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ABSTRACT 

I review bounds on the mass of the Higgs particle 

and discuss the naturalness of the Fermi scale 

within the context of the standard model. For a 

Higgs particle mass below 140 GeV the standard 

model is consistent up to energy sca-les around the 

Planck mass. The small ratio between the Fermi 

scale and the Planck mass MP is as natural as the 

ratio me/MP for QED. 

1) Talk presented at the Trieste conference 
"Search for Scalar Particles: Experimental and 
Theoretical Aspects", July 1987 
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1. INTRODUCTION 

A gauge theory for electroweak interactions with 

massive W and Z bosons is not renormalizable 

unless W and Z acquire their mass from spontaneous 

symmetry breaking. This necessitates introduction 

of a scalar field11 (operator) whose vacuum 

expectation value ( vev) i's different from zero, 

implying that the symmetry of the ground state is 

lower than the symmetry of the action. In the 

standard mode1 21 this scalar belongs to the sO 

called weak doublet. The excitations above the 

ground state comprise massless and massive spin 

one bosons and one neutral massive scalar, the 

Higgs scalar. If we could move the mass of the 

Higgs scalar to infinity while keeping its vev 

fixed, the scalar mode would decouple from the 

effective low energy theory and we would recover 

the unrenormalizable model with massive W and z 

without a scalar excitation. We therefore know 

that there must be some upper bound on the mass of 

the Higgs particle at which the renormalizability 

of the standard model breaks down. To get a first 

qualitative intuition on the magnitude of this 
+ -bound we may look at tree level scattering W W -+ 

+ - . . w W . For low enough Hkggs partkcle mass MH the 

graphs with exchange of a Higgs particle (see fig 

1) partially cancel the contributions from other 

graphs and the amplitude is consistent with 

unitarity. For very high MH' however, the Higgs 

exchange graphs can be neglected in a region where 
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the dynamical variables are in the range of a few 

TeV or below. Tree level unitarity breaks down in 

this energy region. Lee, Quigg and Thacker 31 have 

estimated the tree level ·unitarity bound MH<lTeV, 

whereas validity of perturbation theory needs 

MH<600GeV. 

This leads us to a first important conclusion on 

possible alternatives for physics in the TeV 

region: 

A) Either the description of physics by the 

standard model breaks down at an energy 

scale A around 1 TeV. New physics appears 

at these energies and the standard model 

is only an approximation for momenta 

smaller than 1\. The scale· 1\ may be viewed 

as a physical cutoff for the standard 

model. 

B) Or the scale of new physics is higher 

(A >STeV). In this case it must be 

possible to associate to the symmetry 

breaking scalar operator a (low energy) 

scalar field and the Higgs particle 

exists as an observable scalar 

excitation. Its mass MH must be below 

1 TeV. We will formulate later the bound 

on MH in dependence onA more precisely. 

At this place we should mention that in principle 
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there could be a possible intermediate case 

between alternatives A) and B), namely a strongly 

interacting Higgs scalar with mass in the TeV 

region. We will see, however, that all evidence 

suggests that such a high scalar mass requires new 

physics withA in the same energy region. We 

therefore can include this case into A). 

In the standard model, spontaneous symmetry 

breaking is described by the minimum of an 

effective potential for the weak doubletf. In 

the tree approximation it has the form 

V.CcpJ .. -~; lft-1' + ·P· r<lrJ~ I 1 l 

The minimum occurs for . ~ ~ 

l<cp)l = '/'0 • ~,/J.. I 2 l 

and the mass of the physical neutral Higgs scalar 

and the W boson obtains as 

~ ~ 

MH = .z. ~ ~0 I 3 l 

Mt I ~ ;z. 

= 2: 9'~ CP., I 4 l 
w 

The Fermi scale ~0 can be directly measured from 

muon decay etc. 

'Po "' 11-'r G. v I 5 l 



5 

It seems actually more natural to parametrize the 
effective potential in the spontaneously broken 

phase by directly observable renormalized parame­
ters <l'o and A I or MH) 

Vo • ; A. ( ~t<p- <f'oa )%. I 6 l 

In the tree approximation A is directly related to 
the ratio 

) = 
of physical masses 

,..,~ 
u 

'f- M • 
W' 

:1. 

~ .. 
MH/Mw' 

I 7 l 

The two main parts of this talk give a (personal) 

summary of what is known theoretically about the 
two parameters A and ~o· I will first discu~s 
bounds on MH (or rather on MH/Mwl and subsequently 
turn to the Fermi scale q:>

0 
and the associated 

11 naturalness" questions. Throughout this talk I 
remain in the context where low energy physics is 
described by the standard model with only one low 
energy scalar doublet. Most of the arguments can 
be generalized to extensions like supersymmetric 
theories or the case of several doublets. I will 
argue, however, that such extensions are not 

necessary. 

A couple of years ago Cabibbo, Maiani, Parisi and 
Petronzio 4 l have investigated the conditions that 
a perturbative treatment of the standard model 

remains valid up to a high scale A¥10 15 GeV. 
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Their bounds on MH and the top quark mass mt are 
shown in fig.2. I will argue that (at least part 
of) these bounds not only indicate a breakdown of 
perturbation theory but rather are consistency 
conditions of the full theory if the standard 
model remains valid up to a given physical 
cutoff. On the other hand, these are the only 

consistency conditions. For any value of MH and mt 
well within the allowed region the standard model 

can be extended far above the Planck mass MP. 
Around Mp gravity effects become important. One 
expects that this scale corresponds to a physical 
cutoff at which the standard model should be 
replaced by a unified theory including gravity. 

Nevertheless, a theory of electroweak and strong 
interactions consistent up to 1\ ctJ M has the same 

p 
profound status as QED. 

