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QUARKS AND LEPTONS AS A COSET SPACE PHENOMENON

R.0. Peccei

Deutsches Elektronen-Synchrotron DESY, Hamburg
Fed. Rep. Germany

ABSYRACT

I discuss the idea that quarks and leptons may
be fermionic partners of Goldstone boscns,
arising from the spontanecus breakdown of some
global symmetry in a supersymmetric theory. The
special role that the complex extension of the
symmetry group has for these consideraticns is
emphasized. Some semirealistic examples, involv-
ing both ordinary preon models as well as ex-
ceptional chains, are given.

1. MOTIVATION AND INTRODUCTORY REMARKS

Although the standard SU(3) x SU(Z) x U(1) model for the strong
and electroweak interactions is eminently successful phenomenologically,
there remain a variety of deep questians to be answered. Perhaps among
the most puzzling of these is why the pattern of fermions we abserve

is chiral and why the fermions appear in generational repetitions. In

this talk, I would like to discuss some recent ideas which may have a
bearing on this question.

The quantum numbers of quarks and leptons are quite varied and
asymmetric under SU(3) x SU(Z2) x U(1}. For instance, under the standard
model group, u, transforms ss (3,2,1/8) and e transforms as (1,2,-1/2)
while uC transForms as,(3,1,-2/3) and e_ as (&,1,1) . Because W' does
not trarnsform as ( ?i) , it is clear thdt the fermions are in chiral
representations,

The variety of SU(3} x SU(2) x U(1} fermion representations can
be reduced if one classifies the fermions sccording to scme grand uni-
fied (GUT) groups /1/. Under the tank 4 SU(5) group the fermions of

one generation transform as § plus 10. In the rank 5 50(10) group the

I detail only the trangformation laws of f/ since those of 4’
[ L R
follows from those of + L



fermions, including now a right handed meutrinc, transform as a 16.
This seguence can be extended to a rank 6 group, E., if one adnits even
more additional states for esch family. Quarks and leptons then trans-
form according te the 27 of E., but one needs 11 extra states. In terms
of an $0{10) decomposition, ofe has

27 =16 + 10 + 1 (2.1)

It is reasonable to ask if there is any dynamical significance tc
the appearance of these particular representations in nature. From the
peint of view of grand unified theories, the answer is obviously no.
Although GUTS unify the dynamics of gauge fields, they do not fix how
fermions must transform under the GUT group. That is, to be a grand
unified theary SU(5) must contain SU(3) x SU(2) x U{1). However, the
fermions of the theory can, in principle, sit in any SU{5S) representa-
tion. It is only phenomenolagy which tells one that quarks and leptons

transform as b + 10 in SU(5).

If one wants to fix the representation content of fermions dyna-
mically, it is probably necessary to relate fermions o bosons. Ob-
viously, the most direct way to do this is by invoking the existence
of supersymmetry at some level. Even then, one remzins with two
possible cptions. Either the quarks and leptons are related to gatge
fields, {1/2,1) multiplet, or these fermions are related to scalar
excitations, (1/2,0) multiplet. At first sight, both these options lock
pretty hopeless. Supersymmetry implies that fermions and bosons are in
the same G representation. Gauge fields transform, by definition, as
the adjoint of G. However, quarks and leptens do not sit in the adjeint
of SU(5) or 30(10) or of E,. Sisilerly, although one can imagine
scalar fields transforming as 5 + 10 of SU(5}, it is not obvicus what
dynamics would associate these fields to the quarks and ieptans.

