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ABSTRACT
signatures of new heavy lepton pair production in
e+e- annihilation at TRISTAN/SLC/LEP energies are studied in
detail. Complete helicity amplitudes for the 2 + & process

+ - - - -
ee +LL+ (v f £f)(v

LEi s Lf3f4) are given for arbitrary masses

of final fermicns and for arbitrary vector and axial vector
couplings. Methods to measure the L and vL masses, and the
neutral—- and charged-current couplings of L in terms of four-
jet and one-lepton-dijet final state distributions are
exemplified. Signatures of heavy neutrino-pair production

are discussed briefly. A straightforward method for calculating

arbitrary tree amplitudes with external fermicns and vector

bosons of arbitrary masses is presented for completeness.
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1. Introduction

Once the possible observation of the top quark at the CERN
colliderl is confirmed, three families of quarks and leptons are
completed, raising as our next immediate gquestion the existence
of a fourth generation of fermions. A number of authors have
studied the consequences of fourth generation quarks2 and

3,

leptons mainly at hadron celliders, where identification of
their signal is the most important task. In e+e- annihilation
experiments, however, we expect no difficulty in detecting their
production simply because the signal cross-section constitutes a
significant portion of the total annihilaticon cross—section. Here
the aim of studies is not the detection of signals but should
rather be the determination of detailed properties of the produced
particles; their masses, spins and couplings.

In this paper we study in detail the signatures of heavy lepton
pair (Li) production in e+e— annihilation at TRISTAM,SLG/LEP-I, and
LEP-II energies. The produced heavy leptons are each expected to
decay into a neutrino (UL) and a fermion=-paix (f£'). The final
state will thus contain six partons (vLGLf132f3E4} and typical
heavy lepton signals are dilepton (e.g. etui), one-iepton-dijet,
and four-jet events with large missing transverse mcmentum (pT) due
to the escaped neutrincs. All these distributions depend crucially
on the mass assume@ for the neutrinc uL and the charged- and
neutral-current couplings of the heavy lepton. However, because of
the migsing neutrinos we cannot study the production and decay
properties of the heavy leptons separately in actual experiments.

This necessitates theoretical expressicns for the exclusive
2 + 6 distributions with a certain freedom to change mass and

coupling assignments. It is easy to calculate the heavy lepton pair
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production (e+e_ + LL) cross-section even with fixed heavy lepton
polarizations. It is also easy to calculate the L * uLflfz decay
distributions for a polarized heavy lepton. However, the final
distribution is not simply the product of these cross—sections because
the two intermediate heavy lepton polarization states can interfere
to give a neon-frivial azimuthal ahgie &ependefice te thé L 3 vaIEZ
decay distribution with respect to the LL production plane. This is
a novel feature of future heavy lepton searches, where we will he
forced to study its properties near the production threshold as
compared to the tau lepton studies5 where sufficiently high beam
energy (Eb > 3mT) allowed to neglect any such azimuthal angle dependence,
even in the correlation studies6. Such interference effects bebween
different polarization states of the intermediate heavy lepton can in
general lead to non-trivial correlations among final particles near
the threshold. Since this inevitably destroys the factorization of
the fuli 2 * 6 cross-section into the production and the decay parts,
we shouia evaluate directly the 2 + 6 process cross-section, which
requires substantial efforts in the standard method where polarization
summed squared matrix elements are evaluated with the help of algebraic
manipulation programs, such as REDUCE and SCHOONSCHIP., A full
calculation was performed by Kihn and Wagner? for the hadronic
(n,p,A1,3n) decay modes of 1 leptons. For fourth generation heavy
leptons, we expect jet production to dominate their hadronic decays
and the most recent caiculation4 of the squared matrix elements assumes
all the sixz final fermions to be massless and a V- A charged current
coupling, and it contains no Y - 2 interference effects, which is
clearly not sufficient for future e+e_ collider studies.

In this paper we present complete helicity amplitudes for the
full 2 + 6 process with arbitrary final fermion masses and with
arbitrary vector and axial vector couplings of heavy leptons to

charged- and neutral-currents. The full amplitude is just a product
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of the production amplitude and the two decay amplitudes summed
over intermediate heavy lepton polarizations. This factorization
property of amplitudes allows us to evaluate the basic 2 * 2 and

1 + 3 amplitudes only, which is straightforward with the method to
be described in detail. Final results are very compact and easy to
evaluate numerically by computer. We show several distributions
for three typical topologies {(four~jet plus pT, one-lepton and a
dijet, and dilepton plus pT events), in order to examine their
sensitivities to the heavy lepton couplings and the heavy neutrino
mass.

Direct calculation of helicity amplitudes and their numerical
evaluation has a long history8 but it is only recently that a number
of approachesg_l4 appeared as a result of increasing necessity to
evaluate complex Feynman amplitudes. A helicity amplitude, being
just a complex number, is in principle straightforward to evaluate
for an arbitrary Feynman diagram. Once we choose a particular
convention for spinor and vector wave functions, the helicity
amplitudes are uniquely determined. A marked property of our
approach, which employs the Weyl basis for helicity spinors and the
rectangular polarization basis for vector boson wave functions, is
its straightforwardness: no clever choice of bases nor particular
techniques for Lorentz contraction of two gamma matrices are
required. Because of this straightforwardness, our method leads to
an almost unique expression for a given Feynman diagram, which is a
useful property when one checks the results obtained by other groups.

s s . ., 12
Final results can be expressed in terms of a simple quantity

T{a“,b”)OEB

with {o,8) = {(+,4), (+,-), {-,+) or (-,~) which gives a complex

number as a function of two arbitrary Lorentz four-vectors. This
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quantity, which was first introduced by Kleiss =, replaces the role

of the Lorentz contraction (the dot-product) of two four-vectors,

a.b = a“b .

1
in terms of which standard squared matrix elements are expressed.
Once we set up a routine to evaluate T(au.bu)asr then numerical
evaluation of amplitudes is just as straightforward as that of
squared matrix elements. We believe that our formalism has some
novel features regarding itsrstraightforwardness and we therefore
present a complete description of our method to evaluate arbitrary
tree amplitudes.

The paper is organized as follows. In section 2, we explain
the structure of helicity amplitudes for the process e+e_ + LL
(valfz)(GLf3fq). In section 3, we present our method of evaluating
arbitrary tree amplitudes with external fermions and vector bosons.
Section 4 gives analytic expressions of the preduction and decay
amplitudés with arbitrary external fermion masses and arbitrary
vector and axial vector couplings in terms of the guantity T(au,bu)aﬁ-
In section 5, we present some finzl state distributions at represent-
ative e+e_ collider energies and examine their sensitivity to the
neutrino mass and the heavy lepton couplings. In section &, we
briefly discuss the signals of heavy neutral lepton pair production.
In section 7, we explain how to use our helicity amplitudes to
gensrate distributions for arbitrary transverse or longitudinal

polarization of beams. Section 8 is reserved for conclusions.

