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ABSTRACT

Some recent analytical and numerical studies of the ane-
component ¢4 theory on a 4-dimensional hypercubic lattice are
reviewed. Taken together, the results obtained provide a com-
plete solution of the model in the sense that most low energy
amplitudes can be calculated with reasonable accuracy in those
parts of the phase diagram, where the ultra-viclet cutoff A
satisfies A22m (A = l/a, a; lattice spacing, m: physical
particle mass). Further topics discussed include the issue of
"triviality"” and a possible upper bound on the Higgs meson
mass.

1. INTRODUCTION

Although the one-component ¢4 tneory has so far not
found any direct application in elementary particle physics,
it has been used for many years as a guinea-pig to test and
develop new ideas in quantum field theory. Among today's moti-
vations to study the lattice regularized ¢4 theory are the
follewing.

1) Lectures given at the Nato Advanced Study Institute on
“"Non-Perturbative Quantum Field Theory", Cargése (1987)
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(a) There is overwhelming evidence /1-17/ that this model
is "trivial" in 4 dimensions, i.e. that its continuum limit is

. a free field theory. As I will explain later (sect. 2},

"trivial" field theories can nevertheless serve as accurate
mathematical models for interacting elementary particles. How-
ever, "triviality" implies an upper bound on the interaction
strength and one of the questions one would like tc answer is,
where exactly this bound lies and whether a non-perturbative
{strong interaction) sector is excluded, in particular.

{b} In the limit of wvanishing gauge coupling, the SU{2)
Higgs model (which is an important part of the standard
electro-weak theory) reduces to three copies of Maxwell fields
and the 4-component ¢4 theory. By studying the latter, one
chus hopes to get some insight into how the Higgs model
behaves, especially when the scalar self-coupling is large and
perturbation theory is not reliable. In particular, it is
possible, at least for small gauge coupling, that the
“triviality" of the scalar sector implies the "triviality" of
the full Higgs model /1%,19/, and this would then give rise to
an upper bound on the Higgs meson mass /20-31/.

[¢) Because of its simplicity, the ¢4 theory is an ideal
laboratory to test improved numerical simulation algorithms
/8,32,50-52/, to learn how the systematical errors in these
calculations can be controlled and to develop new methods to
extract the more elusive guantities of physical interest (such
as scattering amplitudes) from the numerical data /33/., To a
large extent, the present excitement in this field is due to
the fact that accurate numerical simulations are feasible with
the available cocmputer power and, as we shall see, that
detailed analytical "predictions" exist, which can be
immediately compared with the "experimental" results.

In these lectures, I would first like to expand a little
on peints {(a) and {(b) above and I will then proceed to explain
in outline how the cne-component ¢4 theory in the symmetric
phase can be solved analytically /34/. Of course, by a soluti-
on I do not mean that an exact and expliclt formula for (say)
the scattering matrix can be given, but that most low energy
quantities can be calculated with respectable accuracy by



3

combining renormalized perturbation theory with data obtained
from the "high temperature" expansion. It is important that
these expansions are only used in regions of the parameter
space where they really apply, i.e. no analytic extrapolations
are performed and an effort is made to estimate the systematic
errors which arise when truncating the expansions at a finite
order.

The analytic solution of the ¢4 theory can be extended
to the broken symmetry phase of the model /35/, but before ex-
plaining how this goes (sect. 6), I shall review the numerical
work of Montvay and Weisz /33/ on the 4-dimensional Ising
model, which is a limiting case of the ¢4 theory. Their
results agree very well with the analytic solution. In additi-
on, they have made a detailed finite size analysis, which
enabled them, for the first time in a nwnerical simulation, to
determine a scattering matrix element (the S-wave scattering
length). The conclusion from this beautiful “experiment" is
that within errors the analytic solution of:- the ¢4 theory in
the symmetric phase is correct and that a complete quantitati-
ve understanding of the model has hence been achieved.
simulations in the broken symmetry phase are already on the
way and hopefully result in a similar confirmation of the
analytic solution.

2. THE MEANING OF "TRIVIALITY"

The action of the lattice ¢4 theory may be written in
the form

G S = a* D130, s el el + Fab),

where "a" denotes the lattice spacing, $,(%) (xja e Z%) is a
real scalar field and &, ¢° the nearest neighbor lattice
derivative of ¢°. For stability we require g, 3 0 and we also
assume that the bare mass parameter m, is in the range where
the reflection symmetry ¢,-b - Q% is not spontaneously broken
{the discussion below is however equally valid in the broken
symmetry phase).

