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Lattice Gauge Theory Hamiltonian
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I. Introduction

Recently these has been some renewed interest in the path integral formulation of
quantum mechanical systems and quantum field thecories on curved spaces, or, more
generai, on topologically nontrivial manifolds. In quantum field theory Christ and
Lee /1/ several years ago pointed out that, when formulating Yang-Mills theories

in the Coulomb gauge, new terms appear in the action integral. They result from a
nontrivial metric in the space of the gauge—fixed field variables /2-4/, and they
lead, in perturbation theory, to new intersction wvertices., These terms had been
overlooked before /5/. In the context of quentum mechanical problems there has

been some recent progress in calculating path integrals, which now allows to handle
quite a few problems in the path integral formulation which had been uniractable
before /6, T and refs, therein/. In most of these cases symmetries are playing an
essential r8le. This motivates a strong interest in formulating path integrals on
group manifelds /8, /. In string theory one faces the task of doing quantum mecha-
nics on topologically nontrivial manifolds (e.g. Riemann manifolds with nonzero
genus ) . Although it may be too much to expect that one might be able to
write down & closed expression for the action integral on the whole manifold, one
should be sble to formulate the theory, at least, on coordinate patches. The basic
task then is the same as in the other examples: to handle the path integral of a
quantum mechanical system on & manifold with a nonflat metric, e.g. on group mani-

folds.

There exists a well-established procedure for both canonical quantization /10 -12/

and writing down the path integral for guantum mechanics on curved spaces /13 - 21/,

In refs. /1-4/ this formalism has partially been used to determine the correct Yang-

Mills Hamiltonian in the Coulomb gauge. In the context of quantum mechanical problems,

however, not much usc has been made yeb of this procedure. In refs. /6, 7/ specizl
cases of group manifolds have been studied, such as SU{2), so{n), SU{1,1} and S0{n,m).
All these group manifolds have in commen that they can easily be embedded in eucli-
dian (or pseudo-euclidian) flat space, and this special property has been mede use
of for deriving the path integral. Tt is clear that this method does not work for
other groups of interest /8/. There is alsc a potential danger in this way of deri-
ving the path integral /3/. It therefore seems very much preferable to directly use
the standard procedure, which is always applicable /9/. In the first part of this
paper we perform, in a rather explicit manner, both canonical quantization and the
derivation of the path integral for a general compact simple Lie group, following
the standard routine of refs. /13-21/. In particular, we explicitly calculate the

quantum corrections which are necessary for the correct formulation of the quantum

theory.

There is an interesting application in lattice gauge theories, namely the inter-
relation between the Wilson action and the corresponding lattice Hamiltonian. Usu-
ally = lattice gauge theory is defined through a partition function on & 4-dimen—
sional euclidian lattice, using the Wilson action in the Boltzmann-factor. In order
to derive the corresponding Hemiltonian, one singles out the time direction of the
lattice, defines the transfer matrix and finally takes the lattice spacing in time
direction to zero /22, 23/. For the simplest nonabelian case of sU{2) the Hamiltonian

has been found by Koegut and Sussking /24/

D
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Here the kinetic term {electric energy) comes as a sum over all links, and for each

link we have the Laplace-Beltrami operator on the SU{2} group manifold 53. The second



term {magnetic energy) plays the rSle of the potential which depends on all the
link variables, gt is the coupling constant in time direction and a is the spacial

lattice spacing. The {asymmetric) Wilson action in the temporal gauge (a, is the

t

lattice-spacing in time direction)

-3l

cen be viewed as the action of the quantum mechanical path integral of eg. {1.1):
a

S ReTr[1- ul ke t) Uy, ()] 32“* v} (1.2)

e, foft

the sU(2)

each link variable Uij 15 1ike a particle with mass m =
manifold. If we now apply to eq. {1.1) the standard procedure for deriving the path
integral, the resulting quantum action will, in general, look much more complicated
than the Wilson action {eq. {1.2}). We shall show, however, that the path integral
based upon eq. (1.2) matches the Hamiltonian (1.1): the Wilson action "has chosen”

a very clever way of disretizing time. From the point of view of the standard routine
this discretization scheme may look peculiar, but the simplicitly of eq. (1.2) is
certainly striking. We shall show that the equivalence of egs. (1.1) and (1.2) gene-
ralizes to any compact simple Lie group. We thus end with the conclusion that, with

a time discretization scheme which at first sight looks complicated, the path integral
can always be cast into the zlegant "Wilson form". As a by-product, we present a
device for finding rather easily the lattice Hamiltonian for Lie groups other bhan

su{2)}.

This paper is organized as follows. We first {section II) review, for a general
compact simple Lie group, how canonical quentization is done and how the path inte-
gral iz derived. In section IIL we then turn to lattice gauge theories and study the
interrelation between the Wilson action and the lattice Hamiltonian. In an appendix

we briefly outline how the (mostly well-known) results for SU(2)} are reproduced.

