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This review discusses topological aspects of nonabelian gauge theories defined on the lattice. The pertinent 
topological object is the principal bundle. so, following Luscher, it is shown how to reconstruct the bundle from 
the data of the lattice gauge field. This culminates in the algorithm of Phillips and Stone for computing the 
topological charge, or second Chern number, of an SU(N) lattice gauge field. For SU(2) this algorithm is very 
fast. The relation of the topological susceptibility \t to the bare (i.e. Monte Carlo) susceptibility at nonzero lattice 
spacing is clarified. (The details of this discussion have a somewhat different tone than at the conference, but 
the conclusions are the same.) Other methods for computing the topological charge of a lattice gauge field are 
summarized, and the strengths and weaknesses are compared to the fiber bundle method. The numerical results 
of moderate to high statistics Monte Carlo determinations of \t are presented with remarks on scaling behavior. 
The review concludes with some comments on the progress, some hints of what can be done next, and some 
vague hope of a hidden utility for the topology of lattice gauge fields. 

1. INTRODUCTION 

Lattice gauge theory has two classic motivations. 

One is the desire to perform calculations that transcend 

perturbation theory and the semiclassical approxima­

tion; one would like to obtain a nonperturbative handle 

on hadron masses, phase structure, and, more gener­

ally, the dynamics1 The other motivation is the rigor­

ous definition of the vacuum functional of generic quan­

tum field theories, which is the continuum limit of the 

lattice theory2 Under ideal circumstances, the two per­

spectives will complement eac.h other. (Semi-) rigorous 

developments pose precise problems which can then be 

attacked by brute force methods such as strong cou­

pling expansions or numerical simulations. Conversely. 

the occasionally peculiar results of numerical simula­

tions can stimulate the reformulation of the physical 

problem. If we are lucky, the exchange leads to a better 

understanding of the physics. 

The topological structure of SU(N) gauge fields 

ts quantitatively summarized by the topological sus­

ceptibility \t. and the methods devised to compute it 

nonperturbatively in lattice gauge theory provide an ex­

ample of the symbiosis between simulation and mathe­

matics. The initial attempts3.4 to compute \t faced 

well recognized technical and conceptual roadblocks, 

1. 

which together prevented a satisfactory understanding 

of the problem. This spurred the resolution of the con­

ceptual part of the problem,5 which unfortunately in­

creased the technical barriers. More recent work has 

refined the conceptual framework, 6·7·8·9 so that mean­

ingful simulations are now technically feasible; indeed 

the calculations for the gauge group SU(2) are now 

very precise.10·11 Hence, the time is right not only to 

review the formal developments, but also to examine 

the numerical work in some detail. 

This Introduction ends with a lightning review of 

the topology of continuum gauge fields. Section 2 

summarizes the physics motivations for studying gauge 

field topology, visiting the famous Atiyah-Singer index 

theorem 12 and the infamous UA(l) problem13 Tore­

ally understand topology one must confront the the­

ory of fiber bundles, which is done rather informally in 

sec. 3. Section 3 also illustrates how to reco-nstruct 

continuum topology from a lattice field using a sim­

ple toy bundle. Three available reconstructions5,7,8,14 

of the bundle of interest, the coordinate bundle of the 

gauge field, are discussed in sec. 4. Section 5 explains 

in detail how one extracts the susceptibility from the 

bare numerical calculation. Section 6 covers alternative 

methods for determ'ining the topological charge of lat-



tice gauge fields and discusses their strengths and weak­

nesses. Numerical results for the gauge groups SU(2) 

(refs. 10, 11, 15, and 16) and SU(3) (refs. 17, 18, and 

19) appear in sec. 7. Finally, sec. 8 concludes the review 

with miscellaneous comments and a crazy suggestion. 

1.1. Topology of continuum gauge fields 

Although it is inappropriate to provide a detailed re­

view the topology of continuum gauge fields in the pro­

ceedings Of a conference on 1attice gauge theory, some 

disct:Jssion is needed to orient the rest of the review. 

Formally the quantum theory of nonabelian gauge 

fields is defined by the vacuum generating functional 

· based on the classical action 

(1.2) 

of the antihermitean gauge potential Aw Finite action 

(and hence nonz.ero Boltzmann factor) gauge fields are 

asymptotically pure gauge: 

The topology of g- a map from the sphere at oo, S!,. 
into SU(N) - provides a classification of the gauge 

fields by the topological charge 

E II3(SU(N)) = ?l., (1.4) 

where b" = g- 1 EJ"g. For example, the map 

g1 = (x4 +iii·x)(r, ( 1.5) 

where r 2 =xi+ X'. has Q = 1, and g~ has Q = n. 

Another, especially cherished, expression for the 

topological charge is 

( 1.6) 

2. 

Section 3 contains a proof that eq. (1.4) and eq. (1.6), 

appropriately interpreted, are identical. From eq. (1.2). 

eq. (1.6). and the inequality 

one sees that the action in a given Q-sector is bounded 

by 
871'' s::: IQI-,. 
9 

(1.8) 

The inequality is saturated by solutions of the ( Eu­

clidean) equations of motion, called in•tantons, which 

are (anti-) selfdual, 20 i.e. F"" = ±•F"v· For example, 

the one instanton solution has a gauge potential 

where the size p of the in stanton is an arbitrary scale. 

Now consider the classical vacuum state IO) char­

acterized by A,1 :::::: 0 - up to gauge transformations. 

Gauss' law requires that IO) be invariant under infinites­

imal gauge transformations, but it says nothing about 

homotopically nontrivial transformations such as g1 . 

Hence, there is an infinite sequence of classical vacua 

In)= T,"IO), (1.10) 

where T1 is the unitary operator implementing the gauge 

transformation g1 I and n is any integer. Due to tun­

nelling caused by the instantons, the quantum vacuum 

is described by a superposition of the In), and since T1 

commutes with the Hamiltonian, one finds21 

IO) = 'L e""ln). (1.11) 

The vacuum parameter 0 is a new and unexpected fea­

ture of QCD.Ifit is nonzero, the path integral, eq. (1.1). 

is modified by the substitution S-> S + iOQ. and then 

C Pis violated. In our world 0 is exceedingly tiny, and it 

is quite possible that it is tuned to zero by a non-QCD 

mechanism. 22 

The topological structure sketched above is in 

marked contrast to QED. where the gauge function is 

• ''' " 1' ""'" 1'111•1•0•"'''"'' ' ' '"'' "'' 11' "II'"' I II I ' ' 01' I I 1°11'1" "I I 11'1'11' 11'101~1. 11111111<1• II' •1!00 II' 1'"'~''""''1 I' 1•1 I" 'I'll II' I ''I' II~ I'"' • I' ""'Oil 'If I " 1'1' II '011 I" •1 '110011 ·• IIIII "'Ill'" I•~ "' • ,:, • "' '"" I" 1 " '"" " " II 0 "I' I''' '''' "" "" 0 01 "1'0 I 1'01 '"II' I ' I 'I 10' 0 '" 0 •II II' I I 111'1' I 1 11 ,., 1 111'1 1',1 11 1 • '1111 "" ~~ 



Table 1: Squared masses of the light pseudoscalar 

and vector Inesons in units of the proton tnass. 

o-+ meson m' 1-- meson rn 2 

7r 0.02 p 0.67 

J( 0.28 ]{* 0.90 

T) 0.34 w 0.70 

TJ' 1.04 ¢ 1.18 

always homotopic to the identity. This observation has 

inspired the idea that the topological structure is "re­

sponsible" for the contrasting properties of abelian and 

· nonabelian gauge theories. Neglecting subtleties, m­

: stantons augment the usual perturbative series: 

(0) = C0 (1 + a~21g 2 + · · ·) 
+ c,,-••'fg'(l + a\'1g 2 + .. ·) 
+ C,e-'(8•'/g'l(l + a~21 g 2 + · · ·) + · · ·, 

(1.12) 

but because of the exp( -S) = exp( -81r
2 

/ g 2
) behav­

ior, the instantons' contribution is usually small when 

semiclassical and perturbative techniques are applica­

ble. If topologically nontrivial configurations play an 

important role, then only at scales where the effective 

coupling is large, and then one has a truly nonperturba­

tive problem. This in turn implies that we are obliged to 

formulate and understand the topology of gauge fields 

using the lattice as the regulator. 

2. PHYSICAL MOTIVATION 

Before discussing the formulation of the topology 

of lattice gauge fields and its implementation in nu­

merical simulations, it is useful to recall the physical 

motivation. Here I will summarize the UA(1) problem 

and the Atiyah-Singer index theorem, because they in­

dicate the role that topology can play in understanding 

the hadron masses, and there is very little that is more 

physical than masses. Table 1 contains the masses of 

the pseudoscalar and vector meson nonets, in units of 

the proton mass. 
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Figure 1: Diagranunatic representation of the flavor 

singlet tneson propagator in terms of quark propqga­

tors. (Gluon contributions are implicitly included.) 