Beeper considerstions can, however, relate fermions, via super-
symmetry, to the dynamics of either gauge fields or of scalar excita-
ticns. An example of the first kind is provided by the suddenly very
popular superstring theories f2/. Thess thecries, in the zero slope
limit, reduce to a supergravity theory in 10 dimensions, interacting
with a supersymmetric Yang Milis theory with s group G = S0(32) or
E; x Eg. The connection with four dimensional physics comes about
because it is thought that, near the Planck scele, the 1G dimensional
marifold compactifies down to M, x K, leaving in the process an N = 1
supersymmetry unbroken /3/ (For this to occur, K has to be a Calabi-Yau
manifeld f4/ with SU{3) holonomy). In this compactification process,
chiral fermions can survive ss long as they transform non trivially
under the holonomy group f3/. From these considerations, it is apparent
that the E; x E; supérstrings are partieularly interesting. E_ contains
E. x SU{3) as a subgroup and, with proper identification, thig SU(3)
can be taken as the holonomy group. The E, gauginos transform accord-
ing to the adjoint, which under the EB % SU(3) subgroup decomposes as

248 = (78,1) + (1,8} + (27,3) + {27.3) (1.2)

W U e e el S S SR BV S S, S S N N S Sy S S

Clearly, therefore these superstring theories allow the appearance of
chiral fermions in the 27 of €, and provide a raison d'étre for the ex-
istence of fermions transforming according to this representation and
no other.

Scalars can alse have a dynamicsl role, if they are the by pro-
ducts of the spantaneous breakdown of a symmetry. In these circum-
stences their fermicnic partners, induced by supersymmetry, are again
present in the spectrum for purely dynamical reasons. The elaboration
of this line of thinking will vccupy the rest of my considerations.

2.  PREON DYNAMICS AND QUASI GOLDSTONE FERMIONS

If G is a global symmetry of & theory but not of the vacuum state,
the symmetry suffers a spontaneous breakdown. If H is the subgroup of
G which respects the vacuoum, then G -H and in the spectrum of the
theory there appear dimG - dimH massless J = 0 excitations (Nambu-
Goldstone bosans) /5/. In a supersymmetric theory, where there is s
natural pairing of bosons with fermions, the spontaneous breakdown of
& global symmetry G causes also the appearance of massless spin 1/2
excitations. These are nothing else but the fermionic partners of the
dynamically required Goldstone posons, which in Ref. 6 we dubbed Quasi
Goldstone Fermicns (QGF).

Quasi Goldstone fermions may be good candidates for guarks and
leptons in models in which the states are composite (preon models).
Since we see, at present, no departure from elementarity, the scale of
compositeness must be very high, certainly very much greater than the
actual masses of leptons and quasrks:

N> Mg ¢ (2.1)

Thus preon models must have a dynamics which, to a good approximation,
generates massless fermion bound states, irrespective of the scale A
of the binding. Clearly if quarks and leptons were nearly (GF, their
masslessness with respect to A_ would be dynamically understood.
Furthermore, by choosing G and H appropriately one may indeed insure
that the light bound states of the theory have the quantum numbers of
quarks and leptons.

This last point is nicely illustrated by the original example used
by Buchmiller, Yanagida and me /7/ to motivate the QGF ides phenomenc-
logically. Consider a supersymmetric confining theory with a global
symmetry G = SU(5), broken tc H = SU(3) _ x U{1) . The number of Gold-
stone basons in the breakdewn is clearly 24-8§ = Ts5. By assigning charge
and color appropriately in the SU(S5), it is easy to check that the 15
Goldstone bosons have precisely the same gquantum numbers under
SU(B)C X U(l)em that the quarks and ‘leptons do. That is, under
SU(S)C X U(l)em, one finds /7/:

GB~(3,2/3)+(3,-2/3)+(3,-1/3)+(3,1/3) +(1,-1)+(1,1)+(1,0) (2.2)
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Since by supersymmetry these Goldstone bosons must have fermionic part-
ners, it is natural to assume that the (GF in the model transform alsc
according to (2.2). Hence the model provides dynamically massless fer-
mionic bound states with the quantum numbers of quarks and leptons (of
ong generation),.

