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Abstract 

In the following report we describe a method for calculating the envelopes of coasting 
beams in linear coupled storage rings and transport systems in the presence of transverse 
space charge forces. This work is an extension of earlier calculations[2,3] to include 
coupled beam optics and energy deviations. The extension is achieved by defining a 5-
dimensional ellipsoid in the x - Px- z- p, - f.pjp space. The motion of this ellipsoid 
under the influence of the external fields and the instantaneous space charge forces can 
be described by five gener.ating orbit vectors which can be combined into a 5-dimensional 
matrix B(s). This "bunch -shape matrix", Jl(s), contains complete information about 
the configuration of the bunch. The solution of the equations of motion is carried through 
in the thin lens approximation. 
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1 Introduction 

In simple treatm<ents of b<>am transport m storage rings and beam lines, one neglects 

electromagnetic interactions betw<een the particles. The evolution of the beam envelope can 

then b<e calculat<ed from a knowledge of the single particle motion as determined by the 

external guide field of the lens system. 

This approximatiou is justified when the partides are highly relativistic. In this case the 

electrostatic and magnetic forces between pairs of partides essentially cancel since they have 

similiar magnitudes and opposit<> signs[l]. 

The position is different, however, when the particles are travelling slowly compared to 

the speed of light as, for example, in the case of heavy ions. Then, the electrostatic repulsion 

is stronger than the magnetic attraction and there is a net force on the particles over and 

aboYe that due to the lens system. 

I'Vhen such a space charge force is present it is no longer possible to calculate beam 

envelopes in .r ~ p" - : -· p, space using the independent particle approach; the motion of a 

single particle is influenced by the electromagnetic forces of all the remaining particles of the 

beam. Sine<> th<ese forces are on balance repulsiv<>. the beam has a tendency to expand and 

particles can be lost if tlw ph~·sical machine aperture is not correspondingly increased. 

In the following. we show how to calculate the envelopes and sizes of coasting beams in 

the presence of transverse spac<e charg<> forces so that more accurate estimates of the required 

machine aperture can be made. 

If the coupling b<>tween the betatron oscillations and the energy deviations of the parti­

cles is neglected the formalism developed here contains the results of J.M.Kapchinskij and 

Y.V.VIadimirskij [2,3] as a special case. 

2 Equations of Motion 

The calculation begins with the equation of motion of a particle of charge e: 

d' f . - • If 
m 0 · ·-(! · i) =-(iII B)+ F" 

dt 2 c 
( 2.1) 

"-here B is the ext<ernal guide field and F·"1f is the spac<e charg<> forc<e due to the beam itself. 

For simplicity. we mak<e the following assumptions about the charg<> distribution of the 

bunch: 
1.) \Ye consider a coasting beam whenc<e th<e longitudinal dimension is much greater than 

the t.ran~verse din1ension. Only transverse forces are included. 

2. )At position s. the beam has an ellipse-lik<e cross s<>ction in the x-z plan<> given by the 

equation '1.8,9. 
E ' . z "E G .. _ + Ez _ 2 ::·.r --- J: .T·,l- 4.· .... (2.2) 

where Ex. E, G,,., G., are defined by Fig.l and 

c 
'-- J• .: 

(2.3) 

(2.4) 

( J is t h<e ar<>a of the dlips<>). 



3.) The charge density is a constant independent of position within the bunch. F .J .Sacherer 
has shown that in general for practical distributions, the dependence of the envelope equations 
on the type of distribution can be neglected [4]. However, since with a uniform distribution, 
the space charge varies linearly [2] with x and z , the formalism can be greately simplified 
and the usual techniques of linear optics used (see section 3)[3]. 

4.) In calculating space charge forces we neglect the small spread in longitudinal momenta. 

Ex ----1 

Fig 1 

With assumptions 1), 2), 3) and 4) and following J.M.Kapchinskij and V.V. Vladimirskij 
[2], in the rest system ~0 of the beam defined by 6.pjp = 0, the components of f•.Zf along 
the symmetry axes (x,z) are given by (E,E2 =half axes of the ellipse): 

p•elf ;;o e · 4,\0 • 
1 

(2.5a) • X j 
E 1(E1 + E2) 

p•elf 1 
(2.5b) iO = e · 4Ao · . z j 

E2(E, + E2) 
F"lf • o 0 . 

' (2.5c) 

( ,\0 = line charge density in ~0). 