II. Quaﬁtum Theory on a Group Manifold

a) Metrical Quantities of the Group

In the Tollowing we consider a compact simple Lie group G . It may be construed

as a differentiable manifold M furnished with a group structure. Elements of ¢
correspond to points on M and may be parametrized in terms of the real coordinates
wh. As usual w = 0 determines the unity element of the group. The dimension n of the
manifold is identical to that of the group (i.e. the dimension of the associated

Lie algebra as a vector space). The group structure is fixed if we know the compo-

1 and “’l be

sition function ¢ which determines the group multiplication. Let W, 2

the parameters of two elements gy and 8, of G . Then

(2.1)

2
P w, ), L= n

corresponds to the product g = 8,85 of these two elements. The left auxiliary func-
tions are defined as /25/,

[4
[
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The inverse of %,  are the components of the Maurer Cartan form ¢

- I'4
‘)Ze'fe G..‘e‘ez - J£4 1 (2.3)

The associativity of the group multiplication

¢(w33¢(wz,wf))=¢(¢(w3,w2)1w4) (2.4)

leads via differentiation to Lie's BEQ theorem
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. In terms of the § -fields this relation is also called

where 9, denotes J
dwt
the Maurer-Cartan equation:
£.4.
9,, s - 3, 7

111213

!41, - {14 t@!f'}_[r‘!: a_l,l; (2.6)

In egs. (2.5) and (2.6}, T are the structure constants of the group. Since
we are considering compact simple groups, the structure constants can be chosen

to be totally antisymmetric.

Now we consider a matrix representation Ww) of § , setisfying (without loss
of generality)
. £
a ’L{l =-c T (2.7)
£ =0
where Tl are the generators of the group in the chosen representation. The Tl satisfy

the commutation relation

¢ R P PN TR
[TE‘;T‘]=cf T, (2.8)
and they are normalized to
Tr .rl4Tlg - l J‘cf’: ’ {2.9)

1

The left auxilisry functions are related to derivetives of U. This can be seen by

differentiating
u(¢(w4,wl))=u(w4)u(w;> (2.70)

with respect to w, at Wy = 0. This yields

£224 wwy W TE - (20
7 Qeg'L{ = -

{*)

or, in terms of ¢
. - q
U’e‘g T o=, W, u (2.12}

Eqas. (2:11) and (2.12) imply that

Ll = Ql‘eae (2.13)
4

is the infinitesimal generator of transformetions via group multiplication from
the right: U-» U U'. Note that ¢ {and therefore also 7 and L) are invariant under
global t}ansformations from the left: U— U'U, The role of the left and right is
reversed, when in eq. (2.2) the derivative of ¢ is taken with respect to the first
argument., This would lead to right invariant © 's and 's and to the right invariant
generators of left multiplications. In this sense left and right multiplications are
completely on sn equal footing. However, it is sufficient to use only one set of

funetions, either q and ¢ or ﬁ_ and & , since they are not independent: in a

representation U, G is given by

(aeu)u—‘f:_ﬂ'F!q[qu = 0-:[;1= 814’1 ?lgé (2_1h)

1.1
where the orthogonal matrix R "2 is defined by:

it

0wt Te.u Rtft’z T'l‘ {2.15)

Nobte that this matrix R does not depend on the representation U. It is commen to

use m and ¢ instead of 7 and i , which gives rise to an artificial asymmetry.

The "natural" metric on M is expected to be ilnvariant under global both left
and right multiplication. If G is a simple compact group, this bi-invariant metric

is unique up to multiplication by a positive constant /26/:

1,1
¥
() Eq. (2.13) shows that G ! dw’  indeed is the Maurer Cartan 1-form:

()T s U Y

where d is the exterior derivative on M /25/.
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Qur choice of the multiplicative constant is motivated by the desire that ¢

{and not a multiple of ¢ ) can be interpreted as a vielbein field, Then the in-

verse of the metric reads:

2,2, t,f t,p¢ {(2.17}
T A A

Note that this definition {eq. (2.16)} of the metric is independent of any repre-
sentation. For a given representation U, satisfying egs. (2-T7) - (2.9), the metrie

can also be written as:
0, 20 [ (@, 11" (3,107 . (2.18)

For the purpose of quantization we also need the Christoffel symbels and the

scalar curvature. We use the conventions

¢ .1 llt¢ -
7}4 ¢, 2 ? (9'4 $!;¢4+ azl ?14’«'« 914 ;t,é, ) ' (2.19)
R=q™“(a, TV -5, T30, s T
¢ £, €, £, !z £, L, L, £; L,
{2.20)
e, n
Ly {4 ' 2, Z, ) .
Making use of egs. (2.5) and (2.6), thesc quantities can be calculated to be
LH £, 4, £y 4,y 24 1y
Too 2,711 (8,070 40, v57)
/ Ly trds /
=7£3 4(914¢l¢fz+%f v r!«'rltl:) (2.21)
R = i f!‘[agl bt {2.22)
2

Now we have all the tools at our dispesal which are needed for the quantization
procedure. We finally note that many of these calculations greatly simplify if
one makes use of the calculus of differential forms /25, 27/. For our purposes,
however, it will be more appropriate to stay in the component formulation: this
applies, in particular, to the caleulation of the quantum corrections in the path

integral.

Since the left auxiliary functions %) and correspondingly all metrical quanti-
ties are not explicitly known except Ffor U{1) and SU(2), we now want to give a
Taylor expansion of n - It can be obtained from the Camphbell-Baker-Hausdorff

formula (for a recent account, see /28/)

tn e?eb v 8+ 10A,8] +4 L [A,04,8]]

[A LA [A,LABI)I] + ... (2.23)

?20 b/
where the dots indicate higher orders in B and higher commutators. Identifying
. . £ f , . L. .
A= - 1w, T ,B=-~- 1(028 T'g and differentiating with respect to ubl we obtain
L, 2, £ £.2, 4, L2, ¢
2.7 £, 7 jz r F R £y £
n N wr = d vi1{ ";—zf w tw e

4 l;tll; [;f;'_!r l,-!;!, t;[;l

"#20 ! !

