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ABSTRACT 

Signatures of new heavy lepton pair production in 

+ -e e annihilation at TRISTAN/SLC/LEP energies are studied in 

detail. Complete helicity amplitudes for the 2 + 6 process 

+ - - - -e e + LL + (VLf1f 2 ) (VLf3f 4 ) are given for arbitrary masses 

of final fermions and for arbitrary vector and axial vector 

couplings. Methods to measure the L and vL masses, and the 

neutral- and charged-current couplings of L in terms of four-

jet and one-lepton-dijet final state distributions are 

exemplified. Signatures of heavy neutrino-pair production 

ISSN 0418-9833 

are discussed briefly. A straightforward method for calculating 

arbitrary tree amplitudes with external fermions and vector 

bosons of arbitrary masses is presented for completeness. 

- 2 -

1. Introduction 

Once the possible observation of the top quark at the CERN 

collider
1 

is confirmed, three families of quarks and leptons are 

completed, raising as our next immediate question the existence 

of a fourth generation of fermions. A number of authors have 

studied the consequences of fourth generation quarks
2 

and 

leptons3 '
4 

mainly at hadron colliders, where identification of 

their signal is the most important task. In e+e- annihilation 

experiments, however, we expect no difficulty in detecting their 

production simply because the signal cross-section constitutes a 

significant portion of the total annihilation cross-section. Here 

the aim of studies is not the detection of signals but should 

rather be the determination of detailed properties of the produced 

particles; their masses, spins and couplings. 

In this paper we study in detail the signatures of heavy lepton 

- + -
pair (LL) production in e e annihilation at TRISTAN,SLC/LEP-I, and 

LEP-II energies. The produced heavy leptons are each expected to 

decay into a neutrino (vL) and a fermion-pair (ff'). The final 

state will thus contain six partons (vLVLf
1

f
2

f
3

f
4

J and typical 

heavy lepton signals are dilepton (e.g. e±~+), one-lepton-dijet, 

and four-jet events with large missing transverse momentum (pT) due 

to the escaped neutrinos. All these distributions depend crucially 

on the mass assumed for the neutrino vL and the charged- and 

neutral-current couplings of the heavy lepton. However, because of 

the missing neutrinos we cannot study the production and decay 

properties of the heavy leptons separately in actual experiments. 

This necessitates theoretical expressions for the exclusive 

2 + 6 distributions with a certain freedom to change mass and 

coupling assignments. It is easy to calculate the heavy lepton pair 
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production (e+e- + LL) cross-section even with fixed heavy lepton 

polarizations. It is also easy to calculate the L + vL£1£2 decay 

distributions for a polarized heavy lepton. However, the final 

distribution is not simply the product of these cross-sections because 

the two intermediate heavy lepton polarization states can interfere 

to give a non-trivial az1muf:hcll a091e depe'i!.defice to the t + vL £1 f 2 

decay distribution ·with respect to the LL production plane. This is 

a novel feature of future heavy lepton searches, where we will be 

forced to study its properties near the production threshold as 

compared to the tau lepton studies5 where sufficiently high beam 

energy (eb ? 3m,} allowed to neglect any such azimuthal angle dependence, 

even in the correlation studies6 • Such interference effects between 

different polarization states of the intermediate heavy lepton can in 

general lead to non-trivial correlations among final particles near 

the threshold. Since this inevitably destroys the factorization of 

the full 2 ~ 6 cross~section into the production and the decay parts, 

we should evaluate directly the 2 + 6 process cross-section, which 

requires substantial efforts in the standard method where polarization 

summed squared matrix elements are evaluated with the help of algebraic 

manipulation programs, such as REDUCE and SCHOONSCHIP. A full 

calculation was performed by KUhn and Wagner7 for the hadronic 

(n,p,A
1

,3n) decay modes ofT leptons. For fourth generation heavy 

leptons, we expect jet production to dominate their hadronic decays 

and the most recent calculation
4 

of the squared matrix elements assumes 

all the six final fermions to be massless and a V-A charged current 

coupling, and it contains no y- z interference effects, which is 

clearly not sufficient for future e+e- collider studies. 

In this paper we present complete helicity amplitudes for the 

full 2 ~ 6 process with arbitrary final fermion masses and with 

arbitrary vector and axial vector couplings of heavy leptons to 

charged- and neutral-currents. The full amplitude is just a product 

- 4 -

of the production amplitude and the two decay amplitudes summed 

over intermediate heavy lepton polarizations. This factorization 

property of amplitudes allows us to evaluate the basic 2 + 2 and 

1 + 3 amplitudes only, which is straightforward with the method to 

be described in detail. Final results are very compact and easy to 

evaluate numerically by computer. We show several distributions 

for three typical topologies (four-jet plus PT' one-lepton and a 

dijet, and dilepton plus PT events}, in order to examine their 

sensitivities to the heavy lepton couplings and the heavy neutrino 

mass. 

Direct calculation of helicity amplitudes and their numerical 

evaluation has a long history
8 

but it is only recently that a number 

of approaches9-
14 

appeared as a result of increasing necessity to 

evaluate complex Feynman amplitudes. A helicity amplitude, being 

just a complex number, is in principle straightforward to evaluate 

for an arbitrary Feynman diagram. Once we choose a particular 

convention for spinor and vector wave functions, the helicity 

amplitudes are uniquely determined. A marked property of our 

approach, which employs the Weyl basis for helicity spinors and the 

rectangular polarization basis for vector boson wave functions, is 

its straightforwardness; no clever choice of bases nor particular 

techniques for Lorentz contraction of two gamma matrices are 

required. Because of this straightforwardness, our method leads to 

an almost unique expression for a given Feynman diagram, which is a 

useful property when one checks the results obtained by other groups. 

Final results can be expressed in terms of a simple quantity
12 

T(a11 ,bl.l\lf3 

with (a,f3} = (+,+), (+,-}, (-,+} or (-,-) which gives a complex 

number as a function of two arbitrary Lorentz four-vectors. This 

___.._____..___ --~-~- ---'"- ---"'- --- ,. ____ "'-----"'-- ___.,. __ ...,______,.__ __ .....__ -·"--------->'L-------.F'--·--'"_____... ____ ,._____...___~____....___..,___,.._--"------
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quantity, which was first introduced by Kleiss
12 , replaces the role 

of the Lorentz contraction (the dot-product) of two four-vectors, 

a.b = a~11 
in terms of which standard squared matrix elements are expressed. 

Once we set up a routine to evaluate T(a11 ,b11 )aB' then numerical 

evaluation of amplitudes is just as straightforward as that of 

squared matrix elements. We believe that our formalism has some 

novel features regarding its straightforwardness and we therefore 

present a complete description of our method to evaluate arbitrary 

tree amplitudes. 

The paper is organized as follows. In section 2, we explain 

+ - -
the structure of helicity amplitudes for the process e e + LL + 

(VLf1f 2) (VLf3f 4). In section 3, we present our method of evaluating 

arbitrary tree amplitudes with external fermions and vector bosons. 

Section 4 gives analytic expressions of the production and decay 

amplitudes with arbitrary external fermion masses and arbitrary 

vector and axial vector couplings in terms of the quantity T(a11 ,b11)ae· 

In section 5, we present some final state distributions at represent­

+ -
ative e e collider energies and examine their sensitivity to the 

neutrino mass and the heavy lepton couplings. In section 6, we 

briefly discuss the signals of heavy neutral lepton pair production. 