R e ¥ B e e I  E E e e Y i Tt ~ =
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2. structure of the full helicity amplitudes

Within the standard model, production of a heavy lepton pair
- + -
LL in e e collisions is mediated by a photon or a Z boson in the

s-channel. Subsequently L (and L) decay into v (GL) and a

L
virtual W {(or a real W if the heavy lepton mass is sufficiently
large). The Feynman diagram for the full process is depicted in
Fig. 1, where the k's, q's, p's and k's, o's, A's denote the four-
momenta and helicities of the fermions. For fixed heavy lepton

helicities ¢, and 02 the amplitude of the full process can be

1
written as a product of three amplitudes Mi (i =1,2,3) where Ml
describes the production of the L pair, while M2 (MB) are the

decay amplitudes of L (E). We can hence write the amplitude of the

full process as

M

I

M{Kl'KZ'A].'AZ'AB'A!I'AS'AB)

I

2 2
D (ap) Dplay) L 1
Ml(nl,xz,ul.cz) Mz(cl,kl.l2,l3) M3(02.R4,15,A6J (2.1)
where
2 2 z o, -1
Dplg) = g - m, + 1mXFx] (2.2)

denotes the propagator factor of a particle X with mass my and width

PX.
The amplitudes Mi' i =1,2,3 have identical structure., They
are all given by the generic Feynman diagram of Fig. 2, where the

y's stand for either u or v spinors. We use projection operators P

on right- and left-handed spinors
B, = 2 (1iy,) , (2.3)

and right- and left-handed couplings qYab ag defined by the inter-

action Lagrangian



_ vab = U
L=e z 9y VY EWV,

(2.4)
+ 44

with e the magnitude of the electron charge. We can write this generic

amplitude as’

vab Ved - =
a 9g VoY Py wcvvpﬂwd

alnFa (2.5}

2 0o
M o=-e" T ¥ )
G v v a=+ f=t

A
Here Dt denotes the vector boson propagator. We choose the Feynman

gauge for a photon and the unitary gauge for massive vector boséns;

for Vv =

I
—=

-g"%) p_tq)
KV Y
D {q) by {2.6)

3 for V

n
=
o~

2
Dv(q }

A complete analytic expressicn for MG is given in section 4. Bach of the
amplitudes Mi {i = 1,2,3) are then obtained from it by choosing

appropriate couplings. These expressions can easily be evaluated
numerically and are then assembled to give the full amplitude via
Eq.(2.1). The polarization averaged differential cross—section is then

obtained by

6
go=-—2— L1327 7 [ 7| 4% ae (2.7
ik .k, 2 2 : 6
1°72 K, % i=1 A
172 i
with the phase space factor
3
6 6 d'p,
4
ab, = {2m &t ky+k, - I op| 1 —;-ﬁ (2.8)
i=1 i=1 (2w} 2Ei
For all heavy lepton masses m of interest, the width FL is
always much smalier than its mass. We shall hence use the zerc
width approximaticn
2,12 _ 50 2002 . Lp2 2y
|DL(C_{ 1| = Ingilq H* = s(q -mL] wT (2.9}
L
VS S S S VU U~y YOO P S U R SN UV W S SRy
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for calculating cross-sections. This together with the trivial
overall azimuthal angle integration reduces the original 14

dimensicnal phase space integration of d¢6 to an 11 dimensicnal one,

which considerably facilitates the numerical work.

3, Weyl basis calculation of helicity amplitudes

In this section we present a complete description of our method
to evaluate arbitrary tree amplitudes with external fermions and
vector bosons. Throughout the paper we employ the Bjorken-Drell
notationlS with only one exception for the normalizaticn of spinors
toe be explained below.

An arbitrary tree amplitude with external fermions can be

expressed in terms of the 'fermion string'

¢1Pudld2 .o ﬁnwz (3.1)
where wi denotes a generic four-spinor
wi = u(pi,hi) or v(pi,li) (2.2)
with four-momentum p; and helicity Ai'
i+ uYS
p =23 (3.3
a 2

with ¢ = &, and ag stands for an arbitrary Lorentz four-vector. a:

may be the four-momentum of a particle (p:), a vector-boson wave

. i \ v . p o .
function (5 (pi.li)], an axial vector SL;pUaj a a,, or another fermion

string with uncontracted Lorentz indices,
IS O Ll 2 (3.4)
387172 m 4

For all the spinors and gamma matrices we use the chiral representation

where

. TR DU SOV SIS YU S R S S e R SR, R P S e I
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o i it is easy to see that the string (3.1) is now replaced by a new
o * (3.5)
L Uu 0 . string in terms of 2-component spinors and 2 X 2 matrices;
- ¥
PP AA AN, = W) faan, ... ,a 1% (V) (3.13)
17 =a®1%2 °* " Fn¥2 1'a "717727 "7 '%n 295 o *
5 -1 0 . n
¥o = (3.6)
0 11, where
a
A8, e ,a] = (d.} ves (A ) . {3.14
with the 2 x 2 matrices t 1’72 n dl o 12’—0: i(n —Gna )
ol =, 1. (3.7 with
. n
Here § denotes the Pauli matrices; Gn = {-1) . (3.15)
1 2 3 0 1 0 ~-i 1 [« If one starts with Feyﬁman rules in the 2-component spinor basis, then
&= (07,0%07) = . ' {3.8)
1 0 i 0 o -1 one directly obtains an expression of the form {3.13).

At this stage, we will in general have contractions of Lorentz
Next we introduce 2-ccomponent Weyl spinors, (l{Ji)+, via

indices between different spinor strings (repeated indices within the

(wi)_ = + + same string do not appear at the tree level}. We get rid of these
¥, = b= (e 1) (3.9) .
t (wi)+ repeated indices by using the Fierz identities™ ,
3 3]
and the 2 * 2 matrices (’ﬂt’ (Gi)ij (U:H)k.@. = 26.12 6kj {3.16a)
- B _ )
. Yu ) o} (;I)+ (3.10) (ot)ij (Uil.l) ke = 2[5ij6k£ Gilskj] . (3.16b)
" (#_ 0 : ) ,
where the spinorial indices i,j,k and & take two values 1 and 2., By
or more explicitly denoting a product of the 2 X 2 matrices of type (3.14) generically '
. 2 by [Si] , an arbitrary contraction is done by one of the following two
" a®Fa Fla -ia”)
(), = acg, = . (3.11) rules:
* Wk Fla +ia2) a° ia3
W s 10 s 1 (0,) - () s to_ (8,100,
11 !B 191851 Wolg 3y 183 % 80 el
for arbitrary Lorentz four-vectors au.
_ + +
By using = 2(4)1}“[51] [54] (wq)d ($3)Y[33] £52] (I{Jz)5 f {3.17a)
e, - 0, D) (3.12a) W e e s 1), ¢ b T isla, £s,0 00,
1 * g "1’ "2 Mol 3y P3P gl g
- T
b, B = {p,, 0 (3.12b)