These nice features of the model rely on the assumption that the
QGF transform in the same way as the GB., In fact, if this is so0, it is
necessary that in the theory there be also other massless bosonic ex-
citations, quasi Goldstcne bosons {QGB). Supersymmetry requires that
there be the same number of bosonic and fermionic degrees aof freedom.
Since fermions have two degrees of freedom, it is thus necessary that
in the model there should appear also a set (2.2) of QGB. It is im-
portant to emphasize, however, that supersysmetry only requires that
the equation

2n (2.3)

aeF * 7B * “acs

be satisfied. The assumption n = n., {and hence also n = Noeg )
needs dynamical justification.QEﬁ conggast to Goldstone bgggns, Sﬁgse
number and transformation properties are fixed by the G~ H breakdown,
the pattern of emerging QGF is s dynamical issue.

There is a further important point that can be gleaned from this
SU(g) model, or any other model in which n oE = "eB.= "ocg (Total
doubling). Goldstone besons sit in the G/H SlECE o§ the ggjoint repre-
sentation of G, and thus they transform as a real (r) or vector-like
(i + 1) representation of H. Thus in the case of total doubling, the
massless fermions are never in a chiral representation. There is no

way, therefore, to introduce in these models the weak interactions at
the fundamental level!l

Even in these circumstances the idea of quarks and leptons as GGF
is not totally without physical motivation. Recall that for Goldstone
bosons the dynamics of their interactions is specified entirely by an
effective non linear Lagrangian, whose structure is essentially deter-
minad by the G -» H breakdown /8/. Specifically, the non linear La-
grangian for a set of Goldstone bosons I, arising from the breakdown
of G-»H is given by f9/, .

P ot gt (/) 3T,

GB& (2.4)

where glJ is the metric of the G/H coset space. {(The only undetermined
parameter in (2.4) is the scale fg*, which is fixed by the underlying
dynamics.) In a supérsymmetric theory the QGF dynamics is also
{partially) determined. The supersymietTic generslization of (2.4} was
first constructed by Zumine /10/. The piece of this tagrangian which
contains only the GGF fields has the form of & 4-Fermi interaction

*
If there are varicus representations of GB, there are further scales

.
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The coefficients Ci‘kl‘ in contrast to what happens in (2.4), are fixed
both by the coset sﬂace G/H and by the underlying dynamics.

Because {2.5) has the form of an effective current-current inter-
action ane can speculate that, in models where the OQGF are in non
chiral representations, the weak interactions occur as residual inter-
actions amang the QGF. Of course, this requires both that the co-
egficients C"k be such that (2.5} reproduce the standard model at
q° = 0, and %ﬂa% dymamically one is able to generate low mass composite
W-bosons. This is very unlikely to be the case for the SU(5) model
/11/, but could well occur in some more realistic model.

Putting aside these speculations, it is clear that if one wants
to retain the notion that the weak interactions are given by a chiral
SU(2) x U(1) gauge theory acting at the preon level, it is necessary
to have quarksand leptons as GGF which are not totally doubled (i.e.
Pagré"ee’

3. THE ROLE QF THE COMPLEX EXTENSION

I discuss below the circumstances for which this may occur.

Although for any breakdown G-» H the number of Goldstone bosons
is fixed, the pattern of QGF in a supersymmetric theory is only sub-
ject to the constraint of £g. (2.3). It is the underlying dynamics
which fixes the number of GGB and of QGF. However, for a given G-»H
breakdown it is pessible to discuss the pattern of (GF which can arise.
Which of these patterns eventually chtains in a given model is then
a dynamical guesticn.

The pattern of QGF emerging from a given breakdown was studied
by Lee and Sharatchandra /12/ and by Lerche /f13/. Subseguently Kugo,
Ojima and Yanagida /14/ clarified the roie that the complex exten-
sion of &, B, plays in these consideraticns. The pattern of QGF which
can arise from a breakdown G -»H can be most simply,characterized
by considering the breakdown in a sequential fashion:

G 61-9 G,= ...G ¥H. At each stage in this chain the GB are either
in a Teal %r) or vector-like (i + I} representation. If the G8 are in
a real representation, G8 ~ r, then necessarily also the QGF ~ r and
there is a further set of QGB~ r. If the GB are in a vector-like re-
presertation, GB ~ 1 + i, then again one can have total doubling,
UG8 ~ QGF ~ i + i. However, if G./G, is a Ki#hler manifold, then one
can have QGF ~ i snd no QGB are ﬁeeaéa J12{, This last case is ob-
viously the most interesting.