The central tool for a qualitative and quantita­

tive understanding of bounds·on MH is the one loop 
renormalization group equation (RGE) forl. (This 
is similar to QCD where overall features like 

asymptotic freedom and the appearance of AQCD 
as a scale related to confinement are already 
manifest in the one loop RGE for the strong gauge 

coupling.) Neglecting contributions from Yukawa 
couplings of light quarks and leptons one 
obtains 5 ] (t=l;u) 

dA 
dt 

= ;). ... 
1" rr .. {a A.~- n1.."' + a;.t A. 

t t 
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+- !:!:.. Q.,. 
.{00 14 

} 
I 8 I 

The one loop RGE for the Yukawa coupling ht of the 

top quark (mt=ht fol is 

rJitf ,A " {' 3 .. ~ g ,_~ 17- ,_~ } 
at "t *·1," ... ;;~t -s~. t-~t~ t-20~ , 

191 

Here g 3 , g 2 and g1 are the gauge couplings of 

SU(3), SU(2) and U(l). We will see that except for 

a possible small region aroung the physical cutoff 

equations (8) and (9) can be supposed to be 

reliable approximations. This is firmly 

established for the case of small gauge couplings 

(as observed) and small ht, whe~eas for large ht 

nonperturbative work remains to be done in order 

to substantiate further this conclusion. 

2.) TRIVIALITY OF v4-THEORY 

Let me first consider the case g 2 
i <<A, h 2 t <<A. 

This is related to the bound on MH in the region 

indicated in fig.3. We can neglect all other 

degrees of freedom and therefore deal with a pure 

(four component) 9' 4 theory. The one loop RGE 

becomes 

13.- 3 A..~ = I 10 I 
tit ,. 7f''l. 

and has the simple solution 

I 

?.!f<l 
= 

I 

,HI\) 

8 

+ _3_ .e..,. .1.. ,. ,.... i I 11 I 

One immediately notices that for any arbitrary 

positive coupling AU\) at the scale 1\ the 

renormalized coupling at some physical scale/" 

goes logarithmically to zero as Ajl' goes to 

infinity. This is the heart of the so called 

triviality6 l of the , 4 theory. (It is the analogue 

to asymptotic freedom in QCD. However, since the 

sign of the ,/3 function is opposite, the infrared 

and ultraviolet limits are interchanged.) We may 

turn this argument around and draw trajectories 

(fig.4) for a given value of the renormalized 

coupling l ( (P0) at the Fermi scale. For 

nonvanishing positive ;l( ~) the theory is 

consistent only for energies below a critical 

scaleJU. This gives an upper bound on the 
rc 4 

physical cutoff A,~' . One concludes that the <p 
theory with A ( f0 l >0 cannot be extended to 

infinitely short distances! 

However, the scale dependence of A is only 

logarithmic. For MH ~ 130 GeV the theory remains 

consistent far beyond Mp' In the one loop 

approximation the situation is then analogue to 

the Landau pole in QED. (The RGE for the 

electromagnetic coupling has a similar structure 

as (10)). If one believes that a more unified 

theory should replace the standard model at a 

scale A around or below Mp' one obtains an upper 
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bound on the Higgs particle mass in dependence of 
this physical cutoff through the inequality 

it{~) < 
lj.rrz-

(12) 
3 lh. (A/tp.) 

Parametrizing A;tp
0 

= lOx leads to the simple 

formula 

MH ~ MH = 
I 

x -:;; · 5"\10 GeV I 13) 

I give a few values in table 1. One finds for A 
below 1 TeV that A and MH are in the same order of 
magnitude and perturbation theory becomes 
unreliable. Also, the bound has to be corrected 
for the contributions of gi and ht to the RGE, 
which lead to the more precise estimate in fig2. 

So far I have used the one loop RGE to demonstrate 
"triviality" and derive the bound on MH. 
Triviality is connected to the divergence of A r> 
for;U~;"c (fig.4). In the region near/"c the 
coupling A grows huge and perturbation theory 
breaks down. Thus triviality can only be 
established by a nonperturbative treatment. 
Actually, the one loop RGE suggests that even 
starting with a very strong A<A> the Higgs 
coupling falls very rapidly and perturbation 
theory applies already at a scaleJip~ (1/2)1\. It 
would be sufficient to establish this feature 
nonperturbatively, namely that for arbitraryA<A> 
perturbation theory becomes valid at a scale 

10 

/Pt:S (1/c)/\ with c not much bigger than one. If 

this holds, the bound on MH derived within pertur­
bation theory is valid up to an uncertainty in the 
ratio~p/A . Details of the nonperturbative 

treatment would only be needed to determine c. 
(For j'p near 1\ the value of c depends on the 
regularization used to define the f 4-theory). 

Nonperturbative studies of the lattice f 4-theory 
over the last couple of years show convincing 
evidence that this theory is indeed "trivial". The 
methods used include strong coupling expansions?], 
Monte Carlo simulations81 , exact inequalities9 l 
and rigorous block spin renormalization group 
equations 10 l. Recently, LUscher and Weisz 11 l have 
performed a three loop perturbation analysis 
combined with a strong coupling expansion for the 
(one component) lattice , 4 theory. They found that 
the expansions for weak and strong A overlap and 
that perturbation theory indeed becomes a valid 
approximation for)'p ~ ( 1/2 ),-t. Their results for 
the evolution of A~l for A.<l\)-+0" are shown in 
fig.S. They are confirmed by a high statistics 
numerical simulation121 . In fig.6 I reproduce 
their result for the bound on MH/,0 in dependence 
on /1/MH" There is little doubt that similar 
results apply to the four component ~4 -theory. 

We still have to ask if for the standard model the 
approximation of negligible gauge couplings and 
Yukawa couplings remains valid in the 
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nonperturbative region where/l becomes strong. 