In section 7, we explain how to use our helicity amplitudes to 

generate distributions for arbitrary transverse or longitudinal 

polarization of beams. Section 8 is reserved for conclusions. 

- 6 -

2. Structure of the full helicity amplitudes 

Within the standard model, production of a heavy lepton pair 

LL in e+e- collisions is mediated by a photon or a Z boson in the 

s-channel. Subsequently L (and L) decay into vL (VLJ and a 

virtual W (or a real W if the heavy lepton mass is sufficiently 

large). The Feynman diagram for the full process is depicted in 

Fig. 1, where the k's, q's, p's and K's, cr's, A's denote the four-

momenta and helicities of the fermions. For fixed heavy lepton 

helicities cr1 and o2 
the amplitude of the full process can be 

written as a product of three amplitudes Mi (i = 1,2,3) where M1 

describes the production of the LL pair, while M
2 <M3i are the 

decay amplitudes of L (L>. We can hence write the amplitude of the 

full process as 

M = M(Kl,K2,A1,,\2,,\3,A4,AS,,\6) 

2 2 
DL(ql) DL(q2) L L 

crl=± 02=± 

Ml (Kl,K2,cr1,cr2) M2(ol,Al,A2,,\3) M3(o2,A4,AS,A6l (2.1) 

where 

2 2 2 . -1 
DX(q ) = [q - mx + ~mxrx] (2. 2) 

denotes the propagator factor of a particle X with mass mx and width 

r x· 
The amplitudes Mi' i = 1,2,3 have identical structure. They 

are all given by the generic Feynman diagram of Fig. 2, where the 

~·s stand for either u or v spinors. We use projection operators P± 

on right- and left-handed spinors 

P± = Yz (1 ±y 51 (2 .3) 

and right- and left-handed couplings g~ab as defined by the inter-

action Lagrangian 
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l e L 
a=± 

Vab- 11 
9a *ay Pa!J;bvll (2.4) 

withe the magnitude of the electron charge. We can write this generic 

amplitude as 

MG 2 ' . "" - e L Dv {q) 

v 

Vab Vcd -
9 a 9 8 ·WaY~lulj!b (2.5) I I 

a.=± 13=± 
~cY,l!31j.ld 

"" Here DV denotes the vector boson propagator. We choose the Feynman 

gauge for a photon and the unitary gauge for massive vector bosons; 

D~\l(q) l ~~:· :~:i 2 
nv(q l 

for V = Y 

{2 .6) 

forV=W,Z 

A complete analytic expression for MG is given in section 4. Each of the 

amplitudes M
1 

(i = 1,2,3) are then obtained from it by choosing 

appropr·iate couplings. These expressions can easily be evaluated 

numerically and are then assembled to give the full amplitude via 

Eq. (2.1). The polarization averaged differential cross-section is then 

obtained by 

do 
1 

4kl.k2 
!q 
2 2 I 

Kl K2 

with the phase space factor 

U,LJ 
> 

IMI' d06 

ct•. = (2<)
4 

,•[k,+k2- J, pi] 6 
n 

i=l 

3 
d pi 

(21r) 
3

2E. 
> 

For all heavy lepton masses mL of interest, the width rL is 

always much smaller than its mass. We shall hence use the zero 

width approximation 

' I' loL(q l ' I' lor;(q l • ( 2 2) -
' q -"'L "'LrL 

(2. 7) 

(2.8) 

{2. 9) 

·---· __ ..,__..,_~---J"'·---"'~~-"'-------"'---"'----~~~-~~---......__ __ .., _ _.._ ___ ... __ __.._ _ __A __ ._ ... ___ __.. __ _ 
---"'---~--- ---"'----~---"----JO.._. __ .... 
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for calculating cross-sections. This together with the trivial 

overall azimuthal angle integration reduces the original 14 

dimensional phase space integration of dW6 to an 11 dimensional one, 

which considerably facilitates the numerical work. 

3. Weyl basis calculation of helicity amplitudes 

In this section we present a complete description of our method 

to evaluate arbitrary tree amplitudes with external fermions and 

vector bosons. Throughout the paper we employ the Bjorken-Drell 

notation
15 

with only one exception for the normalization of spinors 

to be explained below. 

An arbitrary tree amplitude with external fermions can be 

expressed in terms of the 'fermion string' 

~1Pa~l~2 ••• ~nW2 

where wi denotes a generic four-spinor 

.i u(pi,Ail or v(pi,Ai) 

with four-momentum pi and helicity Ai, 

with a "' ±, 

p 
0 

1 + ays 

2 

and a~ stands for an arbitrary Lorentz four-vector. 

' 
may be the four-momentum of a particle (p~) , a vector-boson wave 

' 

(3 .1) 

(3.2) 

(3 .3) 

" "i 

function ( E)l (p. , A.)) , an axial vector EJ.l a~ afl a~, or another fermion 
l. l. \!I)(J ) K "' 

string with uncontracted Lorentz indices, 

- " W3PI3)61)62 • •• y • •• 16m~4 (3.4) 

For all the spinors and gamma matrices we use the chiral representation 

where 

_ .. __ -"'--------"'-----.. "'-- __..____,.___ ~--"'- ----P<______.,__ __ ."'-------A.-----"-~----~.,__ _ _..._ ___ .---,. __ ._ __ __,____---,___--
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y" 
[ 

0 a~ l 
a" 0 - ' 

r'" I 
-1 :], 0 

with the 2 x 2 matrices 

0 ll = 
± 

(1, ±ih. 

Here d denotes the Pauli matriceS) 

!; (ol ,o2 ,o3) [[: :J. [: -:]. [: _:]] 
Next we introduce 2-component Weyl spinors, (~i)±, via 

.i 
[ 

I.P. l l 
<W:>: , ~i (i.Pi<' I.Pil ~) 

and the 2 x 2 matrices (~)±, 

or more explicitly 

(;()± 

• a Y" 

" 

a a" 
" ± 

0 

(.) 

ao + a3 

+(a
1

+ia
2

) 

for arbitrary Lorentz four-vectors a~. 

By using 

~i p+ (o, I.Pil~) 

~i p (i.Pil:. o) 

(:)· l' 

+(a1 -ia2
) 

ao ± a3 l ' 

(3.5) 

(3.6) 

(3. 7) 

(3.8) 

(3. 9) 

(3.10) 

(3.11} 

(3 .12a) 

(3.12b} 

-..,...----~_r------,_-----...... ----,__.- ---,_..- -· • ....--~--..---..~-..,__-,,--_-----...---...........----~---
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it is easy to see that the string (3.1) is now replaced by a new 

string in terms of 2-component spinors and 2 x 2 matrices; 

where 

with 

~1P-a;(1;(2 •• • ;(nlj/2 

" [al,a2, ... ,an] 

6 
n 

t a 
(if!l)a (a1' 32' ••• ' 3 n 1 (1J12)-6 a 

(,;(l)a (.~:2)-ct ••• {j!'n)-0 a 
n 

(-l)n . 

n 
(3.13) 

{3.14) 

(3.15) 

If one starts with Feynman rules in the 2-component spinor basis, then 

one directly obtains an expression of the form {3.13). 

