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ABSTRACT. A renormalization procedure is proposed which applies to lattice Feynman integrals containing zero-mass 

propagators and is analogous to the BPHZL renormalizationprocedure for continuwn Feynrnan integrals. The renormalized 

diagrams are infrared convergent for non-exceptional external momenta, if the vertices of the theory satisfy a general 

infrared constrah\t. Under the same conditions as in the massive case [4], the continuum limit of the renorroalized theory 

exists and is independent of the details of the lattice action. 

1. Introduction 

Feynman integrals with a lattice cutoff have a very specific structure. They are absolutely convergent for 

finite lattice spacing, if all propagators are massive. The continuum limit behavior of such diagrams is described 

by a lattice power counting theorem [3], which uses a new kind of an ultraviolet (UV) divergence degree (the well 

known power counting theorems of Weinberg [1] and of Hahn and Zimmermann [2] do not apply to diagrams 

with a lattice cutoff). On the basis of such a power counting theorem a renormalization program for lattice field 

theories has been given [4], which is analogous to the BPHZ finite part prescription for continuum Feynman 

integrals [5]. 

These methods work for massive field theories. In the presence of massless fields, additional arguments 

are needed to avoid infrared (IR) divergencies. It has been shown [6] that the UV-power counting conditions 

only have to be supplemented by IR-power counting conditions, and IR-singularities are tractable by the same 

methods as in the continuum [7,8). In this article, we use this power counting to give a renormalization procedure 

for lattice Feynman integrals with massless propagators. 

In outline, the idea of the construction is as follows. As in the massive case, the continuum limit is 

controlled by UV-divergence degrees. As a convergence condition, they should always be less than zero. This 

can be achieved by appropriate subtractions. However, in the presence of massless propagators, subtractions 

at zero momenta are no longer IR-convergent. TheIR-divergencies can be avoided by choosing the subtraction 

points at non-exceptional momenta, and by additional finite renormalizations, which are chosen in such a way 

that in the sum of all diagrams to a given order all IR-singularities drop out. For example, in a gauge theory 

the renormalized coupling may be defined as the value of an appropriate vertex function at non-exceptional 

momenta, whereas the self-energy of the gauge field has only a wave function renormalization and vanishes for 

zero external momentum. However, when we want to renormalize diagrams separately by the forest formula, 

we run into the problem of IR-singularities also if we choose normalization points at non-exceptional momenta 

(cp. Section 2.1). For instance, to make a two-point diagram UV-convergent, in general two differentiations are 

necessary. This produces an IR-singularity by differentiating a propagator twice. 

To prove the convergence of a renormalization procedure we shall use the power counting theorem of 

[6]. This necessitates all subtractions and differentiations being collected in the integrand, leading to a forest

formula like expression. As indicated above, this induces IR-divergencies also for subtractions at non-exceptional 

momenta. A possibility to overcome this problem is to introduce auxiliary masses in the counterterms. This 

means we employ the (lattice-modified) BPHZL renormalization procedure of Lowenstein and Zimmermann 

[9,10]. Propagators of a bare mass p. (which may be zero) get a mass-dependence of the form 

p. 2 + (s -1)2 M 2 p. 2 + M 2 > 0. 

sis called the mass parameter. Counterterms are now constructed for s:::::: 0, and after all subtractions are done 

we set s :::::: 1, so that we get a renormalized theory of the original model. Two important points must be taken 

into account. 

0 present address 
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Renormalization of lattirt Feyuman integrals with massless propagators 

1. Due to the auxiliary mass dependence of the counterterms, to get all UV-divergence degrees smaller 

than zero, differentiations not only with respect to the external momenta but also with respect to the mass 

parameter s are necessary. This means that subtraetions are combinations of lattice subtraction operators and 

Taylor polynomials in s. They will be called generalized subtraction operators. 

2. Additional finite renormalizations are necessary to avoid IR-singularities by re.normalized subdiagrams. 

For instance, inserting a self-energy subgraph into a massless line usually produces a non-integrable singularity. 

This difficulty is solved by imposing a normalization condition so that such a diagram vanishes for zero external 

momenta and s = 1. 

Both conditions are satisfied if instead of the subtraction operator t; [4) we employ 

tp-1 + (1- jP-1 ) I' 
q(•-1) q(•-1) q•' (1-1) 

p being the IR-divergence degree of the diagram 1 and the fare generalized subtraction operators. Using these 

subtractions, the renormalized theory is IR-finite for all s, including the case s ::::: 1 1 and the continuum limit 

exists if 

1. the external momenta are non-exceptional, and 

2. r(V) ;o. 4 for all internal vertices V, 

where r(V) is the (lattice-) IR-degree of the vertex V (defined below). An internal vertex is one with no 

external line. The latter constraint restricts the class of renormalizable, IR-finite theories. For instance, a 

massless 4>3 -theory is IR-divergent in four dimensions (r(4>3
) = 3). Note that we have made no statement about 

theIR-behavior of the bare theory. The renormalized, massless ~4-theory is IR-convergent, but the bare theory 

is not. 

In Section 2.1 we give a 1-loop example which should show the efficienc,y of the auxiliary mass method. 

The reader who is familiar with the method may skip this subsection. In the remainder of Section 2, general 

notations concerning Feynman diagrams with an arbitrary number of loops are given. They are essentially 

the same as in the massive case [4), and we only sketch the most important ones. Furthermore, generalized 

notions of infrared and ultraviolet lattice divergence degrees are introduced. Due to the introduction of the mass 

parameter s, this generalization of the lattice divergence degrees defined in [3] and [6] is necessary. Finally, 

the definition of a generalized subtraction operator (GSO) is given. The main theorem which describes the 

renormalization of lattice Feynman integrals and lattice Green functions is given in Section 3. In Section 4, 

important properties of GSO's are given. In the remainder of this article, the theorem is proved, using the 

properties of GSO's and the power counting theorem of [6], by showing that all UV- and IR-power counting 

conditions of this theorem are satisfied. 

2. The auxiliary mass method and generalized subtraction operators 

2.1. A one loop example 

Before we are going to define the renormalization prescription to every order, we shall consider the auxiliary 

mass method for the one loop case. To be specific, consider the scalar flt4-theory. The propagator is given by 

where 

- 1 
Ll(k;s,a)=- , 

k2+(s-1)2 M 2 

4 
2 . k;a 
-Sill
a 2 ' 

i::::: 1, ... '4 /;2 = ~)k;)2, 
i:::::l 

and M # 0 is an auxiliary mass. a denotes the lattice spacing. For s :::::: 1, the propagator is massless. 

loop contribution to the four-point function is of the form (Fig.1) 

- j~l· d4k - -
I(q; s, a)= -( )• Ll(k; s, a) Ll(k + q; s, a). 

-7rfa 211" 

(2-1) 

(2-2) 

A one 

(2-3) 

To renormalize the diagram, following the ideas of the (lattice) BPHZ procedure, one should subtract from 

the integrand its value at vanishing external momentum q. However, for s::::: 1, this produces a non-integrable 
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IR-singularity, i.e. for the massless theory this method does not work~he idea of Lowenstein and Zimmermann 

[9,10] consists in subtracting at q = 0 and simultaneously at s ::::: 0, i.e. giving the counterterm a mass. For 

non-vanishing q, the renormalized Feynman integral 

R(q;s,a) = rl· (d.k)• [3.(k;s,a) Ll(k +q;s,a)- (Ll(k;O,a)J'] 
./ 7f I o. 2:rr 

(2-4) 

is IR-convergent also for s::::: 1, and the continuum limit exists. Summing all contributions of the form (2-4), we 

get the renormalized four point function at one loop order. It depends on the auxiliary mass M. However, this 

dependence is only exhibited by a momentum independent and finite (i.e. in the continuum limit convergent) 

term, and hence may be compensated by a finite counterterm to the lattice action of the form 

a4 L c(M) .P4 (na), 
nEZ* 

which satisfies the IR-constraint alluded to in the introduction. In this way, normalization conditions at non

exceptional momenta may be implemented. 

If a diagram having a UV -divergence degree greater than zero is to be renormalized, we clearly have to 

differentiate not only w.r.t. the external momenta, but also to the mass parameter s. Otherwise, the UV

divergencies would not be cancelled because of the different mass dependence of the bare and the counterterm 

integrand. This situation happens e.g. for two-point functions. 

