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Abstract 

A dual interpretation of the vacuum overlap order parameter (VOOP) 
and of the the flux correlations order parameter (FCOP) is presented. 
For the FCOP we interchange one of the space dimensions with the eu­
clidean time. In 3 + 1 dimensions the resulting quantity is interpreted as 
the vacuum overlap of a magnetic vortex, i.e. of a gauge-invariant energy­
regularized state containing a closed line of center-magnetic flux. In the 
confinement region the vortices are condensed in the vac.uum. In the Higgs 
region only vortices of small size exist as excitations. The screening length 
for dynamical center-electric charge fluctuations can be reinterpreted as 
the characteristic length for vortex fragmentation. The vacuum correla­
tions responsible for the existence of magnetic vortices as excitations are 
measured by a (purely spatial) quantity obtained from the VOOP by re­
placing the time direction with a spatial one. At finite temperatures this 
quantity can be used as an order parameter for the symmetry restauration 
transition. In 2+1 dimensions the dual interpretation of our order parame­
ters is simpler: we just interchange VOOP and FCOP, states with center­
electric charge and states carrying center-magnetic charge (monopoles), 
the confinement and the Higgs region. 

1 Introduction 

In recent years we have introduced several order parameters for lattice gauge theories 
with matter fields [1,2,3,4,5]. We asked three fundamental questions: 

*Lecture given by M. Marcu at the International Symposium on Field Theory on the Lattice, Seillac, 
France, September 1987 
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1. Do states with center-electric charges exist or is the charge screened? 

2. What properties of the vacuum are responsible for this? 

3. What is the mechanism for charge screening? 

The vacuum overlap order parameter (VOOP) is the scalar product with the vacuum 

(i.e. the vacuum overlap) of a gauge-invariant energy-regularized electric dipole state. 
The ftuz correlations order parameter (FCOP) measures the correlations of center­
electric flux in the vacuum. We would like to gain some new insight into the meaning of 

our order parameters by asking the appropriate dual que.tions. By duality we mean 
a variety of related concepts like the electric-magnetic duality in electrodynamics, 
the duality transformation for lattice models (see e.g. [6]), or the duality between the 

Wilson loop and the 't Hooft loop [7,8]. 

We start by recalling the definition and the physical interpretation of the VOOP 
(section 2) and the FCOP (section 3). In order to simplify the exposition we assume 
4 space-time dimensions throughout sections 2-5. We define both order parameters 

using the canonically quantized formulation of the theory, and then rewrite them 
in terms of expectation values in the euclidean path integral formulation. By inter­
changing the time axis with one of the space axes, these expectation values can be 
reinterpreted in the canonically quantized formulation based on the new choice of the 

time direction. Thus we arrive at a dual interpretation for the FCOP (section 4) and 
for the VOOP (section 5), in which the three fundamental questions mentioned above 
are modified by replacing center-electric charge with closed line of center-magnetic 

ftuz (also called a magnetic vortez ). A magnetic vortex is a gauge-invariant state 

whose energy has been regularized such that it is proportional to the length of the 
closed line of magnetic flux (and not to the area spanned by this line). The FCOP 
is now the vacuum overlap of a magnetic vortex, while the VOOP now measures the 

correlations in the vacuum which are responsible for the existence or screening of 
magnetic vortices. Thus in the dual interpretation the roles of the VOOP and FCOP 

are interchanged. 

The dual interpretation of the FCOP leads to a generalization to the theory with 
matter fields of the idea that in 4 dimensions the confinement vacuum is a conden­

sate of magnetic vortices [7,8,9]. In the Higgs region, some of the properties of the 
magnetic vortices resemble those of confinement-region quark-antiquark pairs: small 
vortices exist as excitations; at some characteristic length their overlap with the vac­
uum becomes large, which is reminiscent of the quark fragmentation (i.e. hadroniza­

tion) phenomenon. Furthermore, the vortex fragmentation length is identical to the 
characteristic length for the screening of dynamical charge fluctuations [5]. 

