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Abstract 

A method is presented for extracting various interesting quark distributions from mea· 

surements of differential cross-sections for neutral and charged current processes at an ep 

collider such as HERA. The complete structure of ep interactions as described by the par­

tan model in leading order Q CD and lowest order electroweak theory is taken into account. 

Using Monte Carlo data we illustrate the experimental feasibility of the proposed unfolding 

procedure. 

In the past, deep-inelastic lepton-nucleon scattering has played a leading role in exploring the 

interior structure of the nucleon and putting QCD to quantitative tests. At HERA these investigations 

will be continued and extended to momentum transfers Q considerably beyond the W and Z masses 

as well as to values of Bjorken-:z: below 10-2 • One expects to get rid of uncertainties due to non­

asymptotic effects from target mass, heavy flavour thresholds, higher twist operators, and quark and 

gluon fragmentation, and to be able to exam.ine the asymptotic scaling violations predicted by QCD 

under purer conditions. Furthermore, new determinations of quark distributions and, more indirectly, 

also of the gluon density should be possible with a resolving power for distances as small as 10-16 em. 

Yet, it does not seem to be an easy task at ep colliders to realize these expectations [1]. Apart from 

various experimental difficulties in performing sufficiently precise and complete measurements of the 

basic observables, i.e. the differential cross-sections in "' and Q2 for the inclusive rnarged and neutral 

current processes ep--> v.X (CC) and ep __,eX (NC), there are also some problems in principle whim 

have to be solved. For instance, the scale dependences introduced into the cross-sections through the 

W and Z-boson propagators have to be unfolded before the QCD scaling violations can be tested. 

This is relatively simple in the CC case where the W propagator enters as an overall factor. On the 

other hand, NC scattering proceeds through photon and Z-boson exrnange including interferences 

so that the 1 and Z propagators cannot simply be factored out from the NC structure functions. 

Moreover, in ep collisions one does not have the simplifications due to isospin symmetry which exist 

for lepton scattering on isoscalar nuclear targets and greatly facilitate the determination of singlet 

and non-singlet (under the flavour group) combinations of quark distributions. As a consequence, 

the deep-inelastic structure functions directly measurable in ep collisions cannot straightforwardly be 

connected to results from present-day fixed target experiments. Also, the extraction of particular 

quark distributions and tests of the QCD renormalization group predictions for scaling violations over 

the whole accessible range in Q2 require some new experimental approaches and a more involved data 

analysis. Finally, electroweak radiative corrections are predicted to be important [2] and must be 

carefully taken into account. 



2 Determination of quark distributions in ep collisions 

In order to develop a strategy for structure function studies optimized for high energy ep collisions it 

is certainlv useful to try different procedures. In this letter we address the problem of extracting quark 

distributions from differential NC and CC cross-sections. Approaches which have been contemplated 

so far iL3: include valence quark approximation at large x, photon exchange approximation at small 

Q 2 • combination of measurements at different. ep c.m. energies. use of especially tuned polarized 

t_::: beains. and even collision:-; of an electron beam with an isoscalar deuteron beam. We want to 

suggest another possibility which admittedlv also has its limitations but which is free of the obvious 

disadvantages of the suggestions just mentioned. ln particular, our method is a priori not restricted 

to large x or small Q2 and, moreover. avoids time consuming runs at different c.m. energies. After 

a general explanation of the procedure we illustrate the experimental feasibility of our proposal by a 

Monte Carlo event. simulation. 

The method is based on measurements of N C and CC cross-sections in suitable bins in x and Q 2 

for e- p and e+ p collisions at a fixed c.m. energy Js. It is assumed that the electrowealr couplings and 

1-Y' and Z masses are as predicted by the Standard Model, an assumption which will be tested very 

precisely at SLC /LEP, and that the radiative effects are subtracted off from the data. Correspondingly, 

we start from the parton model expressions for the inclusive differential cross-sections in the limit of 

vanishing lepton and quark masses. Effects of heavy quark masses are not essential for the present 

study. In fact, in a large part of the accessible (x, Q2 )·region at HERA, the contributions from charm 

and bottom quarks are expected to have a leading log behaviour similar to that of light quarks, while 

top production is either negligible or directly observable [4]. In the NC case one thus has 

(1) 

where a is the electromagnetic finestructure constant and y = Q2 j xs. The NC structure functions 