_ t ot
= 200, (s, 1 Is,1 W0y)g * (By) 1 Is31 05,1 00,0 ¢

T t
~200)) 18 1 (s, 1 ()5 * (400 (s,108,1(0,), - (3.17b)
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By repeated use of the above contraction formulae, we end up with a
product of spinorial strings of the form

t a
(wi)u[al,az,... .an] (lbj)8 (3.18)

where none of the four-vectors ai represents ancther string. We can
hence evaluate the string {3.18) independently.

For this purpose we use helicity eigenstates x, (p)

+ >
g.p _
|El X = Ax, (p) {2.19)

as our basis for free spinors

uip A), =% vip,-d), = w, (p) X, (0 {3.20)
with
+ 1/2
w,(p) = {E2|p|) (3.21)
and
| Bl +
) pl +p
x, ® = [2[3]([Bl +2,)] z (3.22a)
P, +ipy

1 _ N
/2 Pt ip,

x_te) = L2131 (131 +5)] e
+ pz

(3.22b)

for an arbitrary momentum pu = (E,E) = (E,px;py,pz) with l§| +p, # 0.

>
When p, = —lp'. we choose the convention

_|e
x+(p) = { 1} . {3.23a)

{3.23b)

I

—_—
o

——

x_{p)

~ 12 -

: : 2 2
The free spinors (3.20) satisfy the Dirac equation (p = m ]

Byalp, A, = mulpdl; {3.24a)

B, vip A, = -mvip/Al g (3.24b)
and are ncrmalised as

a{p,A) ulp,A) = Zm (3.25a)

J(p, A} vip,A} = - 2m (3.,25b)

which differs from the Bjorken-Drell ccnventionls. Because of this
normalization, we can use the same phase space factor (see Eq.(2.8)
for fermicns and kosons.

The formulae (3.20) - {3.23) completely fix our convention for
spincrs. The most important point is that we express the spinors
entirely in terms of their four-momentum in a given frame. Helicities
are defined in this particular frame and we should evaluate all the
four-momenta in the same frame, a natural choice in e+e_ collisions
being the e+e— c.m. Erame.

We can now evaluate the spinor-string (3.18) unambiguously in
terms of the fermion four-mementa pi, p? and the other four-

L
vectors a, :
k

b @
(¢i)u las ....an] (wj)B

a
= Cicj muAi(Pi)wﬁAj{Pj)S(pi'al'""an'pjllilj (3.26)

where the coefficients Ci and Cj depend on whether the spinors wi and

wj correspond to a fermion or an antifermion,

1 for (¢ }_ = ulp . A)_ .
c = k't k" k't (3.27)
v for (wk)r = v(pk,—lk)T .

These coefficients govern the crossing relations of fermionic amplitudes

- == - o - - R - P Y DY, WS
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as exemplified in the next section. The term § on the r.h.s. of

Eq. (3.26) is uniquely expressed as

o . T .1
S(pi,ai, ,an,p.)k'l' = x;\i(pi) [al. ,an] xA_(ij . (3.28)

Iy j ]

Our convention is that a subscript Ai corresponds to the helicity
for a fermicn, but toc the negative of the helicity for an
antifermion. This quantity S, which gives a complex number as a
function of (n+2) four—momenté and of three two-valued (+ or -}
indices, is the basic quantity in terms of which all the amplitudes
should be written, A small algebraic effort to express amplitudes
in terms of S as explained in detail in this section not only helps
to compare results of different authors but also drastically
improves the efficiency of numerical evaluations. A direct
numerical evaluation of an amplitude written in four-spinor basis
and with Lorentz contractions of different fermion strings is not
only technically involved (and may thus easily lead to mistakes)
but it is also numerically inefficient.

It is easy to set up a routine to evaluate the complex number
8 in Eqg.(3.28). The mcst straightforward method, which is valid

for arbitxary complex four-vectors au is to evaluate the 2 X 2

!
matrix multiplicationsrecursively by introducing a series of

complex two-spinors xk(k=1, IR 3

X, = W, Xl,(pj) ' (3.29a}
n 3

X, = (dk)—Gka Xy for k=1,....n-1, {3.29b)

s( = e {3.29¢c)

Pifalyazy-~~,an,pj liAj = Xli pi Xl . .29¢

If all the participating four-vectors are real

- a8, {3.30)

mE_ o p
(ay) k

B TR s e W W e e R Tt e T A P R T P EE
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then we can express S8 entirely in terms of scalar guantities. First

we observe the identity

_ * +
(#, = (a);_ x, () x (a) + (ay, x_(a} x_{(a) (3.31)
with
@), = a° £ |3 (3.32)
. I o * <]
for an arbitrary real four mcmentum a” = (a”,a) = (a 12, .2 ,az). By
replacing all the 2 ¥ 2 matrices in [al,az, ...,an]cl via
Ay o= 1 lag s o X, (a) X () (3.33)
k Tk=i k'k k k

we obtain the final expression:

n

o
S(pi,al,az.---,an.p.)kl)h= n ) {a,)

Tip,,a ) T(a, ,a,)
Ay 3 k=1 Tk:i it Ai-'r‘l

u6k1k 1'72 s

T T(an—l'an)r T T(an’Pj)r X, T (3.34}
n-1n n j
Here the term T denotes the scalar quantity
T{a,h) = x*(a) X, (D) (3.35)
TlaB 3 8 :
which can be expressed explicitly as
Ta,b),, = N [(|aj+a ) (jBl+b ) + (a_-ia) (b +ib)]  (3.36a)
e = ab z z X v’ Yx v ’
-1 * , . > .
Ta,b), = N [al+a) (b =ib ) + (a -ia)([b] +b)]  (3.36p)
*
T{a,b)___ = -Tla,b), {3.36c)
*
Tla,b)__ = Tla,b) (3.36d)
with
Yy
- > > >
n o= 2[laltlal vay bl (bl +p 0] . (3.37)
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We observe that these are Jjust the spinorial products introduced first
.12 . . P N

by Kleiss™ ~, which is by no means surprising because our Weyl spinors

can be identified with the massless four-spinors used in Ref. 12,

These spinorial products satisfy

T(a’b)u = T(la,a);ct (3.38)