Fortunately, there is a Schwinger-Dyson type 

expansion in the small co~plings gi and ht which 

remains valid even for strong A13 l. One finds that 

the A function for g. is always Ng3 . and At has ,- 3 ~2 l. ,-
contributions •h t' g iht. For small enough gi and 

ht the correspondingjS functions are therefore 
small and these couplings evolve only slowly. If 

the approximation g 2i, h 2
t <<A is valid at the 

scale , 0 it remains valid over the whole range of 

interest tp0 <I'< 1\ . In particular, the 
nonperturbative results for the pure , 4 theory 
apply to the standard model. 

This allows to draw conclusions for the standard 

model in the case where the heaviest quark mass is 

not very large (mt < 120 GeV): 

ll For large A<~0 l (say MH > 140 GeV) the standard 

model becomes inconsistent at some scale A as a 

result of triviality of ~4 theory. At or below 

this scale a consistent description of nature 

needs the introduction of new physics. This 

necessity arises independently of gravity. For MH 

> 170 GeV the scale A must be substantially lower 

than the Planck mass MP. 

2) A strong coupling A(Al decreases very rapidly 

below the cutoff. Even for A(I\)-+GD one finds A. y> 
within the range of validity of perturbation 

theory for/P ~ (1/2)A. This implies that no 
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genuine strong coupling~4 -theory exists! A 

strongly coupled Higgs {MH > 600 GeV) is only 

possible if there is also additional new physics 

at A around 1 TeV. In this case high energy 

experiments may be more successful by looking 

directly for signals of this new physics rather 

than specializing to the Higgs mass. The Higgs 

scalar would no longer be singled out particularly 

among other excitations. 

3) The one loop RGE is justified for a qualitative 

analysis. It reproduces important features of 

nonperturbative physics even outside the region of 

its applicability. The quantitative results of 

pertubative RGE apply ( up to a small uncertainty 

how "near" the cutoff A it remains valid). This 

has an analogue in QCD where perturbation theory 

remains valid down to energy scales not far from 

AQCD' 

4) For a given physical cutoff A there is indeed 

an upper bound on A( 9'o> and therefore on MH. 

51 Far small Ai9>0 1 (MH < 140 GeV) perturbation 

theory remains valid far above Mp. The issue of 

"trivialityu of the standard model depends now 

also on the behaviour of gi and ht. 
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3.) INFRARED FIXPOINT AND INTERVAL FOR STRONG 
YUKAWA COUPLING 

Let me now turn to the case of stronger Yukawa 
couplings (mt > 120 Gev) connected to the bound on 
MH in the region depicted in Fig.?. We can neglect 
the gauge couplings in a first approximation and 
the one loop RGE simplifies 

«A. 
Tt 
clltt 
;11: 

3 { L z. fl. l 
= ;;L A ... ~i- .{ - .At J I 14) 

s 3 
=-A . '3~77~ t 

115) 

The RGE (15) has a solution similar to (11). This 
suggests again that an arbitrary strong Yukawa 
coupling ht(Al becomes weak very fast and that 
perturbation theory applies for the coupled system 
of scalar and fermions at a scale not far below 
the cutoff,J"p =(1/c)A. I will assume that this is 
indeed the case, although I should emphasize that 
a nonperturbative proof of this statement remains 
to be done. With this assumption the coupled 
system of scalars and fermions is 11 trivial": both 

Afl and htj'<) vanish forllf'-+<».
2

) 

2) If the coupled sys·tem is not trivial, there 
should exist a new phase with strong ht and A. 
This could have important conseque£3~s for an 
explanation of the gauge hierarchy . 

14 

The RGE (14) has an interesting structure: for h 2
t 

>>~the coupling it~) increases due to the term 

N- h 4
t as;" becomes smaller, whereas for h2

t <<A 
it decreases. This suggests that there is some 
intermediate value for A;h2

t where both effects 
become comparable.Indeed, for strong enough ht the 
RGE for the ratio A;h2 t, 

"( ;!),. 
ait A~ + 

A~ {1z(_J__):_ 3 A.~ -·a}c16 l 
l,rt~ 1.: A., 

is governed by an infrared fixpoint. 13 l The ratio 
A;h2t remains constant if the right hand side of 
(16) vanishes. This happens for 

~ .... (.!!..) li- ..!.. 
~t '~ 8 

• Xo 

and corresponds to a mass ratio 

MH 
mt 

AI 4. 3 

I 17) 

I 18 l 

Corrections due to nonvanishing gauge couplings 
lower the fixpoint ratio MH/mt somewhat. The 
fixpoint corresponds ot the edge in the upper 
right corner of the allowed region in fig.7. The 
situation is similar131 if a heavy top quark is 
replaced by a heavy quark pair of a possible 
fourth generation. 

If the coupled system of scalar and quarks has no 
ultraviolet ;f{Xpoint (as for a "trivial" theory) 
the infrared fixpoint value (17), (18) would be an 
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exact prediction as 1\ 19'o--. •. With a physical 

cutoff 1\ at or below MP, however, the ratioi1Jtp0 
is finite. The prediction of values for the 

coupling constants being ·given by the infrared 
fixpoint is replaced by a finite infrared interval 

r 0 of allowed couplings at the scale fa· (The size 
of r 0 shrinks to zero as AlVa goes to infinity.) 
In our context this can be understood by noting 
that thejB function (16), which determines the 

approach to the fixpoint, is proportional to the 
Yukawa coupling h 2

t. For small values of ht the 
function is small even for large or small ratios 

A;h 2
t. The ratioA/h2

t changes therefore very 
little between A and,0 even if it is not close to 

the fixpoint value (17). The existence of an 
infrared fixpoint becomes irrelevant for the 

evolution over a finite ratio A/fa· In contrast, 

for large ht thejS function (16) takes large 
positive or negative values unless il;h2 t is near 
the fixpoint (17). In this case the fixpoint is 
approached very rapidly and {18) becomes a 
prediction. 