Then, with respect to the (x,z) axes we obtain: 

F •elf - p•elf 0 p•elf . 0 . 
zO - ZO • COS - .£0 • Slll 1 

3 



F ,.lf F'elf . 0 F'elf 0 zO = :CO · Slll ~ + zo · COS M • 

Transforming into the lab. system L: we have: 

F"lf = .!_ . F"lf 
z zO 

I 

F"lf = 0 
' 

or, if we use the relation 

A = 1 · Ao 

(line charge density in L:) 

(a calculation of A may be found in Ref.[5]) and substitute (2.5) and (2.6) in (2.7): 

with 

4A 
2 · e · (Fxx · :r + F"' · z) ; 
I 
4A 
- · e · (F-x · :r +F.. · z) 2 " .• 
I 

F,, = F,, = (E, ~ E
2

) · (~1 - ~J · sin0cos0; 

1 (1 2 1 ·2) F = . - . cos 0 + -- . Sill 0 
XX ( E, + E2) E, E2 . 

1 (1 2 1 2) 
F, = (Et + E 2) · Et ·sin 0 + .E

2 
·cos· 0 

(2.6) 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

If the closed orbit is straight, equation (2.1 ), when written in terms of the x-i-s compo­

nents, takes the form [7,8j 

.T _e_. (iB,- sBJ + _1_. F;elf ; 
mo1c mol 

e . . ' 1 sd f 
- = -- · (sBx- xB,)-;-- · F, 

mole mol 

We now introduce s as independent variable: 

dx· ds 1 . 

.r=---~=.T ·s: 
ds dt · 

•· II · 2 I •• 
X=;r ·S +:r ·S; 

I . 
.::: = ;: . s ; = = ::

11 
• 82 + ::' . s ; 

4 

(2.11a) 

(2.11b) 

(2.1lc) 

(2.12a) 

(2.12b) 



v 2 = s2 + x' + i 2 = s2 
• ( 1 + x'' + z'2

) 

1 1 -v1 + .r,'2 + z'2 

s 1' 

so that eqn.(2.11) becomes: 

Putting: 

x" ~e-V1 + x'2 + z'2 • [z' · B,- (1 + x'2
) • B, + x'z' · Bx] + 

p. c 

II z 

(1+x'2 +z12
) 1 

-'--~---,,--~-'- . __ . F'ei! . 
2 X l 

1' mol 

-~e-J1 + x'2 + z'2 · [x' · B,- (1 + z'2
) · Bx + x'z' · B,] + 

p·C 

(1+x'2 +z'2 ) 1 
-'--~---,,--~-'- . __ . F:ei t . 

-v2 rnor .. 

N 

H 

g 

~. _e_ (aBx _ aB,) 
2 p. c ax az x~o~o 

1 e 
-·--B. 
3 p. c $ ' 

and using the relations: 

divE= 0 
aBx aB, aB, 

=> ~-+~-+~-0· ax az as - , 

~ aB, 
rotE= 0 => 

ax 

equation (2.14) in linearised form is then: 

1 
(N + H') · z + 2H. z' + 

2 
. F;e!t ; 

fnl.oli 
x" + g · x 

(N-H')·x-2H·x'+ 
1 

·F"1!. 
Jn~ov2 -

(2.13) 

(2.14a) 

(2.14b) 

(2.15a) 

(2.15b) 

Equation (2.15) is valid for a straight design orbit. If on the contrary, the design orbit is 

curved in the horizontal plane, one must include an inhomogeneous term[6) 

1 {';.p 
+~·­

p(s) p 

on the r.h.s. of eqn. (2.15a), where p(s) =curvature of the reference trajectory and {';.pis 

the deviation from the reference momentum p0 • Furthermore, the factor g is replaced by: 

5 



The complete equations of motion (see (2.9)) including the effect of self fields and external 
guide fields are then: 

In detail, one has: 

a) 

b) 

c) 

d) 

x" + [g + ;,]· x- (N + H 1
) • z- 2H · Z

1 
= 

4.\ · e 1 llp 
--::---;, · [ Fxx · X + Fxz · Z] + -( ) · - ; 
1 3 • m 0v 2 p s p 

g i 

N i 
1 
- f 
p 

H f 

z"- g · z- (N- H 1
) • x + 2H · x 1 

4.\ · e 
--::---c- · [ Fn · X + F, · Z] 
r 3 

• mov 2 

0· 
' 

1 
N=H=-=0: quadrupole; 

p 

1 
O· g=H=-=0: ' 

skew quadrupole; 
p 

0· 
' 

g=N=H=O: bending magnet; 

1 
solenoid. O· g=N=-=0: ' p 

(2.16a) 

(2.16b) 

The term Fx, = F,x appearing in (2.16) describes the self-coupling of the bunch and 
vanishes for a cylindrical bunch according to eqn. (2.10) (E1 = E,). 

