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The main motivation for the investigation of Euclidean Lattice Field Theories (ELFT) is 

the aim to understand particle physics. It is, however, not obvious at all that ELFT directly 

describe particles. Usually for the relation to particle physics the continuum limit is used. 

Continuum Euclidean field theories lead (under rather general circumstances) to quantum 

field theories on Minkowski space which (again under quite general conditions) describe the 

behavior of particles. The pertinent quantities in the continuum limit are then approximated 

on the lattice. This procedure is of course not unique. 

A direct particle interpretation of ELFT would be highly desirable. It would lead to 

an unambiguous definition of physical quantities like cross sections. It also would justify the 

interpretation of ELFT with a trivial continuum limit as effective theories for particles. In any 

case ELFT would become a respectable theory which shares some structural properties with 

continuum quantum field theory and which is better accessible by analytical and numerical 

methods. 
Let us briefly review the status of the particle interpretation of continuum quantum field 

theory. The basic structural properties which are exploited are local commutativity of space 

like separated observables as an implementation of Einstein causality, and the spectrum 

condition. A rather satisfactory analysis can be made in theories without massless particles. 

In theories with physical massless particles problems with infraparticles occur which are 

presently not under full control [1]. 

In purely massive theories one first has to find the single particle states. If they belong 

to the vacuum sector, i.e. if the particles carry no charge, there exist so-called almost local 

operators which create the particle states from the vacuum. Using them one constructs the 

outgoing and incoming multiparticle states via the methods of the Haag-Ruelle scattering 

theory [2]. If the single particle state is not in the vacuum sector, i.e. if the particle is 

charged, one first has to apply the theory of superselection sectors (see [3] for a review) to 

construct the group of global gauge transformations and the charged fields. Then one can 

again apply the methods of the Haag-Ruelle scattering theory for the construction of all 

scattering states. 
There are also some unsolved problems. Besides the already mentioned problem of infra­

particles the main open problem is asymptotic completeness, i.e. the question whether each 

state is an incoming and an outgoing scattering state. (For recent progress in this problem 

see [1], [4]). 
The main obstruction for performing a corresponding analysis in ELFT is the absence of 

local commutativity for spacelike separations in the corresponding real time quantum theory. 

Consider e.g. the theory of a scalar Euclidean field rp( x ), x = ( x 0
, ;!C) E 2Zd+l, d 2 1. Let 

(.) be a translation invariant and reflection positive state. Then, using the transfer matrix 

formalism, one finds a Hilbert space 7-l, a vector fl E 7-l, representing the vacuum, a positive 

operator T ::; 1 (the transfer matrix) and a quantum field ~(;!C) such that for x~ ::; ... ::; x~, 

(1) 

In typical cases T > 0 [5]; one then can define the (quantum) Hamiltonian by H = -lnT 

and the real time evolved quantum field by 

~(t,;!C) = exp(iHt)~(;!C) exp(-iHt). (2) 

Unfortunately H and ~(t,;!C), t # 0 seem to be , in general, rather delocalized, even if the 

state on the Euclidean fields is a Gibbs state with respect to some local Euclidean action. 
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For the identification of single particle states in massive theories this presents no problem, 

since they are characterized completely in terms of the energy-momentum spectrum. There 

are numerous heuristic and numerical results, and rigorous proofs of existence have been given 

in many cases [6]. There are also examples of charged single particle states: the electrically 

charged particles in the free-charge phase of the Z(2) gauge-Higgs model [7] and soliton like 

particles in a variety of models [8]. 

All the existence proofs rely on an analysis of 2-point functions G(:r,y). In the case of 

charged fields the definition of G is not obvious since it is difficult to find field operators 

which create the particles from the vacuum (for an attempt see [9]). In [7], following [10] the 

following definition of G was used (the pictorial notation means a product of the gauge fields 

along the path (in the unitary gauge)): 

G(x,y) = {lim ( 
R~oo 

R nR/J. 
X I~ I )( 

Rl'- L___j 
R 

Note the similarity of G with the vacuum overlap order parameter [10] , [11]. 