2.1. The UA(1) problem 

The pattern in the vector sector IS easy to un­

derstand using the quark model with a strange qu2rk 

rather heavier than the up and down quarks. The small 

masses of 1r and K, on the other hand, can be un­

derstood through the Goldstone phenomenon. How­

ever, the magnitude of the 1J and 'rJ' masses is less clear. 

Ultimately, the 7r:-TJ-TJ' splitting is due to the extra di­

agram depicted in fig. 1, so the real mystery23 is that 

rn~ - rn.; ~·' m~ - n1!. The most precise formula­

tion of the problem is Weinberg's bound, 13 based on 

U(NJ) X U(NJ) current algebra, with Nf = 3. To 

leading order in m;jmj< the ! 3 = 0 pseudoscalar {1r0
, 

T), 17') mass matrix has eigenvalues m;, 3m!/(1 + 2z 2 ), 

and 4m}(1 + 2z 2 )/Gz 2
, where z = J,,•/f,. The first 

mass obviously corresponds to the pion, but it is im­

possible to reconcile the T) and 1)
1 masses with the other 

two expressions. In particular, there is no particle with 

m 2 < 3n1! as implied by the second eigenvalue. 

The motivation for U(N1 ) x U(N1 ) is QCD, whose 

classical Lagrangian is invariant under that chiral sym­

metry group in th.e massless limit. Of course, the clas­

sical Lagrangian is not the. full story, and to define the 



quantum theory one mu~t regulate the vacuum func­

tional. The regu·lator inevitably breaks the U A ( 1) com­

ponent of the chiral symmetry. Specifically, the U A ( 1) 

Noethi" current 

Nf 

J~ = I: >lJn~,,">j., (2.1) 
f~l 

is broken by the Adler-Beii-Jackiw anomaly: 24 

(2.2) 

If tr{ F~" •p""} were "zero," the anomaly explanation of 

the UA(l) problem would be inadequate. However, the 

integral of the Chern-Pontryagin density q 

j d4 x q = Q E 7l.. (2.3) 

is exactly the topological charge as in eq. (1.6 ). The 

anomaly hence provides an e.:plidt breakdown <>f the 

UA(l) symmetry, so that SU(N1) x SU(N1) is the 

correct current algebra, and the bound m2 < 3m! no 

lc>nger applies. 

The topologic~l resolution of the UA(1) problem is 

made quanti~atiwe by the Witten- Vene.ziano formula, 

which relates.the "top()logical susceptibility" in a space­

time volume V 

(Q') 
X• = j d4x (q(x)q(O)) = V (2.4) 

to the pseudoscalar masses. In the large N, limit one 

can derive25 

(2.5) 

. !' 
= -•-(m~. + m;,- 2m~)= (180MeV)4

• 
2N1 

The second equality in eq. (2.5) is a refinement in two 

regards. First·ly, the experimentally unknown decay con­

stant f"· has been replaced with the pion decay constant 

j. (which is consistent in the large N, expansion), a~d 

secondly the effects of small nonzero quark masses has 

been taken into account. The quenched approximation 

arises because the effects of quark loops are suppressed 

at large N,. Indeed, in the same scenario one finds 

! 2 2 
full QeD 1r rn'lf 

Xr. = ?N , 
- f 

(2.G) 

which is consistent with the observation that observ­

ables must be independent of 8 in the chirallimit26,21 

The Witten-Veneziano formula has become a Holy 

Grail to those involved in numerical simulation. The 

interesting susceptibility is in the pure glue theory, for 

which the Monte. Ca.rlo probl·em is drastically simpler 
' I' I ', ! ·• 1 ' 

than for full QCD. (To compare the two, see elsewhere 
: I , !' , ', 

in the Pro~eedings.) Hp"'1ev~r, it is e~.~y to get too 

carried a~ay with~~~ value ~f 180 MeV. Remember, 

it is basefl !'n the l~rge N,, equivalenc~ of the decay 
' , , I 

constants and genuine Nc = 3 masses, and it will be 

compared either to a very precise susceptibility compu­

tation for Nc: = 2, or to a low ·statistics computation 

for N, = 3. 180 MeV is really only a guide. 

2.2. At.iyah-Singer index theorem 

At the se:mi<ilassieal level the ,interplay between the 

topology oft he gauge fi1eld and• the breakdown of chi­

ral symmetry in made explicit i>y. the Atiyah-Siinger in­

dex theor•etn·. ln. th~ .continuum thle Dirac operator 

satisfies12 

ind(-l!l) = Q, ~ =#'+ $. (2.7) 

where the Atiyah-Sir\ger index 

ind(~) = lim Tr (J's m . ) = n+ - n_ 
m~o ~ +m (2.8) 

is the dif!ier~nce bet~,een t~e number. of + and - ( n+ 

and n_) ohiralit~ zer<:> modes of Q. ·Here Tr denotes the 

"trace" over ~spa~etime ilildi.c:es -"s weU as interljtal-9nes. 

For example, in an ,iR~tar:aten configuration ,one 

finds26 tha;l th~ ,quar~ fiel1d 7/J has a z
1
ero n:>ode (JJN• = 

0), but the conjugat;e field 1f. does not({> JP. t 0). n,en 

the simple ~wles of Ber~zin integ;ration shc>W that the 

chiral condensate ,({>4•) # 0. This under~oqres the way 

in which topologically ,n()ijtrivial ,wnfig~rat,ions, 'through 

the anomaly, explicitly break the U A ( 1) symmetry and 

' ' " ''' """" ''' ''""1''"1 ' '" ''' ,. . .,. '" 1'" 'I'> ' ' •· '"'1 "" '" ' " ' 'I ' ' '" 1" "'1' '"' 1' r '' r "11.,..11• !1'1""'"" 1 I 1 ''>''II" 1 11 I'll 'I II II" "I'"' II ' 'I 'I" " ' 'I II II''' I' I ' II 'I 11" Ill 'II' I II' I 1'''11' I 10' '" '"Ill' II" 111111 'II •II I" I I"' 'I "' 'i'" 11 'I 1 ' I' '0 I 'tl 'I' ''I 'I" 11 111' ' 'r•n II II II 1111!'11 I '! '"' 'll'l'l"'rl 1 I f II ~ I'II"O!~'I' "til" •1ri·1~ '1' 11 1 r' I 



generate a mass for the r/. Furthermore, if one studies 

quark-instanton interactions at small mass in the semi­

classical approximation, 27 one finds that as rn4 -----) 0 

the theory enters the phase with spontaneously broken 

chiral symmetry. Thus, topology can account for the 

small rr and J( masses in Table 1, too. 

It is worth emphasizing that the index theorem 1s 

a relation between the continuum Dirac operator and 

a continuum (i.e. sufficiently smooth) gauge field. To 

the best of my knowledge there is no known lattice 

approximant to the Dirac operator with the topological 

properties necessary to fulfill the index theorem. Conse­

quently, much of what one assumes about the dynam­

ics of QCD will appear in simulations with dynamical 

quarks only at exceedingly small lattice spacing. Only 

then will det(p + m) adequately reproduce the impli­

cations of the index theorem. 

Recently Smit and Vink have rederived the Willen­

Veneziano formula in a very straightforward way using 

Ward-Takahashi identities. 28 Their derivation uses the 

lattice regulator, so it is also valid on a formal level 

in the continuum. However, the direct approach yields 

eq. (2.5) but with the susceptibility of the Atiyah-Singer 

index on the left-hand-side. In the continuum the two 

susceptibilities are equal, but with either Wilson or stag­

gered fermions they are not. Moreover, there are a va­

riety of details which make a numerical computation 

of ind( p) problematic. This is sketched in sec. 6, 

below, and elaborated in Vink's contribution to this 

conference. 29 

3. FIBER BUNDLES 

To incorporate topological considerations into lat­

tice gauge theory, one must keep the appropriate math­

ematical framework in mind, and that is the framework 

of fiber bundles. Most physicists know what a fiber bun­

dle is, even if the mathematicians' language sounds for­

eign. The most expeditous way of establishing a com­

mon ground is to provide a dictionary (Table 2) and 

a few examples. Physicists who wish a more thorough 

space 

(a J 

(b) 

Figure 2: Two fiber bundles over 5 1
. The simple 

strip (a) is trivial, whereas the Mobius strip (b) is 

not. 
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Table 2: Relation between matherna.ticians' language of fiber bundles and physicists' language of field theory. 

mathematicians' language physicists' language 

base space M 

open cover, {ca} 

fiber F 

total space P 

projection 1r : P ~ M and its inverse 7f"- 1 
: M ~ P 

stuctur.e group G 

transition functions, 'l'af3 

associated fiber bundle: F = V 

principal fiber bundle: F = G 

connection w 

exposition of the concepts should consult the very nice 

article by Daniel and Viallet30 

Over a cell in the open cover the bundle is a prod­

uct of the base space and the fiber: in equations 

7r- 1(ca) = Ca X F. However, for a nontrivial buAdle 

the local product structure cannot be extended globally. 