In its dual interpretation the VOOP is a purely spatial quantity and can be defined 

at finite temperatures too. It is useful in the study of the symmetry restauration 
transition [10] (from the Higgs region to the confinement-deconfinement region). At 
short distance it behaves as perturbation theory predicts for a two-point function of 

the scalars. In the Higgs region this is also true at long distances. In the confinement­
deconfinement region however, the VOOP goes to a constant at long distances [4]. 

Thus on the one hand the conventional picture for this transition is not destroyed, 
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while on the other hand the order parameter itself (which is the infinite distance limit 

of the VOOP) is nonzero in both regions. This resolves the apparent contradiction 

between the conventional perturbative picture and the fact that the two regions may 

be analytically connected. 

In the deconfinement region, both charges and vortices are condensed in the ther­

mal equilibrium state. The original FCOP and the dual VOOP define two distinc.t 

characteristic lengths. 

For simplicity we shall consider a theory with a scalar matter field in the funda­
mental representation of the gauge group G. As in [5] we use the notation: 

( 1) 
p l ' 

where p, l and x are the plaquettes, links and sites of ad-dimensional euclidean lattice 

(d ~ 3), U(l) are the gauge fields, </>(x) the matter fields, and xis some character 
containing the fundamental character as an irreducible component. Geometrical ob­

jects in d - 1 (space) dimensions will be underlined and time-zero operators will be 

hatted, like U(O or ¢(;r). 

2 Brief review of the VOOP 

The ideas leading to the VOOP, its definition and some fundamental properties have 

been discuss~d in [1,2,3,4,5]. Let us summarize the most relevant aspects. 

A. Assume ~· is a spatial path from i& to ;r', chosen for simplicity to be a 

straight line. A naive candidate for a dipole state is: 

(2) 

For large separations the energy of this state is proportional to li&- i&'l· It can be 
regularized by translating U(b.·) by n steps into euclidean time (T is the transfer 

matrix; to avoid any confusion we write the group indices a and b explicitely here): 

(3) 

is a state with bounded energy provided that for some constant c, n ~ c li&- i&'l as 
l;r- i&'l -> oo. This result is model-independent (for nonabe!ian G the missing link 

in the proof was the perimeter law for Wilson loops; this has now been proven [11 ]). 

Notice that the quantity translated into euclidean time is not gauge-invariant, but 

has a source at each endpoint. For n -> oo, T" projects out the state with lowest 

energy for a given configuration of sources. If fn acts on (2), the state projected out 

is the vacuum, so there is no electric flux from~ told..'· 

B. In the limit ;r' -> oo, n ~ c li&- ;r'l, the charge at i& either becomes free or 

is screened. A quantity testing this is the vacuum overlap of the normalized dipole 

state (3): 
_ ; (Oix,x',n) 
P(li&- i& I ,n) := lll;r,;r',n) II 
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A free charge is orthogonal to the vacuum Hilbert space. If the charge is screened and 
J>(:rJ has no additional nontrivial quantum numbers, the vacuum overlap is nonzero 
in the limit. Thus the criterion for existence of charged states is: 

_ { 0 ~ free charges p(oo,oo) = # 0 charges are screened 
(5) 

C. The vacuum overlap is easily expressed in terms of euclidean expectation 
values. It is convenient to redefine (4) by replacing in the denominator [;!;.,;!;',n) with 
i'nfJ(%•) [0). Denoting the resulting quantity by p instead of jj, 

p([;!;.- ;!;.'[ ,n) = 

~ !i..' 

<n> 
([])~ 

(6) 

The criterion (5) also holds for p (with p a related interpretation is also possible: 
(5) tests whether the charge of a source is screened or not). The cancellation of 
perimeter contributions between the numerator and denominator of ( 6) is one of the 
main ingredients in proving (5). The order parameter is p( oo, oo ), but by an abuse of 
language we shall call (6) the VOOP. 