For later developments. it is useful to introduce the momentum variables 

Px = x'- H · z; ( 2.1 7) 

Pz = Z
1 + H ·X. 

Equation (2.16) then becomes: 
xl = Px +H.:::; 

I 

Px = [ 
1 '] 4>. . f 1 llp - g +- + H . X+ N.;:; +H. Pz + . [Fxx. X+ Fx,. z] +-.-
p2 

{
3 

• mo''' p(s) p 

z 1 
= p, - H · .r ; 

1 • [ '] 4,\ . f , p, = 1v · x- H · Px + g- H · z + · [Fox · x -1 
1 3 

· mov 2 
(2.18) 

Remark: 

To handle particles with different energy deviations in a uniform manner we take for the 
constants rand v appearing in eqn. (2.18) the values belonging to llp/p = 0 (see eqn. (2.1)). 
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3 The Beam Envelopes 

3.1 The 5-dimensional ellipsoid in x- p~- z- Pz- f:;pjp space 

In obtaining equation (2.18), we have assumed that the beam cross section remains 

ellipse-like as the bunch travels along the closed orbit. This is indeed the case as we prove 

below but we must regard the Fxx, Fxz, Fzx, Fzz as varying and as yet unknown functions of 

s. Equations (2.18) are then linear and their solutions can be expressed in the form 

(3.1a) 

with 

"" ( y ) y = b.p/p ; (3.1 b) 

M• ( ) _ ( M(s,.so) x(.s,so)) 
- s,so - 0 1 . (3.1c) 

M is the transfer matrix associated with the homogeneous part of eqn. (2.18), i is a special 

solution for the inhomogeneous system (2.18) with b.p/p = 1 and for which 

i( .s0 , so) = 0. (3.1d) 

Since, according to (2.10) ~e have 

we can represent the equation of motion (2.18) in Hamiltonian form 

I 
8H I 

8H 
X 

8px 
Px = 8x ' 

I 8ii I 8H 
z p_= 

{)z 8p, 
(3.2a) 

with the Hamiltonian[7,8] 

H - ~ · {[.q+ ;,]· x2
- g · z2

- 2N · xz + IPx + H · z] 2 + [p,- H · x] 2
}-

~ · 
4

>. . e · [F · x 2 + 2F · xz +F. · z 2
] -

2 3 . 2 XX XZ -.z 
7 ·mov . 

1 b.p 
--·-·x. 
p(s) p 

(3.2b) 

Because the variables x,p., z,p, are canonical, the transfer matrix is symplectic[7,8]: 

(3.3a) 



where 

(3.3b) 

As we prove later, we may ensure that the projections in the x- z (and the x- p, and 
z - Pz) plane is elliptical by choosing a particle ensemble ( at s = s0 ) which occupies a five 
dimensional ellipsoid in x- Px- z- p, - !::>.pjp space whose surface is of the form[9]: 

cos ~ . cos X . [ ( y, ~0 ) ) • cos o J+ ( y, ~0 ) ) • sino 1] + 

. [( Y3(so) 
cos~. smx. 0 ) ( Y• (so) ) . ] ·cos Ou + 

0 
· sm bu + 

. ( Ys(so) ) 
sm~ · (!::>.pjp)o (3.4) 

The jj;( s 0 ) are five independent fixed orbit ved.ors: 

Xk 

( ~k ) 

Pxk 
Zk (k = 1,2,3,4); 

Pzk 

(3.5a) 

0 

Xs 

( Ys ) 
Pxs 

(!::>.pjp)o 
zs 

Pzs 

(3.5b) 

(!::>.p/p)o 

which are determined by the shape of the ellipsoid at s 0 and the surface is spanned by varying 

<p, x, DI, bu. 
We can see that eqn. (3.4) represents an ellipsoid as follows: 
Eqn. (3.4) can also be written in the form: 

with 
cos~· cosx · cosf:J1 
COS<p · COSX ·sinO] 

q = cos~· sinx · cosbu 
cos~· sinx · cosbu 

szn~ 

Yk = ( ~) ; (k = 1,2,3,4); 

Ys = ( (!::>.:;P)o ) 

8 

(3.6) 



It follows from (3.6) that 

if=T-g 
where 

T-' = ({,,Y:,,y~,y:,y~). 