An instructive example is a simple strip and the Mobius 

strip, depicted in fig. 2. The base space is the circle 

S', the fiber is the unit interval [0, 1], and the struc­

ture gooup is 71. 2 , corresponding to the identity .and a 

flip about the midpoint of the fiber. The simple strip, 

fig. 2a is trivial; in the open cover only one cell .is nec­

essary, or equivalently, all transition functions may be 

taken to be unity. On the other hand, the Mobius strip, 

fig. 2b, has a nontrivial twist; the open cover requires at 

least two cells, and on one of the overlaps the transition 

function cannot be unity. 

' 

spacetime 

a set of cells in spacetime 

set of possible values of ¢( x) 

set of all topologically distinct fields 

associates a fiber to x E M 

gauge group 

gauge transformation from C0 to Cf3 

matter fields in vector space V 

gauge fields with group G 

gauge potential A" 

,........ - --r-. ........ ;" 

'\ 
[\. ~ i'- -..... v ..... --
(a) 

(b) 

For the incorporation of the bundle idea into a lat­

tice field theory, the associated bundles depicted in fig. 3 

are illuminating. Again the structure group is 71. 2 , but 

now the fiber is the oriented real line, or "ray." Fig. 3a 

is trivial and fig. 3b is not. For artistic reasons the fibers 

have been drawn to emanate from the base space S 1 , 

and not all of them have been drawn. But one can 

just as easily interpret fig. 3 as depicting lattice fields. 

The eye naturally interpolates fig. 3b into a nontrivial 

bundle, yet it leaves fig. 3a trivial. Keeping fig. 3 in 

Figure 3: Two associated fiber bundles over S'. (a) 

is trivial, whereas (b) is not. 

""'I 1''"''11111' ''''I"''"'' II II' 1 I' 'I r'"l' '1"11'"11011 1111 I 'I 'I' II'"' 1'"""' ''I ""I' I'''' 1'1 1111'1 "'~11''1 1111'1 I ''llnl' n· 1~111'11'1'! 'l't'''''ll~'ll "'I nlllll' I ,,11'1"1111 I ' I "IIIIIPI'"'II" I I 'I I I IIIII '1'1'1111111 1••or1 ~'11'1111'' II I'll I' I'" '1"" "''' ,.,,, 111 '1"11111'1' 11 "'II' • 11 · , 1 Ill' I I'll~ rll"'l' 'Ill' II , 1 r ''11'111 n ill'' · 1 ~ ' 



mind, let us consider the na1ve topological notion of 

"continuous deformation." By changing the fiber over 

each lattice site individually, one can imagine deform­

ing the nontrivial bundle into the trivial one. If one 

wishes to define a field theory where topological non­

trivial configurations play an important dynamical role, 

then this notion of continuous deformation must be dis­

carded and replaced with a more restrictive notion. A 

sufficient constraint is a bound on an "action density:" 

s = 1- cos(20;,;+ 1 ) < 8, for some appropriately chosen 

b, where 0;,;+ 1 is the angle between neighboring rays. 

Then, if one forbids deformations that produce s ~ 8, 

the topological distinction between figs. 3a and 3b re-

mams. 

The reconstruction of the associated bundle can be 

taken further. Let <p and B denote the angular coor­

dinate of 5 1 and the angular orientation of the rays, 

respectively; let subscripts i,j, ... refer to lattice sites; 

and let c; be the dual cell surrounding lattice site i. 

The {c;} is the open cover. Next introduce the proviso 

that 10; - 0;+ 1 1 > 1r /2 implies a twist, i.e. the transi­

tion function Vi,i+l E 71.. 2 is -1. Then, interpolation 

linear in 'P from sin(Bi) to sin(vi,i·HBi+I). as tp ranges 

from <p; to 'f';+1 , provides a continuum field with the 

right topological properties. Finally, if an ensemble of 

configurations is produced under some dynamics that 

enforce the smoothness constraint, then one can con­

struct a quantum field theory where topology makes 

sense. 

To give a meaning to the topology of lattice gauge 

fields, one must devise a similar, albeit more sophis­

ticated, interpolation. As in the example, the unique 

reconstruction of a principle fiber bundle from the lat­

tice gauge field requires a bound on the action density. 

However, such a restriction is not devastating for non­

abelian gauge theory, because the dynamics are asymp­

totically free, and the fields do indeed become smoother 

in the continuum limit. 

1 

4. BUNDLE RECONSTRUCTION 

In nonabelian gauge theory the practical goal (Xt in 

quenched QCD) and the abstract ideas outlined above 

lead one to reconstruct the principal bundle from the 

data of the lattice gauge field. Reconstructing the co­

ordinate bundle, that is the set of transition functions, 

is entirely satisfactory, because the topological charge 

is the second Chern number of the coordinate bundle. 

Consider the tr{ F"v "F"v} expression for the topo­

logical charge. 

( 4.1) 

An immediate problem is that most lattice approx­

imants to q have no topological significance. For 

example, 4·31·32 

( 4.2) 

has 0( a 2
) corrections multiplying ultraviolet divergent 

operators, which yield nontopological contributions of 

O(a0
). Consequently, Jd4 x qn.uv. !f ?l.. One can devise 

lattice approximants to the Chern-Pontryagin density, 

but they are impossible to guess; to derive them one 

must do some topology. 

Thus, consider the spacetime manifold M and 

write33 

M = lr 4 = Uc · "' 
( 4.3) 

the 4-torus is convenient because of the eventual lattice 

simulations, but all that matters for the derivation is 

&M = 0. The cells c0 consitute the open cover, and on 

the lattice they are, e.g. hypercubes or 4-simplices. In 

each cell pick a smooth gauge 

A(o) _ (& A ) -1 
J.l - 9o J.l + ~· 90 ' 

on C0 • ( 4.4) 

The 9<> are called local sections; a bundle is nontrivial 

if it is impossible to extend the section to all x E M. 

On the overlaps C0~1 = c« n CfJ the gauge potentials are 

related by 

(4.5) 



The transition functions 

( 4.6) 

describe how the gauge field is patched together. For 

consistency the transition functions must satisfy 

(4.7) 

on double overlaps c013, = c0 n c13 ncr Equation (4.7) 

is called the cocycle condition. 

Mathematicians often consider arbitrary overlaps. 

For our purposes, it is useful to arrange the cells so 

that they are "just touching," i.e. so that dimcoi3 = 3 

and din1 cat3"l' = 2, etc. 

Topology concerns overall characteristics of the 

fields, not details like the value ofF""(") in volts per 

meter. Hence, if Q warrants the name "topological 

charge," one ought to seek an expression for Q in terms 

of the tla,/3· To achieve this write 

( 4.8) 

The Chern-Pontryagin density qio) is a total derivative: 

q(a) = [) fl(o) where 
" " ' 

1 ? 
fllol = -~e tr{AI"I(D Alai+~ Ai"IAI"l)} 

p 81r2 1-WP/7 ~> P a 3 · p a 

( 4.9) 

is the Chern-Simons form. By construction n~a) is once 

differentiable, so one can integrate the expression for 

the charge and obtain 

Q = "' r d':r nlal = 2_ "'1 d',. (fl(o) - (11/31) 
£.- Jfi p ~~ ?I £.- 1-' I' p 

u 8c., ~· c.,(3 c., 13 

(4.10) 

Using eq (4 5) on l>fl(a,/ll = fllal- fll/31 allows one to 
• • I-' I-' !l 

eliminate the gauge potentials. The result, first derived 

independently by Luscher5 and by van Baa1,34 is 

where a~a,/3) = v130 D" Vaf3· Equation ( 4.11) verifies the 

claim that the topological charge is an invariant of the 

coordinate bundle. 