More generally, the analysis of IR fixpoints 

should be replaced by an analysis of IR intervals 
in the case of "trivial" theories with finite 

cutoff A. The IR intervals are situated around IR 
fixpoints. Any interval IA of allowed couplings at 

the cutoff A will be mapped by the renormalization 
group into an interval I 0 for the renormalized 

couplings at fo <A. If IA is within the range of 
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attraction of an IR fixpoint within I 0 , then r 0 is 

always contained in IA and smaller than ~ . For 

small couplings thejS functions are small so that 

I 0 and IA approximately coincide. For "trivial" 
theories an infinite IA will be mapped onto a 
finite r 0 . This implies bounds on the allowed 

couplings in dependence onA!fo· The bounds on MH 
and mt in fig.3 and 7 correspond to the IR 
interval for the combined system of A and ht. 

For an analysis of I 0 for the ratio A;h2t we 
introduce new variables x and s 

X: -

tis 
.It 

.'1 
~1 

t 

Xo 

l. 
"' ~~ ( t) 

I 19 l 

I 20 l 

with h(t) the Yukawa coupling running according to 

(15). With the new evolution parameters the RGE 

for the deviation x of ~/h2 t from the fixpoint x0 
reads 

dx 
Ts = 3 

Hr ... X (X 1- Zxo + ~ ) I 21 l 

For x >> 2x0 + 1/4 we find the same behaviour as 

the one loop RGE (10) for~ in the pure , 4 theory. 
Arbitrarily large values of x at A get therefore 
renorma1ized to values of the order x0 if s<A> -
s~) is of order one. The only difference from 

(11) is that lnAj" is now replaced by 
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s(ll)- s(p)• 32-rr .. ,t,.. ~*(/\) 
/ !I ~~y.> 

122) 

On the other hand, values lxJ<< 2x0 + 1/4 follow a 

RGE with anomalous dimension 

i!5- = A" >< e>ts J A" 
which leads to a typical 

~ 
x(l\) 

• ( ~tid 
.It~ (I\) 

::2-
'f-11" .. 

(Z.x_,+£:) 

power law 
u. ....... 2. 

) 3 

behaviour 

I 23 l 

I 24 l 

Combining the results for small and large lxJone 

sees immediately that the interval I~ : -x0 <x<oo 

shrinks to a finite interval r 0 for the allowed 

ratios Al9'0 l!h\19'ol· Very large ~/h2 t lx., .. ) or 

small A.;h 2 
t (x-+ -x0 J become inconsistent. The size 

of r 0 depends on the ratio ht<AJ/ht<f0 J. For ht(AJ 

~ oo the interval I 0 shrinks to the fixpoint. As 

mentioned before, this is the edge in the upper 

right hand corner of fig.7. For finite values 

ht(AJ the allowed interval I 0 is finite and it 

increases as ht(~) decreases. This explains the 

opening of the allowed region in fig.7 as mt 

becomes smaller than its maximum allowed value 
- A 15 mt <•330 GeV, for,,= 10 GeV), For strong Yukawa 

couplings the Higgs coupling ) has not a very 

independent existence anymore. It has to move in a 

sort of slavery, dominated by the evolution of ht. 

I expect this feature to generalize to a 

nonperturbative treatment of the system. 
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For the region 80 GeV < mt < 120 GeV the Yukawa 

coupling is small and the evolution of A does not 
11
feel" the existence of an IR fixpoint in Aih2t. 

Nevertheless, the term -(3/t-111.) ~:in eq. ( 8) 

dominates jJ;. for small A . It excludes values of A. 
near zero since the IR interval does not extend to 

A=o. This explains the lower bound in fig.2 for 

80 GeV <tn~< 120 GeV. (The lower bound on ~ for 

mt > 80 GeV assumes lC~) ~ 0. It is not completely 

proven so far that this requirement is necessary.) 

Let me summarize this section by stressing two 
points: 

1) In theories with a finite physical cutoff/\ the 
allowed low energy values of couplings are 

determined by infrared intervals. These intervals 

shrink to associated fixpoints for 11-.ao. 
2) The one loop RGE define a hierarchy of 

couplings. At the first level are the gauge 

couplings g. Their one loop j!3 functions do not 

depend on any other couplings of the standard 

model. Second one has Yukawa couplings h with one 

loop functions depending on g and h, but indepen­

dent of scalar selfinteractions. There is an IR 

fixpoint in the ratio h 2;g2 • For strong enough h 

and g the !Ow energy ratio h 2;g2 is restricted by 

the corresponding infrared interval. Due to the 

existence of the chiral UV fixpoint for h=O small 

Yukawa couplings get renormalized slowly with a 

typical power law behaviour. The IR interval for 

the ratio h
2
;g

2 
is always bounded by zero. 
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Finally, the;G function of scalar self-couplings A 
depends on g,h and~. For nonvanishing g and h no 

fixpoint is associated with A =0. For strong enough 

h (or g) the infrared beh~viour of A is determined 

by the evolution of g and h whereas A moves in a 

sort of slavery. 

4.) Coleman-Weinberg symmetry breaking 

I finally come to the lower bound on the Higgs 

particle mass for mt < 80 GeV (compare fig.2). 

this region one can use the approximation A << 

to solve the RGE: 

In 
2 

g i 

d) - I I '3 .. !I ~ ~ 2.1 I' "J «t t'~"'i6rf:a.l~~~+i01~1-<r~9.-IZ~t !251 

Approximating;4A by a constant gives the typical 

logarithmic behaviour for A<,) 
A q>" 

).{lp) .,_{(11) -/:~ k"f = tfl ( k/o& + '-) I 26 I 

From this one obtains14 l the one loop effective 
potential3 ) 

V = -/':(<p)<p.,.<pr .p.{q>)(<p+<p)'" 

+ correction terms 

3) The correction terms in (27) and the constant 
c 0 in (26) depend on the precise definition of 
~ (,.1. 