(Note that the vectors gk( k 1, 2, 3, 4, 5) are linearly independent. Therefore the matrix (g,,g2 ,g3 ,g4 ,g5 ) is nonsingular and the inverse of this matrix exists.) 
Furthermore, if we use the relation 

we find that 
5 

L [T~v 'Yv] 2 
= 1 · (3.7) 

Since the matrix Tis nonsingular, the left hand side of eqn. (3.7) represents a positive definite 
quadratic form from which <p, x, fii, fill have been eliminated. This confirms that eqn. (3.4) 
indeed represents the surface of an ellipsoid in x - Px - z - Pz - b.p / p space. 

During the particle motion, the eqn. (3.4) transforms to 

with 

~(s;<p,X,DI,fiii) = M(s,so) y(so;<p,x,fii,fiii) = 

[( 
y,(s)) ( y2(s)) . ] cos <p · co·s X · O · cos fi I + O · Slll fi I + 

. . [( y3(s) cos 'P . Slll X . 0 ) (
Y:,(s)). ] · costhi + 

0 
· smfiii + 

. ( ys(s) ) 
sm<p · (b.pjp)o 

ffk(s) = M(s,so) Yk(so) ;(k = 1,2,3,4); 

y5 (s) = M(s, so) Y5(so) + ( ~P) 
0 

· x(s,so), 

(3.8) 

(3.9a) 

(3.9b) 

so that the beam envelope keeps its ellipsoidal form. It is thereby already clear that if the 
beam cross section, which is the projection of the ellipsoid (3.4) on the x- z plane, is elliptical 
as required by (2.18), then the projection remains elliptical and can be described by eqn. (2.2) 
and (2.3). 

In the next section we calculate the projections of the ellipsoid on the x .- p, z - p, and 
x - z planes. 

3.2 The projection of the five dimensional ellipsoid 
To calculate the projection and the equation of the ellipsoid (3.8) we first of all express 

eqn. ( 3.8) in component form: 

X ( s; 'P, X, fi I, D II) = cos 'P · cos X · [Yll ( s) · cos fi I + y21 ( s) · sin fi I] + 

9 



cos <p · sm X· ·y3,(s) ·cos ~II+ y.,(s) · sin.SII] + 

sin 'P · Ys• ( s) : 

cos 'P · cos X · [y12 ( s) · cos~ 1 + Y22 ( s) · sin .S I j + 

cosrp · sinx · [y32(s) · cosfm + Y•z(s) ·sin <III]+ 

sin 'P · Ys2 ( s) : 

COS<p · COSX · [y13(s) ·COS~]+ y23(s) ·sin OJ]+ 

cos rp · sin X · [y33( s) · cos 0 II + y.,( s) · sin 0 IIi -"­

sin 'P · y53( .s) ; 

cos \C · cosx · [y14 ( s) · cos~ 1 + y24 ( s) · sin c\1] + 
cos rp · sin X · [y34( s) · cos~ II + Y44( s) · sinD II, + 

sin <p · Ys• ( s) . 

(3.10a) 

( 3.10b) 

(3.10c) 

(3.10d) 

The projections are then obtained by investigating the functional dependences of pairs of 
components[9]. 

3.2.1 Projection on the :r - : plane. 

The projection on th<> :r- : plan<> describes the boundary of the beam cross section. Thus 
it is useful to calculate the maximum amplitudes in the two direetion5. 

a) Maximum oscillation amplitude in x direction: 
By using the relation 

M a .T ~ {A · cos 'P + B · sin 'P} = J A 2 + B 2 

we see from ( 3.10a) that the maximum amplitudt> in tlw x direction is 

Max(NhbJI) x(s;cp,x.~I,bii) = /Yi~+-y~1 + yj, + y~1 - y~ 1 (3.lla) 

If we anticipate that the projection is an ellipse, the maximum amplitude in (3.lla) can be 
identified with the ellipse envelope parameter of eqn. (2.2), i.e. 

This amplitude is reached for the case where the angles OJ, DII, X, <p are given by 

Y31 Y•• cos Du = ; sin c5n = ---r~~= 
.jyj, + Y~1 .jyj, + Y~1 

.jy;, + y~, 
cos X 

.j2+2.L'+' Yn Y21 ' y,, Y41 

Slll X 

~------ -·--'" 

..jy5, + .'!~1 

10 



/ 

j;A;+Yi1 + Yi1 + YJ1 

.f;?1 + Yl1 -+ Y:~1 + Y~1 -+- Y~1 
Ys1 

sm '? = r=::=====:=~".====== 
2 '+'+'+' V Yn + Y21 Y11 Y•1 Ys1 

The corresponding z coordinate can then be obtained from eqn. (3.10c): 