For numerical work there is a even nicer formula, 

obtained by eliminating the l'o/3 in terms of the g0 : 

0 

In this expression each term is an integer: 

Q - _1_1 d' . ! {.b(a)b(o)b(a)} 
a - - 2 :lj..EJ-lvpq t v p a ' 

2471" fJca 
( 4.12) 

where b~") = g;; 1 a"g". Mathematicians call the sum of 

the Q0 the second Chern number. Equation (4.12) is 

in fact eq. (1.4). The finite action condition imposes 

a boundary condition, so that spacetime acquires the 

topology of a sphere: M = 5 4 . The two cells are the 

interior and exterior of a ball surrounding the point at 

oo: in the interior of the ball the section is g1 , eq. (1.5), 

and in the exterior the section is trivial. 

4.1. Explicit construction of the l'o/3 

The task ahead is to define transition functions or 

local sections using the lattice gauge field as input. One 

wants the interpolations to be as smooth as possible 

on scales smaller than the lattice spacing. The transi­

tion functions must obey the cocycle condition, and the 

associated expression for the Chern-Pontryagin density 

must have the right classical continuum limit. 

There are three bundle reconstruction algorithms 

on the market, by Luscher,5 by Woit.7 and by Phillips 

and Stone8 Each one picks a convenient shape cell, 

and a convenient gauge in each cell. Then the local 

sections or the transition functions are given at certain 

points on the lattice. From those points the transi­

tion functions are reconstructed by interpolating along 

geodesics in the gauge group, first in one dimension, 

then two, .... All fail to give a well-defined charge for 

a set of configurations of measure zero in the path in­

tegral; these configurations, referre·d to as exceptional 

configur·ations, form the boundaries of the topological 
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sectors. They arise when certain group geodesics in the 

interpolation become ill-defined. 

LuscherS takes the hypercubes in a hypercubic lat­

tice as his cells, and fixes to complete axial gauge in 

each cell. The gauge function 9a is then a product 

of !ink matrices on a path back to the "origin" of the 

hypercube. For a given site the gauge function is gen­

erally different for each hypercube to which the site 

belongs, and the product 9a9(;' = ''o;3 yields the transi­

tion functions at each site in the lattice. Using interpo­

lation functions of increasing complexity Luscher then 

gives expressions for the transition functions on links, 

plaquettes, and cubes. Unfortunately ref. 5 does not 

give explicit expressions for the section. However, af­

ter a long bout of head-scratching, pencil-chewing, and 

desk-pounding, Wiese succeeded in writing down a sec­

tion that returns LUscher's transition funcitions.l4,19 

Soon after Luscher's work Woit6 recognized that 

viable computations would only be feasible using 

eq. (4.12), and he provided an algorithm that goes 

straight for the local sections35 Woit 's (modified and 

improved) algorithm 7 takes timeslices to be the cells, 

and fixes to Ag) = 0, V ._i(r) = 0 gauge. (N.B. Ao = 0 

is not possible globally on a torus.) At a given lat­

tice site the section is trivial in the preceding timeslice, 

and given by the timelike link in the subsequent times­

lice. The section is then defined throughout the rest 

of the timeslice by interpolating the timelike links along 

geodesics. For this purpose A~') = 0 gauge is sufficient; 

the point of the Coulomb gauge fixing, is that the inter­

polation becomes smoother, and smoothness simplifies 

the numerical evaluation of the Q,. 

The most appealing algorithm is that of Phillips 

and Stone8 For SU(2) it has the special virtue that it 

is fast. For geometric reasons Phillips and Stone work 

on a simplicial lattice, and their cells are intersections 

of the 4-simplices and the dual cells. In each dual cell 

c0 , surrounding the lattice site J:,(n), they fix to radial 

gauge, A~,"l(x-x<ol), = 0. This gauge condition means 

that there is trivial parallel transport along radial paths 

'l 

within a dual cell. Consequently, to preserve the (gauge 

covariant) parallel transport ·u.atJ along the link from :r(o) 

to ::c(t3) one must have 

(4.13) 

where x<a,;3) is the midpoint of the link from xH to 

,(;3). With the transition functions fixed at the :r(o,;J), 

we must now consider the interpolation. Phillips and 

Stone do so within each c~ ::::::: u n c0 , where cr is a 

simplex with x((~) as a vertex. Given an ordering of the 

vertices in cr, the interpolation proceeds as follows: 

o if (3 = o±1 (in the ordering of <T), then v,1, remains 

constant on c~13 • 

o if (3 = a ± 2, then let 1' be the intervening ver­

tex, and note that there are two constraints: the 

value Ucrf3 at the midpoint and the cocycle con­

dition on c~"Yf3· In the direction ,:Y towards l' 

the transition function varies geodesically 1.1<,f.; 

'llaf3( ttpa U 0 -y'lt-yf3 y:.r, where Z-y is a coordinatE: !a­

belling the line segment from the midpoint x(o,;J) 

to the medial point of T C <T, the triangle defined 

by the vertices cq(J. In the directions orthogonal 

to .:Y the transition function stays constant. 

• if f3 = a ± n, then the transition function is in­

terpolated in the n - 1 directions labelled by the 

n -- 1 intervening vertices, and it remains constaRt 

in the others. For explicit formulae, consult ref. F. 

The strategy is inductive: the interpolation across ann­

dimensional simplex builds on the interpolation across 

the ( n - 1 )-dimensional subsimplices. 

This construction may seem rather baroque, but the 

explanation of the algorithm is more confusing than the 

geometry of the transition functions36 As with good 

baroque art, careful scrutiny is needed to appreciate the 

beauty of the bundle. For a simplicial lattice Phillips' 

and Stone's transition functions are "as close as pos­

sible" to the lattice gauge field, i.e. the geodesic dis­

tance d(vn/h llaJ3) is minimal. Indeed, from the above 



description the reader can see that often V 0 f3 = ·uo:/3· 

The as-close-as-possible principle a:llows one to prove 

various theorems about the uniqueness of the recon­

structed bundle. All of the theorems have hypotheses 

of the form 

d(1,up) ~ 6, ( 4.14) 

where and up represents parallel transport around an 

arbitrary loop in a simplex. In particular, for 6 = -rr /2 

the bundle is independent of the ordering, and for 6 = 

-rr /8 the bundle is unique, in the sense that all transition 

functions satisfyihg eq. (4.14) with b = -rr/8 yield the 

same topological charge. 

The inductive nature of their scheme enables them 

to obtain a set of local sections corresponding to their 

transition functions by a neat trick. By adding one 

site in a fifth dimension, connected to every site in the 

original lattice by a link with trivial parallel t·ransport, 

one constructs a cone with the 4-dimensional :lattice as 

its base. Then, lo and behold, the transition functions 

of the 5-dimensionallattice, constructed by Phillips' and 

Stone's algorithm, yield a section of the 4-dimensional 

bundle' 

4.2. Computing the Q. 

Except for ref. 37, which used eq. (4.11) at a time 

when only LUscher's transition functions were available, 

all applications of fiber bundle methods for computing 

the topological charge have used eq. (4.12). For SU(2) 

the task is to evaluate the Q., the winding number of 

the local sections g •. This can be done geometrically. 

Pick an arbitrary probe y E SU(2), and let :r; denote 

points on De. such that g.(x;) = y. Then the winding 

number is given by 

"' . Dg.l Q. = Ls•gn Dx . 
' .. ( 4.15) 

The summand is the orientation of the map 9n at Xi. 

The strategy is then to break g. into spherical polyhe­

dra with geodesic edges. Then for arbitrary y one can 

determ.ine the existence and number of xi. and the ori­

entation of 9a at xi using combinatoric formulae. In 
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contrast the int•egrals in eq. (4.11) must be integrated 

numerically to sufficent precision to yield an integer af­

ter the summation over all cells37 

Using Woit's algorithm 7 or the section14 for 

Luscher's bundle always involves explicit interpolation. 

Typically, the region De. is chopped in to tiny tetrahe­

dra, each small enough so that g.( De.) can be approxi­

mated by a spherical tetrahedron. Then the location of 

the probe can be determined using. 4 x 4 determinants. 

The beauty of the Phillips and Stone algorithm is that 

the structure of the section is such that .it defines large 

exact spherical polyhedra. It is then possible to evaluate 

the topological charge in SU(2) computing only 4 x 4 

determinants and the roots of a quadratic equation. 

Unfortunately, SU(3) is not so simple, even for 

Phillips and Stone, because the SU(3) manifold is enor­

mously more complicated geometrically. A promising 

idea is the reduction of the structure group from SU\3) 

to SU(2), 38·9 which can also be extended to SU(N). 14 

However, this can not be applied straightforwardly, be­

cause a reduced SU(3) geodesic interpolation is not a 

SU(2) geodesic interpolation. Instead, one must again 

chop up De. into tiny SU(3) tetrahedra, for which 

g.( De.) are approximated by the SU(2) geodesic tetra­

hedron whose corners are given by reduction. The need 

in SU(3) for explicit interpolation is still the barrier pre­

venting high statistics calculations. 