F;(x,Q 2 ) read 

2xF1(x,Q 2
) = L AJ(Q 2

) [xq,(x,Q 2
) + xq1(x,Q 2

)] 

f 

L B,(Q2
) [xqf(x,Q 2

)- xq1(x,Q 2
)] 

f 

(2) 

where qt(<IJ) describes the density of a quark (antiquark) flavour fin the proton including leading 

order QCD scaling violations, and the flavour-dependent coefficients A f and B f are given by 

AJ(Q 2
) e}- 2efv,vtPz + (v; + a;)(vJ + a})P~ (3) 

BJ(Q 2
) = - 2efa,a1Pz + 4v,v1 a,a1 P~ 

Here, ef is the electric charge (e, = -1), VJ = [T,,- 2e,sin2 0w]/sin20w and af = T3 tfsin20w 

are the NC vector and axial vector couplings expressed in terms of the third component of the weak 

isospin (T3, = -~)and the Weinberg angle Ow, and Pz = Q2 /[Q 2 + m~J denotes the ratio of 1 and 

Z propagators. The individual contributions from 1 exchange, Z exchange and 1-Z interference are 

easily recognizable in eq. (3). Furthermore, the differential CC cross-sections can be written in the 

form 

dace( e-) 
dx dQ 2 

dace( e+) 
dx dQ 2 

2 [ l 7rQ' F 2 2 2 2 - 2 
. 40 (Q

2 2 ) 2 L llu;d, I u;(x,Q ) + (1- y) IVu;d;l d;(z,Q ) 
4 sin w + mw i,j 

1 

(4) 

where Vu;d, are elements of the Kobayashi· Maskawa matrix, u; and dj denote up-type and down­

type quark flavours, respectively, and i, j are family indices. As a good approximation one may 
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consider a world of four massless quark flavours ( u, d, s, c) and use the unitarity relations 2:,· I Y'u d I' = 
I ' 1 i 

L; lvu;d, !' = 1. 

One can now solve eqs. (1,4) for four quark distribution functions or combinations thereof. It is 

convenient to choose the valence quark distributions uv(x, Q 2 ) and dv(x, Q 2 ), and the total up and 

down-type quark distributions U(x,Q 2
) = 2:; [u;(x,Q 2 ) -r il;(x,Q 2 )] and D(x,Q 2

) = Li [d;(x,Q 2 )+ 

d;(x, Q 2)j. Using the abbreviations 

= ~{daNc(e-) ± da-Nc(e+)} 
4rra2 dx dQ 2 dx dQ 2 

~cc _ 
v± -

4sin4 0w (Q 2 + mw)' {d<7cc(e-) ± d<7cc(e+)} 
rra2 dx dQ 2 dx dQ' 

and the coefficients AJ(Q 2 ) and Bj(Q 2 ) from eq. ( 3) one finds 

Uv(x,Q 2
) = r•<7NC + f"'<7CC 

1 - 2 -

g· (1 - y )' juv _ Bd 
= (1- (1- y) 2 ) [(1- y) 2 Bu + Bd] 

2 - (1-y) 2Bu+Bd 

dv(x,Q 2
) = 1d. "Nc + 1d. "cc 

1 - 2 -

f~· 
1 

= (1- (1- y) 2 ) [(1- y)2Bu + Bd] 
d" -Bu 

!, = (1 - y )2 Bu + Bd 

U(x, Q 2
) = 1u "Nc + 1u "cc 

1 + 2 + 

!'! 
( 1 - y )' u -Ad 

= (1+ (1- y)2 ) [(1- y)2 Au- Ad] 
!, = (1- y) 2Au- Ad 

D(x, Q2) = fD <7NC + fD <7CC 
1 + 2 + 

tP -1 fD- Au = (1 + (1- y) 2 )[(1- y)2Au- Ad] 
; 2 -

(1- y)2 Au- Ad 

From these distributions one can construct the non-singlet structure function 

X [uv(x,Q 2
) + du(x,Q 2

)] = J';'<7f!0 + J;'<7'!_0 

x(1 + (1- y)2
) n' x(Bd- Bu) 

(1- (1- y)')[(1- y) 2Bu + Bd] ; J, = (1- y) 2Bu + Bd 

and the singlet structure function 

F,(x, Q 2
) = x [u(x,Q 2

) + D(x,Q'l] = J;"r:_c + f{<7~c 
-x(1- (1- y) 2

) • ,, _ x(Au- Ad) 

(1 + (1- y)2 ) [(1- y)2Au- Ad] ' J
2

- (1- y) 2Au- Ad 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(ll) 

which have been measured in present-day experiments (at least in a good approximation) and which 

are particularly suitable quantities for QCD renormalization group studies [5]. The above relations 

make the manipulations explicit which must be applied to the measured cross-sections in order to 

unfold the weak propagator effects and the flavour dependent 1 and Z couplings, and to extract 

particular quark distributions. 