At this stage, we will in general have contractions of Lorentz 

indices between different spinor strings (repeated indices within the 

same string do not appear at the tree level). We get rid of these 

repeated indices by using the Fierz identities
16

, 

" (0±) ij (O+Jl}kf. 2 OH Okj (3.16a) 

" (o±) ij (o±Jll kf. = 2 [OijOkf.- OUOkjl (3.16b) 

where the spinorial indices i,j,k and f. take two values 1 and 2. By 

denoting a product of the 2 x 2 matrices of type (3.14) generically 

by [si], an arbitrary contraction is done by one of the following two 

rules: 

t " (I/Jl)a[sl)o±[s2] (1/!2)13 
t 

(I/J3)y[s3) 0 +Jl(s4] (1/!4)0 

t t 
= 2 (1/Jl}a(sl) (s4] (1/!4)6 • (1/!3)y(s3] (s2) (1jl2).B 

t " (1/Jl) a [sl 10± [s2J (1/!2) .B 
t 

(I/J3)y[s3] 0 ±Jl [s4J (1/!4)6 

t 2 (1jil)a[sll [s2l (t/12}13 
t 

(t/13ly [s3J [s4l (t/14)6 

t 
- 2 (1/Jl)a[sl] (s4) (1/!4}6 

t 
(1/!3} y (s3) [s2](1jl2).B 

{3.17a) 

(3.17b) 
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By repeated use of the above contraction formulae, we end up with a 

product of spinorial strings of the form 

t 
(!pi)et[al,a2, 

a 
,an} { ljlj) S (3.18) 

where none of the four-vectors a~ represents another string. We can 

hence evaluate the string (3.18) independently. 

For this purpose we use helicity eigenstates X±(p) 

•• 
£.-'..!2 

1~1 
XA (pl A XA (p) 

as our basis for free spinors 

with 

and 

u{p,A) ± ± v(p,-A)± w±A (p) XA (p) 

X+ (p) 

X (pl 

w±(p) (E ± ~~~) \-', 

~ + -% 
[21p1 (I PI+ Pz)] 

]~] + Pz 

Px + ipy 

[21~1 (1~1 +p)J
112 

[ -px + ipy 1 
ltl + p z 

(3.19) 

(3.20) 

(3. 21) 

(3. 22a) 

{3.22b) 

for an arbitrary momentum p~ = (E,~) = (E,p ,p ,p ) with ]~] + p # 0. 
X y Z Z 

When p = -[PJ, we choose the convention 
z 

X+ (p) Ul (3. 23a) 

x_ (pl [ -~ l {3.23b) 

- 12 -

The free spinors (3.20) satisfy the Dirac equation {p
2 

m
2

) 

P±u(p,Al± mu{p,A)+ (3. 24a) 

p± v(p,A )± -mv(p,A)+ (3.24b) 

and are normalised as 

il(p,A) u(p,Al 2m (3.25a) 

V(p,A) v(p,Al -2m (3.25b) 

which differs from the Bjorken-Drell convention
15 Because of this 

normalization, we can use the same phase space factor (see Eq. (2.8} 

for fermions and bosons. 

The formulae (3.20) - {3.23} completely fix our convention for 

spinors. The most important point is that we express the spinors 

entirely in terms of their four-momentum in a given frame. Helicities 

are defined in this particular frame and we should evaluate all the 

+ -
four-momenta in the same frame, a natural choice in e e collisions 

+ -
being the e e c.m. frame. 

We can now evaluate the spinor-string (3.18) unambiguously in 

terms of the fermion four-momenta p~, p~ and the other four­
' J 

vectors a~: 

t a 
(ljli)o. [al, ···,an] (ljlj)S 

c.c.wA {p.)wSA {p.)S(p.,a1 , 
l]Ctil j] 1 

a 
,an,pj)AiAj (3. 26) 

where the coefficients Ci and Cj depend on whether the spinors ljli and 

ljlj correspond to a fermion or an antifermion, 

c = { 1 

k ' 

for 

for 

(ljlk) T 

(!J.ok) T 

u(pk,Ak)T ' 

v(pk'-Ak)T . 
(3 .27) 

These coefficients govern the crossing relations of'fermionic amplitudes 

~ -'"'-- --~---

-..~ _ _,_ __ r __ __,.. ___ ., _____ ,., ____ -._ 
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as exemplified in the next section. The term S on the r.h.s. of 

Eq. (3.26) is uniquely expressed as 

S(pi,ai, ... " ,an,pj)AiAj 
t 

XA (p.) 
i " 

" [a1 , ••• ,a 1 XA (p.) 
n j J 

Our convention is that a subscript Ai corresponds to the helicity 

for a fermion, but to the negative of the helicity for an 

anti fermion. This quantity s, which gives a complex number as a 

function of (n+2) four-momenta and of three two-valued (+ or -) 

indices, is the basic quantity in terms of which all the amplitudes 

(3.28) 

should be written. A small algebraic effort to express amplitudes 

in terms of S as explained in detail in this section not only helps 

to compare results of different authors but also drastically 

improves the efficiency of numerical evaluations. A direct 

numerical evaluation of an amplitude written in four-spinor basis 

and with Lorentz contractions of different fermion strings is not 

only technically involved (and may thus easily lead to mistakes) 

but it is also numerically inefficient. 

It is easy to set up a routine to evaluate the complex number 

S in Eq. (3.28). The most straightforward method, which is valid 

for arbitrary complex four-vectors a~, is to evaluate the 2 x 2 

matrix multiplications recursively by introducing a series of 

complex two-spinors xk (k=l, ..• , n) : 

xn 

xk 

(;in}_O a XA. (pj) 
n J 

<;lk 1-0 a. xk+l 
k 

for 

S(pi,al,a2, 
a 

... ,an,pj)AiAj 

k=l, •.. ,n-1, 

t. 
xA. (pil xl • 

r 

If all the participating four-vectors are real 

" . " (ak) "" ak 

(3.29a) 

{3.29b) 

(3.29c) 

(3. 30) 

w- "'-.--.....-------....---,_~~~~ .... ~ -~---"-!"--... ·- -~--------,__,.----------,_----------,- - ----
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then we can express S entirely in terms of scalar quantities. First 

we observe the identity 

t t 
(j() ± "" (a)+ X+ (a) X+ (a) + (a)± X_ (a) X_ (a) (3.31) 

with 

{a)±"" ao ± ~~~ {3.32) 

ll 0 + 0 
for an arbitrary real four momentum a "" (a ,a) "" (a ,ax,ay,az). By 

replacing all the 2 x 2 matrices in [a
1
,a

2
, ... ,an]a via 

(j(k}-Oka I 
T =+ k -

{ak) ~ X (ak) 
CiukTk Tk 

we obtain the final expression: 

t 
XT (ak) 

k 
(3.33) 

" S(p.,al,a2, ••• ,a ,p.}A A 
l. n J i j [k~l ' ~. k -

(a ) 0 ] T(p. ,a1), T(a1 ,a2 ) 
kCtkTk l. "iT'l T1T2 

T(a 1 ,a ) T(a ,p.) A 
n- n Tn-l Tn n J Tn j 

Here the term T denotes the scalar quantity 

t 
T(a,b)af3"" xa(a) x13 (b) 

which can be expressed explicitly as 

with 

T(a,b}++ 

T(a,b) +-

N-bl [<l~l+a l<ibl+b) +(a -ia )(b +ib l] a z z x yx y 

N-bl &<1~1 +a l (b -ib) +(a -ia) <ibl +b l] a zxy xy z 

Nab 

T{a,b)_+ 

T(a,b) 

• 
-T(a,b)+-

• 
T(a,b)++ 

[
+ ~ + ~ ]\', 

2 Ia I <Ia I+ a) lbl <lbl +b l z z 

(3.34) 

(3.35) 

(3.36a) 

(3.36b) 

{3.36c) 

(3.36d) 

(3.37) 
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We observe that these are jUst the spinorial products introduced first 

by Kleiss12 , which is by no means surprising because our Weyl spinors 

can be identified with the massless four-spinors used in Ref. 12. 