One may try to apply subtractions at non-exceptional external momenta instead of using the auxiliary 

mass method. However, this does not work if subtractions are directly applied to the integrand. To see this, 

consider the Feynman integral (Fig. 2) 

- !'fa a•k - -
J(q;s,a) = -( )

4 
V,(k,q;a) V,(k,q;a) ~(k;s,a) ~(k+q;s,a), 

--rr/o. 27r 
(2-5) 

where the vertex functions vl) V2 satisfy 

Vi(Ak, Aq; a)= O(.A) as A~ 0, (2-6) 

and 3. is given by (2-1). Diagrams of the form (2-5) appear in perturbative lattice gauge theory. The conditions 

(2-6) insure that the IR-constraints on the vertices are satisfied. 

The UV-divergence degree of J is at least two. It can easily be seen that a subtraction operator ~ [4] 

does not apply to the integrand of (2-5) without producing a non-integrable singularity, even if we choose a 

subtraction point q ::J- 0. For, if Li(k + q) is differentiated twice with respect to q and then q is set equal to q, 
we get such a singularity at k ::::: -(j. For this reason, we employ the auxiliary mass method which circumvents 

this problem. Normalization conditions at non-exceptional momenta may be implemented afterwards by finite 

counterterm contributions to the lattice action, satisfying the IR-constraint. 

Finally, some words are in order concerning the IR-constraints mentioned in the introduction. Consider 

the Feynman integral (2-5) again, but now set V1 ::::: V2 = 1. The vertices then have an IR-degree equal to three 

(three massless legs). J is the one loop contribution to the unrenormalized two-point function in the lattice 

~3-theory. As before, we make the subtraction of order two at q::::: 0 and s = 0. Then J remains IR-finite, and 

the continuum limit exists. However, inserting (2-5), or its renormalized expression as just described, into a 

massless line which is integrated over, results in an IR-divergence. Consequently, to get a finite result we should 

subtract from (2-5) its value at q = 0. But l(q; s, a) does not exist for q = 0 and s = 1, and the same holds for 

its renormalized form. This means that the massless T 3-theory is IR-divergent in four dimensions. 

If, instead of V1 = V, = 1, the vertices satisfy (2-6), which means that r(Vt) = r(V2 ) ::0: 4, then J exists 

for q ::::: 0 and s = 1. Furthermore, by finite renormalizations, it can always be achieved that diagrams with two 

massless external lines vanish at zero external momentum. This means that massless bare fields remain massless 

after renormalization. The same situation occurs for diagrams with three massless external lines. In general, 

these are the only basic :field vertex functions whose overall subtractions imply additional finite renormalizations. 

They are convergent even for zero external momenta, whereas in general exceptional external momenta must 

be excluded. 

3 



Renormalization of lattice Feynman integrals with massless propagators 

2.2. Diagrantmatic notations 

We now give some general notations which will be needed later on. In part, they are the same as in [4]. 

Only the modifications and additions will be pointed out here. 

In perturbation theory, a lPI function, i.e. a one-particle irreducible (lPI) Green function is written as an 

asymptotic sum of contributions 
N M 

<II P;{A, n;a) · IIlQ;] >o,1PI {2-7) 

i=l 

where 
[Q;] = a 4 L Q;{A, na) {2-8) 

nEZt 

in general is a contribution of the interaction part of the action. The subscript in (2-7) indicates that (2-7) is 

the 1 PI part of 
N M 

;o J 'D{A) II P;{A,n;a). II[Q;]. e-S,(A), 

i=l i=l 

where 
Zo = J 'D{A) · e-S,(A) 

and 'D{A) = fl.,nEZ' dA;{na). A represents all fields A; and So is the free part of the action. P;(A,n.;a) and 

Qi(A, nia) are polynomials in the lattice spacing a and the fields A at nia and neighboring lattice sites, and 

they are homogeneous in the fields A. They represent basic fields or composite operators. 

{2-7) is a sum of !PI Feynman diagrams. We recall that a diagram is called !PI if it is connected and 

does not get disconnected upon cutting any one of its internal lines [4]. Divergencies manifest themselves in 

lPI diagrams when the cutoff is removed. Such diagrams must be renormalized. Note that in our notation 

we distinguish between lPI functions and vertex functions. The latter are amplitudes which result from a 

Legendre transformation of the generating functional of connected Green functions. They are not always lPI, 

e.g. for theories with spontaneous symmetry breaking. However, every such diagram is mainly a product of 

lPI graphs, and the latter can be renormalized as described below. In particular, tadpole diagrams vanish 

after renormalization. When we take into account symmetries, the vertex functions must satisfy corresponding 

Ward-identities. After renormalization of alllPI functions (to a given order), normalization conditions of vertex 

functions are to be implemented by additional :finite renormalizations of proper functions, satisfying the IR

constraint indicated in the introduction. This must be done very carefully not to produce new IR-divergencies. 

In the following we consider the lPI functions in momentum space 

(2-9) 

where b!(Q) = LmEZ' 64 {Q- 2
; m) for Q E R 4

. (2-9) is a sum of lPI momentum space Feynman integrals. 

In what follows we are using the notations of [4]. Here we only sketch some of them. Let r be an arbitrary 

lPI diagram 
r = ( .Cr , Er , Br , </>r, 1/!r ) . 

.Cr (t:r) is the set of internal (external) lines off and Br is the set of vertices off. Every internal line L E .Cr 

is mapped by <l>r to its endpoints AL,BL E Br: </>r{L) = (AL,BL)· Every external line E E Er is mapped by 

1/!r to its endpoint BE = 1/!r{E) E Br. The latter are called external vertices of r. A vertex is called an internal 

one if it is not an external vertex. 

An external line E E Er carries an external momentum qE flowing into the diagram r. q denotes a basis 

of the external momenta of r' e.g. q = (qEll ... l qEJV-1 ), where N is the number of external lines of r. qEN is 

given by momentum conservation. Every internal line L E Cr carries a momentum h flowing from its outgoing 

endpoint AL to its ingoing endpoint BL and being a sum of the internal and external line momenta of L [4] 

4 



Renormalization of lattice Feynman integrals with massless propagators 

where ( k) == ( k1 , ..• , km) is a basis of the internal (:=loop) momenta of r. At every vertex, momentum conser

vation holds. 

To every L E Lr corresponds a propagator 

where n(L) EN and the auxiliary masses ML; are restricted by 

Furthermore1
, eL; E C~, satisfying 

1 
eL;(lL; a)= 2 'IL;(lLa) 

a 

'IL;(lLa # 0) > 0 if lL E BZ 

'IL;(ha) BZ-periodic in h, 

lim eL;(lL;a) = l{ 
a-o 

[-1rja, 1rja]', 

s is the mass parameter mentioned in the introduction. The numerator is of the form 

(2-10) 

(2-11) 

(2-12) 

PL(lL; s, p, a)= L p(il(p, s) V(;)(lL; a), (2-13) 

(i) 

where the sum is finite, p(i) are polynomials and V(i) E c:n, BZ-periodic in lL, mi E Z. For every vertex B E !3r 

we have a function 
VB({lL}B;s,p,a) E C' 

of a form (2-13) in variables {lL}B, which are the momenta of lines at the vertex B. VB is always assumed to 

be periodic with the BZ in all momenta. 

The unrenormalized Feynman integral off is given by 

Jr(q; s, p, a) f . 4 4 ~ 
-! d kt···d km Ir(k,q;s,p,a), (2-14) 

where m is the number of loops in r and 

(2-15) 

BEBr LECr 

This function belongs to the class of functions :F. 

To define a renormalized Feynmman integral we need a precise definition of internal and external momenta 

of r as well as of every IPI subdiagram r off: k"Y, q"Y. This is done as in [4], Section 2.2. In addition, in every 

propagator and vertex of r we have to substitute the mass parameter s by s1 . Correspondingly, the substitution 

operators of [4] must be generalized. For 1PI subdiagrams -r, 1' of r, .,. being a subdiagram of -y, 

s,: k' ~ k'(P) 

q' ~ q'(P, q') (2-16) 

so that 
S, f(k', q'; s', p, a) = f(k' (P), q'(P, q "); s", p, a). (2-17) 

1 The function classes C~, C" and :Fused here are defined in [3] or repeatedly in [4], Appendix A. 
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\iVhen applied to kT, qT, 5 1 is defined as in [4]. We remind the rt'ad~·r that the k1 -dependence of qT via 5 1 

occurs only by the explicit k1-dependence of external liiH'.'-> ofT, and that kT is independent of q" via S'"Y, Line 

momenta are always chosen in such a way that t}wy arc nat.ural in the !sense of [3]. 

The notion of af-forest (set of non-trivial, non-overlapping IPI subdiagrams of f) and related notions are 

defined in [5] or [4), Sect.io11 2, for instance. EspecjalJy, for any IP1 suhdiagram; off, 

U('Y) :0: {1'' E U h' is a .,ubdiagram of, and 1'' I 1'}, 

and 1'( U) = 'Y /;1 · · · fc, where ; 1 , ... , f'c are t.h~, maximal t>lements of U (; ). 