+ 0 (W) (2.24)

w'ez wlﬁw!twtl

This leads Lo the approximate expression for the metrie:

24[ £.€ 1 t‘llll lllté 2.
u
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which may be used in order to calculate approximations ko all metrical quantities.
]
Clearly, this form of m "7 end 3 et is only walid for the parametrization

. .,.¢
—tw T
u=e . Any other parametrization would imply different composition func-

tions and therefore different metrical quantities.

b) Canonical Quantization

Since the correct quantization procedure in spite of being well established for a long
time /10, 12/, is not yet sufficiently well-known, it may be useful to recapitulate
the basic ideas. First let us consider cancnical quantization. The classical kinetic
Hamilteonian is of the form 5 gl PPy where Py are the canonical momenta and gl is

the metric (rescaled by the mass), which in general depends on the coordinates ql.
Upen quantization, q and p become operators obeying the canonical commutstion re-
lations. This leads to an operator ordering ambiguity in the kinetic Hamiltonian.

It cen be rescived by requiring that the Hamilton operator has the correct classi-

cal limit, that it is invariant with respect to arbitrary coordinate transformations
and, finally, that it is hermitean with respect to the canonical integration measure

*
a"q ¥e. The unique result is( !

Y 1

3% b, 3-« FV (2.26)

s

Ho=ig%p, §

[

L e

{2.27)

where 5:4‘2 = m 51411 s 3 = dd (544-’:)

and V¥ is assumed to depend only on gq. In the coordinate representation the momenta

are

(*)

We ignore & possible curvature term, which is present in ref. /10/, but for-

bidden in ref, /11/, since,for our case,the curvature is a constant anyway.

- 11 -

! 4 .
-4 4 . ¢ !
& ¥ - _ -4 1+ (2.28)
g9 4 ‘9% (Ge9u,e,)
This again follows from the hermiticity requirement with respect to the canonical

integralion measure. In this representation the kinetic Hamiltonien is the Laplace~

Beltrami operater

£ _i Nf ! 4
= - - z 17 3
Hkln 1 3- 981 3 gez
{2.29)
:_ia.f_,f,, { o~ P 2, £y
1] %%, T o %2, .

The form of H given in eq. (2.26) is not suitable for practical purposes. Hence it
must be reordered according to an appropriate scheme /19/. We shall make use of
the standard and the Weyl ordered form of Hkin

standard:

RSP CR a A AN A AT P
Weyl:

(2.31)

4, "'l,,ll N!"Il
a3 (3 b po* 2008 bt b0 £, § 1)+ 8V,

In both cases:

A

Av,=§(g T’,"

1

¢, o
¢ T‘e‘ "y -R). (2.32)

On the group manifold, g, T and R are given by eqs. (2.17), (2.21) and (2.22), re-

spectively. Now A4 V] can be calculated to be:

AV,’ =}T‘n_1__ (994"2[2[)(92'-%84?) (2.33)

Our final item in the canonical context are the generators of group transformations.



The hermitian left-invariant generators of right multiplications and the right-

invariant generators of left multiplications are

Al __1 ety 4,
i A R PP T RN
R #% 2 ; £, 4, {2.3h)
==, Ffz +-‘z—(9¢zoz’ )
A 1 Y a4 — ¢, 4 :
R =g (07 byt pe, 0 7
£oly ~ L,

= 7 L ' {2.35)

1l

. A . .
respectively. In the coordinate representation L agrees, up to a factor of i, with
eq. {2.13). The generators satisfy the algebra

~t 4 P2, 4, At
[ L 4‘ E 1 J T ] 7 1

‘ot ,

A g At . !4!111 A4
[ R 1 R z] = - jf R 2
+ J
a2 A ald, ad,y Al Aey (2.36)
L7 L7 )-IL" R ]=[R &' ]=0 |
For a representation U with eqs. (2.7) - (2.9) application of the generators yields:

ad e At é .
(L wu]=-wuT” [R,w]-T u . (2.37)

The quadratic Casimir operators of R and T coincide:

2

At 1

_ £, 4, ) . £, 2, Lyt £, L, 4,
dj F£4 Pez—.t (42 gfz"‘Z 1 leqz )F(’ (2.38)
2.

4

&2, . ¢, 2, £; ¢,
50 0,8, 7 )4 B Ny )

- 13 -

Comparing this to egqs. (2.27) and (2.30), we find

i.

e,

H Lot (2.39)
= — 2.39
.‘ﬂ:fn lm L J

the kinetic part of the Hamilton operator is just the {unigque) quadratic

Casimir operator of the group /25/.

c) Path Integral Quantization

Let us now turn to the path integrel description of the quantum system. The path

integral approach to the guantization on curved spaces (or on flat spaces in non

cartesian coordinates) has also been known for many years /13-21/. Although it is

well understood by now, it may - especially for the community of particle physicists -

(#)

be helpful to present the procedure in some detail .

The path integral is a device for the calculation of the probability that a

state | q'> at a time t' evolves into a state [q"> at a later time t":

e H(E"-¢")

PI=<q"t"Ig,¢'>=<g"| e (¢'> . (2.L0)

Usually the first step for the evaluation of PI is the insertion of intermediste

states, For this purpose we need the completeness-relation for the g-eigenstates,

Using the natural (geometrical) integration measure, it reads

4=foé'"qt 3%0;) lg><g¢l (2.41)

(*

)

Most textbooks describe the path integral approach only in flat systems using
cartesian coordinates. One of the exceptions, the textbook of T.D, Lee /23/,
uses a normalization which we consider to be somewhat unnatural: instead of
our eq. (2.42) he uses

¥y = (d7g ¥ Xegy
i1.e. the integration measure is not invarant under general coordinates trans-

formations.
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which implies
n - 4 ¥
Cwix>= (d7¢ ¢g%cer ¥ (@2 X (g, (2.52)

i.e. tlle scalar product of two wave functions contains the coordinate invariant
integration measure. The coordinate representation of the momentum operator {eq.