20 

= -~t"lr r l..,e;. (Cftq,l(tn cf%s - .L) 
/ I ~I ' ~0 ~ 

( 27 I 

The parameter A<~0 ) is eliminated in favour of the 

parameter;U 0 according to (26). This is called 

dimensional transmutation. 

Consider first 

occurs for 
the case~~ 0. The minimum of V 

~ ~ 

<F.. - ir> 
The curvature around the minimum leads to the 

Higgs particle mass 

( 28 I 

( GW'J l, l- 3 ( I' \" .. ) 
MH =;~<fo = lf-tT&<fo:a. ZH..,rM~ -'tm<t- (291 

For small top 

increasing mt 

the point 

mass one finds M~ cw ~ 10 GeV. for 

the value of MHC decreases until 

""'+ ~ &06eV, M
c.w 
H 4 I (;.V ! JO I 

(Around this point effects from the running of gi 

and ht and two loop corrections should be included 

for a determination of MHcw.) 

At the point ( 30) the one loop j3 -function for A 
vanishes. This point plays a special role in the 

context of dilatation symmetry. In the standard 

model without gravity the only mass parameters in 

the classical action appear in the Higgs 
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potential: the scalar mass term;"~ and a possible 

classical cosmological constant Xa = V (~ 0). 

There are two ways how to implement classical 

dilatation symmetry in the standard model: 

A) One introduces a Goldstone boson ~and 
replaces 15]16] 

h -
~. ~ 

.!. 

~"" .1-oep 
.t~ 

M 

{o-l> 
"'<o kef H I 31 l 

In this case one obtains no information on~,2 and 

~-
B) All classical mass parameters vanish 

/''f2. .. 0 
I "'" = 0 

I 32) 

Due to dilatation symmetry the values (32) 
correspond to a fixpoint in the RGE and are in 

this sense "natural" (see later). If perturbation 

theory is valid, weak symmetry breaking must be of 

the Coleman-Weinberg type and leads to (29). 
Furthermore, the effective cosmological constant)£ 

is determined by the potential (27) with~;(,) = 0 

K = V(,0 ) + QCD contributions 

Vtq>.J = -~;~. <p: 
One knows 

Since the 

133) 

from observation that X must be tiny. 

QCD effects should not exceed O(AQCD4 ) 

22 

one concludes that;BA must be smaller than about 
l0- 12 . The alternative (B) therefore predicts17 l 
in perturbation theory mt Oil 80 GeV, MH < 1 GeV. 4 ) 

The lower bounct18 l in fig.2 for mt < 80 GeV needs 

a discussion of v ( 27) for Jlf2 -4 0. I show the 

qualitative dependence of v on j'i; in fig.S. For 

increasing J"i the potential approaches the form 

of the classical potential. For a positive scalar 

mass term <j"i < 0) , however, a second minimum 

develops attp= 0. For /",2 
= /"'f 2 the two minima 

correspond to the same value of v. For~~ < /"tr cZ 

the lowest .minimum is the symmetric one atcp= 0 

and one expects a ground state without weak 
2 -2 symmetry breaking. (For small enough Jlft <,It• 

there is only one minimum at,= 0.) This behaviour 

is characteristic for a first order phase ~­

tion at;«f
2 =~c2 . At the transition point one 

finds MH = ~ MCWH and derives the lower limit on 
MH from 129). 

At the end of this section one word of caution is 

in order. The validity of perturbation theory has 

not Oeen proven for the spontaneously broken phase 

4) Possible tests for the idea of classical 
invarig~ce involve a new intermediate range 
force ~7 modifications of standard 
cosmology l. Both effect~ depend on the 
dilatation anomaly in the quantum theory. 

scale 
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in the standard model. This comment may seem 
surprising since the values of all dimensionless 
couplings at the Fermi sc~le are small for the 
discussion of this section. Obviously, two loop 
effects for the RGE are supressed compared to the 
one loop contribution. Nevertheless, validity of 
perturbation theory not only requires small enough 
couplings but also the validity of a saddle point 
approximation in the functional integral. There 
are still open topics like the question if the 
perturbative results for the Coleman Weinberg 
first order phase transition hold quantitatively. 
(I believe that the qualitative features are true 
for the elctroweak gauge theory). Another question 
concerns a possible nontrivial interplay between 
strong and weak interactions due to 
nonperturbative chiral symmetry breaking in QCD. 
Finally, I should mention that the standard model 
with small enough A and ht possibly has a 
nontrivial continuum limit for~~ 00. Since this 
is mostly of theoretical interest I comment on 
this topic in the appendix. 

5.) Naturalness of the Fermi scale 

Why is 

'1'o 
_,, 

? I 34 l 

Mf <!:' JO 

This small dimensionless quantity is crucial for 
the weakness of gravitational interactions. This 
question is the heart of the "gauge hierarchy 
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problem" 19 1. So far the ratio (34) is not 
understood. Why is 

% 
~ 10 

3 
? 

1\(!!<.Z> 
I 35) 

This ratio (together with dimensionless gauge and 
Yukawa couplings) determines the scales in atomic 
physics. Our world would look completely different 
if (35) is modified. The fact that 'O~CD is many 
orders of magnitude smaller than MP/AQCD may be 
called the "connection problem" between 
electroweak and strong interactions. What has fo 
to do with AQCD? 