1 
G" '= Ex(s) · {Yn · Y13 + Y21 · Yn + Y11 · Y33 + Y•1 · YB + Ys1 · y,_,} 

h) Maximum oscillation amplitude in z direction: 

( 3.12) 

(3.13) 

The maximum amplitude in z direction is calculated in the same way. From eqn. (3.10e): 

Max(,.,h<n) z(s;<f,\,~I,bu) = Jy~3 + y~3 + y~3 + y~3 + yg3 = EJs). (3.14) 

The corresponding x coordinate is then 

1 
G, = E,(s) · {Yn · Yt3 + Y21 · Yn + Y31 · Y33 -t Y4t · Y•3 + Yst · Ys3} · (3.15) 

Thus we see 
(3.16) 

c) Maximum oscillation amplitude at the angle {) with the x axis. 

To calculate the equation of the beam cross section we now consider the largest amplitude 

that can occur al01ig some direction which makes an angle{) with the x axis in the x-z plane. 

It is useful to introduce a rotated coordinate system x -· z according to the transformation 

x ( {)) = x · cos {) + z · sin{) ; 

z( {)) = -X ·sin{) -i- Z ·COS{) . 

A 

z z 

Fig. 2 

From eqns. (3.10a) and (3.10e) 

x(!?) cos 'P cos X [ ( y11 · cos{) + Yt3 · sin{)) cos b I + ( Y21 · cos{) + Y23 · sin{)) sin b I] + 

11 



cos <p sin X [ ( Y31 · cos !? + y,, · sin!?) cos .5 II + ( Yu · cos !? + Y<3 · sin!?) sin .5 II] + 

sin <p • (Ys1 ·cos!?+ Ys3 ·sin!?) 

and for the maximum amplitude in the rotated frame 

in the !? direction one obtains 

This amplitude is reached for the case where the angles br, bn, x, <p are given by 

with 

J~~ +(~ 
sm X = -r======= 

J~i + ~? +(~ +(~ 

Ja +a+~~+~~ 
cos 'P = -r"=~~=~=~= 

J~i Hi H~ H~ H~ 
. ~5 

sm<p = . J ~i + ~~ + ~~ + ~~ + a 

6(!?) = Yn ·cost!+ Y13 · sintl; 

6(11) = Yn ·cost!+ Y23 ·sin!?; 

6(!?) = Y31 ·cos!?+ Y33 ·sin!?; 

~.( 11) = Yu · cos 11 + Y<3 ·sin!? ; 

(s(tl) = Ys1 ·cost!+ Ys3 ·sin!?. 

The angles 11 1 and !? 2 corresponding to the extrema of E(tl) are given by 

d 2 [2 2] 0 = d!? E ( 11) = - E, - E, ·sin 2!? + 2E,G, ·cos 211 

for 11 = 1!1,2 

12 
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I 
I 

whence 

(3.18a) 

(3.18b) 

corresponding to extrema 

(3.18c) 

From (3.18b) we see that the direetions eorresponcling to the angles 1?1 and 1?2 are perpen­

dicular as one expeets if the x ~ z projection is elliptical. 

I Eqn. (3.17) describes the envelope of the beam in the 1? direction. In particular 

I for 1? = 0 

i E(O) =Ex 

I 
I 

and for 1? = 1r /2 

The i eomponent corresponding to the x component E(!?) of eqn. (3.17) is given by 

1 {1[·2 2] } G(!?)= E(~) · ~2 Ex-E, ·sin21?+ExGx·cos21? (3.19) 

Special cases of eqn.(3.19) are: · 
G(O) = Gx 

for 1? = 0 and 

for 1? = K/2 (see eqn.(3.16)). 

d) The boundary curve of the beam cross seetion. 

We will now show that the projeetion of the ellipsoid onto the x - z plane is inde<"A 

elliptical. To achieve this, consider the ellipse: 

( 
J' ( S; </') ) _ ( Ex ( S) ) , ( 0 ) , 
z(s;</') - Gx(s) ·cos,P-, JE:-c; ·snl1)' ( 3.20) 

where~~ is a free parameter and where Ex(s), Gx(s) and E,(s) are given by eqns. (3.11), 

(3.13) and (3.14). We see that. if one takes the projection of the ellipse of (3.20) onto the x 
and~ axes for each 1? (Fig. 2) one just obtains the expression E(!?) of eqn. (3.17) and G(!?) 

of eqn. ( 3.19) . Thus the ellipse (3.20) is identical to tlte boundary of the beam cross section 

in the ;r - z plane. 
Furthermore by eliminating cos V' and sin,P one obtains the ellipse of eqns. (2.2) and (2.3) 

which was used in Chapter 2 to calculate the space charge forces. 
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3.2.2 Projection on the x - p. plane. 