2.3. Infrared and ultraviolet deg1·ees 

As mentioned in the introduction, the auxiliary mas"' method implies that we also must differentiate a 

Feynman integrand with respect to the mass parameter s, to gd convergence of the integral in the continuum 

limit. To describe the order of subtractions by divergence degrees, we have to introduce IR- and UV-degrees 

with respect to momentum and mass variables. \Ve consider functions V E c: and F E F of momentum 

variables (u1 , ... , ur), (11 1 , •.. , vd), (q1 , ... , qu..), (Q 1 , ... , q·z) and of s of the form 

V(u, v, q, q; s, p., a) :-. L P?,(/1, 5) Vi( u, ·v, q, q; a.), 
i(l 

where I is a finite set, Pi f. 0 are polynomiaJs and l'i r c;n,, mi E Z, mi f:: m~r if i 'I k, and 

F(u, v, q, (j; s, Jl) a)-
V(u, v, q, fj; S,jl, a) 
(:;("~, v, q, q; s, JJ, a)· 

The numerator V E cc is assumed to he of the form (2· 18), 

n 

C(u,11,q,(j;s,J.l.,a) ·-II Ci(u,v,q,(j;s,Jl.,a) n Ec No= {0, 1, 2, ... }, 

Ci(u,v,q,(j;s,J.t,a) = ei{lt;a) + (s !)2M/+ 11?, e, E C~ of the form (2-12) 

d w ' 
li .:::::: L bik V,lr -+ L Cik llk ·-+ L dih qlt. .;. L cu: qh' 

lt::-::1 ~.:~.-.! k:-:;J k·.·l for all i.:::::: 1, ... , n. 

(b,,, ... ,b;d) I Oor (c,,, .. ,c;,) i 0 

(2-18) 

(2-19) 

(2-20) 

Below u will denote the parameters of a Zimmermann subspare H [3], 11 will be the complementary parameters, 

and q, q the external momenta of a diagram. q represents those external momenta appearing in the parametriza

tion of H. IR-degrees are always defined for fixed (j. Non-fixed variables like u, v, q, 8- 1 are always explicitly 

indicated. 

UV -degrees are defined as follows. 

degr;-,~ V( u, v, q, q; 8, Jl, a) ~= max (d~gi,Pi + degr;-,V.) 
i(l 

degr-- F(u,v,q,q;8,~t,a)-= d·eg.t---. \l ~ deg·r~ C(u,v,q,q;s,J.L,a) 
uq' uq1 uq• 

::: degr ;-
11

, V - 2nuq•, 

where nuq, is the number of factors C.; depending on u, q or 8. IR-degrees are defined by 

degr;-,(•-l)l-vV(u,tJ,q,ij;s,J1,a) ~::min (degr, __ lpi + degr ..-...
1 

v;) -;u --·· __ u,. 
degr,.....

1 
( -l)V(u,v,q,q;s,p.,a) = tp.indegr--

1 
V; 

--" vq' 1EI --" -vq 

and 

degr ~(~- 1 )!-v F( u, v, q, q; 8, J.L, a) ::: _9-egr uq(,--l)l-v V( u, v, q, "iii s, Jl, a)- degr .;q(,_ 1 )l 11 C( u, v, q, q; s, J.L, a) 

.:::::: degr;q(•- 1 )l-vV(u,v,q,(j;s 1 J.t,a) ~ 2muq,, 

6 

(2-21) 

(2-22) 

(2-23a) 

(2-23b) 

(2-24a) 
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where """'' is the number of C; which depend only on u, q and (s -1) (i.e. (b,,, ... , b;d) = 0 and 2::~~ 1 eik if. = 0 

and JJ.I = 0), 

degr ~vq(,-l)F( u, ·v, q, ij; s, Jl, a) = degr;lvq(s-l) V( u, v, q, q; a, p, a) - degr,;lvq(,-l) C( u, v, q, iii s, Jl, a) 

= degr--1 ( -l)V(u,v,q,ij;s,Jl,a)- 2mu, __ u11q' 

(2-24b) 

m'!J, being the number ofCi depending only on u (i.e. (bit 1 ••• ,bid) = 0, (dit,···,diw) = 0, L:~=teikii~e = 0 

and p.f = M;' = 0). degr,P; and degr ,_,p, are the usual UV- and IR-degrees of polynomials (defined in [6], 

Appendix A, for instance). --

The degrees satisfy all "typical degree properties". For completeness, they are listed in the appendix. Later 

on we will use them without any explicit reference. 

We now define UV- and IR-divergence degrees of an arbitrary 1PI subdiagram 1 off by 

w(l) = L w(AL) + L w{Va) +4m(l), (2-25) 

LELT BEBT 

r(l)= L r(AL)+ L r{Va)+4m(l), (2-26) 

LELT BEBT 

where m(l) is the number ofloops in 1, and 

(2-27) 

for L E L.r and 

(2-28) 

for BE Br. These definitions are valid also for reduced diagrams [4]. 

We will write the divergence degrees in a vertex dependent form. To every line L E £ 1 corresponds a pair of 

basic fields Ai, Ak· Lis called an ik-type line, having i-type and k-type legs. For every field Ai, a UV-dimension 

di and an IR-dimension 1'i > 0 is defined such that 

4 + w(AL) :0 d; + d, 

4+r(AL) 2: r; +••· 
(2-29) 

Let n,(B) denote the number of k-type legs at the vertex BE 130 (including external legs) and e,(l) the number 

of external k-type legs of f. Then we can write 

w(l)::; w(l) = 4 + L [w(B)- 4]- L e•(l)d• 

• 
r(1) 2: r(1) = 4+ L [r(B)- 4]- :Le•(l)r., 

(2-30) 

BEBT 1r: 

where 
w(B) = L n,(B)d• + w(Va) 

• 
r(B) = L n,(B)r. + r{Va) . 

(2-31) 

• 
These forms of divergence degrees will be used in the following. Especially, we will see that the IR-divergence 

degrees T(B) must satisfy some constraints to get IR-convergence of Feynman integrals. 
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Renormalization of lattice Feynman integrals with massless propagators 

A general statement about convergence of Feynman integrals with massless propagators can be made only 
for non-exceptional external momenta. The external momenta q1 , ... , qN of a 1 PI function 

or of a contributing diagram rare called non-exceptional [11] if 

implies that all ai ::::::: 0 or all ai ::::::: 1. 

N 

,L aiqi::::::: 0 
i=l 

2.4. Generalized subtraction operators 

<>; E {0,1}, (2-32) 

We now define generalized subtraction operators which apply to Feynman integrals with zero-mass prop
agators. Let F be a function of the same momentum and mass variables as before which is coo in q and 
s. 

-. DEFINITION 2.1. Let bE No= {0, 1, 2, ... } and tq• be defined by 

(2-33) 

for every function F which is coo in q and s, where P9 ,i 1 ..• i, E c; a.re totally symmetric in i 1 , ... ,i9 , (21r/a)
periodic in q1 , ... , qw, and lim

0 
Pg,i 1 ···iso (qt, ... , qw; a) ::::::: qi 1 • • • qi,. If for every such F ·-

[(1 - t:, )F]( u, v, >.q, q; >.s, ~"• a) = 0(>.'+1) as >. ~ 0, (2-34) 

-. tq, is called a generalized subtraction operator (GSO) of the order 6. 

The generalization consists in that in t:, one also differentiates with respect to the mass parameter •· By 

analogy, t~, _1 ) is called a generalized subtraction operator of order p, if for a function F, which is C 00 in q and 

s, the function ~~•-l)F is of the form (2-33), where b is replaced by p and s by (s -1), and 

[(1 - ~~•-t))F](u, v, >.q, q; 1 + >.(s- 1),Jl, a)= O(>.P+l ), ), ~ 0. (2-35) 

Obviously, t:, is a GSO of the order b iff:-•, defined by 

(2-36) 

is a subtraction operator [4] of the order 6- b, for every b satisfying 0 S: b S: b. An analogous statement holds 
-p 

for t,(•-l)' 

We want to apply GSO's to functions FE :F of the form {2-19). To this end, we have to exclude in (2-34) 
and (2-35) those values of the variables u, v satisfying 

d • ' 

L biJeVJe + L Ci1tUk + L €i.lr:qlc::::::: 0 
le=l k=l k=l 

for some i E {1, ... ,n} with J.t; = 0. 