D. p( [;£- ;£'[, oo) is a gauge-invariant two-point function of the dressed charged 
field. For large (3 it behaves similarly to the matter field two'point function of the 
pure matter ((3 = oo) theory. In this region it is relatively easily accessible by nu­
merical methods. In the free charge phase it can be used to compute the mass of the 
charged particles. In the Higgs region it offers a method to compute the Higgs expec­
tation value [12]. In the confinement region however, p( [;!;.- ;!;'I , oo) rapidly decreases 
with [;!;.- ;!;.'[ at small distances (corresponding to the Coulomb plus linear region of 
the potential), where a charge-anticharge ( quark-antiquark) pair can exist as an ex­
citation, while at large distances it goes to a constant (after the potential becomes 
flat). Thus it should have a dip [4] around the characteristic length for hadronization 
(fragmentation), which is roughly: . 

(7) 

(Eq is the energy of a source, u is the string tension computed from the linear part 
of the potential). 

E. The VOOP cannot be defined at finite temperatures since in this case it is 
impossible to let n -> oo. 

3 Brief review of the FCOP 

The definition and basic properties of the FCOP have been discussed in [1,3,5]. As 
opposed to the VOOP, the FCOP tries to answer the question of charged states by 
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investigating properties of the vacuum. Let us again summarize the most relevant 
aspects. 

A. In a massive gauge theory with matter fields a charged state can be created by 
acting on the vacuum with an operator localized inside a spatial cone [13] (this charged 
state does not contain a thin electric flux tube; the flux is not isotropic as by letting 
~ ~ oo in (3), but the state with the cone is in the same superselection sector; using 
the same methods as in [1] we explicitely constructed such a state for G = z,, the 
idea being to regularize the energy somewhat differently than in (3)). The charge can 
be determined by Gauss' law, i.e. by measuring the total flux through an arbitrarily 
large closed surface. For a charged state the asymptotic direction of the cone should 
not be observable, i.e. we should not be able to determine the charge by measuring 
the electric flux through an open surface around the cone. This implies that there are 
strong electric flux correlations in the vacuum that delocalize the flux. For an additive 
charge (e.g. G = U(l)) the electric flux through a surface is a sum of local operators, 
so in a massive phase, where all two-point functions decay exponentially, there are 
no strong flux correlations and therefore no charged states (Swieca's theorem [14]). 
In general however, Gauss' law only holds for the center CG of G. If CG is discrete, a 
multiplicative charge may exist in a massive phase provided the flux correlations in 
the vacuum are strong enough. 

B. Let us denote by fc(l) the left multiplication operator by C E CG for the 
oriented link I. The electric flux fc(~) through a spatial surface~ (actually~ is a 
coconnected set of spatial links which forms a surface in the dual lattice) is defined as 
the product over oriented links L E ~ of fc (I). Consider a spatial volume A (a sphere 
or a parallelepiped) .and denote the right and left halves of its surface by S, and S, 
(thus as sets of spatial links fr A= S, US,), and by Sm the minimal surface with the 
same boundary as S, and S1 ( a• Sm = a• S, = a· S1 as sets of plaquettes ). A quantity 
suitable for testing the electric flux correlations in the vacuum is: 

F. (A):= (Oifc(S!)I_O) (Oifc(S,)IO) 
c - . ( o I fc (a· A) I o ) 

(8) 

In the free charge phase there are many closed electric flux lines in the vacuum, as can 
be seen from the fact that the expectation value of Wilson loops is relatively large. 
fc(S,) and fc(S,) are affected by the closed flux lines that intersect Sm once, but 

fc( a· A) is not. Therefore, by arguments similar to those used to prove exponentiation 
in convergent expansions, we expect an area law for Fe(~.). In the confinement region 
there are few closed flux lines in the vacuum. In the Higgs region the closed flux lines 
in the vacuum cannot play a distinguished role since open flux lines (between charge­
a.nticharge pairs) are also condensed in the vacuum (and screen the electric flux). 
Thus in the confinement-Riggs phase we expect the numerator and denominator of 
(8) to be roughly the same, up to a perimeter contribution at a• sm. Denoting by r(A) 
the linear dimension of /1, the criterion for existence of charged states in a massive 
phase is that for r(A) ---> oo 

Fc(A) ~ { exp( -q Sml) 
- exp( -c, rrsmll charges are screened 

:1 free charges 
(9) 

5 



( c1 and c2 are constants). 