These spinorial products satisfy 

T(a,b)af3 • T(b,a)f3a 

+ + + 

(3 .38) 

If one of the three vectors a or b, say a, is along the negative z-axis, 

one needs a special treatment according to our convention (3.23); 

T(a,b)++ 

T(a,b) +-

-+ -+ Jh 
[2lhl<lhl+bl] (b+ib) 

Z X y 

c,ltl<ltl+b 1r
1
' <16l+b 1 z z 

(3. 39a) 

(3.39b) 

and the relations (3.36c) and (3.36d) remain valid. The expression 

(3.34) is particularly useful in two cases. If most of the four-

momenta are light-like the conditions 

{ak)- 0 if 
0 

"k l~kl (3.40) 

get rid of most of the summations over Tk's, and if the number of 2 x 2 

matrices (n) is small, very simple expressions arise. For n ' 2 we obtain 

a 
S(p,k)Acr T(p,k)Acr {3 .41a) 

a 
S(p,a,k)Ao E 

•=± 
(a)_ctTT(p,a)AT T(a,k)TO, (3.4lb) 

·a 
S(p,a,b,k)Acr E E 

T=± p=± 
(a)-aT (b)ctp T(p,a)AT T(a,b)Tp T(b,k)PO 

(3.41c) 

In our particular example of heavy lepton pair production and their 

decays, we encounter n = 0 and n = 1 cases only and all the final 

results are expressed directly in terms of the quantity T instead of 

s. 
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For completeness we add two general comments regarding our 

formalism even though we do not need them for the problem at hand. 

(i) Strictly speaking, we should assign a number (real or 

complex) to the quantity w±(p) appearing in Eq. (3.26) only for the 

on-shell momentum 

0 
p E [I:PI' + m

2Jy, (3.42) 

As exemplified in the previous section, it is still possible to combine 

two amplitudes with a common fermion leg vi~ 

L Ml[(p,A), ... ] M2[(p,A), ..• ] D(p
2

) (3.43) 
A 

interpreting the fermion now as an intermediate state. Once this 

intermediate state gets virtual, however, the w±(p) can no longer be 

well defined, because their products must satisfy the following 

conditions, 

w± (p) w+ (p) m ' (3.44al 

w± (p) w± (p) P
0 

± IPI (p)± (3.44b) 

This convention is needed in order to obtain the correct propagator 

factors in 4 x 4 notation: 

L u(p,A)ti.(p,A) 
A 

E 
A 

t 
w_A (p)wA (plxA (pJxA (p) 

t 
wA (pJwA (plxA (plxA<pl 

[ : :+ l t + m 

w_A (p)w_A (p)XA (p)::(p)l 

w). (p)w_A (p)XA {p)XA (p) 

(3.45) 

and similarly for antifermions. When dealing with virtual intermediate 

fermions,only the product M1M2 is defined in Eq. (3.43), which is 

expressed in terms of S's and the assignment (3.44). This point is 

important when finite width effects have to be considered. Since we 
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are working in the zero width approximation, we need not worry about 

this point. 

{ii) In order to take advantage of the simple formulae (3.41) and 

(3.34), all the four-vectors, in particular all the vector boson 

polarization vectors should be real. This prevents us from using 

the helicity basis for vector bosons unless we express the polarization 

vectors entirely in terms of other momenta (as in the CALKUL basis
11

) 

which is just an unnecessary complexity in our formalism. We thus 

choose a rectangular basis9 for our standard vector boson wave functions. 

Just as the spinors in Eq.(3.22), the polarization vectors are 

expressed entirely in terms of vector boson four momenta, 

•" (E,kx,ky,kz} (3.46a) 

E [lkl 2+ m2]Y2 (3.46b) 

kT [<• J' + <• l']Y' 
- X y (3.46c) 

as follows: 

£ll(k,A=ll 1.1 -1 2 
( k kT) (O,kxkz,kykz,-kT) (3.47a) 

£1l(k,A=2) 
-1 

(kT} (0,-ky,kx,O) {3.47b) 

£1l(k,A=3) (E/mlkll tlki 2
/E,k ,k ,k) 

X y Z 
(3.47c) 

It is easy to verify the following identities, satisfied by the above 

polarization vectors, 

kE"(k1)=0 " ' ' 
(3.48a) 

£1l(k,A) £1l(k,A') = -OH'. (3.48b) 

Massless vector bosons have only two polarization states, A = 1 and 2, 

on their mass-shell. Helicity eigenvectors are expressed as 

.,~--- .:-~---L---~.r ----w-- -.r~-,_--,._--.,_---_r---..---.,,-"'-...---------, -~-~-·-_r--- • 

" £ {k,A~±) 
1 

f2 
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[t£ll{k,A=l) - i £1.1 (k,A=2) J (3.49) 

Hence whenever one needs helicity amplitudes, they are obtained from 

our standard amplitudes via 

M(!k,> = ±), ... ) 1 

f2 
[+M (lk,A=1), ... ) - iM(!k,1=2), •.. ) J 

4. Analytic form of production and decay amplitudes 

{3.50) 

We are now in a position to express the amplitudes Mi, i = 1,2,3 

of Eq. (2.1) in terms of the quantities w and T introduced in the last 

section. In order to be able to treat t and b quarks in the final 

state as well as a non-negligible mass of VL, we allow all the fermion 

masses to be arbitrary. 

By contracting the vector boson propagator factors, and by using 

the Fierz identities, Eq.(3.16), the generic amplitude (2.5) can be 

cast into the form 

MG 

with 

2 ' 2 2eLDv(ql 
v 

1 
0."'± 

1 gVab 
8=± 0. 

Vcd 
gB 

{[ t t t tl 0o.e (ljla)n (ljlb)o.. {ljlc)e(ljld)!3- (t/Ja)o.(ljld)8. {ljlc)8(1jlb)n 

t t 
+ 0n,-8 <lJ!)a (lpd)8. (t/Jc)8 (lpb)n 

1 
- - E 

2 v 
t t } <•) a <ol a <•bl a • <• c1 B <ol B <• dl B 

Ev { 1;; for V = Y 

for V = W,Z 

The term proportional to £V survives only when the massive vector 

boson couples--exclusively to non-conserved currents and is non-

negligible only for the L + vL tb decay in the present example. 

(4.1a) 

(4.1b) 
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With the help of Eqs.(3.26) and (3.41), we obtain the standard form 

of the generic ampLitude 

MG 2 e2 t ov<ll ai± B~± 
Vab Vcd 

9 a 9 s 00o.Aa (pa) 00aAb (pb) 00 SAc (pc) 00SAd (pd) 

c {o 8 T<pa,pblAA 
G a a b 

T(pc,pd)AcAd 

+ <6a,-S- 6asl T(pa,pd) A a Ad T(pc,pb) A cAb 

1 
2 

a 
£ S(p ,q,pb)A A 

V a a b 
S(p ,q,pd)~ A } 

c c d 
(4.2) 

where the factor CG = CaCbCcCd is determined by the crossing property 

of each process via Eq. (3.27) and turns out to be 

{ 

aB 

CG == S 

in M
1 

in M
2 

and M
3 

(4. 3) 

This general expression suffices for determining all three amplitudes. 