For the projection of the ellipsoid (3.8) onto the x- p. plane the corresponding equations 

are (3.10a), (3.10b). Since these two relations have the same form as eqns. (3.10a) and 

(3.10c ), we obtain an elliptical projection onto the x - p. plane by analogy with eqns. (2.2), 

(2.3). We write the ellipse in the form: 

(3.21) 

with 

(3.22) 

1 
Ep.(s) = E.(s) · {Yn · Y12 + Yn · Y22 + Y31 · Y32 + Y<l · Y<2 + Ys1 · Ys2} (3.23) 

tre: = 1r • E I A2 _ E2 . 
:z:: :z::y z p., ' (3.24) 

(area of the ellipse(3.21) ). 

Here, the function A.( s) represents the maximum amplitude of the momentum Px and could 

be called the momentum envelope for the x- p. plane. tro, gives the area of the ellipse (3.18) 

and the meaning of Ep. is indicated in Fig. 3. 

\ 

\ 
\ Ax 
\ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 

\ 
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3.2.3 Projection on the z - p, plane. 

A similar treatment can be used to describe the projection on the z- p, plane. We write 

A2 · z2 - 2E E · zp + E 2 . p2 = • 2 
z z Ps z z z ~ z 

where 

1 
Ep,(s) = E,(s) · {Yt3 • YH + Y23 · Yz4 + Y33 • Y34 + y., · YH + Ys3 · Ys<} 

1re: = rr • E . I A2 - E2 z zy z p,. 

(area of the ellipse(3.25).) 

This is all represented by the ellipse in Fig. 4. 
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Fig. 4 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

With the calculation of the beam and momentum envelopes and with the proof that the 

· beam cross section for general particle motion can be described by the ellipse of eqn. (2.2) 
we are now ready to return to the discussion of space charge forces of Chapter 2. 
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We point out finally that the angle 0 of Fig.1 is to be identified with the angle f! 1 of eqns. 

(3.18a,b) and that. the quantities E 1 , E 2 appearing in eqns. (2.5), (2.10) and (2.18) are given 

byeqn. (3.18c). 
A method of approximate solution of the equations of motion (2.16) will be presented in 

the next section. 

Remark: 

If we neglect the momentum spread, the 5-dimensional ellipsoid becomes a 4-dimensional 

ellipsoid : 

cosx · [y1(s) · eosb1 + y2 (s) · sinli1 ]-+ 

sinx · [Y3(-<) ·cos lin+ Y.,(s) ·sin <In]- ( 3.29) 

In this case the terms Ex,E,Ep,,Ep,,A"A"G"G"f"f' are obtained from eqns. (3.11), 

(3.15), (3.22), (3.24), (3.26- 28) by setting Ysv = 0. The projections onto the x- :,x- p,. 

and:- p, plane are again given by eqns. (2.2), (2.3), (3.21) and (3.25). 

4 Solution of the Equations of Motion 

4.1 Thin lens approximation 

In matrix form, the equations of motion (2.18) are: 

with 

Az• 

.4.31 

.4.32 

A:n 

A34 

d - A( ) - D.p • -y = _ s · y + - · r 
ds p 

0· 
' 

H· 
' 

0· 
' 

- [g + .2:_ -t Hz] + -~)._.:_c__ . F . 
2 ~ 2 J:J' ' P '"'r · ntol' 

0· 

4,\ . ' 
N -t ---- · Fx-r·3. nlo1' 2 -

+H: 

-H: 
0; 

0· 
' 

1 . 
' 
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I 

-H; 

[ l 
4.\ · e 

g - H' + 3 ' . F,. 
1 · mov 

0 

and 

or, by using the vector fj of eqn. ( 3.1 b): 

d -: 
-y= 
ds (

A :;: ) -0 0 y. 

( 4.2a) 

( 4.2b) 

( 4.3) 

For the transfer matrix M(s,s 0 ) defined in eqn. (3.1c) we obtain the defining equation: 

d • 
ds M(s, s0 ) ( 

A(
0
s) i') . 

0 
M(s,s 0 ); 

M(so,s 0 ) l, 

which in terms of components M( s, s0 ) and i( s, s0 ) gives: 

d 
dsi(s,so)=A(s)·i(s,so)+r; i(s0 ,s0 ) =0; 

d 
dsM(s,so) = A(s) · M(s,s 0 ); M(s 0 ,s0 ) = l, 

so that in first approximation we may write : 

=? M(s+~s,s)=l+~s·A(s), 

However, M so calculated is not symplectic (see eqn. (2.3)) for finite ~s . 