—
In general there can be many different sequential paths. ALl paths
must be considered.



One can understand rather simply why chirsl fermions can arise
if the manifold is Kéhlerian. The supersymmetric generalization of Eq.
(2.4), first detailed by Zumino /10/, involves the D-term of an arbi-
trary functicn of the chiral and antichiral Goldstons superfields ¢.

and NL _
£, = K3, |, 55 1)

Sug

From (3.1) it is simple to find what the effective Lagrangian for the
scalar sector looks like:

SRR L LA LR
ote"":sc]oi

*
One sees that the relevant metric gi.(ﬂp,'f) from Eq. (3.2) obeys the
Kéhler conditicn, characteristic of ' éertain complex manifolds:

A . 93 o33 o gix (3.3)
e St / Yk >
Thus supersymmetry requires that the scalar excitations be coordi-
nates of a Kdhler manifold, Hence if G, /G, 1 is a Kéhler manifold, one
needs no cther scalar excitaticns but G8 g = 0 Mnge = 1/2 n B).
On the other hand, if G./G. is nct K3hlerian, then gne needs @o add
other scalar excitationd t%+%he GB to be able to have & set of complex
coordinates of a Kéhler manifold (which is obviously not G./G. ,}. This
requires npng = fion and thus there is total doubling. OF cburdd; this
option is gﬁways gpen, even if Gi/Gi+1 is Kéhlerian.

(3.2)

Sc-\nf

The above remarks explain the origin of the possible QGF patterns.
Of course, for any given model, what particular pattern of UGF BmMerges
is a purely dynamical gquestion. For a lagrengian field theory, this
issue can be enalyzed by studying the properties of the superpotential
W/13//14/. Consider & general supersymmetric field theory of chiral
superfields ., invariant under a global symmetry G. Then the rele-
vant Lagrangiaﬁi density is just

Z)uiy = ?{)‘&6\6856 +w(*€)la°*w‘¢‘)|é-é‘ (3.4}

where W is the superpotential. Note that W is a function only of ¢ .
and not of both &. and § .. For °?S te be 6 invariasnt it is pe-
cessary that both the kinetic energy and ¥ be G invariant. For W, in-
variance under G implies:

SQW(*;) - ?-:' SQ¢: =0 (3.5}

Note, however, that since W depends only on ‘*i' if (3.5} holds then
W( i) is actuelly also invgriant under the comflex extension of G,
whith I shall denote by G

*If one writes § 47 =i T +., ther for transformations of G,
e afi alti

T
a a

Suppose that a symmetry breakdown of G - H occurs, because varicus
af the superfields have non zero vacuum expectation values, $¢.». Then
it is easy to show that the pattern of GF is detemined by /13

W Ga <t = (M) §ad) =0
RAIEL RN b

(3.6)

Since this equation involves only the superpotential, the transforma-
tions in (3.6} can be extended to those of G. Hence ane sees that one
gets zero mass fermions for transformations Te¢§ for which T (t} 1'4‘0
/13/ /14/. Because Ta is non hermitian, one cén have chiral”patterns
of QGF.