The relevant momenta, helicities, and the standard model couplings to 

insert for each process can be inferred from Table 1. One 

merely has to observe that for antiparticles helicities are 

reversed in the generic amplitude (4.2) (see Eq. (3.20) and 

Table 1) . 

In the following-we show more explicit formulae for the process 

by choosing the standard model couplings (Table 1), neglecting the 

electron mass, and by using the_physical helicities for antiparticles 

to demonstr_ate our notation clearly. More general cases can easily 

be inferred from the generic formula (4.2). 

In the heayy lepton decay L + vLf2f 3 (M2), only theW boson 

is exchanged with left-handed couplings (a = S = -) to fermions. 

Furth~a.rmore, we can simplify the last term in the generic expression 

(4.1) by making use of the Dirac equations (3,24). The result of the 

---·----------c--------------------c----::~--:--~---c--~-~---~· 
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substitution reads 

M2(ql,ol; pi,oi; i=l,2,3) 
2 Wv L 

- 8na ow( (p2+p3) J g L 
Wf

2
f

3 g_ 

·{w_ (ql) 00-A (pl)wA (p2) 00-A (p3) 0
1 1 2 3 

IT(pl,ql)A T(p3,p2)A -A 
1' 0 1 3' 2 

T{pl ,p2) '\'-A2 T(p3 ,ql)A
3
,oJ 

1 
2 

2"'w 
[mLw_, (pl)w (ql) 
- "1 °1 

mlwA (pl)w_ (ql)J 
1 a, 

[m2 00 -A (p2) 00-A (p3) 
2 3 

+ m300A (p2}WA (p3)J 
2 3 

T(pl,ql)Al,crl T(p3,p2}A3,-AJ 

(4.4) 

2 
where a= e /411, m

1 mv , m2 = mf , m3 = mf . 
L 2 3 

In most cases of interest 

this amplitude can be simplified significantly. First, the expression 

(4.4) makes it explicit that the latter term proportional to 1/~ is 

important only when m2/~ or m3!~ is non-negligible, i.e., for the 

L 4- vL t b decay only {if fourth generation quarks are heavier than L). 

Second, the relation 

.tim WA (p) = 6 A,+ j2f? 
p2+o 

(4. 5) 

reduces the number of non-vanishing amplitudes whenever a light fermion 

exists. Hence if the condition 

2 
mf 

2 

2 2 
mf « m 

3 L 

is satisfied, the formula (4.4) reduces to 

(4.6) 

M2 4TIO ( 2) /-;:;----; 
--2- 0w (p2+p3l 2 P2P3 OA +6A _w_ (ql)w_A (pl) 

2 1 3' 
0

1 1 sin ew 

l~(pl,ql)A 1 ,a 1 T(p3,p2) __ T(pl,p2)A - T(p3,ql)- a J 
. 1, , 1 

(4. 7) 

-"-~,---r~----
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which still incorporates exact m dependence. 
VL 

The amplitude for~ decay is related to Eq. (4,-4) by the crossing 

relations given in Table 1 and by the property (3.38) of the T's: it 

is obtained from Eq. (4.4) by the substitution 

(q1' 0 1 1 p1,A1; p2,A2; p3,A3) + (q2'- 02 1 p4,-A4; Ps•-As; p6,-A6l (4.8) 

and by taking the complex conjegate of the full amplitude except the 

propagator factor Dw. In the simplified case where f 5 and f 6 masses 

are negligible, we find explicitly 

M3 
_ 41Ya -- D ( 2 

sin2e w (ps+p6) ) 

• 
~, 

21 P5P6 A
5

, t\ + IJIO (q2) IJIA (p4) 
6' 2 4 

• r;.(q2,p4) -o -A T(p5,p6) -- -L 2' 4 
T(p5,p4)- -A T(q2,p6)-o _l 

, 4 2' ·J 
(4.9) 

Neglecting light fermion masses is even more justified for the 

production amplitude (M
1J for e+e- + LL. In the m = 0 limit it is 

e 

given by 

+ - - . M(e e +LL) = M1 (ki,Ki;qi,oi;l.=1,2) 

r;::-;:, 
-8'11' a 21kik; 6 L D (s) 

K1'-K2 V=y,Z V 

Vee 
gK 

1 
• { 1g~LWK 0 (ql)IJIK 0 (q2) L 1 11 22 

VLL J + g_K IJIK 0 (q1)WK 0 (q2) T(k2,q2)-K -0 
1 2 1 1 2 2' 2 

T(q1,kl)01,K1 

VLL 
- gK WK 0 (q1)WK 0 (q2) 

1 1 1 2 2 
T(k2,k1)-K K 

2' 1 
T(q1,q2) o -o } 

1' 2 
{4.10) 

+ -When working in the e e c.m. frame the last term in eq. {4.10) vanishes 

identically. This happens because 

T(k2,k1) -K2,KJ K2=-K1 = 
t + 

XK (-kl) 
1 

+ 
XK (k1) 

1 
0 (4.11) 

by virtue of the orthogonality properties of helicity eigenstates. 
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It should be noticed, however, that dropping this term spoils the 

Lorentz-covariance of the amplitude. 

In the calculations performed for producing the graphs of the 

next section we have made use of the zero mass approximation for 

the decay products of virtual (or real) W's. It is amusing, however, 

that the complete expressions, including all mass effects, can be 

written down so simply. 

5. Heavy lepton signals 

The expressions derived for the amplitudes in the previous 

section can easily be evaluated numerically and assembled to give the 

complete differential cross-section do/d~6 • We have written a Fortran 

program for this purpose, which then uses the Monte Carlo integration 

routine VEGAs
17 

in order to perform the 11-dimensional phase space 

integral. 

The program was checked as follows. First the Lorentz invariance 

of do/d~6 was verified numerically. Second, it reproduces some well 

known quantities, the total cross-section, the heavy lepton decay 

width and the heavy lepton polar angle distribution. Further 

qualitative tests were made by reproducing the distributions given 

by Baer et al. 
4 

Numerical efficiency of the algorithm is found 

satisfactory; on an IBM 3081 various distributions are generated with 

105 
phase space points in 6 CPU minutes of which more than Y3 is 

used to -set up phase space and fill numbers of histograms. 

Heavy leptons, once they are produced, will either decay 

leptonically into vVe, vV~, vV< or hadronically into vUd, vcs with 

ratios 1 : 1 : 1 3 : 3. Decays into vtb are negligible at TRISTAN or 

LEP/SLC energies: a 45 GeV heavy lepton has a branching fraction into 

vtb well below 1% even if optimistic values like mt = 30 GeV, 

mv = 0 are assumed. This is not true any more for LEP II energies: 
L 
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the decay products of a heavy lepton pair with mL = 90 GeV may contain 

a top quark with more than 30% probability if the top mass is low 

enough. In the following we will not consider the vtb decay mode of 

heavy leptons and hence some exercise on its effects should be made at 

LEP II energies before a more realistic confrontation is made. 

Likewise, we do not study the effects caused by T decays. Its 

leptonic decay contaminates the e + dijet and ~ + dijet signal in the 

low lepton energy tail. Cuts in final lepton energy can easily make 

the T contribution negligible. Its hadronic decay produces a single 

very narrow jet as opposed to dijets from direct heavy lepton decay and 

should easily be distinguished. Anyway, it is a straightforward 

exercise
18 

to implement polarized T decay distributions in our algorithm. 