4.3. Suinn1ary 

In summary, a bundle reconstruction algorithm 

splits the set of all lattice gauge fields into topolog­

ical classes by defining transition functions based on 

the data of the lattice gauge field. In general this m­

volves raising closed loops to fractio11al powers, which 

is not always well-defined, leading to exceptional con­

figurations. These exceptional configurations form the 

boundary of the topological sectors: in order to contin­

uously deform a Q = 1 configuration into a Q = 0, one 

must pass through an exceptional configuration. For a 

given configuration the charge may also depend on cer­

tain technical details of the algorithm (choice of time 
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axis, or ordering of the vertices). However, sufficiently 

smooth configurations have a unique charge;8 the way 

in which sufficient smoothness is attained in asymptot­

ically free quantum field theories is the subject of the 

next section. 

5. CALCULATING Xt 

It is now time to turn to quantum field theory. This 

means the properties of the ensemble are more crucial 

than the individual configurations. It also means that 

one must worry about how the cutoffs effect the extrac­

tion of physically relevant information from a calcula­

tion. In a numerical simulation, there are two cutoffs: 

the volume and the lattice spacing. The finite volume 

effects are presumably straightforward, and discussion 

of them is deferred to sec. 7. (They are also not much 

discussed in the literature.) The nonzero lattice spacing 

effects are subtle, and their removal is the topic of this 

section. 

In order to firmly anchor the discussion it is useful 

to introduce the &-dependent partition function 

Z(O) = 2:C;'qPq. (5.1) 
Q 

The probability P Q for a configuration to have charge 

Q is given (formally) by 

p = f[dA")q exp{ -S[A"]} 
Q j[dA"] exp{ -S[A"]} 

(5.2) 

where the path integration in the numerator is restricted 

to the sector with topological charge Q. The P Q are di­

rectly determined in the numerical simulation, and fur­

thermore they are observable quantities, because knowl­

edge of them is equivalent to knowledge of the con­

nected moments of Q, 

(5.3) 

For spacetime volume V, (Q")o/V is then-point func­

tion of the Chern- Pontryagin density q( 1·) at zero four­

momentum, and is hence related to the propagators 

and/or couplings of states in the ]P = o- channel. 

i1 

Even though the statement is trivial, it is impor­

tant to stress that accurate and precise determination 

.of the Pq. eventually in the limits of infinite volume and 

of vanishing lattice spacing, is the fundamental objec­

tive. Recall that the charge assigned to a given config­

uration can depend on certain technical details in the 

algorithms. For instance, .in the Phillips and Stone al­

gorithm the charge can depend on the ordering of the 

vertices. This effect will not alter the distribution in 

any substantial way. Given a sufficiently large ensem­

ble, configurations with all possible orientations with 

respect to the ordering will appear, so that ensemble 

averages, such as the P Q, no longer have any vertex or­

der dependence. It can happen that different algorithms 

yield slightly different bare distributions at finite ultra­

violet cutoff, but all bare quantities have such violations 

of universality when the cutoff is finite. 

5.1. Cutoff dependence I: usual case 

For a typical matrix element the bare expression 

(0) 0 is related to the renormalized (0) by 

(0) 0 = Zo~<o(O) + Co(aA)P' ]ln(aA)]"' + · · ·, (5.4) 

where a. is the inverse ultraviolet cutoff (e.g. lattice 

spacing), and A is the renormaltzation group invariant 

mass scale. The renormalization constant Z0 is respon­

sible for the anomalous dimension of the operator ('). 

Usually Z0 ol 1, and then ~<o can be absorbed into Z0 . 

(One might find different "'"' in different regularization­

renormalization schemes, but then scale changes com­

pensate the absorption into Zo- cf. ref. 39.) Noether 

currents "]" of symmetries of the theery are physi­

cal observables, so they have no anomalous dimension: 

Z1 = 1. Especially in lattice field theory, one is occa­

sionally driven to consider an approximant to a Noether 

current that is no longer an exact Noether current. For 

example, the Noether current of global vector gauge 

symmetries on the lattice is ({>,,,U,o"/• + h.c.)/2- in 

a schematic notation- not the popular f.I"V'· Using 

the latter one encounters KJ f:- 1, and one must devise 

a technique of computing it, preferably nonperturba-



tive, although weak coupling perturbation theory can 

give a reliable guide to the structure. Finally, the Co 

term represents generic nonu:niversal terms. If p1 > 0 

one usually neglects them, because in the continuum 

limit aA «:: 1; otherwise a sensit·i.ve s~btraction must 

be made. All of this is well known to those computing 

matrix elements relevant to QCD scattering39',40,4l or 

to weak decays.42.43 

5.2. Cutoff dependence II: (Qn), 

Now let us focus on the topological susceptibility 

:\t = (Q 2 ),1V. which is more complicated because ev­

erything is notwerturbative. The arguments hold for 

the other moments also. 

In the continuum Xt has no anomalous dimen­

sion, and since no one would consider a lattice Chern­

Pontryagin d~nsity q with the incorrect naive continuum 

limit, we can set Zx = 1. However, only certain choices 

of Q will have "'x = 1. The formal proof that Noether 

currents have KJ = 1 requires the equations of motion. 

The analagous step for the susceptibilty requires 

(5.5) 

The topological charge based on a fiber bundle shares 

this property. If a, denotes differentiation with respect 

to iin'k mat fix u,, then a,q = 0, because it is piecewise 

const~nt over {U,}. 

Other approaches to the topological susceptibility 

do not respect eq. (5.5), however, and therefore face 

the difficult ta~k of determining ~<, nonperturbatively. 

For the second Chern number of a reconstructed 

fiJjer bundle, eq. (5.5) implies 

x? = Xt + C(aA)P' lln(aA)I"' + .. ·, (5.6) 

where x? is the bare susceptibility that emerges from the 

simulation, and Xt is the physical susceptibility which we 

wish to extract. 

The configurations responsible for C cf 0 in 

eq. ( 5.6) are certain structures of size "' 0( a) called 

dislocations.44-45 A dislocation has three traits which 

imply that the fluctuations about them contribute to 

'I.,.,,. ... , ''I''" 1' 'IT'' I 1''1"11'11'1 .,, "I ''I''' I''' I''''"'"''""' II l'l~t! 111'''1 I'll Ill' I I 1''1111'"11!'1111111'1!'1 1111' ''1'1'1 ' I' 
'"''"''""''''' 

12.. 

x?. A dislocation is 1) a quasistable (i.e. a,s = 0) con­

figuration with 2) action less than a instanton, and 3) 

its neighborhood contains configurations with Q cf 0. 

Dislocations are qualitatively distinct from lattice in­

stantons. The latter are more stable: both instantons 

and dislocations are saddle points, for generic lattice 

actions, but there is a narrower channel out of the in­

stanton saddle point. Lattice instantons have action 

very close to the continuum value 47r2 fJ IN; and they 

can have any size from a to V 114 • To suppress dis­

locations one can alter the choice of Q, so that the 

boundary of the Q cf 0 sector changes, or the choice of 

S, so that the action of the dislocation increases above 

47r2 fJ IN. The effect of this strategy is to reduce C 
andlor increase p1 in eq. (5.6). 

One estimates the exponents p; in the following way. 

In the continuum limit the topological susceptibility in 

lattice units scales according to the asymptotic formula 

x, oc [~(JM~; exp (-_!!__)]', 
a 4NfJ1 

( 5.7) 

where 4 is the dimension of spacetime, fJ = 2N I g2
, 

and fJ1.2 are the first two coefficients of the perturbative 

Callan-Symanzik (J-function: 

llN 17N2 

fJ, = 487r2 , fJ, = 3847r'. ( 5'8) 

(Recall that the anomalous dimension vanishes.) The 

fluctuations about the dislocation provide a contribu­

tion to the bare susceptibility that scales as 

v<li>looatiou ()( _l_fJP> (-5- . fJ) 
At exp nun 1 

a' 
( 5.9) 

according to a semiclassical expansion45 about the dis­

location with minimum action Smin = f3Snun; P3 i 0 ac­

counts for entropy effects. The semiclassical expansion 

assumes a dilute gas of dislocations, and it should be re­

liable asymptotically. By folding eq. (5.7) and eq. (5.9) 

together, one obtains 

(5.10) 

and 

(5.11) 
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Equations (5.10) and (5.11) assume that f3 is large 

enough so that perturbative two-loop scaling and the 

dilute gas of dislocations are valid approximations. In 

practice, this can only be determined a posteriori by 

doing a numerical simulation. 