B

+ + +
If one of the three vectors a or b, say a, is along the negative z-axis,
one needs a special treatment according to our convention (3.23);

Y,
3, > 2
bl +b,1]  ® + i), (3.39a)

T(a,b)++

1
-7
T(a,bi,_ = [2[bi¢[B]+p )] e +b) (3.39b)

and the relations (3.36¢) and (3.36d) remain valid. The expression
{3.34) is particularly useful in two cases. If most of the four-

momenta are light-like the conditions

{a,) =0 if a° = [a| (3.40)
k' - k k "
get rid of most of the summations over Tk'S, and if the number of 2 x 2

matrices {(n) is small, very simple expressions arise. For n £ 2 we cbtain
o
E‘s(p,k))“r = T(p,k)AU B {3.41a)
s(p,a, k) = } tal__T(p,a), T(a,k (3.41b)
M N = et © PRy, g T )

S(p,a,b,k)gg =

L T(p,a)AT T(a,b)TD T(h,k)pc

i otar . (o)
Pt T ap
{3.41c)
In our particular example of heavy lepton pair production and their
decays, we encounter n = 0 and n = 1 cases only and all the final
results are expressed directly in terms of the quantity T instead of

S.

- 16 -

For completeness we add two general comments regarding our
formalism even though we do not need them for the problem at hand.

(i) Strictly speaking, we should assign a number {(real or
complex) to the quantity wi(p) appearing in Eq.{3.26) only for the

on-shell momentum
O 2 2 5@
p° = e = [|pi" + n”] (3.42)

As exemplified in the previous section, it is still possible to combine

two amplitudes with a common fermion leg via
2
DM Hp ot ] Myltp, ) enn 1 Bp™) {3.43)
A

interpreting the fermion now as an intermediate state. Once this
intermediate state gets virtual, however, the m+(p) can no longer be
well defined, because their products must satisfy the following

conditions,

(3.44a)

]
=]

wt(p} m;(p}

2% ¢ [p| = Py - (3.44)

mt(p) “1(9)

This convention is needed in order to cbtain the correct propagator

factors in 4 % 4 notation:

t #
w_, (phu, (B) X, (p)X, (p) w_, (P)w_, ()X, (p)X, {p)

Vute,matpay =5 | A AT AT By i}
A

t t
A mA(p)mA(p)xA(p]Xl(p) wA(p)m_A(p)xl{p)xA(p)

n g
= Yleg+m {(3.45)

¥ m

and similarly for antifermions. When dealing with virtual intermediate
fermions,only the product M1M2 is defined in Eq, (3.43), which is
expressed in terms of S's and the assignment (3.44). This point is

important when finite width effects have to be considered. Since we

IS U W SR SR S e
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are working in the zeroc width approximation, we need neot worry about
this point.

(ii) In order to take advantage of the simple Formulae {3.41) and
(3.34), all the four-vectors, in particular all the vector boson
pelarization vectors should be real. This prevents us from using
the helicity basis for vector boscns unless we express the polarization
vectors entirely in terms of other momenta {as in the CALKUL basislll
which is just an unnecessary complexity in our formalism. We thus
checose a rectangular basis9 for our standard vector boson wave functions.
Just as the spinors in Eq.{3.22), the polarization vectors are

expressed entirely in terms of vector boson four momenta,

o= kL kLK) (3.46a)
x""y "z
- 1
Fi2 2
v o= (k% ]2, (3.46b)
2 2 .
k= [ix k }
. [0 + ¢ ® 172 (3.46¢)
as follows:
n _ _ > -1 _ 2
ik, =1y = (K| kpd T (0K Kk koK) {3.47a)
ef kA= = k3 (0, L% L0 (3.47B)
¥ 0 - T ’ yf x' ’ .
2
e*ik,a=3) = EmlE)) (¥ JEK kK ) (3.47¢)

It is easy to wverify the following identities, satisfied by the above

polarization vectors,

kue“(k,u =0, {3.482)

£, (ko) Pkt = -8 {3.488)

Art T
Massless vector bosons have only two polarization states, A = 1 and 2,

on their mass-shell. Helicity eigenvectors are expressed as

LT ) B T G A Tt I T S S
- 18 -
et = 2 [Fefoa=n - iFxa=a] . (3.49)
' V2

Hence whenever one needs helicity amplitudes, they are obtained from

our standard amplitudes via

M{{k,A =23,...) = 1 TaM({k,A=1},...) - iM({x,r=2},...]
( ) ~ ELY ) ( 1]

{3.50)

4. Analytic form of production and decay amplitudes

We are now in a position to express the amplitudes Mi' i=1,2,3
of Eq.(2.1) in terms of the quantities w and T introduced in the last
section. In order to be able toc treat t and b quarks in the final
state as well as a non-negligible mass of Vo we allow all the fermion
masses to be arbitrary.

By contracting the vector boson propagator factors, and by using
the Fierz identities, Eq.(3.18), the generic amplitude (2.5} can be

cast into the form

Vab Ved
9

2 2
M = Ze zDv(q) gl']. B

G v aEi th

t 3 t T
{%s KRR R MM URMUBPRE RN
t +
F 6y g (0 (e By ),

1 t t
-5 e, W B wc)B(mbd}B} (4.1a)

with

o] for V=¥ ’
E_ = 5 (4.1b)
l/‘mv for Vv = W,2 .

The term proporticnal to g, survives only when the massive vector

v

boson couples-exclusively to non-conserved currents and is non-

negligible only for the L + vy b decay in the present example.
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With the help of Egs.(3.26) and {3.41}, we obtain the standard form substitution reads

of the generic amplitude 2 Wu L Wf2f3
Mz(ql,ol;pi,oi;1,=1,2,3) = - SKGDw[(p2+pB) ] g_ g

B 2 2 Vab Vcd
M =2e ‘Zlnvrq ) GL BL 9, 9g wa;\a(pa)wmb(pb)wmc(pc}mmd(pd) {
TR sqw (g dw_y (pilw, (pole_, (pj)
-0 1 Al 1 AZ 2 l3 3

' ‘ ' S {GaBT(pa'pb)R no TlPerRey
: ab cd .