Let us now define a wave function renormalization
constant ZR' a renormalized mass Me and a renormalized
coupling 9 through

(z.2) 02 ip,-p) = ~zgt {nd + 2 + 06D} (2> 0),

(4) _ o2
2.3 T {0,0,0,0) = ZR_ Ig-

where F(n) (pl,...,pn) denotes the n-point vertex function of
¢° , The renormalized parameters Me. 9g are well-defined func-
tions of a, mg and 9ot which (by dimensional analysis) are of

the form

_ 1 2 2
(2.4) mR—Er(a mo 9yl .
(2.5) 9g = s{azmg,go).

Using Lebowitz' inequality, one may show that gR>0 aﬁd, by
definition, we alsoc have mR> 0 throughout the symmetric phase
regian.

If it exists at all, the contipuum limit of the lattice
theory is obtained by fixing Mmpr 9y and sending the cutoff
mass A = 1/a to infinity. This assumes, in particular, that
for given Mg, 9p and arbitrarily large A, bare parameters
mg(A ), go(f\) exist such that egs. {2.4), (2.5) hold. In a
"erivial” theory, this precondition is only fulfilled if
dg = 0. In other words, for all gRD-D. egs. (2.4), (2.5) imply
an upper bound on the cutoff A of the form

{2.6) ln(A/mR)é f(gR).
where f(gR) is continuous and

(2.7 o £(g,) =00,
40

Thus, if one insists on taking the cutoff to_infinity, one

also has to scale 9y to zero so that in the end one is left

with a free field theory.
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The lattice ¢4 theory is most likely trivial /1-17/, but
a completely rigorous proof of triviality is still missing.
The solution of the one-component model, which I shall discuss
later, also implies triviality and moreover yields an estimate
for the function f(gR), which enters the triviality bound
(2.6).

An obvious question is, whether a trivial theory is
hecessarily useless for the description of interacting
alementary particles, The answer is definitely no here,
because the bound (2.6} is often not very restrictive from a
practical point of view. For example, in case of the ¢4
theory, we shall see that

2
{2.8) f(gR) "~_;o 16 Tv°/3g,,
4
and for 9g = 1 (which is sufficiently small for (2.8} to
apply), the criviality bound hence becomes

(2.9) A/mgy € 7.1022,

Thus, even for reascnably large couplings, the cutoff A can
be pushed to very high values which may be orders of magnitude
beyond the experimentally accessible energy region. In such an
instance, the presence of the cutoff has no practical
relevanhce, i.e. at low energies E, the theory behaves
effectively like a continuum theory. Of course, cutcff effects
are not gotally absent, but since they are of order E2//\2
/36/, they, are usually completely negligible.

Still, a trivial theory can only be a valid description
of elementary particles and their interactions up t¢ some
finite enerqgy scale and thus cannot b% itself be a fundamental
theory. It is however conceivable that trivial theories arise
by integrating cut the high energy degress of freedom of an
underlying ultra-violet stable theory. In that case, the
triviality bound (2.6) provides an upper bound on the energy
scale where "new physics" has to set in.

6
3. THE ¢4 THEORY AS A LIMIT OF THE SU(2) HIGGS MODEL

The Higgs sector of the standard model of electro-weak
interactions is described by the {euclidean) action

(3.1) §=85,+S5

(WA Y i

(3.2) sg= § d* ¢ w W s

{3.3) s

]

2,2
e Td% Dot D + S (¢he-% )T,
where ¢ is an $U{2) doublet and

) a a b b, ,c
(3.4) \.J:v = BP\.J\,—B‘,\JF + .:3<=_°“"\»J'vl W,

a
(3.5) 'D“d: = (3F+ %\J:% Yé

GO'a are the Pauli matrices and the indices a,b,c,... run from
1 to 3). For convenience, I here use a continuum notation, but
everything what follows, with obvious modifications, alse
applies to the standard lattice version of the model (e.g.
ref. /28/).

In the Higgs phase, j.e. for large positive vz, the model
describes a triplet of heavy vecter bosons {"W bosons"} and a
neutral scalar particle {(the "Higgs boson"). At tree level of
perturbation theory, the masses of these particles are

{3.6) m,

&V

ta| >

(3.7 my = A v
The physical values of g and v are approximately given by

(3.8) g = 0.65,



(3.9) v = 250 GeV.