It is not excluded that (34) is a consequence of 
(35) and the small ratioAQCD/MP (which can be 
understood from the logarithmic evolution of the 
strong coupling constant). I will not pursue this 
possibility in this lecture and only discuss {34) 
neglecting nonperturbative QCD effects. Is the 
small ratio~0/MP natural? Three main objections 
have been given against the naturalness of (34) in 
the context of the standard model embedded in some 
unified theory with a large characteristic mass 

scale M near MP: 

i) The scalar mass term~; is quadratically 
divergent in perturbation theory. Its natural 
value should therefore be given by the physical 
cutoff 1\2.20 l 



25 

ii) In order to obtainJ;U~2 f<< M2 the couplings of 
the theory have to be adjusted with very high 
accuracy in every order in perturbation theory. 19 ] 
This argument has first been given in the context 
of grand unification. 

iii) The value;u,2 = 0 does not correspond to an 
enhanced symmetry of the theory. Small values of 
;4~ 2 are therefore not natura1 21 l (in contrast to 
the small Yukawa coupling of the electron, for 
example). 

New theories have been advocated to cure the 
alleged ''unnaturalness" of ( 34 l in the standard 
model: low energy supersymmetry, technicolour, 
compositeness ••. Is new physcis really needed? Does 
the observed scale fa give any information about 
the scale ~ where physics beyond the standard 
model becomes necessary? My personal answer to 
this question is negative. I will argue 22 l that 
the small ratio, 0/MP is as natural (or unnatural) 
as the ratio me/MP in quantum electrodynamics 
coupled to gravity. (To underline the importance 
of this statement I recall that nobody would 
advocate a necessary extension of QED at a scale 
somewhat abOve me for reasons of unnaturalness of 
the small ratio me/MP). 
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i) Quadratic divergences 

In perturbation theory the scalar mass term has 
contributions (compare fig.9) proportional to the 
cutoff momentum squared: 

~ 

)", 
-~ ci ... c. 1\2. I 36 l 

The quadratically divergent term cA2 , however, is 
purely an artefact of the regularization procedure 
and contains no physics! First of all, the value 
of c depends on the regularization scheme chosen. 
In particular, there exist regularizations without 
quadratic divergences 23 lcc=O) in all orders in 
perturbation theory. (Supersymmetry is not needed 
for this.) In the language of statistical 
mechanics the quadratic divergence cA 2 is not a 
universal quantity. The situation is completely 
analogous for massive fermions. Depending on the 
regularization the fermion mass has linearly 
divergent contributions or not. 

To illustrate this, let me consider QED (with 
electrons) regulat·ized on a lattice with lattice 
distance a - 1\ -l. The "Hopping parameter" 
(corresponding to the "bare maSS 11 me ) must be 
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fine tuned in order to obtain me<< 1/a. The 

electron mass has a linear divergence 

..,., = m., + .:.1\ 137) 

Again the value of c depends on details of the 

regularization, for example if the lattice is 

cubic or triangular etc. This does not mean that a 

value me = 511 keV is unnatural - the electron 

mass simply sets the scale of QED in this model. 

Presence of other interactions with a much higher 

characteristic scale M (like gravity) opens the 

question why me/M is very small, but this is not 

related to .the issue of the linear divergence. It 

is just the same for electroweak interactions. If 

we would not know about MP (or a unification scale 

Mx) the scale of the theory is set by tp0 • Any 

value of fo is equally consistent 5 ) and "natural", 

irrespective if the regularization induces a 

quadratic divergence or not. It is sometimes 

argued that fundamental unification will decide on 

the "correct" or "physical" regularization. This 

is true, but leads nowhere unless we know what is 

the "correct" definition of the bare mass and the 

corresponding "correct" value of c. The QED 

5) This is not true for the complete standard 
model with QCD. Due to chiral symmetry breaking 
the scale of weak interactions is bounded from 
below by 1\ QCD. 
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example illustrates that the pure existence of 

regularization schemes with c+o is certainly not 

sufficient to conclude the necessity of new 

physics. The argument for new physics at the TeV 

scale to cure the quadratic divergence of the 

Higgs mass is not better than an argument for an 

extension of QED at a scale of a few MeV to cure 

the linear divergence of the electron mass. 

ii) Fine tuning 

Grand unfied theories have a scale'x (not far 

from Mp) characteristic for spontaneous breaking 

of the unification group. A naive perturbative 

expansion for the doublet mass term~~ gives 

~ 

/'rr 
z. z. z. t. z. .. .2. 

= ,"II +c. 't <f'.:, +,c. ... ~, .. c.) :r ~!( ...... (38) 

tree one loop 

(with g the gauge coupling, -.> 2 a mass parameter 

and ci containing ratios of dimensionless 

couplings and logarithms). Such a perturbation 

series has bad convergence properties if the first 

terms are of the order g 2Nfx2 , and therefore many 

orders of magnitude bigger than I)J,ZI. As a 

consequence, the parameter "'I 2 or the tree mass 
2 2 2 2 . flo = ~ + c 1 g cp x needs to be flne tuned 

differently in every order in perturbation theory. 

I will argue that this "fine tuning problem" is 

only a consequence of a "bad choice 11 of the 

perturbative expansion series for;Uf2 . Using 
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perturbative renormalization group methods the 

problem disappears. 

The RGE for the scalar mass term is given by an 

anomalous dimension A 

ol z. 

.L!. 
cit 

2. 