T(Pl'ql)xl,ul Ttps'Pz)AS,-Az - T‘Pl'Pz)Al,-Az T(pli'ql))\a,ci]]

* B, 7 ) TRarBa)y 5 TP g N
- g onpy (pl)wci (ql) - mw, (pl)m_U (ql):l
1 3 2mw R 1 1 1 1
o
) EV S(Parqrpb})‘ b S(PC:q;pd)A A } {4.2)
ab cd

m_@ (plw_, (p;) + mw, (p,luw (p)J T(p,.q,?} T{p,:p,} _ }
2-1\22 A33 3A22)\33 11A1,a1 32A3,A2

where the factor CG = CaCbCCCd is determined by the crossing property

of each process via Eg. (3.27) and turns cut to be (4.4)
2 .
c = = = = . I t cases of terest
2B in Ml where o e /4, m, va, m2 mfz, m, me n most cas inte
CG = (4.3) this amplitude can be simplified significantly. First, the expression

B in Mz and M3
2 .
(4.4) makes it explicit that the latter term proportional to l/mw is

This general expression suffices for determining all three amplitudes. important only when m /mw or m /mw is non-negligible, i.e., for the
2 3

The relevant momenta, helicities, and the standard model couplings to L+v.th decay only {if fourth generation quarks are heavier than L).
L

insert for each process can be inferred from Table 1. One Second, the relation

merely has to observe that for antiparticles helicities are

. . . gim w, (p) =68, , /2p° (4.5)
reversed in the generic amplitude (4.2) (see Eg. (3.20) and p2+O A A+
Table 1}).
N reduces the number of non-vanishing amplitudes whenever a light fermion

In the following we show more explicit formulae for the process
exists, Hence if the conditicn

by choesing the standard model couplings {Table 1}, neglecting the

2
electreon mass; and by using the physical helicities for antiparticles me o Mg << m i4.6)
2 3
to demonstrate our notation clearly. More general cases can easily
. is satisfied, the formula (4.4) reduces to
; be inferred from the generic formula (4.2}). ’
In the heayy lepton decay L + v_E.f_ (M), only the W boson = o Ame 2 oo
Lz's e M, 2o D (tw,tp,)7) 2/ p; 0, 6A2,+ ‘5)\3,—“’~c1(q1) “’—,\1(91)
is exchanged with left-handed couplings (a = B = -) to fermions. W
Furthermore, we can simplify the last term in the generic expressicn * [T(Pqul)A ,C T(P3r92)__ - T(pl'Pz)k _ T(p3,ql)_ o ]
171 : 1’ U1
(4.1) by making: use of the Dirac equations (3.24), The result of the
(4.7}
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which still incorporates exact m, dependence.
L
The amplitude for I, decay is related to Eq. (4.4) by the crossing
relations given in Table 1 and by the property (3.38) of the T's: it

is obtained from Eq. (4.4) by the substitution
(21015 Py ad 3 Py dyi Pasdy) + (Gye=0yi Byv=Ays PeomAgi Pgshg)  (4.8)

and by taking the complex conjegate of the full amplitude except the

propagator factor DW' In the simplified case where f5 and f6 masses
are negligible, we find explicitly

_4na 2 o 0
My = - —5— puliegreg)?) 2/ poeg & 8, Lwg (e ()

sin ﬂw 5 ] 2 4

. [”qz'%’-u o, TRgrrg) = Tlpespg)_ _y TlaprPg)_, .-}
2 4 4 2
(4.9)
Neglecting light fermion masses is even more justified for the
+ - = - A
production amplitude (Ml) for e e =+ LL. 1In the m, = 0 limit it is

given by

+ .- .
M{e'e +LL) = Mltki,lci; qi,oi;1=l,2) =

/0.0 Vee VLL
-8ra 2/k k, 8 I b.ts) g {E; w (g )w {a,)
172 Kl,—K2 V=y,2 v Kl Kl chl 1 K202 2
VLL
+g_ W (q,)w (a ):| Tk, ,a,)_. _. Tlg, k)
—Kl chl 1 K102 2 2732 mz, 02 1771 Ul’Kl
VLL
-g,  w (g} {a,) Tk, k;}_ Tla,.q,) } {4.10)
Kl chl 1 K202 2 2’ K2,K1 1% 2 01, 02

When working in the e+e“ c.m. frame the last term in eq.{4.10) vanishes

identically. This happens because

> >
Tk, k) e =X (k) x, k) =0 {4.11)
2" -Kz,Kl xz Kl Kl 1 Kl 1

by virtue of the orthogonality properties of helicity eigenstates.
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I£ should be noticed, however, that dropping this term spoils the
Lorentz-covariance of the amplitude. |

In the calculations performed for producing the gréphs of the
next section we have made use of the zerc mass approximation for
the decay products of virtual (or real} W's. It is amusing, however,

that the complete expressions, including all mass effects, can be

written down so simply.

5. Heavy lepton signals

VTﬁe expressions derived for thé amplitudes in the previous
section can easily be evaluated numerically and assembled to give the
complete differential cross-section dc/d¢6. We have written a Fortran
program for this purpose, which then uses the Monte Carle integration
routine VEGA817 in order to perform the ll—dimensionai phase space
irtegral.

The program was checked as follows. First the Lorentz invariance
of dc/d¢6 was verified numerically. Second, it reproduces some well
known quantities, the total cross-section, the heavy lepton decay
width and the heavy lepton polar angle distribution. Further
qualitative tests were made by reproducing the distributions given
by Baer et al.q. Numerical efficiency of the algorithm is found
satisfactory; on an IEM 3081 various distributions are generated with
10S phase space points in 6 CPU minutes of which more than ¥§ is
used to -set up phase space and fill numbers of histograms.

Heavy leptons, once they are produced, will either decay
leptenically into vve, vil, vt or hadronically into vid, v&s with
ratios 1 :1:1:3:3. Decays into vib are negligible at TRISTAN or
LEP/SLC energies: a 45 GeV heavy lepton has a branching fraction into

vitb well below 1% even if optimistic values like m = 30 Gev,

m,, =0 are assumed. This is not true any more for LEP II energies:
L
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the decay products of a heavy lepton pair with m o= 20 GeV may contain
a top guark with more than 30% probability if the top mass is low
enough. In the following we will not eonsider the vtb decay mode of
heavy leptons and hence scme exercise on its effects should be made at
LEP II energies before a more realistic confrontation is made.
Likewise, we do nof study the effects caused by T decays. Its
leptonic decay contaminates the e + dijet and W + dijet signal in the
low lepton energy tailf Cuts in final lepton energy can easily make
the t contribution negligible. Its hadronic decay produces a single
very narrow Jjet as gpposed to dijets from direct heavy lepton decay and
should easily be distinguished. &Anyway, it is 'a straightforward
exercisels'to implement polarized 1T decay distributions in our algorithm.

The observed signals of LL production can be classified according
to their jet content:

{a) LL » vLGquﬁ2q3§4 resulting in 4 jets + missing momentum.

(bi ii > ﬁiqlﬁz + 3 neutrinos resulting in a dijet + charged

lepton + missing momentum signal.
{c) 1L + £+£'_ + neutrinos producing an opposite sign dilepton
+ missing momentum signal.