8 
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Generalized subtraction operators have important properties which are responsible for the subtraction of 

UV-divergencies by applying them to Feynman integrals, and that subtracted diagrams are IR-finite. These 

properties will be given in Section 4 when we have defined the renormalization procedure. 

3. Renormalization of lattice Green functions. 

We give a prescription how to renormalize 1PI lattice functions 

{IT ?,(q,). :fi[Q;]} 
1 =l J=l O,lPI 

(3-1) 

(3-1) is a sum of 1PI Feynman integrals. At first, we define renormalized Feynman integrals. As indicated in 

the introduction and in the example 2.1, an important convergence condition is that every internal vertex B 

must have an IR-divergence degree not less than four. This condition will be assumed in the following. 

Let 
r = ( Cr , Er , Br , ¢r , 1/Jr ) 

be a 1PI diagram with m loops and Jr(q; s, Jl, a) the corresponding unrenormalized Feynman integral. The 

renormalized Feynman integral of r is defined by 

Rr(q;s,JL,a) = /_~ d4k,···d4 km Rr(k,q;s,JL,a), (3-2) 

where 
Rr(k,q;s,JL,a)= Sr L IT(-1\51 ) Ir(U). (3-3) 

UEWrEU 

Here 

1. 50 are the substitution operators (2-16). 

2. w is the set of all r -forests. 

3. Ir(U) is the unsubtracted Feynman integrand 

Ir(k, q; s, JL, a) (3-4) 

with the following substitutions depending on a forest U: 

For every line L E Cr (vertex BE Br) there is at most one 1 E U, so that L E £ 0 (BE B1 ), but L r(c £ 1 , 

(B r(c B1 ,) for all1' E U(l). If such a 1 E U exists, we write AL (VB) as a function of the variables q", k7, s1 , 

otherwise as a function of k, q, s. 

4. T.., is given by 
(3-5) 

PI bd. f r -p(1)-t d -:->(1) GSO' 
for every 1 su tagram 'Yo . tq1'(,..,~l) an tq..,,)' are s. 

The UV-subtraction degrees .1(1) and IR-subtraction degrees p(l) are given by 

(3-6) 

P(l) = 4+ L [p(B)- 4]- L ••hh· (3-7) 

• 
e, (I) is the number of external k-type legs of I· r, and d, are the IR- and UV-dimensions of the field A, 

(cp. (2-29)). Furthermore, the UV- and IR-subtraction degrees .I(B) and p(B) , BE Br, are constrained 

by 
.I( B) e: w(B) 

p(B) <::.I( B) 
for every vertex B E Br 

9 
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p(B) = 4 

p(B) :':: min(4, r(B)) 

for every internal vertex B E Br 

for every external vertex B E Br. 
(3-9) 

w(B) and r(B) are the UV- and IR-divergence degrees of the vertex B (cp. (2-31)). Note that always 

( ) 
'( ) -•(7) _ .f ( ) . -p(7J-• _ 

p(-y) -1:0::5 'Y. lfu 'Y < 0, we set t•"•'- 0, and 1 p 'Y -1 < 0. tq"(•'-l)- 0. 

5. The order of the factors in 
II ( -7\57 l 
7EU 

is determined by the rule that for 1'1,1'2 E U, 1 1 being a su bdiagram of 1'2 

For disjoint 1'l,1'2 1 the order is irrelevant. 

Theorem 1. Assume that every internal vertex B of the diagram r satisfies r(B) ::> 4, and that the exter

nal momenta off are non-exceptional. Then the renormaHzed Feynman integral fir(q; s, J.L, a) is absolutely 

convergent for every s and a > 0. The continuum limit a---+ 0 exists and is given by 

lim Rr(q; s, IL> a)=~~ d4 k, ... d4 k= Rr(k, q, s, !L), 
a--o -oo 

(3-10) 

where 
Rr(k,q,s,/L) = limRr(k,q;s,/L,a). 

a-o 

lflim.-o Ir(k, q; s, /L, a)'$ 0, Rr is equal to the BPHZL renormalized continuum Feynman integrand defined 

in [10] (with a different choice of internal momenta [4]). If lima-o Ir(k, q; s, /L, a) = 0, also Rr(k, q, s, IL) = 0. 

As for massive field theories, Feynman integrals which have a vertex with vanishing (naive) continuum limit do 

not contribute to the continuum limit at all, after renormalization. 

Renormalized diagrams are convergent also for s = 1. As an important convergence condition, r(B) ~ 4 

for all internal vertices B of the diagram, i.e. those vertices having no external line. In general, they result 

from an interaction or counterterm contribution to the lattice action. As the theorem shows, vertices with an 

external line do not have to satisfy such a constraint. This means that the (non-vanishing) external momenta 

provide an IR-cutoff. In most cases, theIR-subtraction degrees satisfy p('Y) 2:: 1 only for diagrams 'Y with two 

or three massless external lines, so that these are the only Feynman graphs which are affected by the additional 

finite renormalizations (cp. (3-5),(3-7)). After renormalization, they vanish at zero external momenta. 

As a corollary of this theorem we state the renormalization prescription for 1PI functions (3-1). Such a 

Green function is a finite sum of lPI Feynman diagrams. The renormalization prescription is as follows. Every 

contributing diagram 1 will be renormalized as described by Theorem 1. The subtraction degrees are given by 

(3-8),(3-9). These conditions, however, do not completely fix the subtraction degrees of the vertices. This is 

done in the following way. Pi may be a basic field or a composite operator. In the latter case, there corresponds 

an external vertex to Pi, in every diagram")' which contributes to (3-1). Furthermore, to every Q; corresponds 

a vertex in every ")' which may be an internal or an external one. For every composite Pi and for every Q; 

we denote the UV -divergence degree of the corresponding vertex by wi and r; and the IR-divergence degrees 

by r1 and v;, respectively. These numbers are independent of")' and depend only on the form of Pi and Q;. 

In the same way, let for every Pi and Q; UV-subtraction degrees of the vertices be given by {)i and TJ;, and 

IR-subtraction degrees by Pi and u;, respectively. They are always chosen to be the same for all diagrams ")' 

contributing to (3-1). Furthermore, they are constrained by the conditions 

{)i ~ Wi 

Pi $ min(4, r1, 6i) 

'I; ::> max( 4, r;) 

<r; = 4 

for composite Pi 

forallj=1, ... ,M. 

In general, the constraints (3-8),(3-9) are satisfied for every contributing diagram if (3-11),(3-12) hold. 

10 
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Let P1, ... , PN0 be basic fields and PNu+l, ... , PN be c.omposite operators. Then the renormalized Green 

function of (3-1) is written as 

(3-13) 

and we can state the following 

Theorem 2. Tl1e lPI function (3-13) is finite for each a> 0, and also in the continuum limit a--+ 0, if the 

following conditions are satisfied. 

1. The external momenta q1, ... , qN are non-exceptional. 

2. v; ? 4 for all j = 1, ... , M. 
(3-14) 

The a~ 0-limit is given by the BPHZL renormalized continuum Green function of (3-1) [10]. 

From Theorem 2 we easil~ get a renormalization prescription for vertex functions. They are not necessarily 

lPI, e.g. for theories with spontaneously broken symmetries. Nevertheless, every diagram which contributes 

to a vertex function is a product of 1PI diagrams and other, finite terms. If the 1PI graphs are renormalized 

as described above and such that renormalized tadpole diagrams vanish, the renormalized vertex functions are 

IR-finite and convergent in the continuum limit. Every tadpole line entering a 1PI subgraph is an external line 

of this subdiagram of vanishing momentum, hence could produce an IR-singularity. Vanishing renormalized 

one-point functions prevent such IR-divergencies. 

~hen Ward-identities are to be satisfied by the vertex functions, then in general additional finite renor

malizations of lPI functions are necessary. This can lead to non-vanishing one-point functions. In this case, it 

must be checked very carefully whether no IR-singularities are produced. In particular, every vertex V with 

a leg which gives rise to tadpoles must satisfy stronger IR-constraints than r(V) 2 4, namely, omitting the 

tadpole line, the resulting vertex V' also should satisfy the condition r(V') ? 4. 

The above theorem gives a well-defined procedure to renormalize theories containing massless fields (s = 1). 

Massless bare fields remain massless after renormalization. With respect to universality and power counting 

renormalizability, the same arguments as in [4] go through. The same holds for the eounterterm philosophy. 

All subtractions can be written as counterterms of the lattice action, eventually after some symmetrizations of 

the subtractions [4]. Also, they can always be chosen to be local. Counterterms and consequently renormalized 

Green functions depend on the auxiliary masses. This dependence can be absorbed by addition of finite coun

terterms satisfying the IR-constraints. In this way, normalization conditions at non-exceptional momenta may 

be implemented. 