The Higgs self-coupling A , on the other hand, proved to be a
very elusive parameter so that today its value is essentially
unknown (experimental bounds on the Higgs meson mass are given
in ref. /37/, for example).

It is conceivable that A is in fact quite large. In this
case, the Higgs particle would be heavy, perhaps My ~ 1 TeV,
and the perturbation expansion in powers of A would become
unreliable. Thus, non-perturbative methods are required to
determine the properties of the Higgs model in this situation
and one obvious possibility then is to apply the numerical
simulation technique to the latticised model (see /38,39/ for
reviews and /28-30/ for recent papers in this field}. These
simulations are done with the complete model including all
fields and interactions as listed at the bheginning of this
section. They are therefore rather complicated and it is not
easy to obtain solid results in a short time.

At this point, it is useful to note that the gauge
coupling g is actually rather small (the relevant expansion
parameter is g2/4u ~ 1/30). Thus, as has been proposed by
Dashen and Neuberger some time ago /25/, the solution of the
Higgs model at large A may be attempted by first expanding in
powers of g at fixed A, v and then evaluating the coeffi-
cients in this expansion by numerical simulation eor any other
non-perturbative methed.

To lowest order in g, the gauge fleld w; and the Higgs
field ¢ decouple. Furthermore, the gauge action {3.2) reduces
to the action for a triplet of non-interacting Maxwell fields
and the Higgs action (3.3} becomes the action of an 0(4)
symmetric ¢4 theory:

= LV B . 2 —v2y?
(3.100 §, fdx{ZGFQ 8P(P+8(‘P-‘P v,

8
(3.11) = -5'—(&?"4-1(?‘ ) . ¥, real.
A2 \q i,

Since the limit g -0 is taken in the Higgs phase, the para-
meters in {3.10) are such that the 0{4) symmetry is
spontanecusly broken. The associated Goldstone bosons are the
former W bosons with a longitudinal spin polarization (the
transvérsely polarized W bosons become the "photons", which
are described by the gauge action}.

The Higgs particle corresponds to a radial excitation of
the scalar field and remains massive for g = 0. However, since
it can decay into any even number of Goldstcne bosons, it is
actually a resonance with a decay width given by

(3.12) Py/my = 32 /321 + 0t A,

Thus, for large A the Higgs particle is presumably a broad
resonance.

Besides the Higgs mass m,, there is another physical

H
scale F in the ¢4 theory, which is associated with the
dynamics of the Goldstone bosons. Suppose the vacuum ex-

pectation value of ¥, is in the 4-direction and let
a _ - -
(3.13) Ay = 930 -GN, a=1,23

be the conserved currents, which generate the spontaneocusly
broken symmetries. Then, F is defined by the matrix element

o ab
(3.14) <ol AS(o)lp,bd = ip, BT F,

where | p,b) denotes the state of a single Goldstone boson
with momentum p and symmetry label b. The normalizations are

_such that

(3.15) <a.alp,bd = 21q12m> 8P 8§ - B

and p, = (1181, B) (the time derivative in eg. {(3.13) is with
respect to euclidean time). Eq. (3.14) defines F non-perturba-



tively and there is alsoc no normalization ambiguity, because
the normalization of the currents Ai is fixed by the
associated Ward identities. Incidentally, by a simple applica-
tion of these identities, it is possible to show that /40/

(3.16) F = <ol@ |o),

provided ¥, is renormalized in such a way that the Goldstone
pole in the two-point function of ¥, has unit residue. In
particular, F = v + 0(A }.

So far ! have discussed what happens at g = 0. If the
gauge coupling is now switched on again, the most important
effect is that the gauge bosons and the Goldstone bosons
become massive and combine to form the W vector hoscns as
indicated above. To first order in g, the vector boson mass is
proportional to g and one may actually show that /257

(3.17) md = '?; g%F? + o(g*1ng?).

The proof of this nice formula is based solely cn the Gl{4)
Ward identities at g = 0 and it is therefore an exact result
valid for all values of v? and A . It also holds literally on
the lattice {the lattice artefacts only show up at order qd).
Essentially, eg. (3.17) should be considered a form of the
Goldstone theorem.

Closed expressions to first order in 92 could perhaps
also be terived for other physical gquantities such as the Ww
scattering amplitude, but I would now like to proceed to
discuss ancther issue, which is how triviality gives rise to
an upper bound cn the Higgs mescn mass.

In view of eg. {3.7), a possible definition of a renor-
malized Higgs self-coupling KR at g = 0 is

2,2
(3.18} lR-mH/F.