C. Let us denote by s_ x { 0, 1} the set of timelike plaquettes with spatial projection 

ins_. Then 

( 0 I Ee(s_) I 0) = / II exp ,B{x( CUP) ~ x(UP)}) 
\pE£_x{O,l} 

(10) 

Thus we have expressed (8) in terms of euclidean expectation values. One of the 

main ingredients in proving (9) is the cancellation of surface contributions between 

the numerator and the denominator of (8). By an abuse of language we shall call 

Fe(~) the FCOP. 

D. For small "• Fe(~) behaves similarly to the 't Hooft loop [7,8] of the pure 
gauge (" = 0) theory. At finite r(~) the FCOP defines a characteristic length RH 

in the Higgs region: the asymptotic perimeter law sets in only at r(~) > RH, while 
at r < RH we have the area law. We interpret RH as the screening length for the 

center-electric charge (in the vacuum: for dynamical charge fluctuations). In the case 

of nonadditive charges the screening for the charge and that for the potential between 
two sources are different concepts, since the equation .6. V = p that relates them in 

usual electrodynamics no longer holds. For G = Z2 for example, RH _, oo as ,8 _, oo, 
while the screening length for the potential becomes zero in the same limit [5]. 

E. The FCOP is a purely spatial quantity and can be defined at finite tempera­
tures too. In the deconfinement region we expect it to define the characteristic length 

RH in a similar way to the Higgs region (for G = Z2 see [5]), since charge-anticharge 
pairs connected by an open flux line are here condensed in the thermal equilibrium 
state too. Thus we can use the FCOP to investigate the confinement-deconfinement 

transition (or crossover). 

In view of duality considerations, it is amusing to note that using the VOOP and 
the FCOP we can immediately see that at small " the int~rmediate-,8 phase of Zn 

models is massless. Using the known results for the pure gauge theory [8,15] and 
Griffith inequalities, one can easily show that the VOOP is zero, so there are free 

charges, and the FCOP has perimeter law, so either there are no free charges (which 
is ruled out by the VOOP) or the theory is massless. 

4 Dual interpretation of the FCOP 

Consider a surface s_, chosen for simplicity to lie in a coordinate plane. In the pure 
gauge theory, the electric flux operator Ee(s_) creates from the vacuum a candidate for 
a vortex, i.e. a state containing a closed line of center-magnetic flux at the boundary 

{)* s_ of s_ (this is the induction law and it follows from the commutation relations with 

the Wilson loop operator U(Ji.), 8Ji. = 0) [7,8]. The state has an energy proportional 

to the perimeter IB*s_l, and its vacuum overlap ( 0 I Ee(s_) I 0) is usually called a 't 
Hooft loop. An area law for the 't Hooft loop means the state is an excitation (it is 
almost orthogonal to the vacuum), whereas a perimeter law means the vortices are 

condensed in the vacuum [7 ,8,9] (the scalar product with the vacuum is as large as 

we can expect in this case). 
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In order to generalize these ideas to the theory with matter fields we need vortex­

type sources. It is possible to perform a duality transformation for the center degrees 

of freedom alone [8]. The gauge transformation operators of the dual model are 

localized on the links of the dual lattice, i.e. on the plaquettes l'. of the original lattice. 

In the original model their eigenvalues can be interpreted as external center-magnetic 

dipoles. We can enlarge the algebra of gauge-variant operators by adding the magnetic 

dipole creation operators Me(P.) (they are left multiplication operators by C E Cc). 

Let us now mimick the discussion in section 2 for the VOOP, this time however 

for vortices and not charges. 