(3) 

Let us now describe the main idea for the construction of scattering states. More details 

and proofs will be given in [12]. Euclidean Green functions in massive phases cluster expo­

nentially. These clustering properties show up in some way in the real time Green functions 

(Wightman functions). The clustering properties of Wightman functions then lead to a weak 

form of local c.ommutativity which is sufficient for the purposes of scattering theory. 

First we investigate the cluster properties of Wightman functions. In a massive phase 

with unique vacuum the connected Euclidean Green functions decay exponentially: 

(4) 

where m > 0 is the mass gap and R(:r 1 , .•. ,xn) is the side lenght of the smallest lattice cube 

containing :r1 , ••• , Xn· For later convenience we choose <p to be bounded which is a.! ways to 

be achieved on a lattice by redefining cp (e.g. by replacing cp by arctan <p for a rea.! field <p ). 

We choose now a function g(f,;!;.) whose Fourier transform is smooth with compact support, 

and define cutoff quantum fields <P 9 by 

<P .(t, ;!;,) = f as 2::: g( s, ILl<P( t+ s,;!;, + u.l 
~ 

where <P is the quantum field corresponding to cp. Let 

(5) 

(6) 

be the Wightman functions of the cutoff field <P 9 , and let W9 ,c denote the corresponding 

connected (sometimes a.! so called truncated) functions. We have the following theorem: 

2 



Theorem 1 For all natural numbers N there is some CN = CN(g) > 0 such that 

(7) 

where t =max; lti+l- til and R = R(x,, ... ,xn)· 

We sketch the proof for the simplest nontrivial case n = 2, g independent of l!.• ( 'P) = 0 
(so the connected and the disconnected 2-point function coincide). Using the definition of 
W9 and P 9 one finds 

(8) 

Let g(H)g( -H) = x(H). x(H) exp (iHt) is (in contrast to exp (iHt)) a continuous function 
of exp (-H)= T and can therefore be approximated uniforrnly by polynomials of exp (-H): 

n 

x(H) exp (iHt) = 2>~n) exp ( -nH) + e(n), 
k=O 

with lle(n)ll -> 0 for n-> oo. Inserting this approximation in (8) one obtains 

n 

IWg,c(O;t,~)l :'0: L la~n)l I('P(O),<p(k,~))cl + lle(n)ll (I'PI 2
)· 

k=O 

If one uses an approximation by Chebyshev polynomials in (9) one gets the estimates 

lle(n)ll :'0: Cfv(ltl/n)N, Cfv > 0, N E IN, 

L la~n)l :S C'exp(cn), 

Together with the bound ( 4) this implies 

c, C' > 0. 

IW9 ,c(O; t,~)l :S C' exp (en- mR(O, ~)) + Cfv(ltl/n)N. 

Choosing n = c"R(O,~), cc" < m we obtain the desired bound (7). 

(9) 

(10) 

(11) 

(12) 

With the help of the cluster properties of Wightman functions established in this theorem 
the construction of scattering states is straightforward. We assume that there is an isolated 
shell {(E(e),J!.), l!. E ( -1r,1r]d} in the energy-momentum spectrum of P(O)O, with a smooth 
dispersion relation E(J!.)· We further assume that there are sufficiently many different ve­
locities , i.e. grad E(e) # gra.d E(gJ for almost all l!. # '1: We now choose a smooth cutoff 
function g such that g = 1 on the single particle shell and g = 0 on the remainder of the 
energy momentum spectrum. Then P9 (0)0 is a single particle state. Now let f be a negative 
frequency solution of the wave equation corresponding to the dispersion relation E(e): 

(13) 

where j is smooth. Let V(f) denote the velocity support of j, 

V(f) = {gradE(J!.), l!. E supp }}. (14) 

f(t,~) is essentially localized in the kinematically allowed set {(t,Qt), Q E V(f)}. More 
precisely one has 

3 

"'' Ul fill' 111'111'"0 I' I' Jll I 'I ·rr I"I"'C '' Ill ' II '''"' I" ' 1' r•r I' n•1• -' ,., ... , I I 1! Ill " I I I' I I ' II' I" I II 1'1 1111111' · 'II' II ~· I 'II I 1''1 I I 'I I 'I ' 'I Ill' I I I' IIIII ''II I Ill' I II '111111 ' I ' I ' I ' 'II I ' I Ill I 'I I II' I 1111 II'~ I I II Ill!' ' IIIII' II I 'II ' t 'I I• I' ,. 'If 1r" I 'I' I' •101'11 'I '1'1' "'"' 1''111 'II I' 'II' I I I' II I ' II 



