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The o--model with Wilson lattice fermions and an explicitly chiral symmetric extension of it is considered. A 

lattice regularized SU(2)L 0 U(1)y symmetric electro-weak model is briefly described. The role of the infra-red 

fixed point structure of the Callan-Symanzik renormalization group equations in the continuum limit is discussed. 

1. INTRODUCTION 

In the Standard Model the masses of elementary / 

particles arise due to spontaneous symmetry breaking 

via the Higgs mechanism. The main motivation for 

the non-perturbative study of the Higgs-sector of the 

Standard Model is a better understanding of the spon­

taneous symmetry breaking. A few of the interesting 

questions are: 

• the continuum limit (or, more generally, the large 

cut-off behaviour) of non-asymptotically free cou­

plings, like the scalar quartic self-coupling; 

• the bounds on the mass of the Higgs boson; 

• the upper bound on fermion masses; 

• the possibility of a strongly interacting Higgs-sector 

(strong quartic and/or Yukawa-couplings) etc. 

The non-perturbative features of the scalar sector (with­

out fermions) were intensively studied in recent years 

(for a summary see the contribution of R. Shrock to 

this conference and 1 ). A prototype model of the scalar 

sector describes an SU(2) gauge field interacting with 

a scalar doublet matter field(" standard Higgs model"). 

The general properties of this and some other similar 

models are by now reasonably well understood (but the 

work is still going on). 

The inclusion of fermions (quarks and leptons) in 

the non-perturbative investigations, however, has some 

1 

conceptual as well as practical difficulties. The concep­

tual difficulty is related to chirality and to chiral anoma­

lies, whereas the practical·difficulty is due to the fact 

that the numerical simulation of fermionic systems is 

very slow. A prototype model for the Higgs sector with 

fermions is the Geii-Mann- Levy o--model 2 of a scalar 

doublet and a fermion doublet. This model has a chiral 

SU(2)L 0 SU(2)R = 0(4) symmetry which is simply re­

lated to the SU(2)L 0 U(1)y symmetry ofthe standard 

electro-weak model. 

2. THE o--MODEL WITH WILSON FERMION$ 

Keeping the field normalizations arbitrary and us­

ing the Wilson 3 fermion field discretization, the lattice 

action of the o--model is: 

5 = L {wPszcPSz + >.( <Ps,<Ps.)' - I< L cPSz+P.cPSx 
X " 

(1) 

The scalar field is here: <.p, = ¢0, + i r,¢., = o-, + ir, 1r., 

with (5 = 0,1,2,3; s = 1,2,3). The 808 matrices 

fs (5 = 0,1,2,3) are defined as: fs =' (1,-i')'sT,). 

The Wilson fermion parameter is 0 < r ::; 1. The 

normalization of the fields can be chosen by conve­

nience: in perturbation theory the simplest choice is 

1< = K = ~. whereas in numerical studies one uses 

Jl = 1 - 2)., and M = 1. Taking into account the free­

dom of field normalizations, the number of independent 

relevant bare parameters in the above action is 4. 



A first important task is to find the critical set of 

points in the bare parameter space where the masses 

vanish {the correlation length in lattice units is infinite). 

These are the points where a (non-perturbative) con­

: inuum limi.t can, in principle, be _defined. A qualitative 

description of the critical set can be obtained at small 

<ouplings A, G in lattice perturbation theory. and for 

G ----+ oo by the hopping parameter expan3ion in powers 

of K and "· The result is 4 that at small bare Yukawa­

coupling G the points with m, = 0 and mu = 0 do 

not coincide (except forK= 0, where the fermions de­

couple). The same happens also at G = oc wher!', in 

addition, the set of points with vanishing n-mass and 

the set of points with vanishing fermion mass m-F = 0 

are disjoint. At G = A = oo the hopping parameter ex­

pansion implies that besides the original fermion there 

is a dynamically produced opposite parity fermion. In 

the points where the fermion mass is zero the opposite 

parity fermion mass is also zero. 

The 1-loop perturbation theory and the hopping pa­

rameter expansion imply that there are some difficulties 

with the above Wilson fermion formulation of the cr­

model: 

o The contribution of the fermion tadpole diagrams 

to the vacuum expectation value of C! :r is non-zero. 