The constraints on the IR-subtraction degrees are stronger than those of [10}. This is not a lattice artifact. 

They are necessary to avoid IR-singularities by subtractions. When we consider lattice Green functions in 

configuration space, the external momenta are integrated over, and the constraints (3-11 ),(3-12) may be replaced 

by the weaker conditions 

fli 2: Wi 

Pi :S: min(ri,bi) 

'Jj ? Tj 

4 :S <Tj :S min(v;, '1;). 

As a simple example of Theorem 2, consider the massless lattice (> 4-theory with an additional ~ 6-interaction: 

S(<l>)int = a4 L [g<1>4 (na) + Aa2
<1>

6 (na) ]. 
nEZ" 

The IR-dimension of the <!>-field is equal to one. Hence, r(<1>4 ) = 4 and r(a2 <!>6 ) = 6. Powers of the lattice 

spacing have no influence on the IR-degrees. Hence, the massless model is IR-finite renormalizable. 

4. Properties of generalized subtraction operators 

Before we are going to prove Theorem 1, we list important properties of GSO's. The first two lemmas state 

those properties of GSO's which are responsible for the subtraction of UV-divergencies by applying them to 

Feynman integrals as described in Section 3. 

11 
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~ ~ ( Lemma 4.1. Let t
9

, and t,1,_ 1 ) be GSO's a11d FE F of the form 2-19). Then 

Suppose that for every z 
M,' = 0. Then 

PROOF: 

l.a. degr;t;1,_ 1l :S degr;F 

b. degr;t:,F _$ degr;F. 

l, ... ,n the coefficients satisfy (bit, ... ,bid) 0 only if(dil, ... ,d;w) 

-- a• a' 
degr;[a(s _ 1)' aq' F(u, v, q, q; s, /l, a)JF0,,_1=o 

-- a• a' 
:S degr;a(s _ 1)• aq1 F(u,v,q,q;s,/l,a) 

~ degr;F(u,v,q,~s,~,a) 

(4-1) 

0 and 

(4-2) 

and that proves 1.a. The proof of 1. b follows the same way. To prove 2.a, note that by assumption all propagators 
which depend on q or (s ~ 1) are also dependent on v, hence 

-- a• a' 
degr;q, [ a(s _ 1)' 8q1 F( u, v, q, q; s, ~"• a)J9=0,,_1=o 

-- 8' 81 

:S degr;q, 8(s _ 1)' 8q1 F( u, v, q, q; s, ~"• a) 

:S degr;q,F(u,v,q,q;s,/l,a)- (b+ Ill). 

Consequently 

--. 8'8
1 

-degr;q, (s - 1) Pg,i, ... ;, (q1, ... , q,; a)[
8

(s _ 
1
)' 

8
q1 F( u, v, q, q; s, /l, a)Jq=0,•-1=0 

:S (g +b)+ degr;q,F(u, v, q, q; s, /l, a)- (b + Ill) 
= degr.;q,F(u,v,q,q;s,~,a) 

for Ill =g. 2.b follows analogously. 

...... p 1 ..... ~ ~ Lemma 4.2. Let t,1~_ 1 ), t,, GSO's, p- 1 :S 6, and r:, : F _, F defined by 

Let FE F be of the form (2-19). Then 

1 -d -••F < -d- -pip+' . egr.;q, r9 , _ egr;r9, u. 

2. degr; '?// F :S degr; F. 

D 

(4-3) 

(4-4) 

(4-5) 

Assume that for every i = 1, ... , n the coefficients satisfy (bit, ... , b;4) = 0 only if(d;., ... , d;,) = 0 and Mf = 0. 
Then 

3. degr- 7'9"', F < degr- F , and 
"''' - 1tft 

4. degr;(1- r:/)F :S degr;q, F- (c5 + 1). 

(4-6) 

(4-7) 

These are exactly the properties necessary to reduce UV-divergence degrees of a Feynman integral system
atically by application of'?//. The statements 2. and 3. are direct consequences of Lemma 4.1. We only have 

12 
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to note that ifF satisfies the additional constraint so does t:. F. The proof of 1. is nearly identical to that of 

[4], Lemma 3.1.1. To prove 4., note that 

-- --pi! -. -- -· degr;-(1 - Tq, )F( u, v, q, q, s, p,, a) :S degr;(l - tq, )F 

by Lemma 4.1. Hence it is sufficient to show that 

degr;-(1- t:,)F :S degr;q,F- (6 + 1), 

and this is done by using the same methods as in [4], Lemma 3.1.4. 

0 

The following two lemmas state properties of GSO's with respect to the IR-degrees of a function. Note 

that the 7j are fixed momenta. 

Lemma 4.3. Let t:, be a GSO and F E :F of the form (2-19). If for all i = 1, ... , n the coefllcients satisfy 

(dn, . .. , d;w) f 0 only if M,' + Jli f 0, the inequality 

{4-8) 

holds. 

PROOF: At first, we have 

degr~qv(•- 1 ) [::. :', F(u,v,q,q;s,p,,a)] 
q q:;::0,•:;::0 

e• e' 
~ degr-

1 
( _ 1)-b -

8 1 F(u,v,q,q;s,p,,a) 
__ u qtJ • 8s q 

~ degr :;;1q1J(• _ 1)F( u, v, q, {jj s, Jl, a), 

where for the first inequality we have used the constraints on the denominator of F. (4-8) is now a direct 

consequence of the inequality. 

-p ) Lemma 4.4. Let tq(•- 1) be a GSO and FE :F of the form (2-19. Then 

If for every i 
inequalities 

hold. 

1. degr ,;'q(•- 1 )1,t;(,_ 1)F ~ degr ;q(•-1 )l• F. 

2. degr;;lq•(•- 1) ~~•- 1 )F ~ degr ;q(•-1 )l• F - p. 

l, ... ,n the coefficients satisfy (bil, ... ,bid) = 0 onlyif(dn, ... ,diw) 

3 degr- jP F > degr- F and 
' --ulqv(•-1) q(•-1) - __ ujqv(•-1) ' 

-p --
4. degr ;q(•- 1 )l• (1- tq(•- 1))F ~ degr;;lq•(•-l) F + max(O,p+ 1) 

PROOF: Let bE No and I= (l,, ... ,lw) E Nl). 

1. For every function F E :F, we have 

degr;q(•- 1)l• [e(s~ 1)• :q', F(u,v,q,q;s,p,,a)]_ _ 
q-0,1-1-0 

e• e' 
~ degr;q(•- 1)l•&(s _ 1)• Bq' F(u,v,q,q;s,p,,a) 

~ degr;q(•- 1)I•F(u,v,q,q;s,p,,a)- (b+ Ill), 

13 
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? (b +g)+ degr .?q(•- 1)I•F(u, v, q, q; s, p, a)- (b + Ill) 

== degr ~q(•-l)I 11 F( u, v, q, q; s, p., a). 

The first statement of the lemma is now a direct consequence of this inequality. 

2. For every F E :F, we have 

[ ~ & l degr;;l••<•- 1) a(s _ 1)' a 1 F(u,v,q,q;s,p,a) 
q q:::0,•-1=0 

a• a' 
? degr,;-,(•- 1)l•a(s _ 1)' aq' F(u,v,q,q;s,p,a) 

? degr;q(•- 1)
1
,F(u,v,q,q;s,p,a)- (b+ Ill), 

and for g = Ill 

? degr ;q(•- 1)I•F(u, v, q, q; s, p, a)- (b +g), 

Le. 
degr ~ t' F > degr ~ F - p. 
--ulq11(•-1) q(•-1) - __ uq(•-1)111 

This proves the second statement of the lemma. 

3. All the propagators which depend on q or have a non-vanishing auxiliary mass are also dependent on v. 

Hence 

[ ~ & l degr;;l••(•- 1) a(s _ 1 )' 1fT F( u, v, q, q; s, p, a) 
q q:::0,•-1=0 

a• a' 
? degr~••(•-t)a(s _ 1)' aq' F(u,v,q,q;s,p,a) 

? degr ~••(•-l)F( u, v, q, q; s, p, a). 

Consequently 

[ ~ & l a(s- 1)' /j!F(u,v,q,q;s,p,a) 
q q:::0,•-1=0 

and this proves the third inequality. 

4. {1- ~~•-l))F is of the form 

~, ) ]( -. ) - v,(u,v,q,q;s,p,a) 
[(1- t,(•-1) F u,v,q,q,s,p,a - C( . )C( 0 ·1 )P+l' 

u,v,q,q,s,~,a u,v, ,q, ,p,a 

where V, E C'. Using the behavior (2-35) of the subtracted function and that V, E C"", we get 

V,(u,v,-\q,q; 1 + -\(• -1),1',a) = 0(-\'+t),A ~ 0. 