A nice example /15/ is provided by the breakdown U, =* U. due to

doublet breaking: <4%s (L} . The generators of U(2) and of its
complex extension GL{2, ¢ ) are, respectively,
To(3%) aac® lcg oom
Il ' 4
~d
T:(“" atcded (3.75)
< A LI A |

~
Ciearly the conserved symmetries in the breakdown are larger for T
than T, since T $»= 0 implies

7= (@ Z) (3.83)
o

while T q): C implies

:F-(Zt\) (3.8b)

Hence, in thig breakdown, there are 3 GBw (0,+,-) but only

2 QGF~ (0,4) . Note, however, that this result depends on the dyna-
mics. In a model where U,- U, is accomplished by two doublet vacuum
expectation valuves: &4 » =€y ey and &> = N , it is easy
toe check that cne needs 3 QGF. That is, in this case there is total
doubling.

Independent cf the detailed dynamics, it is possible to establish
the following general results on QGF, if orme starts from a Lagrangian
field theary:

*

Supersymmetry (Eq. 2.3) implies also a QGB e~ (0)

- - - N N S S
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1. If G/H is a symmetric space (e.g. SU{men)/SU(m)xSU(n)xU(1)) then
there is always full doubling: Map = "geg = "goE 13/

2, For any G-% H breakdown there will be at least one QGB 13/ /18/.

The second result is certainly somewhat puzzling. One would think,
naively, that if G/H is a Kéhler manifold (e.g. ES/SD(10) x U{1}) then
the dynamics should allow n oR © g, n GE = /2 n g This in fact is
not allewed in {linear) Laggangian mngefs becaus% the superpotential
is invariant under both G and G. Of course, Result 2, does not imply
that one cannot construct non linear supersymmetric Lagrangians, based
on a GjH which is K#hlerian, which have QGF in chiral representations.
These Lagrangians arise from putting symmetry breaking constraints in
by hand which are invariant under G but not G, so the complex exten-
sion plays nc role at all.

I will sketch the proof f15/, 16/ of the second statement above; the
first is proved analogously. It is convenient for these purposes to
represent the Lie algebra of G in a step generator basis:

. rauk &

[Ed,E-—at-lzc{L“ H . te=t,
det b (dinonil 5 g)

Here H, are diagopal generators and the @;({}are the root vectaors.
Obviously one has a chiral (QGF if for some

E <4 f0 b £ <4¥=0 (3.10)

sa that one generator is broken and the other is not. Applying the
commutator in {3.9) on <&p and using (3.10) it follows that there
must be some H, such that H, <4 F . But the breaking of H, - since
it is real - 1¥ads always ta doubling. Hence "neA 2 1. l

Besides describing the pattern of QGF for a given model, it is
of course very interesting to study the non linear interactions among
the QGF. This was done, in an approximate manner, for the 5U(5) model
and other simple models, in Ref. 11. More general methods were developed
by a number of authors 12/ /14/, but the most comprehensive treatment
was given by Bando, Muramoto, Maskawa and Uehara [17/. This method has
been applied to several interesting examples in Ref. 18. Here T would
like to summarize in a qualitative way the results found and indicate
clearly why these Lagrangians are not totally specified by the geometry
of G/H, in contrast to what happens in the non supersymmetric case.

In a hreskdown G- H one expects that the 0OGF contain, in general,
both doubled and non doubled pieces:

0GF~ 1 + 1 + (i +13 +71) (3.11)

ey e U= i Ay e i g e ey A e T [\ Lt i ety e o e e i 7 et e e 1 e, _ ot e e i, e o, e e ey

The non doubled pieces involve chiral representations, i, for which

no QGB are needed. The doubled pieces contain both singlets, 1, as well
as vector-like representations, 1 + i+ r, and have n =N =Nppy -
Letting T stand generically for a Goldstone Superfie?gf a ngegg that
the scalar content of f[ is different depending on whether its {GF is
doubled or not doubled.