Proposition 1 
(i) L lf(t,~)l :S constitld/2

, ltl > 1, 

(ii) lf(t,~)l :S CN(1 + itltN dist(~/t, V.(f)tN, 

with V.(f) = {1', dist (1', V(f)) :S 8} , 8 > O, for all N E IN. 

For a proof see for instance [13]. 
Consider now the smeared field 

(15) 

(16) 

(17) 

A,(t)f! = 'l!(f) is a one particle state which does not depend on t. Its momentum space wave 
function is }(:p)Z(p)'/2 where Z(p) = 2:"-(.P9 (0)!1,iJ.>9(~)!1)exp(il!_.~) and where we used the 
normalization 

(18) 

for the improper single particle momentum eigenvectors. Let f 1 , ••• , fn be smooth negative 
frequency solutions with nonoverlapping velocities, i.e. 

(19) 

Then the Haag-Ruelle approximants for a multiparticle scattering state with wave function 

(20) 

are defined by 
(21) 

Using the Theorem 1 and the Proposition one finds: 

Theorem 2 (i) The limit 

(22) 

eziJts, 
(ii) 

Theorem 2 (ii) shows in particular that the space of outgoing, resp. incoming scattering 
states has the structure of a bosonic Fock space, so the particle is a boson (as expected). 

The S-matrix is now given by 

(Pl···PkiSIPk+l···Pn) = 

('l!out(fl, • • • ,Jk), 'l!in(fk+l• · · · ,Jn)). 
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There is also an LSZ reduction formula for nonoverlapping velocities. One finds for 
gradE(pi) # gradE(pj), i # j: 

(P1 · · ·Pk[S[Pk+1 · · ·Pn) = Z(p1t112 (P~- E(p1)) · ·. Z(Pnt112 (p~- E(pn)) 

in J dt1 ... dtn I: exp {i[e1(p~t1- P1·x1) + ... + En(p~tn- Pn·Xn)]} 
Xl···:Z:n 

£1 = ... Ek = -1, Ek+l = ••• En= +1. 

(25) 

Here T is a time ordering prescription. Actually, there is a large freedom in the choice of 
T. One possibility is, to make a Fourier transform of the Euclidean correlation functions, 
perform a Wick rotation and transform back to position space. As Luscher has shown [14] 
the result differs from the real time ordering prescription only by exponentially decaying t!Uls 
which do not affect the validity of the LSZ formula. 

Scattering states can also be c.onstructed for particles carrying a gauge charge, i.e. for 
particles which cannot be created from the vacuum by loeal fields. Since there is still no theory 
of the superselection structure of ELFT one has to guess the approximants for scattering 
states. In the Z(2) gauge-Higgs model one can use the ground states [~1 , ••. ,~n) with external 
charges at prescribed points ~1 , •.. ,~n constructed in [10]. A Haag-Ruelle approximant for a 
two-particle scattering state, e.g., is given by 

j dt' dt" L j 1 ( t, ~)h ( t, k'_)g( t', x')g( t", y' )u3( t+t', ~ +x')u3( t+t", k'_+y') 1~ + x', k'_+y'). (26) 
~·!t.·~·E. 

where u3 is the Z(2) Higgs quantum field. One can show that in that part of the free charge 
phase where the existence of charged particles was established the Haag-Ruelle approximants 
defined as above converge, and one finds that the space of scattering states is a bosonic Fock 
space. So the charged particle in this model is a boson. 

There are also models (in 2+1 spacetime dimensions) where anomalous statistics is ex­
pected [8]. The anomalous statistics should show up in an unambiguous way in the scalar 
products of scattering states. 

We conclude that ELFT typically have a full particle structure. In principle, scattering 
amplitudes can be computed from Euclidean correlation functions. How this can be realized 
e.g. in Monte Carlo simulations has still to be worked out. 
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