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Eduardo MENDEL 

II. lnstltut fUr Theoretlsche Physik der Unlversttat Hamburg, West Germany • 

Hadronlc structure can be obtained dynamically by calculating baryon density correlation functions at 

finite chemical potential ll· Even though preliminary results show some structure, It Is not yet clearly 

identifiable with nucleons due to the early onset with \1 of thermodynamic quantities. Analyzing the 

free Fermi gas suggests to take a much finer lattice to Improve these results. 

1. INTRODUCTION 

In this talk I will describe a method to find 

the fermlonlc structure for states generated by 

QCD on the lattice. Considering this theory 

at finite temperature and chemical potential, 

it will provide us with dynamical and extended 

states in a thermal superposition. 

The chemical potential 11 is coupled to the 

conserved baryon number B. The corresponding 

current density, iv ( x ), is derived from the im

proved action at finite chemical potential on 

the lattice, as introduced by Kogut et al. 1 and 

Hasenfratz and Karsch 2 , in order to obtain the 

proper continuum limit for various thermody

namic quantities t-J. 

The baryon current can then be used to find 

Hadronic structure emerging from QCD, by 

evaluating equal-time correlation functions 

(I) 

in a thermal state at finite temperature T = ~ -• 

and chemical potential 11· The thermal state is 

obtained as usual' by considering the functional 

integral over fields with (anti-lperiodic boundary 

conditions for the Euclidean time ~-

For any Operator like the correlation, the 

energy density or the current density, 

< 0 > = liZ L < n 1 e-~<H-~tBl 0 I n > (2) 
l!.p. n 

where the expectation for each dynamical state 

In) is weighted by the appropriate Boltzmann 

factor for a given energy and net baryon number. 

For low temperature and zero 11. we expect just 

the vacuum state 10) with some small admixture 

of lowest meson states lm> to contribute to the 

expectation value in Eq.(2). As we turn on the 

chemical potential ~. states with net fermion 

number become increasingly probable and even 

though baryon states lb> have a higher mass 

they will contribute to the thermal admixture. 

These lb) states should contribute significantly 

once we reach a ~ of the order of the nucleon 

mass. The idea is then to study the correlation 

as a function of ~ and from there extract the 

distribution of fermions in baryons. At higher ~ 

one could study the deconfined correlations. 

Contrary to these expectations it has been 

found 5 , for quite coarse and quenched lattices, 

that several thermodynamic quantities behave 

with finite ~ as if controlled by fermions with 

half the pion mass. In the strong coupling limit 

it has been found 6 that this behavior can be 

improved by considering the full unquenched 

problem, even though one still does not find 
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baryons but a phase full of fermions. Attempts 

are being made. as reported in this meeting by 

Barbour and collaborators 7 to try to include the 

complex determinant at .intermediate couplings 

which is very hard due to phase fluctuations. 
On the other extreme of very weak coupling. 

the theory approaches the free fermi gas limit 

in which the determinant cancels trivially for 

any expectation value. For this case we will see 

that the proper continuum limit is reached for 

several thermodynamic quantities, but the rate 

of convergence as we take finer lattices is slow. 

In fact. for an 8 4 lattice the results are still off by 

100 X from the continuum due to big a2 corrections 

and the spectrum of states can be quite distorted 

on these coarse lattices. In the interacting case 

this implies that as we move from the strong 

coupling regime to the weak scaling one !while 
keeping a low temperature and big enough volume) 

the states could shift so as not to allow the state 

that produces the unexpected onset that seems 

controlled by a Goldstone mode. In fact for a 

coupling of 6.0 the results for the number density 

seem already compatible with a mass mN/3 but 

for this coupling still larger lattices are required. 

In the next Section we describe the method to 

obtain the observables on the lattice. in Sec. 3 we 
discuss the lattice artifacts for the free fermi gas 

and in Sec.4 we show results for interacting case. 