(2.28)) determines the p eigenfunction in the coordinate representation:

' ¢
L
Pe & (2.43)

4
- %
<glp>= 9 (g ¢ ,
which, in turn, fixes the completeness for the p eigenstates and the normalization

of all states:

o4 (2.40)
! [(zm"‘ fp2<pl,

d"f lllr,£($4—?!.)€ {2.45)

{9.ja,>= g'f-‘(?‘,i‘ic?l) f(zm" e ,

Y 4
n s (Flvff)t (2.46)
Cpelp>= [d7g € . "
Dividing the time interal t"-t' into N equal parts of size € , the path integral
may be written as (ea = fem (4+£)")
N—s ot N

. T . Nt m
PL = fin, g ¥ egn g (T 47)

”"'f 4

'H,[f'(h,nﬁ T'f?u <§., 010 chf,<.>] ,

(2.47)

f‘]s_

where q = n', ay = q". Hence we have to evaluate the short time kerrnel
4 i
. .
K ket k)= 7€, 037 (@) <uq11-CeHI G e
. ‘ ’
= g d"p et PeCFrsa~Fi?
@)™
Lt .
e (G ) (R0 $GpHIG> (2.19)

The potential contained in H does not provide any difficulties, since it depends
only on q. The kinetic part, however, cannot be used in the form of eq. (2.26).
Instead, it has to be reordered into a form belonging to a "% -ordering" /19/.

The most convenient {and most commenly used) one is the Weyl-ordering scheme, de-

fined by:

r 4 2 m! m-£ _1 4
e b =2 m-or ¥ 08 el

It can be shown that for r = 2 this reduces to eq. {2.31) (this is posed as an

excercise in Lee's book /29/). Therefore we have:

= doatt 2.51
< %k+tfHk:‘aI?k> - <?’k+1,2 {3 ) ‘Iog'rpglfw * dv'i(f” ?k> (2.51)
1.1
g ! is expanded in a power series in g, and we use

i L7771
- 4 ol "r r cpdy (2.52}
= ?’k ' 3 “c?'ku)g 0(?*) I'(z.‘lr)" P e =

and AL—:: Friir % . This gives for

- 4
where Gfk: _Q.Tf?k+4+ q‘k)

the short time kernel:

. L4
_rd”p ¢ Py Ay
K Ched b = (220 :
{2.53)
. ~t4’ -——
[4-ce (3§ B b, +aV. + V]



~ 16 -

where A V1 and the potential V may be taken at arbitrary q,for instance at gq.

From here it is obvious that Weyl-ordering of the Hamiltonian corresponds to a
"midpoint discretization" of the metrie. Hence there is a one-to-one correspondence be-
tueen discretization and the quantum correction A4V, As an example for another dis-
cretization scheme, standard ordering would have given

” . [4
K(‘t-tf,k)‘:j.d'__ﬂ. e‘—l’e Ak .

am™

. i iyl ; ~P, 0
[1-e (5§ " Chuer Pe, P, =50 70, 010,

p 1.2 (2.54)
"F P,3,07 T+ 4V, e V)],

Since in the path integral we only need to be precise up to 0{g), the integrand
of the kernel is exponentiated and the canonical (phase-space} form of the path

integral reads:

1 i w-1 Bt gMpk
- 5 " [ . e .P ,
PI= 5o gt gy i, (T "0 ) (T )
N TN, I,
exri-gkz‘o[f’tdk.—zi + l(?_k)Pe4 P:Z"EJV-f-EV]]Z , (2.55)
The p-integration is gaussian and can be performed
PI= g% g g beqy tim ( (T a™e,) 7 o %
= ¢ ') ! ) . T - .
§ 807 g)Lm g(k”"‘ %) 17;0{3 (g,
-ex,bé[f‘gihh(ﬂ)él:'dkh— a4V, - ¢ V]f . (2.56)

where & constant normalization factor has been omitted. Eq. (2.56) shows that A is

- 17 -
n "o "
of order Vi , since clﬂq.kﬂoi 4. = d ?’k d Ak and

L5 £t
("0 atigtrenrtont 12F

; . o~ &y Ly

s ~ e" !’_ » e gl ,t & ﬂ d

=5 g [d™a e :
In the context of path integrals this equation is often abbreviated by the symbol

F13/:

(2.57)

I}

Z 14 P ~t,f
A‘A‘:csg" , (2.58)

where the inverse metric is taken at g of the corresponding time slice.

In order to compare eq. {2.56) to the usual covariant (econfiguration space)

path integral, which has the integration messure de?‘k ??(?k) , we still

have to manipulate the measure. By Taylor expansion of gla, ) and glq } around
% k+1

= . 2 .
q, up to order £ {i.e. A7), we obtain:

; - 4 4. 2y 4 (f
q (?k)zjz‘(?ku)} c?‘k)(4—?d]( akzghT"t £,)

P

I NP ORTLY Y(1-LE g8ty 4
=3 (e 127 (R 7 J .ty 27,
(2.59)
This is exponentiated and inserted into eq. (2.56):
. -1 " 4
— T .
PL = fom, [T (4700 g7 C300)
LY s ~ £, £
. b ¢ ! v V- .
exF[a Ea[“ Fo 0, (P60, 72, £d £ V]} ) (2.60)
where
= 1 ytta €3 ' (2.61)
av 33, 9317_'22 é,'f‘dl/,f

and again we have omitted the constant normalization factor.
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Eg. {2.60) requires some discussion. Most important, the path integral is not The equivalence can be checked using a generalization of eq. (2.58):

simply the integral over the field variables of the exponential of the classical

Loy~ ety 1,) (2.64)