This yields 

14 
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By the constraint on the denominator, we get 

hence 

degr--
1 

_ 1
ll C(u,v,q,i];s,Jl,a)=degr.-..

1 
( _

1
)C(u,v,q,i];s,J1,a), 

--1Lq I v . --U q't! I 

degr ,;q1,_ 1)1J(1- t;1,_ 1 l)F](u, v, q, q; s, JL, a) 

2: degr;1q'tJ(• -l) Vp( u, v, q, i]; s, Jl, a) - degr;iqv(<~~-l)[C( u, v, q, i]; s, J1, a)· C( u, v, 0, i]; 1, J,J., a)P+1]+ 

+max(O,p+ 1) 

= degr;;:1,,1
,_1)(1- t~,-l))F + max(O, p + 1) 

2: degr;;:
1
,.

1
,_ 1)F + max(O, p + 1), 

where we have used Lemma 4.4.3. 

5. Convergence proof 

0 

To prove Theorem 1 we show that all conditions to apply the power counting theorem of [6] to (3-2) are 

satisfied. Let r be a 1Pl diagram and m the number ofloops in r. The subtracted Feynman integrand (3-3) 

corresponding to r is of the form 

where 

~ (k ) V(k,q;s,JL,a) 
Rr , q; s, JL, a = -;c-;-;( ~-'--=~)'""""'(7---,) , 

B1 k, q; s, JL, a B2 k; JL, a 

n 1;(L, -y), n 2;(L, -y) E {0, 1, 2, ... }, the first product is over all1PI subdiagrams 1' of r, and 

{L(k, q) = kL(k) + qL(q) 

kl = kl(k). 

Rr belongs to the class of functions :F and is periodic in k1, ... , km. 

(5-1) 

(5-2) 

(5-3) 

Let £ be the set of alllL, L E Cr, and of all k I for arbitrary lPI sub diagrams 1' of r and L E £ 1 . The set 

£is natural [4]. 

Let 
u1 , ... , u?' 

(5-4) 

be an arbitrary basis of£, r + d = m ( u1, ... , u, v1, ... , Vd E £ and det(il(u, v)/il(k)) # 0), and let H be 

a Zimmermann subspace, i.e. a class of affine subspaces of (k1, ... , km), defined by constant u1, ... , u?' and 

variable v1 , .. . , vd. Then all k, k"Y are linear functions in u, v, q: 

k=k(u,v,q) k'=P(u,v,q). (5-5) 

( v) = ( v1, ... , vd) is called the parametrization of H. The set of all classes H, for all bases (5-4), is denoted by 

'H.. 

We will show that for every H E 11. 

4d + degr:;Rr(k( u, v, q), q; s, JL, a) < 0, ifd > 0 (I) 
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4T+degr~1 Rr(h(u,l•,q),q;s,p,,a)l > 0, 
__ uv •:::1 

if T > 0. (II) 

Then all the conditions are met for the power r.ounting theorem of [6) to apply to ·the renormalized Fey.nman 
integral {3-2), and Theorem 1 is proved. Note that (II) must only be shown for s = 1. If s of 1, all propagators 
are massive and (II) is trivially satisfied. 

To prove (I) and (II) we will use the method of complete forests [5]. Rr(k, q; s, p,, a) is written in a form 
which depends on H, i.e. as a sum of terms which are described by complete forests .and satisfy (I) and {II). A 
f-forest U E W is called complete on H, parametrized by {v), iff E U, and if for 8iDY 'Y E U all lines of'j'(U) 
are constant on H relative to r, i.e. 

kl(u, v, q) is independent of v for every L E £'?(U) or 

all lines of 'f(U) are variable on H relative to/', i.e. 

k l ( u, v, q) is dependent on v for every L E £'i(U)· 

:Y(U) is said to be constant or variable on H, respectively. 

Lemma 5.1 [5). Let f be a lPI diagram, HE}{ and W,f' the set of all f-forests which are complete on H. 
Then 

where 

and 

Rr(k, q; s, p,, a)= L Xu(k, q; s, p,, a), 
f!EWf 

...... ~ ...... r r r I Xu(k,q;s,J.L,a)= (1-7T')Yr(k ,q ;s ,J.L,a) F:::1r:;qr::::q;•r:::,' 

' Y,(k', q'; s', p,, a) = f'f(U){k', q'; s', p,, a)· S, IT t('Y;)l\, (k", q''; s'', p,, a), 
i:::l 

for any 'Y E U, 'Yl, ... ,-y, being the maximal elements of U ('Y). For minimal 'Y set Y, = f,. 
[( 'Y) is defined by 

ih E B(U) 
ih {/' B(U), 

(5-6) 

(5-7a) 

(5-7b) 

(5-8) 

where B(U) is the set of all 'Y E U having 'Y(U) variable on Hand being a maximal element ofU(r) for some 
r E U having 'T{U) constant on H. 

Let U be a f -forest, 'Y E U and 'Yl, ... , 'Y, the maximal elements of U ('Y). Then S, means a linear 
substitution 

s, : k" ~ k"(k') 

q" ~ q''(F, q') (5-9) 

where the k~'-dependence of q10 is only by the explicit k1 -dependence of external lines of J"i, and k'l'• is inde
pendent of q'. Especially, if H E }{is given by variable (v) and constant {u) and if 'f(U) is constant, then 
q''(k',q') depends only on u and q'. 

The prove of the UV-convergence conditions (I) is along the lines of the proof [4]. Let H E }{ be defined 
by variable (v) = (v,, ... ,vd) and constant (u)= (u, ... ,u.), and let U EW,i'. For/' E U define 

Mu('Y) = 4 L m(7'(U)), (5-10) 

where the sum is over all T E U('Y) U h }, 7'(U) variabel, and m(7'(U)) is the number of loops in 7'(U). For 
'Y = r, Mu(f) 2: 4d [4). Then the following lemma holds. 
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Lemma 5.2. For every f E U 

For r, 

1. degr;;-i\(P(u,v,q),q';s',!L,<t) :S -Mu(-r) for ?{U) constant, 

equality holding only if Mu(r) = 0. 

2. degr,q;,,Y,(P(u, v, q), q';' , /L, a):;:; h('Y)- Mu('Y) for 'f(U) variable. 

3. degr;;-Rr(k(u,v,q),q;s,JL,a) < -4d. 

(5-11) 

(5-12) 

(5-13) 

The proof of Lemma 5.2 is quite similar as the proof of [4], Lemma 5.2, the only difference being the 
appearence of the mass parameters s'Y. Nevertheless, as Lemma 5.2 of [4] is a consequence of the general 
properties of a subtraction operator listed in Lemma 3.1 of [4], the validity of the above lemma is based on the 
corresponding conditions of generalized subtraction operators listed in Lemma 4.2. For this reason, the proof 
is left as an exercise to the reader. By Lemma 5.2, the UV-conditions (I) are satisfied. 

6. Proof of the IR-convergence conditions (II) 

To prove the inequalities (II) we will use the technical notion of an augmented diagram [10] r of f. f is 
constructed by collecting all external lines of r into a new vertex Bo. Momentum conservation in r implies 
momentum conservation in Bo. If r has more than one external line, f is lPI if r is. If r has no external lines, 
then r = r. 

More precisely, let 
r = ( Cr , £r , Br , ¢r , 1/Jr ) 

be a !PI diagram having at least one external line. Then the augmented diagram r off is defined by 

where 

and 

£-r 
£-r 
B-r = 

Cr u £r (Cr n £r = 0) 

0 

Br u{Bo}, Bo rt Br 

"'" cr ......... Br x Br 
</Jr(L) ¢r{L) 

</Jr(E) (Eo, 1/;r(E)) 

if L E Cr 

if E E £r. 

The domain of 1/Jr : £r ~ Br is empty. Every line L E Cr \ Cr is called a q-Linie of r. 
We now state two lemmas which are consequences of the assumed non-exceptionality of the external mo

menta and theIR-constraints {3-9). They will be useful later for the induction through a complete forest. 

Let r be a lPI diagram having m loops and r the augmented diagram of r. For every lPI subdiagram 'Y 
of r, the IR-subtraction degree is given by 

BEB.., • 
where the p(B) are constrained by (3-9). Let E{f) be the number of q-lines of r and 'Yl, ... , ,, be mutually 
disjoint lPI subdiagrams off, f rt {'1',, ... ,,,}. 

