!Om) ~ (Lm, Lml ~ 1 

for all m. 

Finally we introduce 
~ 

kn(P) ~ V2n' I drr!On(r) In(pr) 
0 

km(P) ~ 12,;' j drrlm(r) Im(pr) 
0 

(23a) 

(13b) 

(24a) 

(24b) 

(25a) 

(25b) 

Multiplying equ. (21a) with f~, equ. (2lb) with L~ and using (25) we find 

2n Iz/B.; "Xco Ws L [i ln-m-1 
-+ 

L z, .. (p) * ) 
(26a) An An = -- kn(P) km(P Bm 

b2 h Uc m p p 

rffaxco c -+ 
(26b) L [i]m-n-1 L l..J£] k~(p) kn(P) An AmBm = 

41T E/e Z b2 n p p 

-~ - "~ 
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Since the functions h(p), k(p), as a function of p, have the same parity pro­

perties, the system (26) has similar properties as in the case of transverse 

mode coupling. Concentrating on the coupling of longitudinal and transverse 

modes only, one obtains from (26) 

with 

),n 
- 2n I ZXco/Ba' w5 

bzhU O~m 

r/il;;xcoc (D~ml* 
4TIE/elb2 

!J. = ow6 + (m - n) w s 

c 

An - 6 

n~, (27) 

(28) 

Ows is the circular betatron frequency corresponding to the fractional part 

of the Q-value. 

We introduce the abbreviation 

nPXc'oilowsc I I IMI'- o-, 
2TIE/e b4 h Uc 

An instability occurs if 

n < 0 

lml - lnl odd 

IMI > 1~1 
2 

From (14) follows 

+ 
onm = 

N 
E 

c~1 
Dtnm e±i ll.{s.d ~ot it" 

Xco B 0 

with 'i' Z lujl, * 
D!(nm ~ L -p- hn(P) 

p 
km(P) 

From the parity properties of h. k as functions of p follows 

Dtnm 2 
~ 

E R h*( ) p~O "z, .. (p) _!! .... !~ .... /m(P) 

~ 

(29) 

(30) 

(3la) 

(3lb) 

(32) 
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At this point we must introduce the normalized functions £(r), L(r) solving 

{12), (13). As an 11 approximate" solution we put 

lm(r) 

with 

(-"'--) I m I 
lml 

.f1' 
Vn'/iml !'~'[~Jim! e-r/a' 

a, "" a = -/v 1 
R 

as ; r.m.s. bunch length 

R ; machine radius 

Similarly we put 

<m(r) 
v'2' lm(r) 

a 

and obtain 

km(P} fi[mfv'fmT!' (p ~s}lml e- p'(lf}' 

and 

hn(P} 
Vz' ~p} 

a 

with 

Re Z 1,t = Rt,,t 

and Rerrt = 2 E R -p2(os)2 
111!(, e R 

(33) 

( 34) 

( 35} 

( 36a} 

(36b} 

(37} 

(38} 

cr a 
We can express 0 by differentiating Rerrt ( Rs) with respect to (~) 2 • 

Going back to {27) we find lower thresholds if t:, is small. Putting n =-In! 

according to {30) and specializing m = -lml one obtains from (28) 

~=cwB-(iml In I l w, ( 39} 

which becomes sma 1 1 for I m I > In I if 8 w13 is near a sate 11 ite frequency 

cwBSAt = (iml - In!} w5 
(40} 

- --~----""- --~v--
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Since an instability occurs only if lml - [nl is odd (see 30) a blow-up occurs 

only near odd satellite frequencies. Table I shows the relation between modes 

and satellite frequencies 

transverse m longitudinal n satellite frequency 

- 1 - 1 w, 

- 4 - 1 3 w, ! 

- 3 - 2 w, 

- 5 - 1 3 w, 
! 

- ~- - -

Tab. 1 

In order to make use of the differentiating process mentioned above we put 

v = (iml + jnj - 1}/2 (41} 

We find from (31} and (36} 

D = 1... v'2' [as)lnl+lml(-1}v dv R,rrt 

tnm ~' film! {2inlv'fmT!'vTnfi' R d[(~'lT 
(41} 

If in a limited range we assume a "power law" for Reff t as ~ function of as 

eff!(, - • Rerrt = R (as l-1" 
0 so 

, 1-l > 0 (43} 

we obtain 

(-l}v dv 

d [l R'rr 
as -2v R 

p(p+1} ••• (p+v-1} R efft (44} 

and therefore 

Dtnm z 
fi p(p+1} ••• ("+v-1} R 

.rz' I m I+ In!} v[mj! vfnT! ,,, t (45} 
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Relation (29) can then be rewritten as 

with 

IR 1-
IMI = x ''' Xcol 

VE!e h lie' b 

/if: 
JbV'w~·wh'·.E 

wb 

K = 

E. • 21T 
b 

1 arnr ~(p+1) •.. (~+v-1) 
2rr q(lml+lnllvTmTJVfnT!' 

(46a) 

(46b) 

(46c) 

Rerr is the impedance of the whole structure. The quantity E is given by 

E { ~ (R,rri :_co {il;' cos 6(sg,))' + (~rrg, :_co {Bt' sin 6(sg,))')
1
/' 

i=l Rerr Xco J 13;; Rerr X co J B;;' 

Numerical estimates 
-------------------

(46c) 

We apply the maximum value of .E, i.e. E = 1 for PETRA and choose the following 

machine parameters: 

E = 7 GeV 
I = 5 rnA 
Xc0 =2.51TU11 
il0 = 20 m 

b = 4 em 
w5 = 50 kHz 

This yields 

IMI/kHz • 1 

h = 3840 
Uc = 25 MV 
n = -1 

m = -2 

2~ = 1.5 
R!!!.._ = 1,3 • 108 Qjcm 2 for 56 5-cell and 
b2 56 7-cell cavities 15 ) 

or 6 • 2 kHz 

near the first order satellite resonance. 

For HERA the effect only appears above the operational bunch intensities if 

one assumes a distance 6 = 2 kHz. 

___ ........,.._~---""'---~ "-- -''-----''----____.----~--~-_J-___ J, ___ ~-,_-~_-, --~~-~~-.P-"'-----------"'------'-· 
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~~e~~1~~~!~l-~~~~l!~ 

A "coherent 11 satellite resonance can be distinguished easily from an inco­

herent ("normal 11
) satellite resonance if the transverse motion is dominated by 

a dipole oscillation. An identification of a higher head-tail mode is rather 

hard. 

For the instabilities treated in this article the higher head-tai 1 modes are 

accompanied by collective longitudinal oscillations, Especially in the case 

considered numerically the instability leads to longitudinal dipole oscil­

lations which can be easily detected. 

In PETRA longitudinal dipole oscillations or longitudinal shape oscillations 

in coincidence with a transverse blow-up near odd satellite resonances have 

not been observed. 

The reason for this may be that E is much smaller than 1 due to the S}1lllletry 

of the machine and the symmetric locations of the rf cavities. 
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