5.3. cpn-l xnodels in two ditnensions 

The cpn-l models in two dimensions are asymptot­

ically free, and they have a topological structure very 

similar to SU(N) gauge theories in four dimensions. 

The fundamental variables of (pn- 1 models are n x n 

complex projection matrices of rank 1: 

P 2 = P, P = p•, trP = 1. (5.12) 

As a warmup to the real problem, Berg and Luscher46 

introduced a definition for cpn- 1 lattice models with 

the same nice topological properties as those described 

in sec. 3. Of course, many details are drastically sim­

pler. For the simplest model, CP1 
- equivalent to 

the 0(3) nonlinear <r model- the topological suscep­

tibility Xt did not exhibit any reasonable scaling behav­

ior in a region where two other observables, the mag­

netic susceptibility and the correlation length, scaled 

universally46,47 

The CP1 model, however, has the unhappy situa­

tion that p1 < 0, so scaling Xt should not be expected. 

In this case, Luscher45 computes p 3 = -1 and esti­

mates Snuu :::::::: 6.69. For cpn-I models, asymptotic 

scaling reads 

1 2 n 4tr{3 
[ ( ) ]

2 

Xt <X -;f3 1 exp --;;- (5.13) 

whence p1 = 6.69n/4-rr- 2, for n = 2 (i.e. CP 1
) p1 = 

-0.935. In fact, the Monte Carlo data reproduce the 

two-dimensional version of eq. (5.9) with Snun"' 6.69 

very well. 

The CP1 model was doomed to failure because it 

turns out that .5\nstanton ::::::: 47r, which coincides with 

the coefficient of 11 in the scaling Jaw. Inasmuch as a 

lattice instanton always has an action slightly smaller 

than in the continuum (due to finite F and nonzero a. 

13 

effects), it is extraordinarily difficult to control disloca­

tions. By modifying the lattice action one can raise 

Snlin to slightly less than 4-rr, but then the disloca­

tions look just like small instantons. The only proce­

dure that remains is to surgically remove the malignant 

dislocations,48 but extending this to four dimensions is 

rather daunting. Moreover, the CP1 model is a Very 

exceptional case even in the continuum, where semi­

classical instanton amplitudes have terrifying ultraviolet 

properties: in this model topology simply does not seem 

to make a lot of sense beyond classical field theory. 

While refs. 46, 44, and 45 and the problems of the 

CP1 model are well known, the really important work 

of Petcher and Luscher49 is usually overlooked. Any 

discussion of dislocations that omits this paper is in­

complete and probably misleading. Reference 49 stud­

ies cpn-l models for n > 2; unlike the n = 2 case the 

topological susceptibility is well behaved in the semiclas­

sical expansion. For n > 2 one still has Sinstanton = 47r 

and Snlin "' G.G9 (embedded CP1 instanton and dislo­

cation), but now the asymptotic scaling coefficient is 

2 · 47rjn. Already for n = 3 the coincidence of the in­

stanton action and the {3-function coefficient is lifted, 

and for n > 4 even the standard action supresses dislo­

cations. Furthermore, ref. 49 shows that for an action 

improved to suppress small scale fluctuations, one can 

in practice obtain Snlin > 8-rr /3 in the n = 3 model, 

and they observed universal scaling of Xt with the cor­

relation length ( 

5.4. Determination of p1 in SU(N) gauge theory 

To investigate the properties of dislocations in 

SU(N) gauge theory in four dimensions we have turned 

to the mixed fundamental-adjoint action: 

"f3 1 1 2 S = L.., ,(1- -tr(Up)) + f3ad(1- -tr (Up)). 
p 2 4 

(5.14) 

For f3ad < 0 (> 0) this action suppresses (enhances) 

dislocations (compared to the standard Wilson action 

f3ad = 0). Starting from a fixed SU(2) configuration 

with Q = 1, we have searched for quasistable configu­

rations using the diffusion equation on the group mani-
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Figure 4: Cooling history of a smooth Q = 1 con­

figuration. The value of the action S (defined in 

the figure) is plotted versus the time of diffusion. 

For {3.d = +0.1 the dislocation plateau is below the 

{3-function value 10.77. All dislocations have Wilson 

action very close to S = 12; after decay of the disloca­

tion, the topological charge (using the Phillips-Stone 

algorithm) is Q = 0. 

fold in the Euler approximation. Specifically, we replace 

iteratively the configuration {U,} by {U/} obtained by 

U/ = exp( -€8,S)U, ( 5.15) 

with stepsize ' = 0.025. In eq. (5.15) 8, denotes 

group covariant differentiation with respect to the paral­

lel transporter U,. The history of the "cooling" is shown 

in fig. 4 for five choices of couplings ({31,{3.d) such that 

flt + 2f3ad = 1, which ensures that all have the same 

naive continuum limit. On each curve one can perceive 

two plateaus: the first, especially stable one corresponds 

to the in stanton; the second, less stable one is the dislo­

cation. Using the topological charge program we have 

verified that Q = 0 after the collapse of the dislocation. 

From this plot one can read off the value of the action 

for the dislocation, as collected in Table 3. Notice that 

even the Wilson action has Sm.in > 12,-2 /11 = 10.77. 

For f3ad 2: -0.1 the action profile of the dislocation ob­

tained in this way resembles that of a fluxon: the six 

plaquettes surrounding a specific link have a high action 

14 

Table 3: Minimum action of the Q = 1 sector and 

fi uxon action for various parameters in the adjoint 

action. 

fit f3ad Sm.in S'f:luxon 

0.8 +0.1 9.6 9.6 

1.0 0.0 12.7 12.0 

1.2 -0.1 14.7 14.4 

1.4 -0.2 15.9 16.8 

1.8 -0.4 17.2 21.6 

density, whereas the rest of the plaquettes have negligi­

ble action density. The fluxon itself is the extreme case 

where the six plaquettes have tr(U.) = -2; it is excep­

tional, but there are configurations in its neighborhood 

with IQI f' 0. For the SU(N) Wilson action the fluxon 

has Souxon = 24/ N, so using it as a guide for Smiu one 

finds 
11N 

PI= 4( Zrr' - 1), (5.16) 

which yields PI = 0.458 for SU(2) and p 1 = 2.687 for 

SU(3). 

Let us now return to the probability distribution Pq. 

In this language the lesson of the foregoing analysis is 

that the continuum limit of the distribution is unaf­

fected by dislocations if the exponent PI > 0. Dislo­

cations still alter the charge assigned to a given con­

figuration, but any systematic tendency to broaden the 

distribution disappears. 

6. OTHER WAYS TO DEFINE Q 
The formal part of the review is now finished, and 

it is time to confront the numerical work. First, this 

section discusses two other methods for identifying the 

topological charge of a lattice gauge field. The reader 

may wonder why one should bother to invent other 

methods. There are two reasons. One is that the fiber 

bundle methods were initially very slow: explicit inter­

polation consumes enormous amounts of CPU time. For 

SU(2) this issue is entirely resolved with the Phillips 
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and Stone algorithm. The other is that there has been 

some skepticism that fiber bundle methods yield reli­

able values of X•' Either one feared a large value of C 

in eq. ( 5.6 ), so that contemporary simulations were in 

doubt, or one feared p 1 < 0 (as in the CP1 model) so 

that the continuum limit was pathological. According 

to the analysis of the previous section, the second fear 

is unfounded, and in the next section the data indicate 

that C is small. 

The two alternate methods are the "cooling" and 

"fermionic" methods. They both use physics rather 

than mathematics to interface the classical and semi­

classical aspects of topology with the lattice. 

6.1. Cooling 

Cooling was first introduced for the CP1 modet, 44 

in order to reconcile the classical topological structure 

with the unsatisfactory numerical results. The idea is to 

systematically lower the action in a way that uncovers 

quasistable configurations. One can either use the diffu­

sion equation50 as in sec. 5, or a "heat-bath" method, 

which replaces each link U,,~- in SU(2) - by 

(6.1) 

where M ensures that the right-hand-side is in SU(2). 

For the generalization to SU(3) see, e.g., ref. 51. 

This method is a very useful heuristic tool for ·un­

derstanding the structure of the QCD vacuum. For ex­

ample, it has been used to motivate the choice of lattice 

action by insisting that the stability of the lattice instan­

ton be increased,52 or to construct configurations for 

which one can verify the index theoremS3,54 

For large scale computations of the susceptibil­

ity, 15·17 the aim of the cooling method is to eliminate 

the dislocations. In the crudest method, 51 one cools 

equilibrium configurations and monitors the action un­

til it becomes stable, and then the charge is deduced 

from the value of the action, via eq. (1.8). This charge 

is assumed to be the charge of the initial configuration. 