4 Determination of quark distributions in ep collisions 

Having described the method in principle, we now tum to the most crucial question of how well it 

can be expected to work in practice. Since the achievable accuracy in the determination of the quark 

distributions from the relations 16-11) clearly depends on the properties of the coefficient functions f; 

it is useful to pay some attention to these quantities. Concentrating on the valence up-quark density 

v.,.( ~ .. Q 2 ) and the singlet structure function F,(x, Q 2 ) for brevity, we have plotted the corresponding 

coefficients f'(,"z and fl. 2 versus x for some values of Q 2 in Fig. l. As can be seen from Figs. 1a and 

1b, ft is much larger than f~" in the considered range of Q 2 except for ~ ---> X min where f~" vanishes 

proportionally to ( 1 - y )2 . Hence, N C data are more relevant for the determination of v.,. ( x, Q 2) than 

what one would expect from the difference 17}1/C alone. The importance of the NC input even at 

moderate values of Q 2 is indeed surprising since 17}1/C gets quite small with decreasing Q2 as a result 

of the increasing dominance of the pure photon ·exchange. Figs. 1c and 1d show that the singlet 

coefficients f{ and f2 are similar in size and that they are divergent at certain values of x and Q 2 . 

These divergencie> are caused by the vanishing of the denominators (1- y) 2 Au(Q2 )- Ad(Q 2 ) in eq. 

111). For sufficiently low Q\ At(Q 2
) c= e} so that the problem occurs at y c= 1/2, i.e. x c= 2Q 2 fs. 

As Q 2 increases this point is shifted to values of J:' somewhat larger than 2Q 2 f s due to the Z-boson 

contributions to At(Q 2
) given in eq. (3). The occurrence of divergencies just means that the cross­

sections ( 1 ) and ( 4) cannot be inverted and solved for F, ( x, Q 2 ) along a particular line in the (", Q2 )­

plane. In practice, the unfolding procedure is bound to fail at values of x and Q 2 close to this line 

because of rapid variation of the coefficient functions. One sees from Figs. 1c and 1d that the whole 

branches of fi.z on the left-hand side of the divergencies, corresponding to y > 0.5, are problematic. 

This kinematical region is disfavoured also for other reasons, e.g. large radiative corrections. On the 

other hand, the branches of fl. 2 on the right-hand side of the divergencies, corresponding to y < 0.5, 

are perfectly well-behaved. Concerning tbe properties of the other coefficient functions which appear 

in eqs. (7-10) we only state that apart from overall signs f'/j and fl,?. are similar to ftz• while ff2 

and ff:2 resemble fi,z· 

In order to examine our extraction method for realistic data samples we use a Monte Carlo event 

generator [6] to simulate NC and CC scattering of30 GeV electrons and positrons on 820 GeV protons. 

The Monte Carlo generator is based on the differential cross-sections eqs. (1) and (4) taking the quark 

distribution functions given by parametrization I of ref. [7] and the following values for the electroweak 

parameters: o = 1/137, sin2 11w = 0.226 and mw = mzcosllw = 38.68 GeVfsinllw. An integrated 

luminosity of 200 pb- 1 per e+ beam is assumed. The number of events as well as the corresponding 

cross-sections are recorded in bins of :rand Q 2 for x ~ 0.01 and Q 2 ~ 103 GeV2
• In order to assure 

samples with reasonable statistics, the bin-size is increased as :r and Q 2 increases. For Q 2 we have 

chosen four bins per decade which are equally large on a logarithmic scale, i.e. ~log Q2 = 0.25, and in 

x we have taken the bins ~"' = 0.05 for x C: 0.5, ~:r = 0.1 for 0.5 C: :r C: 0.8, and the bin 0.8 :::; x C: l. 

Of r.ourse, larger bins can be used to decrease the size of the statistical errors, but we prefer a not too 

coarse binning in order to indicate the possible resolution. 

These Monte Carlo data sets simulate the real data obtainable in a few years of experimentation at 

HERA and serve as the input in eqs. (6-11). There is some freedom in the choice of the point within 

a (x,Q 2 )-bin that should be used for the numerical evaluation of the the coefficient functions in eqs. 