Suppose that an arbitrary parametrization of the loop momenta of r of the form 

m 

k;(w,p) = L D;jWj + p;, 
j:;;;;;;l 

17 

i = l, ... ,m {6-2) 
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is given, where det( D) #- 0 and Pi are fixed momenta, so that for all line momenta lL, l E Cr 

m 

lL = lL(w,q,p) = ~)CL);w; + QL(q) + PL(p), (6-3) 
j c:::l 

where QL, PL are linear. 

Let Ao, At' ... 'Ab be the mutually disjoint, connected subdiagrams of r ln ... 'Yc, which are spanned by 
the q-lines and the lines L E Cr having QL(q) + PL(P) f 0, and so that for E(r) ::0. I always Bo E Ao (cp. 

the definition of r) and for E(r) = 0: Ao = 0. By momentum conservation, all A,, ... , x. are 1Pl, hence their 
number of loops m(Ai) 2: 1, i = l, ... ,b. Furthermore, let At, ... ,..\e be the elemeillts of{')'1 , •.. 1')'c} which 

corresponds in f /t1 · · · 'Yc to reduced vertices not contained in ~o U · · · U BAb. 

Lemma 6.1. If the external momenta ofr are non-exceptional, we have 

m(Ao) :;,. E(r)- 1. (6-4) 

If in addition for all internal vertices B E Br r(B) ::0. 4 and p(B) ::0. 4, the inequality 

' 
r(T) + :Emax{O,p(>.,))- 4m{T) > -4m(rh1 · · ·-y,) {6-5) 

i=l 

holds, where T = (r h 1 • · . .,, ) /Ao ···A,, and r(T) and m{T) are theIR-divergence degree ofT and the number 

of loops in T, respectively. 

For non-exceptional external momenta and E(r) ?: 2, Ao is !Pl. If E{r) = 0, Ao = 0, and for E(r) = 1, 
CAo consists of one q-Linie. 

PROOF: We always have m(Ao) :;,. 0. If E(r) :;,. 2, and the external momenta of r are non-exceptional, the 
diagram spanned by the lines of CAo n Crh

1
• .. -rc is connected and contains all external vertices of r/1'1 ·· ''Yc· 

This proves the first statement. 

To prove the second statement, we first note that ifAo = f/1'1 · · '/c, (6-5) is trivial. Thus, let us assume 

that Ao f f h 1 · · . .,,. The number of loops in T satisfies 

b 

m{T) = m(fht · · ·-y,)- L m(Ai) 

b 

< m(fh, · · ·-y,)- (E(r)- 1; (I- 6E(r),o)- L m(Ai) {6-6) 
i=l 

b 

m(rh,···-r,)- :Em(A;). 
i=l 

Furthermore 

r(T) - 4m{T) ::0. 4 + L [r(B) - 4] - 4m{T) (by (2-30), T has no external legs) 

+ t (L:e,(A;)r.- 4) + (L:e \Aoh- 4) {1- 6E(r),o) 
•=1 k 1c 

• 
- 4m(rh, · · . .,,) + 4 L m(A;) (by {2-31)) 

i=l 

18 
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where we have used •• > 0, m(Ai) 2: 1 for all i = 1, ... , b and that r(B) 2: 4 for all internal vertices B E Br 
( Br n Br contains only internal vertices of f). Finally 

r(T)+ L max(O, p(.\i))- 4m(T) 
i:::l 

where we have used that all B E B,, are internal vertices and for them p(B) 2: 4. 

0 

To state the second lemma, let ~1 1 ••• , ~b be the connected, mutually disjoint subdiagrams of r /'r1 · · · fe 

spanned by the lines L E C.rh, ... 1< satisfying PL(P) cfi 0. Every "t, is 1PI and satisfies m(E;) 2: 1. 

Lemma 6.2. Set T = (f h 1 · · ·1,) jE, · · · E;. Hall vertices B E Br satisfy p(B) :S 4 and p(B) :S r(B), the 

inequality 

' 
r(T)+ :Lmax(O,p(!i))-4m(T) > p(f)-4m(f/J,···I,) (6-7) 

i:::l 

holds. 

PROOF: Let Al, ... 1 Ae be the elements of { 'Yl, .. . 1 'Yc} which corresponds in r /'Yl ... 'Yc to those vertices not 

contained in Bf, U · · · U Bf,· Then, using m(T) = m(fh1 · · ·1,)- ~~=l m(E;), we get 

' 
r(T)+ L max(O, p(-ri))- 4m(T) = 

i:::l 

- [4m(fh, ... ,,)- 4 t,m(E;)] + t,max(O,p(/;)) 

2: 4+ L [r(B)- 4] + t (:Le,(.\;)r•- 4)- :L••(T)r• 
BEBTnBr i:::l k k 

+ t, max ( 0, 4- ~ e.(ri)rk + B~,. (p(B)- 4)) - 4m{f h1 · · ·1,) 

(by Tk > 0 and m(E;) 2: 1) 

2: (4+ L [p(B)-4]- :L••(r)r.) -4m{f/J,···I,), 
BEBr k 

where we have used e,(T) = e,(r) for all k and p(B) :S r(B), p(B) :S 4 for all vertices BE Br. 

0 

Using the mechanism of complete forests we now prove theIR-power counting conditions (II). The starting 

point is Lemma 5.1. The idea of proof is along the lines of [10]. 

19 
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Always in the following let r be a 1Pl Feynman diagram and m the number ofloops in r, H E 1i given by 
variable ( v) = ( v1, ... , vd) and constant ( u) = ( u1, ... , u, ), and let U be a r-forest which is complete on H. At 
first, for every 1 E U we define 

'(6-8) 

' 
The sum is over all T E U(-y) u{-y}, r(U) constant, and m(r(U)) is the number of loops in r(U). For -y = r, 
Nu(r) :S 4T. This follows from Mu(r) = 4m- Nu(r) 2: 4d and r + d = m (cf. (5-10)). 

The next lemma states the action of the operators T1 onto f,.. 

Lemma 6.3. For every -y E U, the following inequalities hold. 

1. 

l 
degr;;I•'•(•'- 1)Y,(P(u, v, q), q'; s>, ~"• a) 

2: min[degr ,;qT(•'- 1 )1.f':(P ( u, v, q), q'; s', ~"• a) - (p(-y) - 1), 

degr ;;I•'•(•'- 1)Y, (P ( u, v, q), q'; s', ~"• a)] 

for 'f(U) variable (6-9) 

for 'f(U) constant. 

2. 

l 
degr ;;l•'•(•'-l)Y, (P ( u, v, q), q'; s', ~"• a) 

;:::: min[degr ~(s-r-l)lv f,.(k 1 
( u, v, q), q1'; s1 , Jl, a), 

degr;;I•'•(•'- 1 /,(P ( u, v, q), q'; s', ~"• a)+ p(-y )] 

for p(-y) :S 0 (6-10) 

for p(-y) > 0. 

3. Suppose 'f(U) is variable. Then the inequality 

degr,;q;(•'- 1)l•(1- i',}Y,(P(u,v,q),q';s',~L,a) 2: 

2: degr ~•'•(•'- 1 /, (P ( u, v, q), q'; s', p, a)+ max(O, p(-y)) 
(6-11) 

holds. 

PROOF: T1 is written in the form 

where 

lf'f(U) is variable, every factor in the denominator ofY, depends on v or is independent of q' and (•' -1). 

l.a. Using (2-11), Lemma 4.4.3 and Lemma 4.3, we get 

degr ;;l•'•(•'-1)(1 - i',,)i', 2Y,(P (u, v, q), q >; s', p, a) 

2::. degr ;:;-lq'~'v(s"~'-l) T1 2 f..,. (k 1 
( u, v, q), q 1'; s 1 , Jl, a) 

;:::: degr;-lq"~'tt(s"~'-l):Y,. (k 1' ( u, v, q), q1'; s1
, Jl, a). 

b. Using (5-7b), (5-8) and Lemma 4.4, we get 

degr ~•'•(•'_ 1 J",t Y,(P ( u, v, q), q'; •', p, a) 

> { degr ~•'•(•>-t)~' (k' ( u, v, q), q'; s>, p, a) 

- degr,;q;(•'-l)I•Y,(k'(u,v,q),q';s>,p,a)- (p(-y) -1) 

20 

for 'f(U) variable 

for 'f(U) constant. 
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Taking the minimum, assertion 1. follows. 