Therefore, one has to add to the action a coun­

terterm linear in era:. The coefficient of this term 

has to be appropriately tuned, in order to find the 

required spontaneous symmetry breaking pattern. 

• In the whole bare parameter space there are no 

points with m7r = m.(F = mF = 0, except for the 

point with A = G = 0 where perturbation theory 

is defined. 

o The chiral SU(2)L 0 SU(2)R symmetry cannot be 

gauged because of the explicit chiral symmetry 

breaking of the Wilson-term in the fermion action. 

o A dynamical parity doubling of the fermion occurs. 

On the basis of these difficulties the above action cannot 

be considered as a satisfactory non-perturbative formu­

lation of the cr-model. 

3. CHIRAL FERMION MODELS 

All the above difficulties are connected to the lack 

of chiral symmetry in the Wilson fermion formulation. 

In order to have an explicit chiral symmetry let us intro­

duce 5 an additional "mirror fermion" field x., X.. with 

exchanged left-right transformation properties. The lat­

tice action with chiral SU(2)L 0 SU{2)R symmetry is: 

S = L {1"</>s.</>s. +A( c/!s.</>s.) 2
- "'L </>s.+~cPsx 

X 
" 

+'""' [(:x.v·.) + (,b.x.l] + '",.(,Z,,,;,.) + Px(X..~-.:.l 

- L [K~(>';•+"I"V'x) + K,(:i:.+,n"x.)] 

" 
+r L [(:\'.~·,)- (:\.+"1/·,) + ('1/;.x,)- ('1/;,+,.Xxl] 

" . 

+G~c/!s.(tl,rsv·.) + G,c/!s.(\.rtx.)} (2) 

In the chirallimit l"v· and 11, vanish, but the ,P•x-mixing 

mass Jl-V·x can be non-zero. 

The opposite contribution from the mirror fermion 

cancels all the chiral anomalies of the original fermion 

6 The global SU(2) anomalies found by Witten 7 are 

also absent. The physical spectrum of the fermions 

consists of two fermion states which are, in general, 

mixtures of the 7/•- and x-components. The additional 

lattice fermion states at the non-zero corners of the 

Brillouin-zone have masses proportional to the cut-off, 

similarly to the situation for Wilson fermions. This can 

be seen from the inverse fermion propagator in momen­

tum space: 

G--1
-

k -

Here the notations k" 

were used. 

(3) 

In case of spontaneous symmetry breaking the '1/•-

and x-masses are proportional to the vacuum expecta­

tion value" of the scalar field: I'~ = G,.v; Jlx = G,t· 



(the chiral invariant ..P-x-mixing mass 11-V>x can be arbi­

trary). The question naturally arises whether the mirror­

fermion can be removed from the spectrum by taking 

the limit G, --> oo? The answer is no, because the 

above tree-level formulae for the masses are valid only 

for sufficiently small Yukawa-couplings. There is an 

upper bound for the physical fermion masses, in the 

same way as in the limit >. --> oo for the Higgs-boson 

mass. (For a discussion of the question of anomalies 

in case of very heavy fermions see also 8.) With a 

more complicated Higgs-sector (e. g. two Higgs dou­

blets) it is possible to perform a continuum limit wh~re 

I'V> --> 0; 11-x # 0, but in this case after gauging the 

SU(2)L symmetry the mass of the W-boson stays also 

finite in lattice units, hence the W-boson will also be 

removed from the spectrum. The reason of the impos­

sibility to remove by spontaneous symmetry breaking 

the mirror fermion alone is, that in the symmetric phase 

there is a degenerate fermion parity doublet representing 

the unbroken chiral symmetry. Near the critical point 

it is possible to describe both the unbroken and broken 

phases by an expansion around the critical point, and in 

the critical theory there are both the 1/;- and x-fermions 

present. 

The gauging of the SU(2)L <81 SU(2)R symmetry is 

straightforward 5. In order to define a chiral SU(2)L <81 

U(1 )y-symmetric model, the L- and R-handed gauge 

fields UL,R(x,p,) have to be replaced" by 

UL(x,p,) = UL(x,p,)Uy(x,p,) 

UR(x,p,) = Uy(x,p,) 

The hypercharge quantum number Y is given by 

Y = 2TR3+ B- L 

(4) 

(5) 

where TR3 is the third component of SU(2)R 1sospm. 