The observed signals of LL production can be classified according 

to their jet content: 

{a) LL + vLVLq1q2q3q4 resulting in 4 jets +missing momentum. 

+ 
(b) LL + t-q

1
q

2 
+ 3 neutrinos resulting in a dijet + charged 

lepton + missing momentum signal. 

fc) LL-+ .t+.t•- +neutrinos producing an opposite sign dilepton 

+ missing momentum signal. 

The probabilities of the three classes are roughly 44 : 35 : 7 when T 

leptonic decays are included. The common feature of all the LL decay 

modes is missing four-momentum carried away by the neutrinos. This 

together with the charged leptons or multijets will give a very clean 

signal for heavy lepton production within the standard model. In 

Figures 3 and 4 the resulting distributions of missing transverse 

momentum (pT) are shown for a beam energy Eb 35 GeV, a heavy lepton 

mass mL = 0.9 Eb and three values of the vL mass: m 
VL 

0, 0.3 mL, 

0.5 mL. Figure 3 shows the ~T-distribution for 4 jet+ PT events 

+ 
while Figure 4 is for 2 jets+~- + ~T events: due to the additional 
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muon neutrino the class (b) distribution (Fig. 4) is somewhat harder 

than the one of the class (a) (Fig. 3). 

In Figures 5 to 7 the missing energy (t) signal is shown for 

4 jets + P events at three different energies: Eb = 35 GeV, 

46.5 GeV mz/2, and 100 GeV respectively. Again we have chosen 

~ = 0.9 Eb and the mv = 0, 0.1 mL, 0.3 mL, 0.5 ~ curves are given. 
L 

Obviously the t distributions are much more sensitive to a non-zero 

neutrino mass than the pT signal: observation of mvL ~ 0 appears to 

be possible down to mvL 0.1 mL at Eb < rrw· While the t-distributions 

are very similar at Eb = 35 GeV and Eb = mz/2 (this actually is true 

for all the distributions shown in Figures 3-10), a much higher 

sensitivity for mv i 0 is obtained at Eb = 100 GeV, ~ = 90 GeV 
L 

(Fig. 7). This sensitivity is simply a consequence of the fact that a 

90 GeV heavy lepton predominantly decays into a real W plus a vL if 

m is small enough. 
VL 

At mvL z 8 GeV already, the threshold for the 

L + vLW decay mode is crossed, resulting in a very strong m 
VL 

dependence of differential cross-sections. It should 

be noted that the t distributions are more sensitive to the QED 

radiative corrections than the ~T distributions due to the emission 

of collinear hard photons in the initial channel. Realistic 

confrontations of the t distributions with experiments should 

include the radiative effects as well. Here we show qualitative 

trends in order to examine what could be achieved in actual 

experiments. 

At LEP/SLC and TRISTAN energies, a high sensitivity for a non-

zero neutrino mass is also found in the dijet energy and dijet 

+ - + - + 
invariant mass distributions for the process e e ~ L L + ~- + 

2 jets + 3 neutrinos. In Figures 8 and 9 they are given for a 

machine operating at the Z mass assuming mL = 0.9 Eb. As mentioned 

earlier results for TRISTAN are very similar. 

-"<-------"'-----"'- ___ ..._ __ •\-.____fl.~-"'----..~~-----"'----"'--_.._A.----,.._~""'---~-...,_~-~----._...__~--~--
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In Figure 10 the )J.- e invariant mass distribution is given for 

+ - + + 
the process e e ~ LL ~ e-)J. + 4 neutrinos at Eb = 35 GeV, mL 0.9 Eb 

and mvL =(0, 0.1, 0.3, 0.5)mL. Sensitivity of this signal for 

neutrino mass measurements is not as high as in the dijet energy and 

dijet invariant mass distributions, and furthermore the m)J.e distribution 

will be affected in the lower mass region by the 28% contamination of 

secondary muons or electrons arising from the T decay modes. 

So far we have assumed the mass mL of the heavy lepton to be 

known. The easiest and most precise way to measure it will probably 

be to follow the threshold behaviour of the ratio 

R 
+ - -

o (e e ~ LL) 
+ - + O(e e ~ J.l 1-l 

(5 .1) 

If 2~ is between TRISTAN and SLC/LEP-I energies, a method for measuring 

~ at fixed beam energy Eb = m2/2 is advantageous. Due to the almost 

axial coupling of Z to standard charged leptons the ratio R is 

proportional to s3 
due to the P-wave production, and measuring the LL 

production cross-section allows a rather precise mass determination
4 

This method is of course very much dependent on the assumption of 

+ 
standard couplings of L to Z and w-, and a complementary method is 

highly desirable. Here we suggest determining the dijet opening 

+ 
angle in the LL + 2 jets + ~- + PT decay mode which measures the 

boost factor ?f the dijet system from the (L) rest frame to the 

lab. frame. Figures 11 and 12 show the resulting distributions for 

~ = 40, 41, 42 GeV and~ = 29, 30 GeV respectively. 

figures Eb = m
2
/2 and mv = 0 was chosen. Figure 11 clearly 

3 L 

For both 

reflects the strong B threshold dependence, but at the same time 

the change in dijet angular distribution is apparent. This increase 

of dijet opening angle with increasing ~ is even more pronounced in 

Figure 12. 
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The distributions shown so far are to a large extent given by 

kinematics, which seems to be sufficient to identify LL events, to 

measure neutrino masses etc. In order to get a handle on the 

dynamics and in particular on the V,A structure of the heavy lepton's 

couplings, angular distributions have to be analysed. The V,A-

couplings of LL to Z determine the heavy lepton's polar angle 

distribution. As a tag on the direction of L, the direction of its 

decay muon or electron can be used. The resulting polar angle 

distribution of 1-l with respect to the e beam is shown in Figure 13 

for standard model couplings, at Eb = m /2, ~ = 0.9 Eb and m z VL 
o. 

It reproduces the angular distribution of its parent heavy lepton 

(the solid line in Figure 13) rather poorly, because LL production 

too close to the threshold is considered. Nevertheless it should be 

possible to determine the heavy lepton forward-backward charge 

asymmetry this way. 

Use of the total momentum of the dijet system recoiling against 

a 1-l+ ore+ allows for a much improved L polar angle distribution. 

Because in the decay L + vLq
2

q
3 

only the neutrino vL remains 

unobserved, kinematics allows us to determine the magnitude of the 

component of the neutrino momentum perpendicular to the dijet 

+ 
momentum, pT, once an upper bound on mvL has been set. Denoting the 

vL momentum by p
1 

and the dijet momentum by p 2 + p
3 

as in Figure 1 

we indeed find 

~1· (~2 + ~3) (Eb-Ejj)Ejj + 

and 

+2 
pl 

2 
(Eb-Ejj) 

2 
- m 

VL 

2 2 2 
mjj+mvL -mL 

(5.2a) 
2 

(5 .2b) 
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I . . . + + pl. (p2 + p3} + + 

IPlT I "' pl - + + 2 {p2 + p3) 
(p2 + p3) 

[ c • • )2 t +2 - pl. (p2+ p3) 

pl 2 2 
{5.3) 

E .. - m .. 
)) )) 

can hence be determined experimentally for each event. Since the dijet 

direction is a good measure of the heavy lepton direction if I ;l 'l' I is 

small, a cut on 

n ~~lTI/Eb (5.4} 

will considerably improve the correlation between dijet and L angular 

distributions, as is clearly visible in Figures 14 and 15. The price 

to be paid for "the n ~ 0.2 cut is a loss in statistics by roughly a 

factor of 3. 