( 4.4a) 

( 4.4b) 

( 4.5a) 

( 4.5b) 

( 4.6) 

The solution of eqn. (4.4), and also of eqn. (4.1), can be obtained however in a thin lens 

approximation which is also symplectic. 

For this, we divide a lens into a sufficient number of thin lenses for which in the power 

series expansion of the matrix M ( s + ~s, s0 ), only the linear terms are needed. Thus we write 

lii(s + ~s,s) = ( M(s +Q ~s,s) r\~s), 

for which M( s + ~s, s) is given approximately by eqn. ( 4.6 ). 

( 4.7) 

To ensure that the symplecticity of the submatrix 111( s + ~s, s) is rigorously maintained 

by the linearisation ( see eqn. (3.3)) we write 

( ~s) ( ~s ) 
M(s+~s,s)=Mv s+~s,s+ 2 ·[l+C(s)·~s]·R(~0)·Mv s+2,s ( 4.8) 
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with 

C(s) A(s)- D- F; (4.9a) 

D ( 4.9b) 

( 4.9c) 

Mv(s+l,s) = l+l·D; ( 4.9d) 

(transfer matrix for a simple drift space of length 1) ; 

R(t.e) ~ ( 

cos~0 0 +sin~0 '] 0 cos~0 0 +sin~~ (4.9e) 
-sin~0 0 cos~0 

0 -sin~0 0 cos~0 

(~0=H·~s). 

In linear order, the right hand side of (4.8) agrees with the r.h.s. of eqn. (4.6). Fur­
thermore, all factor matrices on the r.h.s. of (4.8) and therefore M(s + ~s, s) itself are 
symplectic. 

In this way, the linear approximation (4.6) for M(s + ~s,s) can be made symplectic by 
adding terms of higher order in ~s. 

To compute the matrix i!f( s + ~s, s) using eqn. ( 4. 7) and ( 4.8) the coefficient matrix, 
A(.s ), must be known. But ( eqn. ( 4.2a) ), the matrix elements A 21 , A 23 , A 4 h A 43 contain the 
quantities Fxx, Fx, F,x and F" and these depend on the space charge forces. Also, according 
to (2.10), (3.19), (3.11), (3.13) and (3.14) the F" depend on the generating orbit vectors f.Jic 
( k = 1, 2, 3, 4, 5) whose behaviour also of course depends on the shape of the beam. 

However, one should note that the vectors f.Jk can be calculated using the transfer matrix 
i1(s + ~s,s) once the starting conditions are known. By eqn. (3.9): 

( iJ,.(s; ~s)) = M(s + ~s,s) ( i],.bs)) (4.10a) 

for k=1,2,3,4 ; 

( iJs(s+~s))=M(s+C.s,s)( Ys(s)) 
(~pjp)o ~ · (~pjp)o 

( 4.10b) 
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By using this relation together with (4.7), (4.8), (4.2a,b), (2.10), (3.18) as well as (3.11). 

(3.13),(3.14), (3.16) the transfer matrix for a thin slice can be defined and then, by multipli­

cation, the matrix for a thick lens. 

Finally we mention, that eqns. ( 4.10a,b) can be written in a compact form 

B ( s + L).s, s) = M ( s + !). s, s) · B ( s) 

by introducing the "bunch-shape matrix" 

which already appears in eqn. (3.6 ). This matrix B contains complete information about the 

configuration of the bunch- see eqns. (2.2), (3.21) and (3.25). 

4.2 Initial conditions for the ellipsoid 

The beam cross section depends both on the shape of the phase ellipsoid at injection 

and on the space charge forces. Thus, for example, in a machine with uncoupled optics, it is 
I 

possible for the betatron motion to become coupled if the beam ellipse is tilted in the x ~ z 

plane. This manifests itself by the appearance of a non-zero tilt angle 0 of the half axes E, 

E 2 with respect to the x and z axes. 