The triviality bound (2.6) for the (lattice regularized) &%
theory with action {3.10) then reads

40
2,52
(3.19) In(A /mg) & £(mg/F7).

At least for small A‘R and presumakly in the whole range
of AR, the function f(A.R) is menotonically increasing when

)'R is made smaller so that ({3.19) may be rewritten in the
form

(3.20)  wi/F2 & £7HangA /mg),

Finally, using eq. (3.17) to eliminate the scale F, one
oktains

(3.21)  mi/ml & %_ £ (1n (A /mg)).,

Since g and m, are measured, eq. (3.21) provides an upper
bound on the Higgs mass if we reqguire that A 1is greater than
(say) 2mH {for lower values of A , the low energy properties
of the Higgs model would be strongly influenced by nen-uni-
versal cutoff effects). Of course, it may also be sensible to
require that A is beyond the Planck scale or some other huge
mass, in which case the bound {3.21) would be more stringent.

To extract actual numbers from eqg. (3.21), one needs the
function f().R), which is defined in the {pure) ¢4 theory
with action {3.10). Unfortunately, only the asymptotic form of
f(k,R) for A g*O is known presently, but there is little
doubt that £{ AR) will soon be determined in the full range by
the analytic method, which ¥ shall explain later for the one-
component model, and by numerical simulations (see /31,41/ for
first attempts in this direction). Finally, I would like to
remarX that in the derivation of the bound (3.21), we have
neglected the correction term in eq. (3.17) and, c¢f course, we
nave also discarded the influence of the fermicns and the
other fields in the standard model, which are not included in
the Higgs action {3.1)=-(3.3).

4. SOLUTION OF THE ONE-COMPONENT MCDEL IN THE SYMMETRIC PHASE
I now sketch how the lattice ¢4 theory defined in sect.

2 can be solved analytically in the symmetric phase region. A
more detailed discussion Is given in ref. /34/.



4

criticat line  wclA)

free field limit

Ising limit

A

Fig. 1. Qualitative plot of the phase diagram of the lattice
model with action (4.1}. For A -o0¢, the theory
reduces to the Ising model,

For what follows, it is convenient to rewrite the action
(2.1) in the form

3
S = % { - Eo(¢(x)¢(x+ﬁ)+ d(x) d(x-fy)

+ &%+ A (d00?= 1) 3,

where R 0, 0% A£00 and the lattice spacing "a" has been
set equal to one for convenience, i.e. I shall use lattice
units from now on. The relation between the old and the new
notation is

(4.1)

.2y ¢, = W2 &,

(4.3) m? (4-22) e - 8,

(4.4) g, oA [ nt.

The phase diagram of the model (4.1) is displayed in Fig. I.
There are two phases separated by a second order critical line
o= uc(A) . Here we are interested in the region » < ¥ (A),

12

which corresponds to an unbroken reflection symmetry d) -b---¢.

From the action {4.1) one derives in the usual way the
correlation functions (¢(xll..'. ¢(xn)) and the n-point vertex
functions r’(n) (pi, . ,pn) in momentum space. SUppose NOW we
define Zp, Mpe 9p a8 before through egs. (2.2), (2.3). The

. immediate goal in what follows then is, to calculate these

gquantities as a function of the bare parameters and A . As
we shall see later, the solution of this problem also leads to
a reasonably accurate determination of the low energy
properties of the model, at least in the region AaZmR (A=1
in lattice units).

For = 0, the field variables at different points of the
lattice decouple and the model becomes soluble. Relying on
this cht, it is easy to derive an expansion of zR, Mo g in
powers of », e.g. for mR we have

[+ ]
TR AR ) v
. = = m .
(4.5) Mo = Tw vme TR {(A) =

This expansion has been known for a long time in statiscical
mechanics, where it is called the "high temperature expan-
sion". It is convergent for 3 < ¥, and the expansion co-
efficients can be worked out in a mechanical way to a high
order. In particular, the se_ries for ZR, Mo, 9y have been
tabulated by Baker and Kincaid /3/ up to 10th order.