An improvement15 cools for a small number of itera­

tions, so that the charge is less likely to change, and 

1> 

- diffusion time 

s • 
,, F*F ,, 

0 

0 2 4 6 
cooling sweeps 

Figure 5: History of the configuration of ref. 55 dur­

ing cooling. • shows the action and o the latti('e ap­

proximant to the topological charge using the metlwd 

of ref. 51, 15, and 17, in units so that both are 271'2 

for an exact instanton. The solid line shows the fate 

of this configuration using diffusion. 

the charge is determined by a simple approximant to 

the charge density such as in eq. (4.1). In addition to 

being a bit more reliable, this modification needs less 

computer time. 

If cooling eliminates dislocations it obviously elimi­

nates small instantons as well. This leads to a system­

atic error which is very hard to quantify. Even more 

striking, the cooling algorithm defined by eq. (6.1), 

which is used in refs. 51, 15, and 17, can even miss 

large instantons. In fig. 5 we show the evolution of 

the action and those references' lattice approximant to 

J d'x tr{F"".F""} during cooling. The starting con­

figuration is the lattice instanton of ref. 55 with core 

diameter 6a on a 124 lattice. By construction it has 

Q = 1, and in practice both the algorithms of Luscher 

and of Phillips and Stone yield Q = 1. Also, the stag-



gered fermion matrix has a zero mode.SS In summary, 

the configuration has the topological and physical struc­

ture of a semiclassical instanton surrounded by quantum 

fluctuations. Under the cooling algorithm of refs. 51, 

15 and 17 it just dies. Curiously, the diffusion equation 

preserves the instant on (now with core diameter 3a on 

a 64 lattice, which might be les. stable), presumably 

because it is based on the equations of motion, and 

hence it cools more slowly. 

The net effect of these systematic effects is that 

the distribution obtained by the cooling method is too 

narrow, and the (Q"),fV derived from it are severe 

underestimates. 

6.2. "Fermionic:" methods 

In QCD the topological charge rs related to the 

axial current through the anomaly, eq. {2.1). The 

"fermionic" proposal is to use this relationship to con­

struct a definition of the lattice topological charge.S6 

This has several advantages and disadvantages, which 

will simply be listed here. I will not go into details, be­

cause Vink's contribution29 represents the state of the 

art, and that is not yet well enough developed to be 

included in the next section's numerical summary. 

The main advantage is that it connects to the 

Atiyah-Singer index theorem and the physics it implies. 

Configurations with nonvanishing Q have zero modes, 

and hence they are suppressed by det(.jZI+m) "'= 0. The 

fermionic method is designed to reproduce this magic 

on the lattice, albeit with an approximate Dirac opera­

tor that does not satisfy the theorem. This is nice, but 

for investigating the Witten- Veneziano formula it is not 

especially compelling, because the pure glue suscepti­

bility enters. Very compelling is the new derivation of 

the Witten-Veneziano formula, 28 in which the suscepti­

bility of the Atiyah-Singer index enters naturally, rather 

than the topological susceptibility. 

A neutral observation questions the point of bring­

ing fermions an arena which also concerns itself with 

the construction of quantized gauge fields. 

In theory the fermions may incorporate the right 

physics, but in practice they also obscure it. The lattice 

regulator invariably breaks the UA(1) symmetry explic­

itly, otherwise it would be impossible to get the anomaly 

right. Consequently, fermionic definitions are based on 

operators that do not have the special properties needed 

to avoid "' # 1, and the reliable determination of "' 

seems difficult.29 Furthermore, the notorious numerical 

problems of fermions also raise their ugly head. 

7. NUMERICAL ASPECTS AND RESULTS 

Now that the mathematics and physics are clear, it 

is time to apply the algorithms of the previous sections 

to a Monte Carlo simulation. This will be done first 

for SU(2) and then for SU(3), and in each case the 

fiber bundle and cooling methods are compared. Since 

the analysis of sec. 5.4 indicates that dislocations are 

not a problem, this section tacitly assumes Xt = x?. 
Similarly, systematic effects in the cooling method -

lost instantons and/or "x # 1 - will be ignored. Fi­

nally, there will be some general remarks tying into the 

Witten-Veneziano formula. 

7.1. Results in SU(2) 

Figure 6 shows Monte Carlo results for a'x, in 

SU(2) obtained by two fiber bundle methods16,10,11 

and by the improved cooling method15 on L' lattices 

of various sizes. Except for the *s and the ... ·s all sim­

ulations were done with the Wilson action. The solid 

line represents the fJ = 2.6, L = 12 result extended to 

other values of fJ using the two-loop scaling formula, 

eq. {5.7). Reference 16 (the •s) uses Woit'/ algo­

rithm and refs. 10 and 11 {the o's, •'s, and .._'s) use 

Phillips' and Stone's algorithmS on a hypercubic lattice 

sliced into simplices10 Within errors the two calcula­

tions using a direct determination of the charge agree. 

(The errors for the o's are too small to plot in fig. 6· 

some of the error bars from the •s run into the e's.) In 

the simulations for which the author (as opposed to his 

collaborators) has personally collected the statistics, he 

has noticed that the central value of the susceptibility 

increases slightly as statistics are increased from that of 



the .. s to that of the o's. If this experience were to apply 

to ref. 16 also, then the agreement might even improve. 

The discrepancy between the topological methods and 

the cooling method is due mostly to instantons annihi­

lated by cooling and, at smaller values of {3, perhaps to 

the dislocations as well. 

To investigate the dislocation contribution fig. 6 

also shows values of the susceptibility obtained using the 

mixed fundamental-adjoint action, eq. {5.14). They are 

plotted against f3 = 4/ g 2 obtained using the one-loop 

expression57 

5 f3ad ( 
f3 = f3t + 2/1ad- ?(3 + ?jo 7.1) 

~ f -.. 1ad 

which is consistent with the scaling behavior in previous 

work, 58-59 as long as the one-loop term remains small. 

The three •'s have ({31 ,/1.J) = (2.3,0.1), (2.3,0.2), and 

(2.3, 0.3) which enhance dislocations by decreasing p1 

in eq. (5.6). The dashed line through them indicates 

dislocation dominated scaling with .5\nin = 9, which is 

the Snun for (!1t,!1ad) = (2.3,0.2). The two .. ·shave 

(/11,{3.d) = (2.7, -0.2) and (3.0, -0.5) which suppress 

dislocations by increasing p1 • They agree with the Wil­

son action results within statistical· errors in Xt and sys­

tematic errors in f3-

Reference 11 has extended the work of ref. 10 to the 

point where the errors are so small that one can begin 

to disentangle scaling violations from finite volume ef­

fects. Ideally one would like to compare a dimensionless 

measure of the physical volume, such as z, = Lax;1', 

to another dimensionless ratio of physical observables. 

Figure 7 uses the two-loop AL parameter because the 

scaling behavior of fig. 6 is so tantalizing, and in or­

der to avoid the statistical error of another numerical 

simulation. If the nonuniversal terms in eq. (5.6) are 

negligible, and if two-loop scaling applies, the Monte 

Carlo data should lie on a smooth curve. For (3 2 2.5 

the data do indeed lie on the dashed curve, drawn to 

guide the eye. In similar plots with other coefficients 

of f3 in the scaling law, for instance Suun. the Monte 

Carlo data at different jl values do not lie on a univer-
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2 loop sea[ ing 

smin~ 9 scaling 
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Figure G: Topological susceptibility in 5U(2) lattice 

gauge theory. The nutnber next to the syn1buls a.re 

the lattice size L. • uses Phillips' and Stone's charge, 

refs. 10, 11; for tlH'S€' points the errors are too snu.tll 

to plot. * uses Phillips' and Stone's charge and an ad­

joint action that fav01'S dislocations . ..._uses Phillips' 

and Stone's charge and an adjoint action that sup­

pns.~es dislocations. • uses Woit's charge, ref. lG. o 

uses heat-bath cooling and qnaive, ref. 15. 
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sal curve on the scale of the fine vertical axis of fig. 7. 

This indicates that the constant C in eq. (5.6) does not 

dominate the bare susceptibility. 