( 6-11) and the factors multiplying the brackets in eq. ( 5 ). As a reasonable choice we have taken the 

weighted bin center as obtained from the event samples. Figs. 2 and 3 show the resulting momentum 

distribution for the valence up-quark, xuv(x, Q 2 ), and the singlet structure function F,(z, Q2), in 

comparison to the corresponding input distributions used in the generation of the event samples. We 

find that NC and CC measurements are both necessary to reconstruct xuv(z, Q 2) and F,(x, Q2 ) in the 

intermediate Q2 range (Figs. 2a and 3d). However, F,(x, Q 2) is essentially determined by CC data at 

relatively low Q 2 (Fig. 3a), while zv.v(x, Q2 ) is dominated by the NC input at very high Q2 (Fig. 2c). 

The errors displayed in Figs. 2 and 3 are obtained from the statistical errors on the number of NC 

and CC events in a given bin in x and Q 2
, NNc(e+) and Ncc(e+), propagated through the unfolding 
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relations. Formally, one has 

8= (12) 

where h,z denote the appropriate coefficient functions, that is in the cases at hand either xf~2 or 

Ji,z, and fJ represents the differential cross-sections given in eqs. (1) and (4) scaled with the same 

propagator factors as used for <T± in eq. (5). For bins with zero or only a few events in a data 

sample, we use Poisson statistics instead of eq. (12) to obtain the proper error estimates. Fig. 2 

demonstrates that for uv(x, Q 2
) the statistical precision of the unfolding procedure improves as Q2 

is increased. It becomes quite satisfactory in the very high Q2 range until Q2 exceeds about 4 x 104 

Ge V2 where one has only very few events. On the other hand, in the intermediate Q 2 range below 

104 GeV2 the statistical errors are large. This somewhat surprising result can be understood from the 

properties of NC coefficient /~" shown in Fig. 1a and from the error formula eq. (12). More precisely, 

since f~· > g· the charged current statistics gives a negligible contribution to the total statistical 

errors on uv(x, Q 2 ) in the whole Q 2 range considered and, moreover, the statistical uncertainties in 

the NC data are strongly amplified by the rapid increase of the size of g· as Q2 decreases. Quite in 

contrast, the singlet structure function F,(x, Q 2 ) can be well extracted in the intermediate Q2 region 

as illustrated in Fig. 3. Here, the statistical errors are mainly determined by the CC data samples 

and appear acceptable at least up to Q2 "'104 GeV2 • The large errors on the leftmost points in Figs. 

3a and 3d reflect the drastic changes of the coefficient functions fi.z under small variations of x near 

the divergencies shown in Figs. 1c and 1d. We want to emphasize, however, that the break-down of 

the extraction method only affects the low-x end of the spectra and is typically localized to one or 

two x-bins. 

In summary, we have derived relations for unfolding particular quark structure functions from the 

differential neutral and charged current cross-sections for e-p and e+p scattering. It should be noted 

that simplifications such as valence quark and photon exchange approximations have not been used. 

In other words, modulo electroweak radiative effects and higher order QCD corrections, our procedure 

is as general as possible. Furthermore, based on a Monte Carlo event simulation we have studied the 

experimental feasibility of the proposed method at HERA energies. As examples, we have shown the 

statistical precision with which the valence up-quark distribution and the singlet structure function 

can be reconstructed. The results are quite encouraging. Of course, one has to keep in mind that 

systematic errors and uncertainties due to radiative corrections have not yet been considered. We have 

also studied other quark distributions, without including them in this letter, and find that the method 

works well for some but not all distributions one might wish to determine. In general, the regions in :r 

and Q 2 where a sufficiently precise extraction is possible are different for different structure functions 

as exemplified by uv(x, Q2 ) and F,(x, Q2 ). Improvements of our method and combinations with more 

conventional approaches are possible and will be investigated. 
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Figure captions 

Figure 1 Coefficients of the unfolding relations for (a,b) the valence -ap-quark distribution at Q2 (103 

GeV2 ) = 7.8 (full), 14 (dashed), 25 (dotted), and (c,d) the singlet structure function at Q 2 

(103 GeV2 ) = 1.4 (full), 2.5 (dashed), 4.4 (dotted), 7.8 (dash-dotted). 

Figure 2 Valence up-quark distribution extracted from Monte Carlo data samples for e-p and e+p 

scattering with statistical errors corresponding to 200 pb-1 per lepton beam, in comparison 

to the input distribution (full curves). 

Figure 3 Singlet structure function F,(x, Q2 ) = I;;[xq;(x, Q2 ) + zq;(x, Q2 )] extracted from Monte 

Carlo data (specified in Fig. 2) and compared to the input distribution (full curves). 
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