As one can see from eq. (4.5), m, becomes large for
® >0 so that one expects the expansion to be practically
useful when M is not too small. Still, since the first 10
terms in the high temperature series are known, it is pessible
to perform a careful convergence analysis, and one then finds
that the truncation error stays reasonably small up to
® = 0.95W, which corresponds to '“R= 0.5 {estimates for Mo,
are given in ref. /34/). Some results at = 0.95%, obtained
in this way are listed in Table 1. The data show that Zg is
surprisingly close to 1/2% , which is the lowest order term in
the weak coupling perturbation expansion of this quantity. The
renormalized coupling In ‘is monotonically rising with A and

reaches a maximal value of about 41 at A =00 . This is
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Table 1. Values of ZR' Mo, gp 85 & function of A at
w= 0.95 N’c as calculated from the high
temperature expansion

A L i, my 9
0.00 0.1188 1.0 0.649 0.0
0.01 0.1206 1.0000{(2) 0.63%{1) 3.57(5)
0.1¢ 0.1298 0.9930(5} 0.599(6) 16(1)
1.00 0.1267 0.990(2) 0.54(1) 34(4)
oo 0.0710  0.973(4) 0.49(1)  4L(6)

actually net such a big value, at least, it is only about 2/3
of the tree level unitarity bound and renocrmalized perturba-
tion theory should in general still be applicable at these
values of the coupling (the "natural" expansion parameter in
perturbation theory is otR = gRllﬁ‘n'z).

With the help of the high temperature expansion we have
thus been able to solve the theory in the region 3t £0.95 ® .,
which corresponds approximately to I\/mR £ 2 (see Fig, 2). To
get closer to the c¢ritical line, i.e. closer to the continuum
limit, we shall use the renormalization group equations. One
of these equations is usually written as

(4.6) — A(%ﬁ)l = f3,

where p is the Callan-Symanzik P -function. In lattice units,
A = 1 by definition and the proper form of eq. {4.6) then is

a -_—
(4.7) my (ﬁﬂ 2 P

This equation describes the evolution of dp as one moves
towards the critical line at fixed A . Similar equations exist
for 2o and ® . Thus, if we knew the 3 function (and the other
Callan-Symanzik coefficients), we could easily calculate

ZR' Mg, 9p at {say) point B of Fig. 2 by integrating the re-

A%

" critical line WA

-]

A

Fig. 2. Same as Fig. 1, but showing the region where the
high temperature expansion applies {cross-hatched area}

normalization group equations using the known values of these
quantities at point A as initial data.

The crucial observation now is, that as we have noted
above, the coupling dp is already in the perturbative domain
along the line ¥ = 0.954, where the integration of the re-
normalization group equations is started. Thus, we may employ
renormalized perturbation theory to calculate p (gR). at least
during the initial steps of the integration. In fact, since g
is positive, eq. (4.7) drives dg to smaller values as Mo
decreases and perturbation theory hence becomes an ever better
approximation the closer one is to the critical line. Thus, in
this way it is possible to compute ZR’ Mo, dp a8 a functicn of
®, A everywhere in the white area below the critical line in
Fig. 2.

For illustration, some results cbtained by intearating
the renormalization group equations are listed in Table 2. The

errors quoted derive from the errors in the initial data at

W= 0.95%,. As can be seen from Table 1, the errors are
maximal for A =00, in particular, the estimated accuracy in
9r is never worse than 15 %, The data in Table 2 smoothly join
the high temperature curves at the matching peint ¥ = 0.95 ¥,
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Table 2. Values of ¥, Zpr Gp a8 2 function of mp
at A = o0 (Ising model)

my H 1uza %R
0.40 0.,0722(2) 0.973(7} 3I5(5)
0.20 0.0741(4) 0.975(9) 24(2)
0.10 0.0746{4) 0.976(9) 18(1)
0.05 0.0747{4) 0.974{9) 15.0(8)
0.01 0.0748(4) 0.972(9) 10.6(4)

and they also agree well with the Monte Carlc data of ref.
/33/ (cf., sect. 5).

In the limit I\/mR-Poo , A fixed, the coupling 9p
eventually goes to zero according to the implicit asymptotic
formula

- 4/B,¢
(4.8)  m /A= C, (p1r.h)“m e feag {1+ 0(gell,

where C; is a constant (depending on A} and By = /167 ? is
the one-loop coefficient of the @ function. Eq. (4.8} is just
the asymptotic form of the general solution of the
renormalization group eguation (4.7}, which one obtains when
the initial value of 9g is sufficiently close to the origin
{which we have argued toc be the case). The triviality of the
¢4 theory is essentially a consequence of the scaling law
{4.8). This can be seen more clearly from Fig. 3, where I have
plotted the curves of constant 9g in the x,A.-plane.Z) Along
these cuxrves, only the cutoff A (in units of mR) changes
while the low energy physics is fixed. Now it turns out that
the maximal value of A /mR is attained in the Ising limit

(A =00} where the curves end, and the triviality bound (2.6)
is thus given by

2) I shall later explain how te obtalin the curves in the
broken symmetry phase ¥ > ¥, . !