The probabilities of the three clésses are rouéhly 44 : 35 : 7 when t
leptonic decays are incliuded. The common feature of all the LL decay
modes is missing four-momentum carried away by the neutrincs. This
together with the charged leptons or multijets will give a Qefy clean
signAl for hea;y lepton production within the stahdard model; In
Figures 3 and 4 the resultiné distributions of missing transverse

momentum (éT) are shown for a beam energy E

b - 35 GeV, a heavy lepton

mass mL = 0.9 Eb and three values of the vL mass: va =0, C.3 mL,
c.5 m . FPigure 3 shows the éT-distribution for 4 jet + #T events

. . ) .
while Figure 4 is for 2 jets + u~ + pT events: due to the additional

- = - - - - LS = - = T Y R S U A S S SR SO S U R S S O S S DU, T VORI VO AU W S U S Oy S SR, W T O PR
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muon neutrinc the class (b} distribution (Fig. 4} is somewhat harder
than the one of the class (a) (Fig. 3}.
In Figures 5 to 7 the missing energy (P) signal is shown for

4 jets + P events at three different energies: Eb = 35 GeV,

46.5 GeV = mz/z, and 100 GeV respectively. Again we have chosen

mL = 0.9 Eb and the va =0, 0.1 m a.3 mL, 0.5 m. curves are given.
Obviously the F distributions are much more sensitive tc a non-zero

neutrino mass than the @T signal: observation of m, # 0 appears to
. L -
be possible down to m, = 0.1 mL at Eb < m - While the E-distributions
L .
are very similar at Eb = 35 GeVv and Eb = mz/2 (this actually is true

for all the distributions shown in Figures 3-10), a much higher
sensitivity for m, # 0 is obtained at E_ = 100 GeV, mo= 90 Gev

. L
(Fig. 7). This sensitivity is simply a consequence of the fact that a

<!

90 GeV heavy lepton predominantly decays into a real W plus a v it

m, is small enocugh. At m z § GeV already, the threshold for the
L L

L+ vLW decay mode is crossed, resulting in a very strong m,

_ L
It should

dependence of differential cross-sectioﬁs.
be noted that the ¥ distributions are more sensitive to the QED
radiative correcticns than the ﬁT distributions due to the emission
of collinear hard photonsg in the initial chaﬁnel. Realistic
confrontations of the 7 distributions with experiments should
include the radiative effects as well. Here we show gualitative
trends in order to examine what could be achieved in actual
experimehts.

At LEP/SLC énd TRISTAN energies, a high sensitivity for a non-
zero neutrino mass is.also found in the dijet energy and dijet
invariant mass distributions for the process e+e_ N AF ut +
2 jets + 3 neutrinos. In Figures 8 and ¢ they are given for a

machine operating at the Z mass assuming m

L= O'Q_Eb' és mentioned

earlier results for TRISTAN are very similar.
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In Figure 10 the [l - e invariant mass distribution is given for

+ - - * F
the process e € + LL > ¢ U + 4 neutrinos at Eb = 35 GeV, m, = 0.9 Eb

and va ={0, 0.1, 0.3, O.S)mL. Sensitivity of this signal for
neutrino mass measurements is not as high as in the dijet energy and
dijet invariant mass distributions, and furthermore the mue distribution
will be affected in the lower mass region by the 28% contamination of
secondary muons or electrons arising from the T decay modes.

So far we have assumed the mass my of the heavy lepton to be
known. The easiest and most precise way to measure it will probably
be to follow the threshold behaviour of the ratio
ole'e” » 1L)

R = {5.1)

oete” » ufuT)
If 2mL is between TRISTAN and SLC/LEP-I enerqgies, a method for measuring
m at fixed beam energy Eb = mZ/Z is advantagecus. Due to the almost
axial coupling of Z to standard charged leptons the ratio R is
proportional to 83 due to the P-wave production, and measuring the LL
production cross-section allows a rather precise mass determination4.
This method is of course very much dependent on the assumption of
standard couplings c¢f L to Z and Wt, and a complementary method is
highly desirable. Here we suggest determining the dijet opening
angle in the LL > 2 jets + Zi + pT decay mode which measures the
boost factor of the dijet system from the (i) rest frame to the
lab. frame. Figures 11 and 12 show the resulting distributions for
mo= 40, 41, 42 GevV and = 29, 30 GeV respectively, Fer both

figures E_ = mZ/Z and m, = 0 was chosen. Figure 11 clearly

L
reflects the strong 83 threshold dependence, but at the same time

b

the change in dijet angular distribution is apparent. This increase
of dijet opening angle with increasing m, is even more proncunced in

Figure 12,
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The distributions shown so far are tc a large extent given by
kinematics, which seems to be sufficient to identify LL events, to
measure neutrine masses ete. In order to get a handle on the
Aynamics and in particular on the V,A structure of the heavy lepton's
couplings, angular distributions have to be analysed. The V,A~
couplings of LL to Z determine the heavy lepten's polar angle
distribution. &s a tag on the direction of L, the directicn of its
decay mucn or electron can be used. The resulting polar angle
distribution of W with respect to the ¢ beam is shown in Figure 13

for standard wmedel couplings, at Eb = mZ/Z, m, = 0.9 Eb and va = 0.

It reproduces the angular distribution of its parent heavy lepton
{the solid line in Figure 13) rather poorly, because LL production
too close to the threshold is considered. Nevertheless it should be
possible to determine the heavy lepton forward-backward charge
asymmetry this way.

Use of the total momentum cof the dijet system recoiling against
a u+ or eJr allocws for a much improved L polar angle distribution.
Baecause in the decay L » vL&2q3 only the neutrinoc VL, remains
uncbserved, kinematics allows us to determine the magnitude of the
component of the neutrino momentum perpendicular to the dijet
momentum, ET’ once an upper bound on m, has been set. Denoting the

L

0L mementum by P, and the dijet momentum by Py + P, as in Figure 1

we indeed find

2
mjj+m\)L-mL
> > -+
* = - e 5.2a
Byt iR, +pg) (E_ Ejj)Ejj + » ( )
»2 2 2
P, = (Eb Ejj) m {5.2b)

and

U e T T AT e e e [ T o e e P e e e
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Pir 1 AL 27 Py
Py ¥ Py
> > r N2l
L2 Py By py)
L T (5.3)
E.. - m..
33 i3

can hence be determined experimentally for each event. Since the dijet
-
direction is a good measure of the heavy lepton direction if 1p1T| is

small, a cut on

n = |bl/E (5.4)

will considerably improve the correlation between dijet and L angular
distributicons, as is clearly visible in Fiqures 14 and 15. The price
to be paid for the n £ 0.2 cut is a loss in statistics by roughly a
factor of 3.

while the dijet angular distribution (with respect tc the beam
axis) is sensitive tc the V,A structure of the production amplitude,
the correlation of light lepton and dijet directions can distinguish
between V + A and V - A coupling of the (ULL) doublet to Wi. This
is because the I, and u_ momenta prefer to be aligqed when both couple
to left-handed weak currents, while the | will rather go backwards
to the L” momentum, if the parent L has V + A coupling to W . The
effect is clearly visible in Figure 16.