One has:

scalar ~ i scalar _
Waoubted = @P) W Lon Goubted = (9:9) (3.12)

That is the scalar fields in the doubled case contain both pure Gold-
stone hosons (g) and guasi Goldstone bosons (p). In the non doubled
case the scalar components of T are all Goldstone bosons. In terms
of symmetries of the superpotential W after the breakdown G-# H, if
there is total doubling then the invariance group is just the complex
extension of H, H. If, however, there sre same non doubled representa-
tions then the invariance group H is bigger, LEYH

The full set of scalar fields in T parametrize the coset space

W= G/, If one restricts the scalar fields to be just the Goldstone

excitations, g, then these fields parametrize the compact manifold
M = G/H. The set p is associated with broken non unitary symmgtries
and thus serves to parametrize the non compact directions in M. The
non linear Lagrangian describing the interaction of Goldstone super-
fields is given as in (3.1), in terms of a functional of the Goldstone
superfields, the Kihler potential, K{¢ ,¥{). The metric g.. derived
from K /10/ 1]
=

is, bowever, the metric of a manifold M , which is not identical to
. M 1is also parametrized by the scalar fields in T, but its isometries
are those of G, not those of G which was the, case for . Physics is,
after all, G not G invariant! The ganifold M is a topological deferma-
tion of M. However, the shape of M along the non compact directions
(those related te the QGB p) is not fixed by symmetry f15/. It is this
feature that makes the K&hler potential depend on the dynamnics and
not only on the geometry of G/H. The more (UGB p there are, the less
fixed K will be. These considerations are nicely illustrated in the
example given below.

AT iat ®)Y
R

AT, b“i {3.13)
[

4, A SEMI REALISTIC EXAMPLE -THE NOVING MODEL

The novino model, developed in collaboration with Buchmiller and
Yanagida f19/, is based on an underlying supersymmetric SU(2) gauge
theory. The preon supermultiplet consists of 6 preons ¢‘ which are
doublets under SU({2). The global symmetry of the model is
G = SU(B) x U, (1}, where X is & combinaticn of preon number and R
symmetry whicé pas nc SU(2) anomalies. The formation of the SU(2) sing-
let condensate
*Dne can give dynamical srguments supporting the formation of this
condensate /19/
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V= <€o<13¢:( ¢;>

breaks G- H = SU{4)} x SU({2) x U(1L. The 17 GB that ensue are easily
X

(4.1)

seen to transform as:
G8 ~ (4,2) + (4,2} + (1,1) (4.2)

If the dynamics of the model were such that the (GF transformed in a
not totally doubled way:

QGF ~ (4.2) + (1,1) (4.3)

then one would have a semireslistic model for one generaticn of left-
handed fermions. Assigning coler to bz {p = 3,4,5) and charge as

G = (-1/2,1/2,1/6,1/6,1/6,-1/2), it is easy to see that the (4,2)
multiplet above indeed has the correct gquantum number of quarks and
leptons. The (1,1) state, the novino, is an extra excitetion of the
model. In fact, one can check in two ways that the pattern of QGF of
Eg. (4.3) arises from the dynamics /19/. The set ({4.3), but not the
totally doubled set, matches the chiral anomalies at the preon level,
satisfying 't Hooft's consistency cendition /20/. Furthermore, exsmin-
ing the model in the Higgs phase and applying complementarity /21/
also yields {4.3).

Knowing how the QGF transform then allows one to compute the
effective Lagrangian describing their interactions. Because of the
presence of the doubled novino state, this Lagrangisn will have some
arbitrariness. I detail below only the piece which involves the quarks
and leptons, since it has an interesting structure

R R AR C AR AL
vy

NL

Ar———r

v, 4

£ VY, { @L ARE (i:,_ X, ‘4"_)} (4.4)

Here ‘#L is the (4,2) field and v,, v, are scales associated with the
(4,2) and (1,1) multiplets, respectively, whose values are fixed by
the underlying dynamics,

If the coset space G/H had been K3hlerian {e.g. <fe
SU{B) /SU(4) x SU(2) x U{1)} with no novino, then v, = 0 and x N

would have been totally fixed, apart from an overafl scale. The pre-
sence of novino - which must be there because of the general thecrem
of Sec. 3 - affects the residual intersction {4.4). Only a knowledge
of the underlying dynamics fixes the ratio of VZ/Vi' In Ref. 19, we