1.0t}

098

097 +

086 |

Fig. 3. Curves of constant coupling g = 10,15,20,25 in the
plane of bare parameters. The arrows are in the direc-
tion of increasing cutoff. All curves end at the Ising
line (for 9p = 10, the distance to the critical line
is so small that it cannot be resclved in this draw-
ing)

18
(4.9 dalA/my) € Bgn T La(p,gq) + C + Olge),
where
(4.10) ¢ =-1n Cl(oo) = - 1.5(2).

The correction terms in eg. (4.9) are negligible for gy £ 19
and for the larger values of ap- the trivialiry bound can be
read off from Table 2.

An important result of the discussion so far is that the
coupling 9p is always less than about 2/3 of the tree level
unitarity bound when A )2mR. In other words, whenever the
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" cutoff is sufficiently high for the theory to have essentially
cutoff independent low energy properties, the coupling is
necessarily small and renormalized perturbation theory should
be applicable. In particular, the sc&t;erinq matrix for low
energy processes can be computed in this way to a respectable
accuracy and a complete solution of the Q)‘ theory in the
symmetric phase has thus been achieved.

5. NUMERICAL SIMULATION OF THE ISING MODEL

For the analytical solution eof the ¢4 theory, the Ising
limit is the most difficult case, because gy assumes its
largest values there. On the other hand, numerical simulations
of the Ising model are relatively easy and a significant
comparison between "theory” and "experiment' is hence
feasible.

The numerical work, which I am now going to describe, has
been done by Montvay and Weisz /33/. They chose two values of ¥
in the symmetric phase, approximately corresponding to mR=°'5
and mR=0.2. The lattices considered were of the form L3 x T
with {ordinary) pericdic boundary conditions in all direc-
tions and

T =12, L
(5.1) ¢
T

]

4,6,...,12 for mR=0.5,

24, L 8,10,...,20 for mR=0.2

{T is time, L is space). On each lattice, several million
field configurations were generated using a standard Metropo-
1is algorithm. The reason for having L vary over a range of
vaiues is that in this way a detailed finite size analysis is
possible, as I will explain later. In particular, the results
quoted .below are, within errors, infinite volume values.

It is not easy to determine m, in a Monte Carlo simula-
tion, because the finite extent of the lattice implies that
the momentum p in eg. (2.2) is quantized with a lowest
non-zero value, which may not be sufficlently small to
suppress the 0(p4) terms (for the lattices (6.1), for example,
one has pz>mlz2 if p # 0). A more readily accessible guantity

A8

Table 3. Results from a numerical simulation of the Ising
model /33/ and comparison with the analytic
solution /34/. In the Monte Carlo calculation,
® is given, while for the analytic calculation
my is taken as the independent parameter

Monte Carlo analytic solution
» 0.07102 0.0710({2)
g 0.4923(5) 0.4923
InZg . 0.970(3) 0.973(7)
R 44(4) _ 42(7)
»n 0.07400 0.0740(3)
mg 0.2148(5)_ 0.2148
LluZg 0.962(7) 0.975(9)
on 25(2) 3! 24(2)

is the physical mass m, which, for all L, is defined through
the exponential decay of the two-point function of $(x) in
the time direction. As I will discuss shortly, the L-depen-
dence of m is weak and well understood. Furthermore, for L =&
we have .

(5.2) mp =2 sinh m/2 (1 + otgd),

where the Otgg) correction has been calculated and was found
to be negligible (< 1074 for g, <44).

Some results obtained by Montvay and Weisz, for the two
values of ¥ considered, are listed in Table 3, where I have
used eq. {5.2) to eliminate m in favour of me. within the
quoted errors, the agreement with the analytic solution is

3) This number includes an analytically calculated finite size

correction of AgR = 1.7 at L, = 18, The error quoted is
statistical only.
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perfect. Thus, the gualitative assumptions on which the
analytic solution is based (for example, that renormalized
perturbation thecry may be applied when gR£»41) appear to be
justified and little doubt remains that the solution is in
fact correct..