A u or e going in a direction opposite te its parent, will on the
average have a lower energy in the laboratory than a lepton arising
from a left-handed L. Figures 17 and 18 show the difference between
V + A coupling and V - A coupling for the muon energy and the
dilepton mass distributions. Distinguishiné Vv + A from V - A appears

to he straightforward and it also should be possible to determine the

vector and axial couplings to the W individually.
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6. Heavy neutrino production

The expressions derived in section 4 for heavy charged lepton
production and decay amplitudes can directly be used for massive
neutrine (N} production and decay: it suffices to replace the
heavy charged lepton couplings by the appropriate neutrinc
YHN

In particular g =

couplings. o

0 in the production amplitude,

- +
and in the decay N > & + (virtual) W a mixing angle U has to

N&

be introduced., If N is a Majorana particle, N and N have to be

treated as identical particles. The production amplitude is then
obtained from Eg.{4.5) by choosing appropriate couplings and by
antisymmetrizing it in (ql,ol) and (qz,dzl.

Determining the properties of a heavy neutrino will actually
be easier than for a charged heavy lepton. This is so because
more of the final state fermions will carry charge, the dominant
decay mode usually giving two charged leptons and four Jjets. If
the N mass is sufficiently small and/or if the mixing angle UNL
is tiny it may even be possible to determine the N lifetime from
its decay in flight.

If there exist large flavor changing neutral current cecuplings

ZIN.N
between neutrincs 9y iz,

as in some models with mirror fermicnslg,
then different mass neutrinocs can be pair produced and their decays
can proceed via both charged and neutral current. Our general

formula with arbitrary mass and couplings will be most suited to

study the consequences of such models.

ST R SR R WS ROy S N < Uy S s DR USRI S S R’ D SR I S U L
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7. Polarized beams

It is clear that longitudinal peolarization of the colliding
e+e- beams will be very useful for a detailed study of electroweak
thecry. Transverse polarization of the beams is not only necessary
to establish the longitudinal polarization but it can, in itself,
be useful for probing non-standard (scalar20 or magnetic21i
couplings of electrons. In practice, the beam polarizaticn will be
only partially longitudinal and partially transverse.

The helicity amplitudes given in Section 4 can be used

directly to produce cross-sections for longitudinally polarized beams.

For arbitrary polarization direction we follow the notation used by
22 . .
Olsen et al.””., We describe a general state of partial ox complete

s + - : ;
polarization of the e and e heams by the polarization vectors

T " L, > -~
= B, (0,8,) + P+(|p+|,Eipi}/m (7.1)

m
Ss +

where §+ are unit 3-vectors perpendicular to the beam directions f}+
a T . ; L
and _. p, denote the degrees of transverse polarization and P

the degrees of longitudinal polarization and they are bounded by

L
b, = [(pi)zﬂpf;)z] <1 7.2

We introduce

L . T
cost, = P/, i sing, = B /p, (7.3)
in order to obtain the unit space-like 4d-vectors

A > .-\
n: = sing, (0,5,) + costi(!ptleipi)/m (7.4)

which define the projectors onto spinors deécribing electrons and

positrons pelarized in the .0, (e, = + or -) direction:

B T e T Tl W i e L ¥ alota P
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1+ E_YSR’“
ulp_,e_n_) = T ulp_,e_n_} (7.5a)
1+ €+Y5§(+
v(p+,€+n+) = 2— u(p+,s+n+) (7.5b)

It is straightforward to expand these spinors in terms of

helicity eigenstates

u (p_,A}
ulp_,A} = {7.6a)
u, (p_rA)
: v_{p, A
V(p+-l) = (7.6b)
v, (p,.A)
defined in Eq. (3.20). In the massless limit (m +» 0} we find
_ L iel
u(p s ) cos— sin— & u(p '+)
T 2 2 _
= Ju, yule_M =
- _t L. -3 L -
wlp_,mn) A —sin— e %~ cos—= ulp_.-)
2 2
(7.7a)
[4 ~ia
cos —t -s:’mEi o F
v(p+,n+) v(p+,+)
= Zve J\v(p+’M = ;
v(p+,—n+) A + sirLi‘;J'velm+ (:0554t V(P+'_)
{7.7b)

The phase factors exp(io } are given by the orientation of 1":+ and ’s‘;i

in the coordinate frame. To be specific we choose

f}t = (sinﬂt cos b, sinﬂi sinct:t, cosﬂi) (7.8)

and

T
siny, sind + cos;ll)+ cos 8, cos¢,

w
]

N -sinlbi cos¢i + u:a::sll)t °°sei Sin¢i‘ {7.9)

—s::.nﬂt cosl!;t
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then we find

o :tpi—lj.ii . {7.10)

We can now relate arbitrary peolarization amplitudes to helicity
amplitudes. For an arbitrary process e+e- > X we use Me e to denocte
-+
the amplitude for an electron polarized in the € n_ and a positron
polarized in the en, directicn and M(Ki,xz) for the corresponding

helicity amplitude (treatment of final state polarizations is implicit

in the sequel). From Eq.(7.7) we find

.I.
M = I v Mg ,¢) v . {7.11)
e £_Ky 1772 KoE,

. . . - t
The polarization vector s, in Eq.(7.1) describes e beams polarized
with probability (1¥p+)/2 in n, direction and probability (l—p+)/2
in -n, direction. The polarization weighted squared matrix element

is therefore

- 1+ p 1+e p
+ 4 =
P ] — —= w2
pol €_s€ =t 2 2 €&y
{7.12)
+ * -
= ) M, ) P M (ki) P,
NI 1720 Tkgey 1720 ey
t
the polarization matrices P~ are given by
ia
l+e p 1+ P? PT e 7
- t - - 1 -
P = T u U = 1 (7.13a)
Kixl e o Kis_ 2 € Kl 2 o L
- P_ e 1 -p
T ~ig
1+ 7 -P e
+ _ z v'}‘ l+E+p+ v _ 1 +
K. K! K.E 2 ex. 2 :
272 e= 274 +2 B .
\ + © +

(7.13b)
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In many applications, and in particular for LL production,

the relation

M(Kl,Kz) = GKl'_Kz M(Kl,-rl) (7.14)

holds, when the electron mhuss is neglected. In this case Eg. (7.12)

can be simplified further to read

- * +-
- L] -
T |M] PooM e me) B Mk k) {7.15}
pol rl,Ki 11
with
ife +o )
ety -p?) lele ot
-
B =3 Lo s ) (7.16)
-i{a +a
1 —PT pf e -t (1~Pr_“) (1+pf_’)

which, together with the helicity amplitudes presented in section 4,
allows to study LL producticn for arbitrary beam polarizations.