- 11 -

argued that most probably v,v v, , so that (4.4), after f’—ZO mixing,
can in fact reproduce the form of the q° = 0 weak interaction, However,
it is not necessary here to imagine that the weak interactions are
residual interactions. The quarks and leptons are chiral and one can
gauge SU(Z2) x U{1l} at the preon level,

The novino model can be extended rather simply /22/, so that also
right-handed quarks and leptons emerge as QGF. One can also incorporate
a family structure in the model, but this is done rather unnaturally.
Basically, ane just changes the number of preons from 6 to 4n,.+2, where
ne is the number of families. The relevant breakdown, due to ghe con-
densate {4.1), now produces QGF transforming as (4nf,2) under H, which
can be taken as ne repetitions of (4,2).

Greenberg, Mohapatra and Yasug /23/, in a mcdel quite similar to
the novino model, have a somewhat better way to incorporate families.
Basically they introduce an SU(B) gauge theory and then, in addition
to the (4,2) QGF arising from the G~y H breakdown, they need two more
families of massless fermions to match the 't Hooft conditions.

Both of the above examples of generating families are quite arti-
ficial . It would be nice if families of QGF came out directly out
of the group theory. This can occur, rather naturally, if the globsl
symmetry is based on exceptional groups, /24/) /[25/ [2G} 27/ [28) as
I discuss in the next section.

9. FAMILIES AND EXCEPTIONAL CHAINS

I already noted earlier how groups in the exceptional chain

(E, = SU(3), E; = 50(19), E.) were useful as classification groups for
the quarks and”leptens, Some of the coset spaces involving exceptional
groups are_also equally well suited. For instanceﬁgsfso(lo) x U{1) has
GB~16 + 16 of S0{10}; E /EB x U(1l) has GB~27 + 270f E., etc. Clearly,
non deubled QGF arising %rom these coset spaces will have precisely
the wanted guantum numbers of quarks and leptons (of one generation,
for the aboye examples).

In the literature /24/ - /28/ there exist various multifamily
models based con exceptional coset spaces. This discussion has been
systematized recently by Buchmiiller and Napoly /29/ and by Itoh,
Kunimoto and Kugo /18/ (see also Ref. 30) and I shall describe briefly
their findings. These authors catalogue =1l coset spaces involving ex-
ceptional groups which have the following properties:

——
Paerheps less so for the suggestion of Ref. 23. However, here the

dynamics is on a more shaky ground.
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1. G/H is a Kéhler manifold
2. nfz.B
3. d'= W'xK, with H' = SU{5), S0(10), €
4.

The resulting :teff is well defined

tet me make a few remarks on points 1 and 4, since these condi-
tions are perhaps questionable or not obvious. One could object to re-
stricting oneself oniy to Kahler manifolds, since ane knows that for
a (linear) lagrangisan theory 7y ¥ 1. However, these coset spaces
could well arise from a deeper %ﬁenry - not necessarily one based on
a linear Lagrangian - and it could well be that n GR = 0. Furthermore,
Kihler manifolds G/H aiways have H = H' x U(1). Sg one expects that,
up to a noving, their QGF patterns are similar to that of the non
Kahler manifolds G/H'. ’

Point 4 is also related to having purely chiral fermions in the
manifold. In these circumstances, one knows that at times it is not
possible to write a consistent non linear tagrangian for the chiral
superfields, because the fermion determinant is ill defined /31/. Be-
cause of. this. reason it may not be sensible to consider these coset
spaces. This eonstraint eliminates possible candidate coset spaces like
ETISU(S) x SU(3) x U(1) /25/. However, as Yanagida /30/ points
olt, one may always add matter fields to the original medel which
serve to cancel these anomalies. Hence, from this point. of view, con-
straint 4-may be too restrictive. :