A. A naive candidate for a vortex state is: 

fe(§..) IO) (11) 

For large separations the energy of this state is proportional to the area I§_ I· We can 

regularize the energy by translating the gauge-variant object Me( a• §_) fe (§_) by n 
steps into euclidean time (as usual, Me( a·§_) is defined as a product over oriented 

plaquettes of Mc(P.)): 

IS.., n) := M~(a* §..) jm Me( a·§..) fe(S..) IO) (12) 

is a gauge-invariant state with energy proportional to Ia'S,. I provided n grows rapidly 

enough with the linear size r(§_) of§_ (we proved this rigorously only for G = Z2 up 

to now). Notice that this time the source translated into euclidean time is a closed 

line of external center-magnetic dipoleJ, or, in other words, a closed wlenoid. 

B. For larger(§_) the vortex is either free or screened. A quantity testing this is 

the vacuum overlap .of the normalized vortex state, which, as discussed for the pure 

gauge theory, has an area law if vortices exist and a perimeter law if they are screened: 

( 0 I S,n) { exp( -c1 1§..1) :J free vortices 
IllS.., n) II ~ exp( -c,la*§..l) vortices are screened (

13
) 

C. In terms of euclidean expectation values the l.h.s. of (13) turns out to be 

nothing else than the square root of Fe(~), where!;, is a cylinder with basis §_ and 

height n (and Sm = §_), the height being in euclidean time rather than in one of the 

space directions. Thus the FCOP i• the VOOP for center-magnetic vorticeJ. 

D. For small K the l.h.s. of (13) behaves similarly to the 't Hooft loop at K = 0. 

In the free charge phase (if there is any) the vortices are free excitations. In the 

confinement region they condense into the vacuum (for electric charges this happens 

in the Higgs region). In the Higg• region the vortices exist for r(§_) < RH, while 

for r(§_) > RH their vacuum overlap becomes large. In analogy to the situation for 

charges in the confinement region, we call this phenomenon vortex fragmentation. For 

the Z2 model the vortex fragmentation length RH obeys: 

R 
e,olenoi'd 

H~ 

(f, 

(14) 

where e,o/.noid is the linear energy density of a closed line of external center-magnetic 

dipoles and (f, is the surface tension'computed from the denominator of (8) and (13), 
which at small r(!;,) behaves (similarly to the pure matter theory) as exp( -(f,l!;,l). 
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E. Eq. (13) cannot be defined at finite temperatures since in this case it is 
impossible to let n -> oo. 

It is not yet clear to us what role the condition of nonzero mass gap plays for the 
dual interpretation of the FCOP. The crirerion (13) for deciding whether a vortex is 
orthogonal to the vacuum is probably not sensitive enough to the soft modes typical 
for massless phases. 

5 Dual interpretation of the VOOP 

Let us ask a question similar to that leading to the FCOP, but now for the vortices: 
what properties of the vacuum are respon•ible for the ezi•tence of vortez state.? 

A. In analogy to section 2, assume that a vortex stat.e can be created by acting 
on the vacuum with an operator localized inside a spatial disc that is thin at the 
perimeter but whose thickness at the center increases linearly with its diameter (this 
generalizes the cone of section 2; similarly to the charged state case, for G = z, 
this construction can be carried out explicitely and it simply amounts to an energy 
regularization different from (12)). Although for vortices no structural results like 
those of [13] are available, we probably have to assume that the theory is in a massive 
phase (or at finite temperatures, where there are no infinite range correlations because 
of the thermal fluctuations). The vortex is localized at the perimeter of the disc, and 
its magnetic flux is measured by U(I,), I, being a closed line that winds around the 
perimeter. If the vortex state exists, the asymptotic orientation of the disc should not 
be observable (the disc could e.g. bend behind the moon), i.e. we should not be able to 
determine the magnetic flux by measuring a quantity localized around the intersection 
I,' of I, with the disc. One possible choice for this quantity is Jt(~)U(I,')¢(;r'), where 
~and~~ are now the endpoints of I,'. Let us denote by vorte~ fiuz the flux associated 
to the operator inside the disc, i.e. the flux created by acting with the electric flux 
operator on the vacuum (like in (11)). The conclusion is that there have to be strong 
correlations in the vacuum which delocalize the vortex flux. 