Folegtightegtny

3 N ~
EAVRV RS

action. An additional term AV has appeared which has to be interpreted as a quan-
tum correction, since it has its origin in the noncommutativity of the operators p
: and q. Our discussion shows that this new berm strongly depends upon the way in which

Finally we want to write down the path integral for our quantum theory on a

time is discretized. We have started frem the Weyl-ordered Hamiltonian, and in our
group manifold. 4 V' has already been calculated in eq. {2.33), the complete AV

result g is taken at the midpoint value . Another ordering could have led, for ex-

is given by
ample, to g(qkﬂ) {("standsrd ordering") or g( qk) ("antistandard ordering"), and in

each case we would have found a different result for A V. Therefore, writing the ex- _ 1 { £, ¢ £, ¢ 1.8 ¢
AV s s (B0, 1 )00, 75 %) =949, 9y 4 f

ponent of eq. (2.60) as an integral (without further specification)

g b Loy 032
S= fdi(ilgl‘ :'f"‘q'."'—V—A\/) (2.62) M (G qt) T, e (2.65)

- . . . . . . tlence eq. {2.60) becomes:
- is extremely misleading: the kinetiec term seems to be the same in any scheme of

time diserebization. But A V will differ from scheme to scheme, and eq. (2.62) then

- 4
suggests different answers for different schemes. This cannot be correct, since our PI = ﬁ&?’tﬂp g‘ 77— ( d wk d_e/lf ((wa,‘)))
: starting point, the matrix element (2,40} does not depend upon our choice of dis-
: cretization of time. The resclution to this lies in the fact that the kinetic term Z 24, 14, ] Ly £y
. exp i ST TG 8,0 eV
in eq. {2.60) does depend upon the scheme. In order to be unambigous one should ko
: therefore, either avoid teking in eq. (2.60) the limit £-—3C or supply the ex- £ ( £yt t t .7 2, ¢
- | . - (3,7 )P, 0 )10, 9e,7"
pression (2.62) with the additional specification of the discretization scheme.
. £, 2
In the literature eq. (2.60) is often written in a different form: -"? M (Qh"ltl () .,2 (JZQQ!! F £y !J)]} , (2.66)
. N-4 4
- m 1
PI" ;3"”" g-”— (d ?k ? (T")) : In order to cast this equation inte the form of eq. (2.63) we have to calculate
=4
N-1 ¢ A
: e,xf{bz [zc 184!!(?’,‘)41‘ aff +‘ gR (2.63) (a a ~ _2~ ';{_' 2 T" ¢ )Affdlzdlfdt
: k=0 1, fzj«t,tq ?frg‘ e, 2, 2, £,

: 1 ~ ~ ¢r 2y 4 ¥y, Oy
: - - ] 4 A 4 }
+4:C (9(_,a£z$€’f¢ 13”1’"1;1 f, £ ‘—"!) b A k] = 4 m (,*tt* af 981 F,E.tq Ae'd ('dflﬂ‘(* (2.67)
z
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which leads to:

PI= Lo gTT (d™w, ded (¢ (w, )

M—y 02

- Ly 4,2 .
RICRV RIS A

24 m

M m 2¢,
exp e EOLE(V

m g2 22y by t, ty .2
2y ‘9:,35,‘7 “plegley ’A"—e\/]}. (2.68)

This form of the path integral and, more general, eq. (2.63) is particularly well-
suited for comparing eq. {2.68) with any other path integral formulation which uses
a different discretization. One expands the exponent of the latter path integral
around the midpoint & . If the resulting power series in 4 (up to order g )
agrees with eq., (2.68), both path integrals describe the same physics, namely a
quantum mechanical system on the group manifold. In the following section such a

comparison will be carried out for the Wilson action of a lattice gauge theory.

- 21 -

1IT. Lattice Gauge Theory

Léttice gauge theories serve as an interesting application of the results of the
preceeding section. As we shall see, they provide an iﬁstructive example, how a
very péﬁuliar way of discretizing time may lead to & particularly appealing form
of the path integral. For simplicity, we limit ourseives to unitary representations

of the gauge group , which is thought to be & compact and simple Lie group.

Usually, & lattice gauge theory is defined through the partition function on
the k-dimensional euciidian lattice, using the Wilson action in the Boéltzmann
factor. In order to derive the lattice Hamiltonian, one goes into the temporal

gauge AO1 = 0 (1 is an algebra-index) and singles cut the time direction:

T T o U, (k)
Yk ({c,;f / )

2ar T (41-R u..ucwa k)Y - 22
epl-Z 5z 2 TRy )= 22 YIE o
where

Vo= 2 T (1= Re U(3P))

(3.2)
Pla?uetter
p

Here ag and 2, are the lattice spacings in spacelike and timelike directions, re—
spectively. g, and g, are the two lattice coupling constants which in this asymme-
tric lattice have to be distinguished from each other. In egs. {3.1) and {3.2) the
lattice has been sliced: k refers to the time slice, and fi,j} labels spacelike
links. The sum in eq. (3.2) then extends over all spacelike plaquettes belonging

to the time-slice k. Finally the Hamiltonian is derived by writing eq. {3.1) in terms

of the transfer-matrix: in the limit a — 0 one the obtains the lattice Hamiltonian

{Kogut-Susskind-Hamiltonian):
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H] 2
H:.—h . +-—2:'—
ag g.,c‘} L‘* 3, as v o (-3

The hermitian generators Lij satisfy the algebra

L, 4,
ef L‘£j

L ‘

AT D O PR | .
] = ¢ J’ ! ! L_l; 5 (3-4)

4 ¢

[ L;} uflj o uJL T {3.5)

A1l these operators act onto states which are normalized according to

[ eat)y tu><wil =1 (3.6)

H

where {dU) is the Haar-measure of the gauge group.