I would now like to digress a little and discuss the
lattice size dependence of the particle mass m{L} and the
lowest two-particle energy W(L}, which I shall define later.
First note that m(L} is an eigenvalue of the transfer matrix
and is hence independent of T by definition (in a Monte Carlo
simulation, T must however be large so that the exponential
decay of the two-point function of ¢ can be followed over a
significant distance). As a function of L, the finite size
mass shift

(5.3} 8‘ = [m{L)- m(e)]} [ am (e0)

decays exponentially according to

L 3
3 d,q -Iﬂ(q)L -l
(5.4 B g S (xR 2e(q) Flg) + Ole ™),

where W(g) denctes the energy of a single particle with
momentum g, Fig) an elastic forward scattering amplitude and
m>»m. All quantities m, W{g) and F(g) on the right hand side
of eq. {(5.4) are defined and evaluated at L. = 00 . I have first
presented this formula at Cargése 1983 /42/ and since then
provided a detailed proof /43/ {(the lattice corrections have
been discussed by Miinster /48/).

It is of course possible to compute w(g) and F(g) in
rencrmalized perturbation theory. Taking the first order
expressions and inserting the values of Mpe 9p at ¥ = 0.07102
as given by Table 3, one obtains curve "“a" in Fig. 4. The
agreement with the Monte Carlo data at L = 6,8,10,12 (the
points with the small error bars in Fig. 4) is very good
although perhaps a bit fortuitous given that only the first
order perturbative formulae were used and that the error term

o

o

(o]
T

0.06¢

004t

0.02+

0.00

Fig. 4. Finite size energy shifts 51 and 52 as a4 function of
z = m{L)L. Curves a and b correspond to egs. (5.4] and
(5.5) evaluated at ® = 0.07102 {m{oe) & 0.49 and
a,= - 0.68 at this point}

in eq. (5.4) was also neglected. Anyway, eq. (5.4} certainly
gives the right order of magnitude for 61 and there is no
doubt that the finite size effects are negligible compared to
the statistical errors beyond say z = 6.

Another quantity considered by Montvay and Welsz is the
two-particle energy W(L), which is the lowest energy above the
vacuum in the sector of even states under &$ -» = ¢ . The
coiresponding energy elgenstate describes two particles,
which, being confined to the finite lattice, are in a
stationary scattering state. Thus, W(L} is essentially equal
to 2m with a finite size correction 62 given by

'82 = [W(L) = 2{L)] [ 2m(o0)

(3:3) ma, Qo al -6
= - e U {1+ <, - + ¢, 1:57 1+ (L )J
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(5.6) ¢, = -2.837297,
(5:7) e, = 6.375183,

where a, denotes the S-wave scattering-length.4) A proof of
eq. (5.5) in the framework of quantum field theory has been
given recently /43/, but for the case of non-relativistic hard
spheres in a periodic box, the formula has actually been
derived much earlier by Huang and Yang /44/ (see also refs.
/45,46/).

If we use renormalized perturbation theory to two loops
to compute a_ at ¥ = 0.07102, eq. (5.5) yields curve b in
Fig. 4. Again the Monte Carlc data of Montvay and Weisz agree
very well with the theoretical prediction. In fact, the
scattering length a, could have been extracted from the data
by fitting them with eq. (5.5). It has thus been demonstrated
that a calculation of S-matrix elements through numerical
simulation is possible in certain cases, the main difficulties
being that very accurate data are reguired and that several
lattices of variable size must be considered. Of course one
hopes to apply the method to other models such as the Higgs
model or even QCD.

A plot simllar to Fig. 4 could also be precduced at
» = 0.07400, which corresponds to m{oe) = 0.21 approximately.
The picture would lock less impressive in this case, because
the errors are larger and because the maximal value of z would
only be arpund 4 for the lattices considered. Within these
limitations, the agreement between theory and experiment is
however equally good.

6. SOLUTION OF THE ONE~COMPONENT MODEL IN THE BROKEN SYMMETRY
PHASE

For » > M (A}, the reflection symmetry é&->—¢ of the
action (4.1) is spontaneously broken and the field ¢ acquires

4) It is possible to develop a full-fledged scattering theory
for euclidean lattice field theories /49/ and a, ls hence a
completely well-defined guantity for all =, A

22
a non-zero vacuum expectation value
6.1y v= {b>> 0.

If we define 2 and My as in the symmetric phase (eq. (ZJZ)),
the renormalized vacuum expectation value is given by

= -1/2
[6.2) VR =V 2

and a renormalized coupling may be introduced through
= 2,2
(6.3) 9p = BmR/vR

(to first order in 9g+ this definition is equivalent to
eg. (2.3)). '

As in the symmetric phase, the first goal now is to
compute ZR' my and dp 48 & function of ¥ and } . However,
since there is no known practical expansion for @ o , which
could play the réle the high temperature expansion did in our
analysis of the symmetric phase, a different strategy is
needed.