B. Assume I, is a rectangle in one of the coordinate planes and denote· its left 
and right halves by b and I,, with ~ and '!" as common endpoints, and by km the 
straight line from~ to~'. A quantity suitable for measuring the vacuum correlations 
described above is: 

( o 1 ¢t(~)U(bl¢(.,_') 1 o) ( o 1 Jt(.,_)U(I<.)¢(.,_') I o) 
( o I U(I<) I o) 

(15) 

In the free charge phase there are many closed vortex flux surfaces in the vacuum, 
since ( 0 I fc ( &' ~) I 0 ) is relatively large. ¢ t (.,_) U (b)¢(.,_') and J;t(.,_)U (I<.)¢(~') are 
affected by the closed vortex flux surfaces that intersect 1<m once, but U(I,) is not. 
Arguing as in section 2 we expect (15) to decay exponentially with II<ml = 1~- 'f'l. 
In the Higgs region ( 0 I fc( &' ~) I 0 ) is relatively small, so there are few closed vortex 
flux surfaces in the vacuum. In the confinement region ( 0 I fc(~) I 0) is relatively 
large both for closed and open surfaces ~. so the dominant role is played by the open 
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vortex flux surfac.es that screen the magnetic flux. Thus in the confinement-Riggs 

phase we expect the numerator and denominator of ( 15) to be roughly the same, up 

to a contribution from the endpoints. To sum up, the criterion for existence of vortex 

states in a massive phase is that for l:z:- :z:'l---. oo (15) behaves as: 

{ 
exp( -c, l:z: - i I 3 free vortic.es 
const vortices are screened 

(16) 

C. In terms of euclidean expedation values (15) is the square of (6), with the 

euclidean time and one of the space directions interc.hanged. Thus the VOOP is the 

FCOP for center-magnetic vortices. 

D. For large {3, (15) behaves similarly to a <,1>-two-point function at {3 = oo. In the 

confinement region however, (15) defines the characteristic length R" which can be 

now reinterpreted as the screening length for the center-magnetic fiux (in the vacuum: 

for dynamical magnetic flux fluctuations). 

E. The spatial VOOP can be defined at finite temperatures too. In the confine­

ment region the vortices are condensed. It would be highly surprising if objects that 

are condensed at low temperatures exist as excitations at higher temperatures. Thus 

we expect the spatial VOOP to define the characteristic length R, in the deconfine­

ment region too. We can use it to investigate the transition (or crossover) between 

the confinement-deconfinement region and the Higgs region, since in the latter the 

vortices are not condensed. 

While in the original interpretation the VOOP is on a stronger theoretical footing 

than the FCOP, in the dual interpretation the situation is reversed. 

6 Conclusions and outlook 

By investigating properties of center-magnetic vortices we have given a dual interpre­

tation of the VOOP and the FCOP. A nice duality between the c.onfinement and the 

Higgs region emerged. At finite temperatures, we gained a better understanding of 

the deconfinement region and of the transitions leading to it. 

In 3 dimensions it is the center-magnetic monopoles rather than the vortices that 

play a role dual to the center-electric charged states. We have [1,3,5] in principle (for 

discrete G in detail) given a method to construct the monopoles. 

Let us mention a few important open problems and tasks for the future: 

o Clarify the theoretical situation in massless phases. 

o Compute the VOOP in perturbation theory. 

o Compute the FCOP in simulations. 

o Can the FCOP be computed perturbative!y? 

o Are vortices in the Higgs region stable excitations, can they be used to detect 

new particles, or are they purely theoretical string-like objects? 

o What is the connection between the characteristic lengths RH and R" and the 

usual picture of screening in the deconfinement region? 
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