= y'l' < 39 I 

For the one loop approximation in the standard 

model one has 

A= - 1 (6A.+61{ 2 --1a.~- _1.,.z.) 
'""" '1: ~ d>. 10 .r• (40) 

One defines the physical short distance mass 

.a. 
/o • /'; ( Hp) < 41 I 

(In contrast to the bare mass this is a physical 

(universal) quantity. The value of/"f2 at an 

arbitrary scale M may be called the tree 

approximation.) The scalar mass term at the Fermi 

scale is then given by 

f. .t.. Hf/q. 
/'t{Cfo) -;<o .-p(-I A(t)ol{;) < 42 I 

For the approximation of constant A this has the 

solution 

z. .t(qo. A /'I' ( %) - j<o ~,.) (431 
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(Otherwise a mean value of A has to be taken 

according to (42)). Several comments are in order: 

-For small valuesyw0
2J the scalar mass term 

is also small. For A positiv it is even smaller 
2 

than Y"o I . 

- A perturbative expansion corresponds to an 

expansion of A in powers of g 2 . This gives a good 

series (the first terms converge for g2 

sufficiently small) for the ratio ;"~tf0 );~0 2 . No 

fine tuning ofJ"0
2 is needed order by order in 

perturbation theory. 

- As expected from the previous discussion, no 

trace of quadratic divergences appears in the RGE 

for physical quantities. 

- For comparison, let me give an example for an 

RGE where a real fine tuning problem would exist. 

I have drawn in fig.lO the renormalization group 

trajectories for the RGE ~/t;lt -~:.,.. 8<f.ca. 
for vanishing and nonvanishing B. For BfO the 

scale M where~/(M)=O would vary in different 

orders in perturbation theory. To obtain the 

coincidence M ~~Wfo would require fine tuning of 

parameters order by order in perturbation theory. 

- It can be shown 22 l that the RGE for the doublet 

mass term has always the form (39)(B=O), even if 

the standard model is embedded in a unified 
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theory. This is a consequence of the essential 
second order character of the weak phase transiti­
on. (The small Coleman Weinberg first order 
effects do not change this conclusion.) 

iii) Naturalness and Symmetry 

The small electron mass is often considerd as 
natural since for me=O the theory has an enhanced 
symmetry: chiral symmetry. In contrast, the value 
~;=o is not singled out by an additional 
symmetry. 6 ) I will argue th~t despite this 
apparent difference the situation is essentially 
analogous to the electron mass in QED. As a 
consequence of chiral 

always a fixpoint for 

symmetry the RGE for me has 

me=O. 

drne 
ol-1: 

~ A.m. (44) 

This implies (for IAel<<l) that an arbitrarily 
small electron mass does not change its order of 
magnitude by the renormalization group evolution. 
In this sense it is stable. The fixpoint for 
vanishing mass, however, does not necessarily 
require an additional symmetry. Indeed, the RGE 

for/*~ has a fixpoint a~~=O. Rather than to an 

6) It corresponds to classical dilatation 
symmetry, but this symmetry has anomalies. 
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exact symmetry it is due to the second order 
character of an associated phase transition. (This 
has a relation to classical dilatation symmetry.) 
one may argue that t'Hooft's naturalness criterion 
should be generalized for fixpoints of arbitrary 
origin. 

Even more, in the spontaneously broken phase the 
vev fa is a more natural parameter than/"~2 • (For 
example, higher dimensional theories would 
directly predict ~0 and not the infinitely many 
scalar mass terms.) Forf 0=0 the ground state (not 
the theory) has an enhanced symmetry: SU(2) x U(l) 
remains unbroken. 7

> Generalizing t'Hooft's 
criterion also for symmetries of the ground state 
one could call a small value of cp0 "natural". In 
this context the small mass term;u; is a 
consequence of the small value fa· (It is 
calculable as a function of~ and ~0 ). The stable 
behaviour of the RGE for/";; can be viewed as a 
consequence of the stability of fo· The analogy 
between cp

0 
and me becomes even closer if one 

notes that the small Yukawa coupling of the 
electron in the effective low energy theory may 
well be a consequence of a small scaleft of 
spontaneous generation symmetry breaking 241 

7) More precisely one should speak about different 
realizations of a gauge symmetry. 
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(compared to the unification scale). The electron 

mass would vanish for ,&~0 and me=O would 

correspond to an enhanced symmetry of the ground 
state of the unified theory. I conclude that a 

small ratio~ 0 /MP within the standard model is as 
natural as a small ratio me/MP in QED. 

6.) Conclusions 

The small ratio fo/MP still waits for an explana­
tion. Nevertheless, there is no technical problem, 
no consistency problem and no fine tuning problem 
associated with this ratio. In my opinion, new 
physics at the TeV scale should therefore not be 
motivated by "improving the gauge hierarchy 
problem" with respect to quadratic divergences or 

fine tuning. (An explanation of the ratio , 0 /MP 

would of course be a very valid motivation for a 
more complete theory.) The observed value of the 

Fermi scale ~O gives no information on the 
physcial cutoff A where new physics is expected to 
become important. 

Within the standard model there are still several 
theoretical gaps to be filled by a nonperturbative 
treatment: The triviality of the coupled system of 
scalar and fermions should be established, 
including a quantitative estimate at which scale 

jUp = (1/c)A perturbation theory becomes valid for 
arbitrarily strong Yukawa couplings at the cutoffA. 

The Coleman-Weinberg symmetry breaking should be 
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confirmed nonperturbatively for the electroweak 
gauge theory. The interplay between QCD and 
electroweak interactions for weak symmetry 
breaking needs to be investigated. These are only 
a few "practical" tasks immediately relevant for 
predictions of the standard model. Beyond this, 

there are other questions of a more theoretical 
nature. 

The most important task remains for our 

experimental colleagues: to put experimental 
bounds on the theoretically allowed values of MH 

-and mt and .finally find the Higgs scalar and the 
top quark. This may give information on the 
physical cutoff J\, depending on the range of MH: 

10 GeV < M < 140 GeV 

The standard model is consistent up to energies ~ 

MP. It is possible that new physics sets in only 
near the Planck scale. 