Let us return for a moment to the integral of eq. {3.1). In the limit at*A%O

{with fixed length of the lattice im the time direction) it can be viewed as a path
integral, where each link is like a quantum mechanical "particle" which lives on the
g;oup manifold. It is then clear thaht the derivation of the Hamiltonian from eg.
(3.1), which we have just reviewed. is the "inverse" of the procedure described in
the previous section(*). There one starts from the Hamiltonian and then derives
the path integral. Since the "path integral" {3.1) does not have quite the form
that we would expect from the considerations of the previcus section, we shall

apply the standard procedure to the Hamiltonian {eg. (3.3)) and then compare the

resulting path integral with eq. (3.1).

{(*)

Throughout this section we shall use euclidian time. Contact with the previous

section has therefore to be made through the usual Wick rotation.

- p3 -

Let us first show that, for each link, the kinetic part of eq. (3.3) agrees

with eq. (2.39). To this end we observe that the algebra of egs. (3.h} and (3.5)
a
A
coincides with eqs. (2.36) and (2.37)}, if we identify L = Lij, U= Uji and m = Ej% .
t

Furthermore the integration measures of the normalization condition of the states
of egqs. (3.6) and (2.41), when applied to the group manifold, agree. Hence, for

each link, the kinetic part of the Kogut-Susskind-Hamiltonian describes a quantum
e

theory of a particle with mass e i constrained to move on the gauge group manifold.
L

Therefore we can write the Hamiltonlan as

A . Gp) 4 BV, o
H za;{%;'}[[i (W Py, Pe, b, L0f) + AV CEE ]

+ _%_ v (3.7}
&s2s
2 ~ ‘ .. iz
where w, are the parameters of the group at the link {§i,j} , and g ()

¢

and 4 V, are given in eq, (2.18) and (2.30), respectively. In terms of the canonical
cperators the hermititan generators of right group transformations at each link are
given by: {(cf. eq. (2.31))

£

4 6, €
L‘i! ] ( 7

Pect fe, 700 C0f

As a by-product, this comparison provides an easy methed for finding, for s general
group, the lattice Hamiltonian: each link variables looks like "a particle which
lives on its own group manifold”. The magnetic potential term the couples these

particles together.

If we would now apply the standard method of the previous section to the kinetic
part of the Kogut-Susskind-Hamiltonian, eq. {3.3), we would, of course, end up with
eq. {2.68) for each link. It therefore remains tc be shown that Wilson's form of the
path integral, eq. (3.1}, is identical to eq. (2.69): the cnly reason why, at least

at first sight, eq. (3.1} locks quite different from eq. {2.69), lies in the use of
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& very special scheme of time diseretization. In order to see this we shall re-
write eq. (3.1} into the discretization scheme of eq. {2.68). Then the omly.
difference between egs. (3.1) and (2.69} will be recognized to be an overall
normalization constant. Let us begin with the exponent of eq. (3.1} (in the
following we shall disregard the potentisl which is irrelevant for cur dis-—
cUssion; we also suppress the summation over the links,and we write ¢ ‘instead

f H
o at)

fetm . Ejii .p} [ 4__ RL 1(+(‘0+4) ﬁ((k).]
vilien k gt £

- kz Eﬁ;_t ReTor [ (U Che )-U ) (UChet)- k)] (3.9)
1 4

Obviously, the time discretization in eq. {3.9) does not correspond tc the mid-
point rule used in eq. (2.63). For comparison, we have to expand the kinetic part
of the Wilson asction around the "midpoint" of 211 time intervalls, keeping all

terms up tc order ¢ {terms of higher order than g are irrelevant in the path

integral}, Since the kinetic term has a facter g'_! and Ak:=(“k e is of
3
: (*) . - .
order P@ﬁ , we have to expand up to fourth order in A . This gives:
Uthen-tchy= 8,9 u+ L a2%0%% 2 9 (3.10)
! )= 8y Y, 26 Sk “u Yk %%, %, 7,
where the derivatives of U have to be taken at the midpoint 53k= % (w, ,, tw)
The quadratic term gives the classical kinetic term:
a 24 ¢, [ \d
S 070t R Tr(9, u) (3 )]
b
a2y L2 24, 2 m £,
_ ¢ 48 e PR .m d (3.11)
— Foota 3: ¢ ,

23, e

(%)

It has already been shown in ref. /30/, that an expansion only up to second

order leads to erroneous results, as it had to be expected,
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where we have defined the mass parameter precisely as in the Hamiltonian approach.

The quartic

"
1e

term of §

kin
Wilson

reads (in an obvious matrix notation)!:

alingt R Tr[(2, (2, 7, % ]

= e )P () BT TT T

4 R .
+3(F-£J)e‘(9_‘-d")d "2 “*9‘,5-”'1 ReTr & Tlipte £

S (- 0) 40 2,0, T T THTE}

We now use eq.

valid for any X because of the hermiticity of the generators.

{2.9) and the identity

N R T TITETY <0,

Wilson action to

fein
Welcon

- £
ST LR G, R alial

+f

m
1é e

-m

42t

d

v Qez?l,o'

Ulr(¢ ﬁ_l‘[,rl;f; rl’[,“ & 7/-?. Ter!‘T!; -T-f'].

ot “F .