For the special case @i = (0,0,71) and %x = (0,%1,0) (where the
colliding beams run along the z—axis and the transverse polarizations
are along the y-axis), cone obtains @, = +w/2 in Eq. (7.10) and

accordingly the two phase factors of Eq. (7.16) are both unity.

8. Conclusions

We presented helicity amplitudes for heavy lepton pair
production (including their three—body decays) in e+e_ collisions
with arbitrary vector/axial vector couplings and with arbitrary
final fermion masses. The amplitudes are cast into a form which
makes their direct numerical evaluation efficient. By studying
four-jet, dijet plus single lepton, and dilepton signals, we
exemplified the measurement of the couplings, of the associated

neutrino mass, and of the heavy lepton mass itself near the
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threshold at TRISTAN, SLC/LEP-I, and LEP-II energies. We commented
on the use of our amplitudes for studying heavy neutrino pair
production signals and for studying polarized beam effects.

For completenass we presented in Section 3 a self-contained
description of our method to evaluate arbitrary tree amplitudes with
external fermions and vector bosons. The methed requires minimal
algebraic manipulation in the Weyl spinor basis which leads to a
unigue standard expression of the amplitude, whose form allows its
efficient numerical evaluation. It gives a general prescription;
no clever choice of polarization vectors, no trick for gamma matrix
contractions nor special treatment for massive fermions are required.
Cne 6f the key features of cur mefhod is that we express the wave
function of a fermion or a vector boson in a given polarization
state in terms of only its own momentum in an arbitrary Lorentz
frame. Because of this the full polarizaticon amplitudes are
expressed in an arbitrary frame and the Lorentz invariance of the
polarization summed squared amplitude provides us with a very non-—

trivial check of the cverall caleulation.
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Table 1: Coupling constants and spinors to be inserted in the

generic amplitude (4.1) in case of LL production {Ml),

L decay (Mz), and L decay (M3).

generic case Ml M2 MS
wa(Pa'Aa) V(kz"Kz) u(?1'&1) v(qz’_UZ)
wb(Pb’Ab) uik, ,e) u(ql,dl) v(p4,—k4}
Y (poer) u{qg, ,0,) uipy.hy) alpgrhg)
Valbgrty) via,,=v,) vip,,=A,) vipgrmhg)
-1
Vab Ved
= a 0
%+ 94 { tan 8
W
Vabk Ved -1 Y 1 1
g_ =9g_ _ i 2
1+ein’e, 2
sin@ cos @ V2 sin B V2sin @
w w W w
- - = o T R [ PN o 7."74_‘“,«.;-)‘,-*-_ [ PR P
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Figure Captions
Fig, 1 TFeynman graph for producticn and decay of a heavy lepton pair.
Fig. 2 Generic Feynman graph for vector exchange between fermions.

P . . . + - +_ - . :
Fig. 3 Missing PT distribution for e e + L L +* 4 jets + 2 neutrinos

at Eb = 35 GeVv, mo= c.9 Eh' The effect of a non-zeroc
neutrino mass is shown: m = 0 (dashed line), m = 0.3 mL
vL . vL
{solid line), m, = 0.5 mL {dash-dotted line).
L

. : . . + = + - . +
Fig. 4 ﬁT distribution for e e > L L + 2 jets + 4 + 3 neutrinos.
Eb, m, and m, are chosen as in Fig. 3.
L
Fig. 5 Missing energy distribution for the 4 jets + 2 neutrinos decay

L

mode of LL at Eb = 35 GeV, mo= 0.9 Eb' The curves are for
w, = Q0 {dashed line), m, = 0.1 rnL {dotted line), m,o= 0.3 m
L L L
{solid line), ang m, = 0.5 m. (dash-dotted line}.
L
Fig. 6 Same as Fig. 5 but for Eb = mz/z.
Fig. 7 Same as Fig. 5 but for Eb = 100 Gev.
. + - + - + . (=),

Fig. 8 du/dEjj foree » L L >4 + 2 jets + 3 v 's at B, = mz/z,
m = 0.9 Eb' Cheice of neutrine masses is as in Fig. 5.

Fig., 9 Dijet invariant mass distribution for Eb = mZ/2, w, = c.9 Eb,

m =f{8,0.1, 0.3, D.S)mL.

v
L
T . T + - o=
Fig. 10 ety invariant mass distribution for the process e e > L L
£ 3 .
eW + 4 neutrinos at E_ = 35 GeV, m_ = 0.9 E . Neutrino

masses are chosen as in Fig. 5.

Fig. 11 Digtribution of dijet cpening angles for E,_ = mz/z, m, = 0 an

b
for m_ = 42 Gev (solid line), 41 GeV (dashed line), 40 Gev

[dotted line).

Fig. 12 Same as Fig. 11 but for m = 30 GeV {dashed line) and m = 29 gev

(solid line}.

L

d

T S T L TR T T e e e e
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Fig. 13 Polar angle distribution of the decay muon in the process

+ - + - * . .
ee +LL +p + 2 jets + 3 neutrinos at E_ = mz/z for

b

mo= 0.9 Eb' mv = 0. The svimbcls indicate the error of
L

the Monte Carle integration. The solid line shows the
cos § distribution of the parent heavy lepton.

Fig. 14 Polar angle distribution of the dijet system in the process
+ - o = . .
ee » LI =+ + 2 dets + 3 neutrinos. Parameters and
symbols as in Fig. 13.

Fig. 15 Same as Fig. 14 but for m ¢ 0.2 {see text).

Fig. 16 Distribution of angles between muon and dijet system in
+ - + - * . . s :
ee > LL * 4§ + 2 jets + 3 neutrinos for V- A (solid line) and
¥ + A (dashed line) coupling of Lv to W . Eb = mz/2,

m, =0.9E and m_ = 0 were chosen.
L . b YL
Fig. 17 Muon energy distribution for the lepton-dijet signal. The

curves are given for an = 0.9 E_ (E_ = m,/2) heavy lepton
e b "z

b
with V + A (dashed line) and V - A (solid line) weak inter-
actions. Again m, = 0.

+ - +_- t ¥
Fig. 18 Dilepton mass distribution for e e » L L *» e ut + 4 neutrinos.

Parameters and couplings as in Fig. 17.
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