The basic idea is as follows /35/. As we have discussed
in sect. 4, the renormalized coupling g in the symmetric
phase scales to zero as one approaches the critical line
in such a way that the limit

. ' - A% 23
6.4y C,(A)= ﬁ‘”_:x‘ me (B,9p) ! e”ﬁ"‘h

exists (cf. eg. (4.8)). similarly, a constant Ci(}.) may be
defined by approaching )%(k) from the broken symmetry phase.
Both constants are defined at the critical line and it is
therefore not surprising that they can be given an interpreta-
tion in terms of the critical (massless) theory. It then turns
out that Cilar) is actually proportiocnal to clta,)

with a proportionality constant, which is exactly given by

(6.5)  cj(A) = M8 cla)
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5 /

Fig. 5. Qualitative plot of the phase diagram of the lattice
¢ 4 theorvy. The integration of the renormalization
group equations is started at e.g. point A at the
boundary of the high temperature region (cross-
hatched area) and follows the iine A = constant
towards point B, where C; and ¢, are determined. The
integration can then be carried on to (say)} point C
in the broken symmetry phase.

for our choice of renormalization conditions.

CI(L ) can be calculated for all A to a reasonable
estimated accuracy from the solution of the model in the
symmetric phase. Thus, ci(l } is also known and may be used as
initial datum for the integraticon of the renormalization group
equations along the lines A = constant in the broken symmetry
phase starting at ®= ¥, {see Fig. 5). Since the { -function
tand the cther Callan-Symanzik coefficients} are only known in
perturbation theory, the integration must be stopped when g
becomes large {point D in Fig. 5). Thus, in this way the
theory can only be solved in a narrow band above the critical
line, but as it turns out, this band includes the whole region
A2 2mR. The shaded area in Fig. 5, where the theory remains
unsolved, is therefore not a very interesting region since
there, similarly to the high temperature region in the
symmetric phase, the physics at scales of N is strongly
influenced by non-universal cutoff effects.

100

Afmg

10

Mg/ Vg

Fig. 6. Maximal value of the ultra-viclet cuteff A in units
of Mp for given levR. The size of the estimated
errors in the calculation is indicated at two
representative points.

The most conspicuous feature of the solution of the model
in the broken symmetry phase obtained along these lines is
that, concerning the scaling behaviour, there is practically
no difference to what happens in the symmetric phase. In
particular, for A 2 ZmR, the renormalized coupling 9y does not
exceed a maximal value of about 2/3 of the tree level
unitarity bound and renormalized perturbation theory should
hence give an essentially Correct descripticn of the particle
jnteractions at low energles in this region. Furthermore, as
shown by Fig. 3, the flow of the curves of constant coupling
dg in the plane of bare parameters also loocks similar on both
sides of the critical line, a marked difference being that the
interval of » corresponding to A ;ZmR is about a factor of 3
smaller in the broken symmetry phase.

In Fig. 6, I have plotted the triviality bound {2.6),
where, instead of the coupling = I have taken the ratio
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mR/vR as the independent variable (cf. eg. (6.3}). One expects
that a similar result will be obtained for the 0(4) symmetric
¢ 4 theory and, as discussed in sect. 3, this will then lead
to an upper bound on the Higgs meson mass. Fig. 6 applies to
the one-component model and is therefore not amenable to such
an interpretation. However, it is interesting to note that if
we insert mp = my, vp = 250 GeV and assume A2 2my, for the
purpose of illustration, the boundlﬁi4800 GeV is obtained,
which is actually not far from what other people have found
earlier /20-31/.

7. CONCLUDING REMARKS

The analytic solution of the one-component ¢4 theory in
the broken symmetry phase has not yet been checked by a large
scale numerical simulation, but such calculations are on the
way, one computing the effective action /50/ and another one
/51/ employing the highly efficient up-dating algorithm of
swendson and Wang /52/. Work is also in progress on the
physically more interesting 0(4) symmetric model, which I
expect to be soluble in the same way as the one-camponent
model. In particular, the Goldstone modes in the broken
symmetry phase should not give rise to any great difficulties
for the analytic approach. Still, a substantial amount of
labour remains to be done, especially so since the Baker-
Kincaid tables /3/ are only for the one-component model and
the high temperature series for ZR‘ g and 95 must hence be
newly derived /53/.
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