Now consider the data for {3 < 2.5. It is known from 

other numerical simulations60 that !;.{3({3), the shift in 

{3 needed to produce a factor-of-two scale change, has 

a dip centered at (3 "' 2.3 This means that the lattice 

spacing a in the range 2.2 < j3 < 2.5 .is larger than 

that given by the two-loop formula. Had fig. 7 taken 

this phenomenon into account, the Monte Carlo data at 

{3 = 2.3 and 2.4 would lie upon a single curve with the 

data at other values of {3. Moreover, bringing all the 

data onto a universal curve. yields a result consistent 

with an approach to infinite volume exponential in z' = 

4. 7 z,. Comparing the topological susceptibility to the 

mass gap calculations61 one also finds z1nass gap -­

Lanl. ~ 4.7zx· 

7 .2. Results in SU ( 3) 

Figure 8 shows Monte Carlo results for a'\· 1 in 

SU(3) obtained by two fiber bundle methods18,19 and 

by the improved cooling method17 on L 4 lattices of var-

ious sizes. Reference 19 (the •s) uses the section14 for 

Luscher's bundle, 5 whereas ref. 18 (the •s) uses Woit's 

algorithm. 7 As in SU(2) the two fiber bundle methods 

agree, within errors, but the cooling method gives val­

ues which are rather smaller, although the disparity is 

less marked than in SU(2). The apparent agreement 

between refs. 17 and 19 at {3 = 6.0 may be illusory, 

because the volumes are quite different, and one ex­

pects the susceptibility to increase monotonically. The 

disagreement at f3 = 5.85 is probably more indicative 

of the situation, because there both simulations are at 

L = 8. 

At larger values of {3 both methods yield results that 

scale with the string tension measurements of ref. 62; 

the solid line is drawn through the L = 10, {3 = G.O 

point and scales as K 2 For the fiber bundle results, 

this means that the estimate of p1 in sec. 5 is a bit high 

for SU(3), although it still remains positive. Note that 

although the susceptibility and the string tension seem 

to scale universally, the scaling is very different from 

two-loop scaling (dashed line). 

7 .3. General renuuks 

Table 4 list the results for the topological suscepti­

bility for both SU(2) and SU(3), using the string ten­

sion or p meson mass to set the physical scale. The 

numbers are to be compared to the "prediction" of 

(180MeV)4 from eq. {2.5). The result of the cooling 

method in SU(3) agrees best with the prediction, but 

one should keep the unknown accuracy of the assump­

tion f'l' = J1r in mind. In fact, since dislocations seem 

not to be a problem, perhaps one should use the fiber 

bundle results to predict f"' If,. 
It is intriguing that the fiber bundle and cooling 

methods show the same scaling behavior in both groups, 

even though the latter purges small instantons and an· 

nihilates the occasional large instanton as well, cf. fig. 5. 

Evidently the cooling method still includes fluctuations 

from enough length scales, so that the exp( -·!114Nj3J) 

renormalization group behavior can build up from the 

semiclassical exp( -4IQI71'2 {3 IN) instanton behavior. 

'"'' ...... , .. , .... """'""'"'' "" ,,, '""' 
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Figure 8: Topological susceptibility in SU(3) lat­
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heat-bath cooling and qnaive, ref. 17. 

Table 4: Cmnpendiun1 of values of Xt· Errors are 

statistical only. 

group method (3 L Xt 

SU(2) Ph-S 2.4 8.10 (262 ± 1 MeV)' 

SU(3) Luscher 6.0 10 (231 ± 10 MeV)' 

SU(2) cooling 2.4 10 (130 ± 10 MeV)' 

SU(3) cooling 5.9 10 (190±7 MeV)' 

Unfortunately, the SU(3) charge consumes too 

much computer time to attain the precision of ref. 11. 

This problem will remain until we have a suitable algo­

rithm. The Phillips and Stone bundle in SU(3) has all 

the nice properties of the SU(2) bundle, except that 

the homotopy classes of the section cannot be worked 

out combinatorically. Can this be achieved, using re­

duction, perhaps? The interested reader is encouraged 

to find out. 

8. CONCLUDING REMARKS 

The beginning of this review argued that it 1s Im­

portant to seek and understand the meaning of lattice 

gauge fields; let us recall why. Topologically nontriv­

ial configurations play an intrinsically nonperturbative 

role. Consequently there ought to be room for them 

within the framework of the nonperturbative regulator. 

Moreover, semiclassical considerations imply that these 

configurations are crucial for understanding the pseu­

doscalar meson masses, the masses which in fact require 

chromodynamics and not just the quark model. Hence, 

it seems unwise to throw out the concept of topology 

simply for the sake of the CRAY 2 or the ETA 10. 

Naively a lattice field has no topology, "because any 

lattice field can be deformed into any other." However, 

mathematicians can talk about the topology of the in· 

tegers, a space with little room for continuous deforma­

tion as defined by common usage. In the case of gauge 

fields the topology is entirely contained in the coordi­

nate bundle, i.e. the set of transition functions. One can 



define transition functions for lattice gauge fields, 5 and 

for sufficiently smooth configurations the bundle so de­

fined not only exists, but also is unique. 8 The space of 

all lattice gauge fields are split into sectors, separated 

by exceptional configurations for which the charge is 

mathematically not defined. It is only possible to con­

tinuously deform from one sector to another by passing 

through an exceptional configuration. 

The topology of the reconstructed bundle is also the 

correct topology for QCD, for two reasons. First of all, 

the second Chern number of the lattice gauge field is 

the "topological charge," if the field is smooth. There 

are two ways to see this. One can derive the expres­

sion for the Chern-Pontryagin density and check that it 

reduces to -tr{F~~/F1.w}/16rr2 in the continuum limit. 

Alternatively, one can use the uniqueness theorem8 for 

smooth fields: all lattice gauge fields close enough to a 

given continuum gauge field give the same topological 

charge63 Secondly, asymptotic freedom ensures that 

smooth fields dominate the path integral, at least with 

sensible regularization, so that the (quantum) contin­

uum limit of observables like the topological suscepti­

bility can be determined. 

With a solid formal ground to stand on, one can 

now compute the topo·logical susceptibility. The results 

summarized in Table 4 demonstrate that the Witten­

Veneziano explanation of the U A (1) probJem is correct; 

topology accounts for the mass of the TJ' (and perhaps 

its decay constant?) in a quantitative way. This conclu­

sion also stands if one prefers other approaches to the 

topological susceptibility, such as the cooling method. 

The topological susceptibility .\t is also an ideal tool 

for studying the various features of numerical simula­

tion. It is an observable quantity that suffers no (mul­

tiplicative) renormalization, yet it is not the result of a 

fit, like the string tension or the mass gap. Hence .\t 

is easy to compute, and with enough precise simulation 

data one can disentangle finite volume and nonzero lat­

tice spacing effects from true scaling behavior.ll Given 

the bleak forecast for determining the heavy quark po-

'" .,..,,.," '1'"11'"'11'1" ll'rl '''"'11"1""''""'"1"1111'''"" II ''IIIII"'' 
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tential at long distances, 64 this is significant. Unfortu­

nately, .\t cannot be measured by experimentalists, so it 

cannot be used to set the physical scale. Also, the lack 

of combinatoric methods for SU(3) constitute a major 

barrier to high statistics simulations with the physical 

gauge group. 

For SU(2) all of the technological barriers have 

been tackled. The charge algorithm is fast and eas­

ily vectorizable: Q" can be computed for many cells 

in parallel. This has enabled us to obtain very pre­

cise Monte Carlo data.11 The z-plot, fig. 7 is consis­

tent with asymptotic scaling for f3 ::0: 2.5, and indicates 

that the susceptibility is suppressed at small volumes 

and nonzero temperature, as first seen with the cool­

ing method.17 The suppression sets in near z, ~ 1, 

which corresponds to Zmass gap ~ 4.5-5.0, which con­

curs with expectations from analytic calculations in a 

finite volume65 

The data is also precise enough that we can make 

an honest attempt at studying the O-vacuum 66 

There are several interesting topological aspects of 

lattice gauge theories that I have ignored in this re­

view, in order to have a sharp focus and to stay within 

the page and time limits. The role of color magnetic 

monopoles in the deconfinement transition is an old 

problem67·68 These monopoles are dynamical variables 

in a certain gauge69 with a residual U{l)N-l gauge 

group. The necessary abelian projection can be for­

mulated on the lattice,7° and numerical results show 

that the monopoles behave rather differently in the two 

phasesJ1 Furthermore, the monopoles are just one ex­

ample of solitons, which can indeed be quantized using 

the lattice.72 

Let me end with a possibly crazy suggestion. At 

several points I have pointed out that neither the Dirac 

operator of Wilson nor of staggered fermions has topo­

logical significance. Given the numerical and conceptual 

problems of lattice fermions and the physical appeal of 

the index theorem, one cannot help but wonder if topol­

ogy could be the missing guide to a more satisfactory 
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formulation. One can, for example, reconstruct associ­

ated bundles for matter fields, 73 put the fermions on a 

finer lattice28 , or keep them in the continuum.74 All of 

these ideas are too impractical, but maybe they are on 

the right track. 
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