If the beam is injected with no twist, the ellipsoid can be written in the form [9] 

Ex( So) 
Ep, (so) 

0 

cos 'P · cos X · 0 · cos fJ1 + 
fx/ Ex(so) 

0 · sinfJ1 + 
0 0 

0 0 

0 0 

0 0 

cos 'P . Sill X . E,( so) 
Ep,(so) 

0 

·cos flu+ 0 · sin Dn + 

Sill'{! · 

f,/ E,(s0 ) 

0 

( 4.11) 

For open ended transport systems, there is little more to be said. But .for storage rings 

we wish the ellipsoid to be periodic. This then means that the transfer matrix is periodic: 

M ( s 0 + L, s 0 ) = M ( s 0 + ZL, s 0 + L) (4.12) 

One may find the periodic ellipsoid by writing (3.4) in the form [9] 

1 r;~ [ ( ii'J( so) ) ;0 ( Vj (so) ) io ] 
2 • y E J • COS '{! · COS .\ • O · f I + O • f- I + 
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1 . [( ii'n(so) 
2 · ,jEii · cos 'P · sm X · 

0 
) . eibu + ( Vjl~so) ) . e-ibu] + 

with 

. ( Ys( so) ) 
sm<p · (t:lp/p)o 

ylci · ih(so) = y,(so)- i · Y.,(so) ; 

VEil. vn(so) = )/3(so) ~ i. ih(so) ; 

Vj(so) · !i. ·vi( so)= Vj1(so) · !i.~· vn(so) = i . 

(4.13) 

(4.14a) 

( 4.14b) 

From this, it is clear that an ellipsoid injected at. s = s0 , recovers its original form after one 
turn if the vectors v1 ( s0 ) and ii"n( s0 ) satisfy the eigeti.-condition 

M(so + L,so) ·t"i'J(so) 

M(s 0 + L,s0 ) • vn(so) 

and when y5(so) satisfies the condition 

- ( y,(so) ) 
M(so + L,so) (t:lp/p)o (

, y,( so) ) 
(t:lp/p)o . 

Eqn.( 4.15a,b) can be written as: 

with 

(
. ,"i'r(

0
so) ) ·, ,

1 
_ e-i·hQ_1 Ut(So) = A -

ii,(so) = ( vn~so)) ; Az = e·>·ZrrQn 

ii 3 (s0 ) ( (~;;;)Jo ) ; A3 ~ 1 · 

(4.15a) 

( 4.15b) 

(4.16) 

( 4.17a) 

(4.17b) 

(4.17c) 

Since the transfer matrix it( s 0 + L, s 0 ) depends on the eigenvectors iiv( s 0 ) and its eigenvalues. 
the vectors iiv( s0 ) must be calculated self consistently by iteration: the calculation of f.I in 
the n-th step relies on knowledge of the eigenvectors of the ( n-1 )-th step. In the first step the 
space charge forces are neglected. The solution so obtained will depend on the form for the 
starting ellipsoid and its charge density. 

Since the tunes, Q I and Q II, depend on the eigenvalues ,\ 1 and ,\ 2 [7,8] (see eqn. ( 4.17a,b)), 
we are also able to obtain the tune shifts caused by the space charge forces. 

As shown in Ref.[10], the Q shift can be approximately written in the form 

(4.18) 
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where 6A( s) represents the perturbations due to space charge forces which appear in eqn. 

( 4.2a): 

bAn 
4,\ · e 

!3. mo'v2 
· Fxx j 

6A23 
4,\ · e 

· Fxz; 
13. mov2 

5A41 

4>.-e 
· Fzx 

13. mov2 

4,\ · e 
8A43 = · Fzz 

13. mov2 

and vko) are the eigenvectors of the unperturbed transfer matrix. 

However, before eqn. (4.18) can be used for obtaining Q shifts, the forces F""' Fu, Fz"' 
F" must be known. This will imply that the equilibrium ellipsoid is already known from 

iteration of eqn. ( 4.16) and that the Q-shifts have in any case already been obtained from 

the final eigentunes. Thus eqn. ( 4.18) offers no immediate practical advantage. 

5 Summary 

We have investigated the influence of space charge forces on the motion of charged particles 

in storage rings and transport systems. 

In order to describe the bunch we have introduced a 5-dimensional ellipsoid in the x- Px­

z·-·p, -!:lp/ p space represented by the "bunch-shape matrix", B( s ), which contains as columns, 

five independent orbit vectors. This matrix B(s) contains the complete information about the 

configuration of the bunch at the point s and can be obtained by matrix multiplication with 

the transfer matrix M. 
In thin lens approximation the matrix takes a simple form which can be conveniently 

coded for computer. 
In this report we have only considered the transverse betatron motion. The effect of space 

charge forces on longitudinal motion has, for example, been investigated by E.A.Karantzoulis 

and J.R.M.Maidment [5]. 

The use of the ellipsoid enables us to demonstrate that in general linear coupled systems, 

a bunch which has elliptical properties in the x - z, x - p" and z - p, plane will keep its 

ellipse-like projections in its subsequent motion. 

The equations so derived could be used for studying beam transport in DESY III . 

A generalization to the 6-dimensional case is in preparation. 
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