140 GeV .( M < 600 GeV 

Information about new physics at a scale below Mp 
becomes possible. The upper bound on the physical 
cutoff .A, where the standard model needs to be 
extended, depends on the value of the top quark 

mass. 

M > 600 GeV 

New physics is expected around or below 1 TeV. Th& 
standard model description breaks down at this 
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scale. There is no reason why the Higgs particle 

should be singled out particularly amongst other 

excitations of the new theory for an experimental 

detection of the new physics. 

'%! < 10 GeV 

Perturbation theory predicts constraints on the 

top mass in dependence on MH· A Higgs mass in this 
region would give interesting additional informa­

tion on dilatation symmetry. 
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Appendix 

In this appendix I comment that it is not unlikely 

that the standard model has a nontrivial continuum 

limit if the renormalized Yukawa and scalar 

couplings at the Fermi scale are not too large 25 l. 
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This is equivalent to the statement that all 

couplings g 2i(Al, h2 (~), A<Al remain finite and 

positiv (or zero) as A goes to infinity. If the 

number of generations NG is smaller than five the 

gauge couplings g 2 and g 3 are asymptotically free 

in perturbation theory 

.k- 'J, (1\ ) ...., 0 
1\ ..... , .. ) 

.4-.. <}J(A)......;, o 
/\ .... .,.. (A.l I 

In contrast, g1 (A} increases for increasing/\. In 

the short distance (UV) region we only need to 

consider the abelian gauge theory of the U(l) 

factor of the standard model. 

The one loop RGE for the ratio ht/g1 is 

d ( -<t) 
it ~· .. ±1~)

3

-c: .. ~>.)~! '"/"" (A. 2 I 

~ .. 
dt = ;;(t 

1•(t) (A. 3 I 
}(." .. 

~~ "· ~ 
3 

b !t.N +- 1 (A. 4 I 

dt "ii1ii • J .,:3 6 lo 

I show JShg in fig.ll. There is an UV fixpoint for 

ht/g1 = 0 (corresponding to chiral symmetry) and 

an IR fixpoint for nonzero (ht/gl)c. If the Yukawa 
coupling is small enough so that ht/g1 is in the 

range of attraction of the UV fixpoint (ht/g1 < 

(ht/g1 )c) we can neglect the Yukawa coupling 

compared to g1 in the UV region. The situation for 

the other Yukawa couplings is similar. 
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It remains the coupled system of A and g1 with the 

following one loop RGE for the ratio: 

ziH;;) = 12-(~t- (~~zb.l(~.)-- f!>=;~<A.s> 
From fig.l2 one learns that there is both an IR 

and an UV fixpoint for A;g2
1 . Region I corresponds 

to section 2 where the cutoff cannot be moved to 

infinity. For regions II and III, however, the 

ratio ~/g2 1 is in the range of attraction of an UV 

fixpoint. (Region III includes the Coleman Wein­

berg symmetry breaking of section 4.) If g1 
remains finite for 1\""* 011, also i\ will remain 

finite 25 ]. 

The perturbative analysis of the abelian U(l) 

theory (A.4) would suggest that it is trivial. 

However, nonperturbative results for the abelian 

lattice gauge theory with fermions may indicate26 l 

that there is a second order phase transition with 

a corresponding UV fixpoint for the gauge 

coupling. If this is confirmed, theJ'function for 

g 1 would ressemble fig.l3. I conclude that there 

is a nontrivial continuum limit for the standard 

model if the following conditions are met: 8 ) 

8) These conditions are sufficient, but may not be 
necessary. Another (more remote) possibility is a 
new phase in the coupled fermion-scalar system for 
strong Yukawa couplings. 
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i) There is a nonperturbative UV fixpoint for g1 
in the abelian gauge theory with chiral fermions 

and scalars. 

ii) The UV fixpoint in the ratio A1g 2
1 persists 

nonperturbatively and A is in the range of 

attraction of this fixpoint. 

iii) The Yukawa couplings are small enough so that 

h/g1 is in the range of attraction of the chiral 

UV fixpoint. 

iv) Asymptotic freedom for g 2 and g 3 
are not 

disturbed by g1 and A of the order of their UV 

fixpoint values. 

I should emphasize again that the possibility of a 

nontrivial continuum limit is merely of 

theoretical interest. In the real world one 

expects a physical cutoff Ai MP where the stan­

dard model should be extended to include gravity. 

There is therefore no need for the couplings to be 

within the range of attraction of a possible 

nontrivial UV fixpoint. No additional bounds on MH 

should be derived from such a requirement. 
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Figure captions 

Fig.l: Tree level w+w- scattering. 

Fig.2: Allowed region4 ) for MH and mt if 

perturbation theory is valid up to 

1\ ~ 10 15 GeV. 

Fig. 3: Region of large~, small ht. 

Fig.4: Renormalization group trajectories ofJJi 
for three values of ../ l'fo I 

Fig.S: Two loop and three loop perturbative 

expansion and strong coupling expansion for 

A(~) in the one component ~4 theory11 l, 

Also shown are two points of a Monte Carlo 

simulation12 l with statistical errors. 

Fig. 6: Upper bound on MH as a function of 1\ 11 ) 

(with estimated errors). 

Fig.?: Region of large Yukawa coupling. 

Fig.S: Qualitative behaviour of the Coleman 

Weinb'erg effective potential for different 
2 

values oy,. 

Fig.9: Contribution to quadratic divergence of the 

scalar mass term from a fermion loop. 
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Fig.lO: Renormalization group 

for B=O and 8#:0. 
trajectories fo~~ 

Fig.ll:;6-function for the ratio ht/g1 . 

Fig.12:;B-function for the ratio J;g1
2 . 

Fig.l3: Speculated form of the;B function for the 

abelian gauge coupling g 1 . 
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