While the dijet angular distribution (with respect to the beam 

axis) is sensitive to the V,A structure of the production amplitude, 

the correlation of light lepton and dijet directions can distinguish 

• between V + A and V - A coupling of the (vLL) doublet to w- This 

is because the L and ~ momenta prefer to be aligned when both couple 

to left-handed weak currents, while the ~ will rather go backwards 

to the L- momentum, if the parent L has V +A coupling toW • The 

effect is clearly visible in Figure 16. 

A u· or e going in a direction opposite to its parent, will on the 

average have a lower energy in the laboratory than a lepton arising 

from a left-handed L. Figures 17 and 18 show the difference between 

V + A coupling and V - A coupling for the muon energy and the 

dilepton mass distributions. Distinguishing V + A from v - A appears 

to be straightforward and it also should be possible to determine the 

vector and axial couplings to the W individually. 

~-~~~ -~-~-----"'------"-~--=-- __ .,___..._ __ ....,.__...__~-~""'----"'--.-..A.--~""'------·"'---"---"'----~""\......._....""\...........-.._ __ .._____.,___ ... _.:o,. __ ....., 

- 28 -

6. Heavy neutrino production 

The expressions derived in section 4 for heavy charged lepton 

production and decay amplitudes can directly be used for massive 

neutrino (N) production and decay: it suffices to replace the 

heavy charged lepton couplings by the appropriate neutrino 

couplings. In particular g~NN 0 in the production amplitude, 

+ 
and in the decay N + £. + (virtual) W a mixing angle UN£ has to 

be introduced. If N is a Majorana particle, N and N have to be 

treated as identical particles. The production amplitude is then 

obtained from Eq. (4.5) by choosing appropriate couplings and by 

antisymmetrizing it in (q
1

,a
1

) and (q
2
,a

2
l. 

Determining the properties of a heavy neutrino will actually 

be easier than for a charged heavy lepton. This is so because 

more of the final state fermions will carry charge, the dominant 

decay mode usually giving two charged leptons and four jets. If 

the N mass is sufficiently small and/or if the mixing angle UN£. 

is tiny it may even be possible to determine the N lifetime from 

its decay in flight. 

If there exist large flavor changing neutral current couplings 

between neutrinos g~N1 N2 , as in some models with mirror fermions
19

, 

then different mass neutrinos can be pair produced and their decays 

can proceed via both charged and neutral current. Our general 

formula with arbitrary mass and couplings will be most suited to 

study the consequences of such models. 
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7. Polarized beams 

It is clear that longitudinal polarization of the colliding 

+ -e e beams will be very useful for a detailed study of electroweak 

theory. Transverse polarization of the beams is not only necessary 

to establish the longitudinal polarization but it can, in itself, 

be useful for probing non-standard (scalar
20 

or magnetic
21

) 

couplings of electrons. In practice, the beam polarization will be 

only partially longitudinal and partially transverse. 

The helicity amplitudes given in Section 4 can be used 

directly to produce cross-sections for longitudinally polarized beams. 

For arbitrary polarization direction we follow the notation used by 

Olsen et a1.
22

• We describe a general state of partial or complete 

polarization of the e+ and e- beams by the polarization vectors 

" s± P!{o,S±) + P~(~~±j, E±P±l/m (7.1) 

where s± are unit 3-vectors perpendicular to the beam directions p+ 

and P 
T . . L 

_P ± denote the degrees of transverse polarlzatlon and P ± 

the degrees of longitudinal polarization and they are bounded by 

We introduce 

r:T2 L2Jy2. 
P± = L(p±} +<P±> 5 1 • 

cos i;± 
L 

P±/p± 
. T/ 

Slnl;± = P± p± 

in order to obtain the unit space-like 4-vectors 

" n± sin~±(O,S±) + cos~±(j~±j,E±P±l/m 

{7. 2) 

(7 .3) 

(7. 4) 

which define the projectors onto spinors describing electrons and 

positrons polarized in the £±n± (£± = + or -) direction: 

._,~.............._cc- ~,~~ ......-...~ -•---,_,-" -._,. ~ w---v- ,_,---cr-- --v- --,..---· --u--

u(p_,£ n ) 

v(p+,£+n+) 
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l+£_y
5

¢_ 

2 

l+£+y5¢+ 

2 

u(p_,£_n_) (7 .Sa) 

u(p+,£+n+) (7.5b) 

It is straightforward to expand these spinors in terms of 

helicity eigenstates 

u(p ,A} 
[
u_ (p_,A}l 

u+(p_,Al 

v(p+,A) 
[
v_(p+,A}l 

v+(p+,A) 

defined in Eq. (3.20). In the massless limit (m + 0) we find 

[u(p_,n_} l 
" 

u(p_,-n_l 

[
v(p+,n+} l 

v(p+'-n+) 

I cos,_ 
L u Au (p -'A) = 

2 

A £ ' . i;_ -ia 

Iv ,v(p,A) 
,\ £+'" + 

-sln- e -
2 

cos 2.± 
2 

I; ia 
sin-=.± e + 

2 

~ ia_ 

sin;~ e I 
cos-

2 

~ -ia 
-sin-=.± e + 

2 

cos 2.± 
2 

(7.6a) 

(7.6b) 

[u(p_,+} l 

u(p_,-) 

(7. 7a) 

[
v(p+,+}l 

v(p+,-} 

(7. 7b) 

The phase factors exp(ia±) are given by the orientation of P± and S± 

in the coordinate frame. To be specific we choose 

p± (sinS± cos¢±, sinS± sin¢±' case±) (7.8) 

and 

s± 

T l sin•+ sin$++ cos., cosO, cos$,, l 
-sinljJ± cos¢±+ cosljJ± cosS± sin¢±' {7. 9) 

-sinS± cosljJ± 
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then we find 

a±=<P±-ljl±. (7 .10) 

We can ·now relate arbitrary polarization amplitudes to helicity 

amplitudes. 
+ -For an arbitrary process e e + X we use Me e to denote 

- + 
the amplitude for an electron polarized in the e_n_ and a positron 

polarized in the e+n+ direction and M(K1 ,K 2 ) for the corresponding 

helicity amplitude (treatment of final state polarizations is implicit 

in the sequel). From Eq. (7.7) we find 

M 
' ' - + 

I ue K M(Kl,K2) 
K

1
,K

2 
- 1 

vt 
K2e+ 

(7.11) 

+ 
The polarization vector s± in Eq. (7.1) describes e- beams polarized 

with probability (l+p±)/2 inn± direction and probability (1-p±)/2 

in -n± direction. The polarization weighted squared matrix element 

is therefore 

IMI 2 = 
l+ep l+ep 

I I ______+__:+: ~---- I M 12 

pol e ,e + =± 2 2 £_£+ 

I M(Kl,K2) p+ 'M*(Ki,K2l p ' 
r r K2K2 KlKl 

KlK2KlK2 

+ 
the polarization matrices P- are given by 

- I t 
p ' = u ' 

KlKl t =± Kle-

+ 
p ' 

K2K2 
I 

e .. + + -

vt 
K2e+ 

1 + e _P _ 
~~-u ~ 

2 e _ K
1 

1 + e +P + --,-- v ' e+K 2 

' 

1 + PL 
1 

21 T -ia_ 
P e 

1 

1 + PL 
+ 

21 T ia+ 
-P+ e 

T in -P e 

1 - PL 

T -ia 
-P+ e + 

1 - PL 
+ 

(7.12) 

(7.13a) 

(7 .13b) 

,_,..,__ ___ .....--t..---~ 
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In many applications, and in particular for LL production, 

the relation 

M(Kl,K2) : OK1,-K2 M(Kl'-Kl) (7 .14) 

holds, when the electron m~ss is neglected. In this case Eq. (7.12) 

can be simplified further to read 

with 

I 
pol 

+­
PK 1K 

1 1 

2 • IMI = L M (Ki·-Kil 

1 
4 

Kl ,Ki 

(l+PL) (1-PL) 
- + 

-PT PT e -i(a _+a+) 
- + 

+-
p ' M (Kl ,-Kl) 

KlKl 

T T i (a +et ) 
-P_P+e - + 

(1-PL) (l+PL) 
- + 

{7 .15) 

(7 .16) 

which, together with the helicity amplitudes presented in section 4, 

allows to study LL production for arbitrary beam polarizations. 