The vector-like (B - L) quntum number is -1 for lep­

tons and ~ for quarks. The Yukawa-couplings can now 

break the global SU(2)R symmetry, for instance as a 

real diagonal matrix· G., in 

In the case of three. standard fermion generations the 

mass matrix entries J.L1f, J..Lx, J.LtJ7x (for a given quark- or 

lepton-type) are 3®3 matrices. The physical fermion 

states are obtained by diagonalizing the 6®6 mass ma­

trix. In the simple case, when the chiral invariant mass 

mixing parameter is negligible: I'V>x <t: I'V>> p,,, the ..P­
components can be separately diagonalized according 

to 
D p(L)-1 p(R) 

l'.j, = " I'V> " 
(7) 

and the Kobayashi-Maskawa matrix between u- and d­

quarks is given by 

K M = piL)-lp(L) 
- t/ld JjJu (8) 

The fermion part of the action 1n Eq. (2) has 

(for p,p = Px = 0) a global U(2)L <81 U(2)R symme­

try. As a consequence, in the SU(2)L <81 U(1)y model 

there is lepton- and quark-number con'servation. In 

addition, in the fermion sector there is also an exact 

U( 1 )Peccei-Quinn global chiral symmetry g, which is ex­

plicitly broken in the Higgs-Yukawa-sector. In a model 

with two Higgs-doublets this breaking can, however, be 

very small. 

At low energies the SU(2)L ®U(1)y model with mir­

ror fermions can be very similar to the standard electro­

weak model: by chosing the Yukawa-couplings like G,p 

and the ..P-x mixing masses I'·.Px small one can make the 

mirror-fermion components of the light fermions small 

(the mirror-fermion components have V + A couplings 

to theW-boson). At higher energies there is, however, 

a marked difference due to the occurence of the phys­

ical mirror fermion states. The masses of the mirror 

fermions have to be roughly below ~500 GeV,: corre­

sponding to the unitarily limit for Yukawa-couplings 10. 

The only possible manifestation of the mirror fermions 

at low energies is a small V +A admixture to the dom­

inant V-A weak couplings. The present experimental 

limits on the V +A admixtures are, however, not very 

strong 11, in the best cases roughly of the order of 

10-'. 



4. CONTINUUM LIMIT AND IRFP STRUCTURE 

A non-perturbative continuum limit can be defined 

by tuning the mass parameters (like K and p..p,) for 

fixed values of the couplings (A, G.p and G,) to a crit­

ical point where all the physical masses tend to zero. 

The behaviour of the renormalized couplings as a func­

tion of the scale variable -r = log(am)- 1 (where am is 

some mass in lattice units) is governed for -r _, oo by 

the infrared fixed point (IRFP) structure of the Callan­

Symanzik ,8-functions. In the case of the lattice action 

in Eq·. (2) the 1-loop ,8-functions are: 

(.1 1 2 2 
fJGx = 

16
rr 2 • 4G,,(G.p, + G,,) 

1 . 
,a, = 16rr2 • 

· (96:>-; + 16G!,:A, + l6G~,:A,- 4G~,- 4G~,) (9) 

These have an IRFP at A, = G,p, = G, = 0, therefore 

the continuum limit of the model is trivial, unless there 

is some other non-perturbative non-triviaiiRFP. 

lt·can be easily seen that in the limit -r _, oo, among 

the ratios 

(10) 

x is an arbitrary constant, and 

(11) 

The arbitrariness of the ratio x is important, because in 

the continuum limit in the spontaneously broken phase 

it allows to fix the mass ratio P.x/ P.>i•· 

After including the gauge couplings, in particular 

also the colour SU(3) coupling, in the renormaliza­

tion group equations the I RFP structure becomes non­

trivial. (See 1 and references therein.) In order to see 

the qualitative behaviour let us consider a simple model 

with a heavy (colour triplet) quark doublet and a scalar 

doublet. (The SU(2) gauge coupling will be neglected 

here, and no mirror fermions are considered.) The 

1-loop renormalization group (RG) equations for the 

renormalized SU(3) gauge coupling g, and the renor­

malized Yukawa- and quartic couplings ( G, and A,) are: 