(3.12)

(3.13)

This simplifies the

{3.1)
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If we compare this result with the exponent of the path integral expression of the

gauge group of eq. (2.68), there is a difference:

£, 0, 1

. £ Lot £,
AS'=§({;mf {

* Tz_e' olloplele f by o tede g, 7, Tirp e torte
b o 8 t ’ (3.15)
-4, Akzdkrdkﬁ«)’

In the path integral, however, A S is equivalent to a constant (use eq. (2.64}):

oo ly 18, 8y

4 S Z[:l‘frm ;

- RT-(2 TéTéroranTiorarary] G

= z £ (_;Tft‘vl:lr;fflz -2 R T T’fr(fT!!T!l)' (3.17}

Obviously, this is a constant, hence the only difference between the path integrals
of eqs. {3.1) and (2.69) may safely be absorbed intc the normalization of the path
integral. In this way it is explicitly verified that the standard procedure for the
derivation of & path integral and the transfer matrix formalism are indeed inverse

operaticns,

Our result also implies that the path integral on & group manifold can be cast
inte an especially simple form, namely {we now include the correct normalization

factor):
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<q_u,£u‘ q‘l,{::

- ” Lol 0000 0
onp [ G (P e T T

- fom = )M.? K!ﬁj (d"w, 3%(%?)

Nw @ LM g ics 4
M4

. im +
.EX,f{Lkz T'Fr['!-!?_g U (wkH)’Lé(wk)]} , (3.18)
=0
Here the U's form a unitary representation of the group, parametrized by «w and

f s (*}
satisfying eq. {2.7) .

Finally, we want to state the result for A $ for the case of SU(N). Here the

structure constants satisfy /31/

ff4!,t,fl4!;2¢= v gbte ' (3.19)

13 . .
and we have 5 = N?-1. If the U's are chosen in the fundamental representation,

we can use the normalization of eq. (2.9) and Schur's lemma to calculate

£ ¢ 1 2
- —1). 4 {3.20)
TiT - L v ,
This Implies for a85:
2
- £ N7 (3.21)
ag = % 16m N ‘

* . .
) Hote that all expressions for the quantum mechanies on the group manifold, egs.

(2.33), (2.61), {2.68}, and (3.18)}, elsc apply to the case of nonlinear sigma
v
models, which are the field theoretic extensions of cur guantum mechanical system.
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IV. Conclusion

In this paper we first have reviewed the basic formulae for quentum mechanics on
the manifold of a compact simple Lie group, both for canonical quantization and

for the derivation of the path integral. Particular attention has been given to

the non-cartesian nature of any parasmetrization of the group, and explicit ex-
pressions have been presented for the guantum corrections which are associated with

this feature,

In the second part we have used these formulae in order to gain, in lattice gauge
theories, further insight intoc the relationship between the Wilson action and the
lattice Hamiltenian (Kogut-Susskind-Hamiltonian). The latter is shown to be the
canonicael Hamiltonian on the group manifold (up to the potential part). This iden-—

tification is an agreement with the picture that attached to each {spacial) link

there is a group manifold, and the link variables Uij behave like "quantum mechanical

particles” living on these group spaces. This may be considered as the lattice
counterpart of the continuum fibre bundle picture. The identification of the Hamil-
tonlans also allows to write the lattice Hamiltonian in terms of cenonical coor-
dinate and momentum operaters and of the left-axuxiliary functions N of the Lie
group. In the parametrizatioﬁ U = exp (-ffu?‘r?) the Campbell-Baker-Hausdorff formula
provides a tool to calculate 7 (and hence the Hamiltonian) to any given order of

accuracy.

The usual four dimensionsal euclidian partition funection with the Wilson action,
on the other hand, becomes a path integral when (in temporal gauge) the timelike
lattice spacing is taken to zero (keeping the spacelike lattice spacing fixed)., The
action integral of this path integral ("Wilscn form"), however, does not look at

all like the one that follows from applying the standard rules {with a simple time
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discretization) to the lattice Hamiltonian {'"standard form"). We have explicitly
demonstrated that both forms are equivalent {(up to an irrelevant normalization
constant): the (superficisl) difference lies in the wa} in which time is descre-
tized. The "Wilson form'" corresponds to a very special discretization scheme, where-

as the "standard form" e.g. uses the midpoint rule.

We finally like toc stress that this equivalence of two seemingly different
forms. of the path integrel not only applies to the context of lattice gauge theories.
For any quantum system on a compact simple Lie group the path integral can be written

in the elegant "Wilson form".
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Appendix A: Path Integral on the Group Manifold of SU(2):

4 . . . . .
In SU{2) the generators are T = i’te with T° being the Pauli-matrices. They satisfy

FlOTe L Lgtte & blih o6 (1)
4 z )
111213

where § is the totally antisymmetric Levi-Civita tensor in three dimensions.

We want to present the path integral for 8U(2) in two different wide—spread repre-

sentations, namely U = expf-{BeTe) /32/ and U = x° #+ ixl’[,“l /33/.

a) First we want to use the familiar parametrization: /32/

R e 4
-¢ T8, e__¢
Uu=e = C""'Q‘: ﬁ.—t s (a.2)
8 ’
where
(A.3)

8-V8%8° , c=cng , 5= un

In this case, the composition functicns are rather complicated, but we do not need

wl

te know them. The 6 's can calculated using eq. (2.12}, which is spplicable since
eq. (A.2) satisfies eq. (2.7)

2,0, 8 ,1;
. e . 8 (A.4)
8 B gt £ :

where the projector P is defined by

2, € 2
(T"l' 2es P?¢(;+_B;!9_‘+2_§_

plete . J“"—_Bgf , (A.5)

This implies the left-auxiliary functions

Lipl
”ll"’s ;€8 P""+-B—;f AL AL (2.6)