Using the constraints 1-4 yields only 5 viable -coset spaces 729/
/18/. They all have:G =-E, and H' = E; or S0(¢40) . However, two of these
coset spaces, althcugh théy give rise to three repetitions of E. re-
presentations,-contain two families plus an antifamily. Hence they are
phenamenclogically useless. The interesting cosst spaces that remain
are

i) E
i1 £
iii} EB

/S0(10} x SU(3) x U(1)2
/S0{1C) x SU(2§ x U{1)
/50410y x U(1)

The coset space i) was discussed already by Ong /24/ and by Irié and
Yasui 28/, and it contains 3 families plus an antifamily:

GGF(i) : (16,3}1 + (13,1)3 + (10,?)2 + (1,3)4 {5.1)

The coset space ii) has two differsnt QGF pstterns - differing by hew
the UB(1} quantoum numbers are-assighed - which.also lead-te 3-16's-of

80(10) plus a 16. Finally the last coset space has many QGF patterns,
but none of thep have 4 16's. Here again-one-has always st least one

antifamily. . :

There are both technical and physical remarks that I wish tc make
on these results. On the technical side, the way in which the Kéhler

N N e o

_]3_

manifolds were obtained, and their complex structure analyzed, 1s very
nice. Basically there is a simple way to find out which cosst space is
Kahlerian, which_is due to Bordermann, Forger and Rémer /32/. The mani-
fold G/H' x U(l)p is a Kahler manifold if the H' group has a Oynkin dia-
gram which can be cbtained from the Oynkin diagram of G hy crassing out
o dots. The complex structures in G/H' x U(l)p are then gotten by se-
lecting all roots which are positive with respesct to any chosen u(1)
generator in U(i)p 718/ [29/. For p=1, obviously, there is a unique set
of QG6F. For p»1, on the other hand there can be distinct patierns of
QGF even for a given Kihler manifold. This is not surprising, since in
these cases there are distinct ways in which to pair up the Goldstone
boson fields to fermions.

Physically, the most interesting result of this analysis is that
there appear always at least one antifamily in these exceptional coset
spaces. This suggests, if these idess are correct, that there should
be a fourth generation with V+A interactions. Althaugh predicting the
existence of an antifamily is nice, it is difficult for me to under-
stand what will happen dynamically when mass is generated for the QGF
{by breasking G and gauging H). One would imagine that one 16 and the
16 would combine together to form very massive states, leaving then
just two relatively light chiral families. If this is so, then this
approach is in trouble phenomenologically.

T should remark that by relaxing the restriction 4 one can obtain
models with 3 families and no antifamilies. For instance this happens
in the £./SU{5) x SL{3} x U(1) model, studied by Kugo and Yanagida /25/.
Hence, sérious thought should be given whether the requirement of no
o -model anomalies cannot be circumvented. Another possibility to avoid
antifamilies may be not to have purely Kéhler manifolds. By removing
some of the U(1) factors in the coset spaces in i) - iii) might it not
be possible to reverse a 16 into a 18?7 Naively one may think this might
be possible, since after all the U(1) factors were the ones used to
select the QGF structures. Buchmiller /33/, however, thinks that this
will not help, and that no 18 can be turned inte a 16 this way.

6.  CONCLUDING REMARKS

I hope to have convinced you that the idea of trying to associate
quarks and leptons with coordinates of a coset space is an interesting
speculation., Of course, one is still very far from having arrived at
a convincing realistic model. In fact, also the original idea that UGF
were bound states of preons has somewhat changed. If the global symme-
try is that of an exceptional group, it is clear that the underlying
theory cannat be just an ordinary non Abelian gauge theory. In effect,
these exceptional coset spaces are much closer in spirit to superstring
ideas than preon models.

Even if one were to become convinced that a given G/H coset space
correctly is to be associated with the quarks and leptons we know, the
most difficult part of the program stiil remains shead. One has a dyna-
mics (supersymmetry plus spontaneous breakdown of a global synmetry)
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