2. LATTICE METHODS 

Let me describe the procedure that was used 

to calculate on the lattice the expectation value 
for several operators. like for the correlation in 
Eq. (I), 

c!rl = liz J Du Dx Dx J0 !rl J
0
!oJ .-s<~.~~ (3J 

where the action S for the period p is 

S = 6fg2 ) I I - l/3 Re Tr uuuu J + SF !4J 
P'laq. 

with the Kogut-Susskind fermionic action, 

(5) 

For ~ = o this is the usual action. Naively one 

would have considered just the linear term in ~ 

as in the continuum. This can be shown•-• to give 

erroneous results for the energy density e and 

the number density <J> for the free fermi gas. 

The exponentiated form gives the right continuum 

limit in the free case. behaves properly in the 

hamiltonian formalism and can be interpreted as 

an imaginary gauge field A 0 . Unfortunately. as 

we will see. It reaches the continuum very slowly 

and it distorts the energy states at finite ~ for 
coarse lattices by modifying the kinetic energy 

by the factor cosh(~a). 
The conserved currentdue to U(l) invariance 

on the lattice gives the baryon density 
(6) 

J, !xl= 1/2 r.(xJ( e" x xux.< x x••- e-" x x•• u: .• x) 

whose expectation value can also be obtained 

as 1/Pv did~ In z. 
The fermionic action S F is quadratic in the 

x fields and so we can perform the integration 

over fermlons with the known results 

= P)t det p-o 

Both terms in the last expression have to be 

considered for the current correlation. Even in 

the quenched case. In which we neglect fermion 

loops (not proceeding from the currents), we 

could produce meson and baryon states at finite 
temperature and chemical potential as Indicated 
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Fig.l. Vacuum diagrams for the correlation c(x). 
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Fig.2. Meson contribution at finite temperature. 
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Fig.3. Baryons produced easter at finite l1 and T. 

diagrammatically in Figures 2 and 3. Although the 
determinant seems to be important at least in the 
strong coupling limit 6 , I have worked in the 
quenched case partly due to the problems, for 
the moment 7 , with Its inclusion. At finite ~ It 
is complex, so that standard Montecarlo methods 
cannot be applied and the seemingly crucial 
phase 8 fluctuates wildly. On the other hand, it 
is possible in the quenched case. that, as we move 
to weaker couplings to the scaling regime, and 

therefore to finer lattices, we could approach 
the right behavior for several quantities. 

In the quenched case then, we generate 
equilibrium gauge configurations I U 1 l with a 
heat bath method and calculate the expectation 
of operators as 

(8) 

< 0 ) = { 0 [ P [Uil • u, J }averaged over conf. 

Given the number of propagators P IJ needed 
to calculate the current correlation function clrl, 
for each u and ~. the most efficient method of 
Inversion Is the second order I P is nonhermltianl 
pseudo-fermion combined with heat bath, which 
can be explicitly solved and applied to !P + Pl -•. 
By multiplying the Inverted matrix by the original, 
one gets ~ 5% error after 4000 Iterations. 

3. FREE FERMI GAS 
To be able to extract useful information from 

the data for the interacting case, It Is necessary 
to compare It to the behavior of the free fermi 
gas on the lattice where the ~ dependence can 
be easily studied. Furthermore, we will see that 
already In the free case there are large lattice 
artifacts that can distort strongly the expected 
states, as the current operator gets mixed with 
the kinetic energy term In the action. These a 2 

effects are very strong for typical lattices In use 
and could even produce level crossing in the 
interacting theory, leaving unphysical configu
rations as the lowest states. 

We have looked mainly at the thermodynamic 

quantities: fermion density j 0 and fermion energy 
density E, and also at the chiral condensate <xx> 
and the current correlation clrl. One finds In the 

free case that the finite volume effect Is not so 
important (compare the highest pair of curves In 
Figs. 4-5 l, but even In the Infinite volume limit 
there are big shifts due to the coarse lattice in 
the ~direction. In fact, one can parametrize the 
current in terms of physical products comparable 
with the continuum, and finds in an a 2 expansion: 

{ ( j) ~3} = F(~~. m~) + 1/N~ G(~~. m~l + 
(9) 

with N ~ = ~/a. Here the function F gives the 
continuum result and the corrections to it are 
sizable as can be seen In Figs. 4-5. By taking a 
twice finer lattice while keeping the physical 
parameters fixed. we converge substantially to 
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the continuum result. The Eq.(9) is important 

in showing that we can directly compare the 

<J> a 3 with the interacting case, by choosing the 

same N ~and ~a (which does not renormalizel and 

fit for some effective mass rna. 