2 dG, 3 2 
16rr d-r = -12G, + 8g,G, 

16rr 2 ~; = -96:>-;- 48:>-,c; + 120; (12) 

The solution of the first equation with an initial value 

g;0 at T = 0 is: 

(13) 

Substituting this to the second equation one obtains: 

(14) 

The third equation cannot, in general, be solved explic­

itly. However, in the limit g, / G, _, oo the asymptotic 

behaviour of the solution is: 

(15) 

The above RG-equations describe the behaviour 

of the renormalized couplings in the case of tun­

ing the hopping parameters, for fixed bare couplings 

(g, G, :A), to the critical hypersurface. Since the above 

,8-functions are taken from perturbation theory, one has 

to assume, however, that the renormalized couplings are 

small enough. In order to have a complete description, 

the dependence of the -r = 0 initial data on the fixed 

bare couplings has to be given: 

g,o = g,o(g, G, :A); G,o = G,o(g,G,:A) 

(16) 

For a qualitative description one can take g,0 "' 

g; G,0 "' G; A,0 "' A, at least if the bare couplings 

themselves are not very large. 



According to Eqs. (13-15), for fixed (g, G, >.), the 

renormalized couplings grow for increasing T. Even if 

the initial couplings are small, at some point the per­

turbative /3-functions are not applicable any more. This 

is quite different from the behaviour in pure ¢4 or in 

the standard SU(2) Higgs model. Nevertheless, simi­

larly to the case of the standard SU(2) Higgs model, 

one can consider the "curve.s of partially constant 

physics" (CPCP's 1.12) with fixed renormalized gauge 

coupling (g,) and fixed bare Yukawa- and quartic cou­

plings (G,>.). Along these curves the bare gauge cou­

pling goes to zero (/3 = 6g- 2 
__, oo) and for sufficiently 

small g; the above solutions imply: 

? _...!_ 

2 2 ( 2 -9 ) " 
G,(r)=g, 1+rg,

24
7r

2 
· 

. c- 2 g- 2 +r-- + --
[ ( 

29 ) - 1 36 

' 2471" 2 5 

36 ( 2 29 ) -{,] -
1 

-- 1+rg --
5 r 24n-2 

(17) 

Therefore, in the limit of zero lattice spacing T __, oo, 

the renormalized Yukawa-coupling tends to zero (and 

due to Eq. (15) the same is true also for the renormal­

ized quartic coupling >., ). In other words, the contin­

uum limit is a "trivial" QCD-Iike gauge theory. The 

non-trivial IRFP structure of the above RG equations 

does not imply a non-trivial continu~m limit (different 

from QCD) for the whole theory with Yukawa and quar­

tic couplings. Still, the qualitative behaviour is quite dif­

ferent from the case of the standard SU(2) Higgs model 

without fermions (see 1 and references therein). The 

vanishing of the Yukawa-coupling along the CPCP's is 

also very-very slow: it goes to zero as a small inverse 

power (actually - 5's) of the logarithm of the cut-off! 

Therefore one can expect, that in the case of strong 

enough initial Yukawa couplings the strong interaction 

can persist also for rather high cut-off's. According 

to the above discussion this must be the case in the 

vicinity of the crittcal surface for non-zero bare gauge 

couplings, where strong Yukawa- and quartic couplings 

are supported by the strong renormalized gauge cou­

pling. Since the perturbative RG structure is so much 

different from the pure ¢4 theory or from the standard 

Higgs model without fermions, it cannot be excluded, 

that for stronger gauge couplings the perturbative treat­

ment breaks down completely and there exists a non­

trivial continuum limit also in the mathematical sense. 

The most interesting question is, of course, what 

is the situation in nature: is the colour interaction at 

the W-boson mass scale strong enough to support a 

strongly interacting Higgs-Yukawa sector for very high 

cut-off's? In any case, a necessary condition for this 

is the existence of heavy fermions. In the case of the 

above chiral SU(2)LOU(1)y model the role of the heavy 

fermions with strong Yukawa-couplings can be taken 

over by the mirror fermions. 
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