Bgs. (A.18) and (A.20) can be used to calculate the metric andits inverse:
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z by pt,
LA pte, B , (A7)
Jeoe, ™78 g
1 0y 54,
[4
3e'Ez - aBrl P 4!2 + 3813 . (A-B)

Note that the Taylor expansion of eq. (A.8) coincides with eq. (2.25), as it should

be. The Christoffel symbols can be calculsted by using eq. (2.19) or eg. (2.21):

6 2 rery pets Y
Ty, 0, = (5 D) P
¢ A ety B4 plaly gl
+(E—F)(P 3-%—1-[’!,—&- )J (A.9)

and the curvature is given by eg. (2.22):

R=':T Ei’af’zlzilf’z’: (4.10)

4
l '

The quantum correction av, in the Weyl-ordered Hamiltonian is (ef. eqs. (2.32)

and (2.33))
t
LAY AN S S-S S z (a.11)
8= g G173 sttt g).

The quantum corrections in the path integral, which uses the midpoint discreti-
zation, may be written in two alternative forms, either as a g-dependent potential
or as s pover series in 4 . In the form of a potential it reads {ef. eqs. (2,60},

(2.61) and {2.65}}:

T
AV= — (-iﬂii-fi +%,p+i (A.12)

For the power series in A we have, for each time slice {cf. eqs. {2.63) and (2.68))
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bm b¢ ?
t 2 typty
1 _c s 1878 iy 2
+[~3' ;?'+6?] B? }P ' 'Ahdt'ﬂt‘" {a.13)

which is, of course, equivalent to -g4V . Hence the correct path integral on the

s0(2}) group manifold takes the form:

fom T d"8 1 )
tegy)
PI- ~-5E4( e 3708,
et m = e, ¢ I
ol 5 L8 gl - v
2
+E (IS n-50-%0]

or

. N-1 m L
AN

M-
{2 [zz %0, (BN208 - ¢ V(Fy + £

m 7 ¢r _ 5t : €34y
+ 2 (254
ss((z -5 (2+c¢)) P

4 rg Yy ptity €, e 01 als } (A.15)
+ HF‘"J.?' q) )P 2,'4.70,'4, ]
where we have omitted the common normelization factor.

b} In this part of the appendix we consider the parametrization /33/:

-] . F4 [
U= x ‘f-LX(T , ¥'= 1-xlrt (4.16)
Note that this parametrization does not fulfil eg. (2.7), hence the results of

section II should be applied with some care. Therefore we start from the very
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beginning: the composition function reads:

4 £ 0 el 1 4
$lix,  xrm xtule xfxl- g fafte (h.17)
which fmplies for the left auxiliary functions
£ 21,2
4214 — th“-; ¢ + zx,lz ) {4.18)

Let us mention that eq. (A,18) cannot be obtained from eq. (A.6) by simply applying
[4
]

. 2
the coordinate transformation B — X‘!(Q) == § ? and using the proper

transformation behavicur of the vielbein N . This would yield

¢
~ : ¢ 2x - .
'»Z![’(y)= nz(_z(th)) 9,71 =’%7” k) (A.19)

The reason Tor this lies in the Tact that when changing the parametrization from

eq. (A.2) to (A.16) ve alsc make a change of the orthogonal vasis of the Lie algebra
aceording to T——s -7T°. As a result, under this combined transformation, the viel-
bein recieves an additional factor of -2, compared to the simple coordinate trans-
formation. The redefinition of the basis alsc changes the structure constants: eqgs.

{2.5) and (A.18) lead to

I
f Rl gty (4.20)

For the G 's we find

20, ogite, xlple A2 g,

T xe X . (a,21)
Instead of eq. {2.12) they satisfy
) . g e
U 95’&!: PG (A.22)

which again indicates the change in the basis of the algebra. 6 and M give the

metric and its inverse:
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e, 2 tey le
3 " - J 1 " X Xl )
+ 52 e

T

3 B :

The Christoffel symbols and the scalar curvature are calculated to be:

T .

3
14 !’ X 331!1 !

£€‘t2!'[!‘h,)= §

R"'Z" f’f’t!1£14!,!; B

{a.

The difference between egs., {(A.26) and (A.10) can be understood by the following

transformation: first perform the coordinate transformation B—»x, which leaves R

invariant and then rescale the metric by a factor of U (due to the change of the

basis in the algebra), which enlarges R by the same factor.

The guantum correction 4 V! in the Weyl-ordered Hamiltonian is given by (see

qs. (2.232) and (2.33))

1 xlx?
AV4=Ff—m(_?'—!—6)

The quantum corrections in the midpeint rule discretized path integral can be

stated as (cf. egs. (2.60), {2.61), (2.63) and (2.69}):

A xx€_
ayv = S (5. xe? 3) '
= £ isd £r C¢Y .,
4L m+1“3‘!«(:(3¢r14+3?!r1r$£41rx x4
Cogleyt

(A,

L2h)

.2%)

26)

28)

no
O
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Therefare the correcht path integral reads:

- n 4
o1 i [ (470 gto0)

N—aw

N-1

-l ¢
-ex,{c‘g‘,[-%";}h!!(x,,)ﬂ,‘ Ak‘—P ( LI ’ -3)- eV (X, )]} {A.30)

or

PI= Lvm [Tr (o[ Xy 3%(1,,))'

N

{'Z-f[f—" (F)8, '8t - £V +
el 2t de,0, 0570k die kKom

/ fe
n:g'e.!, (3., lu“‘f‘nfr'?!vhx ') 4,0

vhere, again, we have suppressed the common normelization factor.

t’d"]} A.31)
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