<J> 

10 

m = 0.3 0 

• 

Fig.4. Fermion density versus 11 for the free fermi 

gas. for severallattJces as compared to the con

tinuum (- ) . The sizes are: 8><(8 2 ~<14) as ( o ). then 

8,.(16 2 K 26) as ( 6 ) which Is equal to eo volume. 

and 16K(34 3 ) with half lattice spacing as < • ) . The 

3x4 species factor Is Included In continuum. For 

larger p. the lattice curves reach saturation as If 

we had only one flavor. Similar shifts for other m. 
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Fig.S. Energy density versus \1 for the free fermi 

gas (with • at zero p. substracted ) . for the same 

cases as In flg.4. The corrections to the continuum 

for the current, 4j, are given approx. by .d•/\1 as 

seen for several masses and temperatures. 

4. RESULTS FOR INTERACTING CASE 

For the moment, I have done simulations for 

an 8x(8 2 •14) lattice, measuring (j), E, <X:x> and 

the correlation c(r) in the spatial 04) direction. 

For coupling of 5.7, I have considered two quark 

masses' m q = .03, for which ' m, - .5, mN - 1.5 

and form q = .1. where m,- .9, mN- 2.1. For 

a weaker coupling of 6.0, which is very close to 

deconflnement, I used m q = .04 so that m, -.5, 

mN-1.1. The results for the various densities are 

presented in Figs. 6-8. I expect to calculate on a 

16 • finer lattice and at lower Tin the near future. 
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t 
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Fig.6. Current( o). energy( •) and chiral( A) density 

versus 11 for a coupling of 5.7. Compared to the 

free case, they behave as If controlled by m7t/2. 
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Fig.7. Same as In flg.6. but for higher quark mass. 

For P. < .4. It Is Inconsistent with m 7t /2 and more 

likely corresponds to a much higher mass. 
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Fig.B. Current(o) and chtral( a) density versus '-' 

for a coupling of 6.0. For this finer lattice ( but 

T close to deconflnement). the current behaves as 

If controlled by a mass of .4 -m0 /3 and not m7t" /2. 

It Is Important to check If this result at a finer 

lattice, In Fig.8 (that shows possibly the expected 

onset with mN ), w!ll persist for larger N~ and V. 

Let me present now the results for the baryon 

density correlation, c(r). For ~=0 we expect a 

curve corresponding to vacuum polarization plus 

a small admixture of pion states <finite Tl. As we 

turn on p, we expect a contribution from states 

with net fermion number. If these states resemble 

baryons, there should be a positive Llc(r) over some 

distance where the other two quarks are present. 

lnF!gs.9-!0weshowc (r) and Llc(rl=c-c -<J>' 
"'"'0 0 . 
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Fig. 9. Fermion density correlation versus r. at t.L=O 

and shifts from It as we Increase p.. Even If the 

Individual error bars are of the size of the signal 

for the shifts L\c(r), there Is a consistent positive 

enhancement for short distances. possibly Indica

ting baryonlc state. With growing p. there sets In 

an oscillation which could be a lattice artifact. 
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Fig.lO. Same as in ftg.9 but for weaker coupling. 

In thl.s case there Is less correlatlon,except at the 

origin, perhaps lndlcattng free quarks <here we are 

almost at deconflnement). Osctllations as In flg.9. 

5. CONCLUSIONS 

I have presented a method to extract ferm!onlc 

spatial distributions for the lowest baryon state 

In a thermal ensemble at finite ~· We have seen 

that the known problem of the early onset of the 

current density, could be due to the fact that one 

has been working with coarse lattices in the strong 

coupling regime. In fact, for one finer lattice 

(at 6.0) the expected onset seems compatible. 

I would like to thank for a Lady Davis fellowship 

at the Technion and a DFG contract in Hamburg. 
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