For the special case p± = (0,0,+1) and S± ,. (0,±1,0) (where the 

colliding beams run along the z-axis and the transverse polarizations 

are along they-axis), one obtains a±,. ±~/2 in Eq. (7.10) and 

accordingly the two phase factors of Eq. (7.16) are both unity. 

8. Conclusions 

We presented helicity amplitudes for heavy lepton pair 

production (including their three-body decays) in e+e- collisions 

with arbitrary vector/axial vector couplings and with arbitrary 

final fermion masses. The amplitudes are cast into a form which 

makes their direct numerical evaluation efficient. By studying 

four-jet, dijet plus single lepton, and dilepton signals, we 

exemplified the measurement of the couplings, of the associated 

neutrino mass, and of the heavy lepton mass itself near the 
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threshold at TRISTAN, SLC/LEP-I, and LEP-II energies. We commented 

on the use of our amplitudes for studying heavy neutrino pair 

production signals and for studying polarized beam effects. 

For completeness we presented in Section 3 a self-contained 

description of our method to evaluate arbitrary tree amplitudes with 

external fermions and vector bosons. The method requires minimal 

algebraic manipulation in the Weyl sPinor basis which leads to a 

unique standard expression of the amplitude, whose form allows its 

efficient numerical evaluation. It gives a general prescription; 

no clever choice of polarization vectors, no trick for gamma matrix 

contractions nor special treatment for massive fermions are required. 

One of the key features of our method is that we express the wave 

function of a fermion or a vector boson in a given polarization 

state in terms of only its own momentum in an arbitrary Lorentz 

frame. Because of this the full polarization amplitudes are 

expressed in an arbitrary frame and the Lorentz invariance of the 

polarization summed squared amplitude provides us with a very non­

trivial check of the overall calculation. 
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Table 1: Coupling constants and spinors to be inserted in the 

generic amplitude (4.1) in case of LL production {M1 ), 

L decay (M
2
), and L decay (M 3). 

generic case I M1 M, M, 

ljla(pa,;\) v(k
2

,-K 2) u(p1''\) v(q2,-cr2) 

ljlb(pb,;\) u(k
1

,K
1

) u(ql,o1) v(p4,-A4) 

ljlc(pc,Ac) u(q1,cr1) u(p3'A 3) u(p5,A5l 

ljld(pd,Ad) v{q2,-cr2) v(p2'-A2) v(p6,-A6) 

Vab Vcd { 
-1 y 

g+ "" g+ I 0 I 0 
tan a z 

w 

{ -1 
y 

Vab Vcd I !+sin
2

ew_ 

I 
1 

I 
1 g_ "" g_ 

sine cos a z 12 sin e 12 sin e 
w w w w 

--- --F-e- _.,____.-• 
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Figure Captions 

Fig. 1 Feynman graph for production and decay of a heavy lepton pair. 

Fig. 2 Generic Feynman graph for vector exchange between fermions. 

Fig. 3 Missing pT distribution for e+e- ~ L+L- ~ 4 jets+ 2 neutrinos 

at Eb ~ 35 GeV, ~ ~ 0.9 Eb. 

neutrino mass is shown: mvL 

The effect of a non-zero 

o (dashed line), m ~ 0.3 ~ 
VL 

(solid line) , mvL 0.5 mL (dash-dotted line). 

+ - ± 
Fig. 4 PT distribution for e+e- ~ L L ~ 2 jets + ~ + 3 neutrinos. 

Eb, m and m are chosen as in Fig. 3. 
L ~ 

Fig. 5 Missing energy distribution for the 4 jets + 2 neutrinos decay 

mode of LL at Eb = 35 GeV, mL = 0.9 Eb. The curves are for 

mvL = 0 {dashed line), mvL 

{solid line), and mvL = 0.5 

Fig. 6 Same as Fig. 5 but for Eb 

= 0.1 ~ {dotted line), mvL = 0.3 mL 

Fig. 7 Same as Fig. 5 but for Eb 

~ (dash-dotted line}. 

m
2
/2. 

100 GeV. 

Fig. 8 
+ - + - + (-) 

dO/dEjj fore e ~ L L ~ 1--l- + 2 jets + 3 v 's at Eb = mz/2, 

mL = 0.9 Eb. Choice of neutrino masses is as in Fig. 5. 

Fig. 9 Dijet invariant mass distribution for Eb m2/2, mL 0.9 Eb, 

mvL = {0, 0.1, 0.3, 0.5)~. 

Fig. 10 e±~ invariant mass distribution for the process e+e- ~ + -
L L + 

± + 
e " + 4 neutrinos at Eb = 35 GeV, mL = 0.9 Eb. Neutrino 

masses are chosen as in Fig. 5. 

Fig. 11 Distribution of dijet opening angles for Eb = m
2
/2, 

for mL = 42 GeV {solid line), 41 GeV (dashed line), 

(dotted line). 

mvL = 0 and 

40 GeV 

Fig. 12 Same as Fig. 11 but for ~ 

(solid line). 

30 GeV _(dashed line) and mL 29 GeV 
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Fig. 13 Polar angle distribution of the decay muon in the process 

+ - + - + 
e e ~ L L ~ ~- + 2 jets + 3 neutrinos at Eb m

2
/2 for 

mL 0.9 Eb, mvL 0. The symbols indicate the error of 

the Monte Carlo integration. The solid line shows the 

case distribution of the parent heavy lepton. 

Fig. 14 Polar angle distribution of the dijet system in the process 

+ - + - + 
e e ~ L L ~ ~- + 2 jets + 3 neutrinos. Parameters and 

symbols as in Fig. 13. 

Fig. 15 Same as Fig. 14 but for~~ 0.2 {see text). 

Fig. 16 Distribution of angles between muon and dijet system in 

e + e- ~ L + L- --1- 1-1± + 2 jets + 3 neutrinos for V-A (solid line) and 

V + A (dashed line) coupling of LvL to W • Eb = m2/2, 

mL = 0.9 Eb and mvL = 0 were chosen. 

Fig. 17 Muon energy distribution for the lepton-dijet signal. The 

curves are given for an~= 0.9 Eb {Eb = m
2
/2) heavy lepton 

with V + A {dashed line) and V - A {solid line} weak inter-

actions. Again mvL = O. 

Fig. 18 Dilepton mass distribution for e+e- ~ L+L- ~ e±~+ + 4 neutrinos. 

Parameters and couplings as in Fig. 17. 
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