2.a. 
degr ,;q-; 1,,_ 1)l• (1 - 1',1 )1\,l\(P ( u, v, q), q'; s', !',a) 

:> degr ;;1,,,1,, _1 ) 7',, 9, (P ( u, v, q), q'; s', !',a)+ max(O, p( -y) ), 

:> degr ;;1,,,1,,_ 1
/, (k' ( u, v, q), q'; s', !',a)+ max(O, p('Y)), 

b. Note that p('Y)::; 0 implies 7',19, = 0. If p{-y) > 0, we get 

degr uq;(,"'~'~l)lv T-y 1 Y'Y (k 1' ( u, v, q), q'Y; s'Y, JL, a) 

2:: degr ;q;(,"'~'-l)lv Y-r(k 1' ( u, v, q), q'Y; s1
, p., a) 

Assertion 2. now follows by taking the minimum. 

3. Let '\'(U) be variable. Then Lemma 4.4.4 yields 

degr ,;q-;
1
., _

1
)l• (1 - i,!)9,(k' ( u, v, q), q'; s', !',a) 

(by Lemma 4.4.4) 

(by Lemma 4.3). 

(by Lemma 4.4.1). 

:> degr ;;1,,.1,,_ 1/, (k' ( u, v, q), q'; •', !',a) + max(O, p( -y)). 

Using 1- 7', = {1- 7',,)(1- 7',,) and 2.a, the assertion follows. 

0 

Using Lemma 6.3, we get the following lemma which states lower bounds on theIR-degrees of the functions 

defined in Lemma 5.1. 

Lemma 6.4. 

1. For every -y E U 

degr ,;q-;1
.,_

1
)
1
.f, (k' ( u, v, q), q'; s', !',a) :2: p( -y) - Nu ('Y) 

degr ;;1,,,1,, _ 1 /' (P (u, v, q ), q'; s', !',a) :> -Nu ('Y) 

(=holding only if Nu(-r) = 0). 

if '\'(U) constant. 

2. Let -y E U and), be a maximal element ofU('Y). 

a. ..-. ..-. A A A 
degr;7],,. 1,,_ 1)5,7AY>(k (u,v,q),q ;s ,!',a):> -Nu(>.) 

(= holding only if Nu(>.) = 0). 

In particular 

b. ..-. ..-. A A A 
degr;;

1
,,,1

,,_ 1)5,(1- r,)Y,(k (u,v,q),q ;s ,I', a):> -Nu(>.) 

(=holding only if Nu(>.) = 0), 

for ')'{U) constant and "X(U) variable. 

c. 
..-. ..-. A A A 

degr,;q-;
1
,,_ 1)l•5,r,Y,(k (u,v,q),q ;s ,!',a) :2: max(O,p(>.))- Nu(>.) 

for '\'{U) constant and "X(U) constant. 

d. 
,...., ..-. A A A 

degr ,;q-;1
,, _

1
)1,5,{1 - r,)Y> (k ( u, v, q), q ; s , !',a) :2: max(O, p(>.)) - Nu(>.) 

21 
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for 'f(U) constant and A(U) variable. 

The statements a.- d. are also valid without S, and with q', (s'- 1) instead ofq', (s' -1). 

PROOF: By complete induction. 

1. For minimal/, we have 1 = Y(U) andY,= f,. In general 

because of (2-11) for every line L E CT 

If Y(U) is constant, let E1, ... , E, be all1PI subdiagrams of 1 which are spanned by the lines L E £, 
satisfying kl(O,O,q) # 0. Because of p(B) <; 4 and p(B) <; r(B) for all BE B,, using Lemma 6.2 and writing 
T = 1/E1 · · · E,, we get 

degr ;q;(., -l)l11 f1 {k~' ( u, v, q), q "Y; s'Y, J-t, a) 

~ degr ,;q-;(,,_1/T (P ( u, v = 0, q = 0), q'; s', p., a) 

= r(T) - 4m(T) 

~ p(i)- 4m(!) 

= p(i)- Nu(i). 

This proves the first statement of the lemma for minimal ; E U. 

2. Let 1 E U and), be a maximal element of U(i)· By hypothesis of induction, Y, satisfies Lemma 6.4.1. 

and 

To prove the statements 2.a and 2.b of the lemma, we use Lemma 6.3.1 and get 

....... ....... >. >. >. 
degr~l•'•(•'- 1 )r,Y,(k (u,v,q),q ;s ,p.,a) ~ -Nu(>.) 

(=holding only if Nu(>.) = 0) 

....... ....... >. >. >. 
degr~l•'•(•'-1)(1- r,)Y,(k (u,v,q),q ;s ,p.,a) 

2: min [degr;-19A 11 (•"-l)Y", degr;-19,. 17 (,A -l) T>. }\] 

~ -Nu(>.) 

(=holding only if Nu(>.) = 0). 

s"Y is a linear transformation 
S, : q'--. q'(k'(u,v,q),q') 

s>.---+ s"Y, 

where the P -dependence of q' is only by the explicit P -dependence of the external lines of),, i.e. lines which 
belong to C-y(U)· The denominator of 7', Y, is independent of q' and ( s' - 1 ), hence 

....... ....... >. >. >. 
degr;1q,v(n-l)S"Yr>.Y>.(k (u,v,q),q ;s ,JL,a) 

....... ...... >. >. >. 
~ degr~l•'•(•'- 1 )r,Y,(k (u,v,q),q ;s ,p.,a) > -Nu(>.) 

(=holding only if Nu(>.) = 0). 

If y(U) constant and A(U) variable, every denominator factor of (1- 7',)Y, is independent of q' and (•'- 1) 
or dependent on v, and q'(P (u, v, q), q') is independent of v. Hence 

...... ...... ). ). >. 
degr~l•'•(n- 1 )5,(1- r,)Y,(k (u,v,q),q ;s ,p.,a) 

....... ...... >. >. >. 
~degr~l•'•(•'- 1 )(1-r,)Y,(k (u,v,q),q ;s ,p.,a) > -Nu(>.) (6-17) 

(=holding only if Nu(>.) = 0). 
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Next, we prove the statements 2.c and 2.d of the lemma. Let 'f(U) be constant. IfA(U) is constant, we get 

,-.. ,...,_ ), ). ), 
degr- T.>Y.\(k (u,v,q),q ;s ,J.L,a) 2: max(O,p(A))-Nu(>.),. 
--uq"(•"-l)lv 

where we have used Lemma 6.3.2. If "X(U) is variable, using Lemma 6.3.3, we have 

~ ). ). ), 
degr>r, 

1 
(l-i,)Y,(k (u,v,q),q ;s ,J.L,a) 2: max(O,p(>.))-Nu(>.). 

--uq 1 -l)v 

Using the above mentioned property of the substitution operator S"Y, we get 

""'........ ). ). ). 
degr;;-;(,1'-l)lvS1 T>.Y>.(k (u,v,q),q ;s ,p.,a) 

........ ~ ). ). ). 
2: degr > , I r,Y,(k (u,v,q),q ;s ,J.L,a) 

--uq (• -1) v 

2: max(O, p(J.))- Nu(>.) 

and 

3. Let 1 E U and 11 , · · .,, be the maximal elements of U(1). By hypothesis of induction, Lemma 6.4.2 holds, 
where A represents 1 1 , ... , lc· We must show that 1 satisfies Lemma 6.4.1, which concludes the proof. 

In general, 

degr:;
1
q,.v(•1'-l)Y1 (k1 (u, v, q), q'Y; s'Y 1 /1, a) 

= degr;1,,•(•'-'/r(UJ(k' ( u, v, q), q 1 ; s 1 , J.L, a) 

' 
+ L degr ;I•'•(•' _1)5' f(I,)Y1 , (k'' ( u, v, q), q "; s1

', J.L, a) 
i=l 

2: 0+ L:;(-Nu("Y;)) 

2: -Nu(l) (=holding only if Nu(l) = 0), 

where we have used that Nu(l) 2: 2::~~ 1 Nu(li), and that all propagators of f..,(U) depend on (s'- 1). 

Now let 'f(U) be constant. 

Let 1:"1 , ... , I:, be the mutually disjoint, connected and consequently lPI subdiagrams of 'f(U) spanned by 
the lines L E LY(u) satisfying kl(O,O,q) # 0. Using p(B) :<; 4 and p(B) :<; r(B) for all vertices BE B1 , and 

writing T = (I /11 · · ·1<) jl:, · ··I:,, we get 

degr Q(,1'-l)lvf'Y(k1 (u, v, q), q'Y; s'Y, Jl, a) 

=: degr Q(,1'-l)lvy ::Y(U)(k1 ( u, v, q), q 1 ; s1 , 11, a) 

' 
+ L degr ,;q;(•'-l)l•s,f(""Yi):Y,, (k "( u, v, q), q "; s", J.L, a) 

i=l 

2: degr ,;q;(•'- 1/r (P ( u, 0, 0), q1
; s 1 , J.L, a) 

' 
+ L degr ,;q;(•'-l)l•s,f(li)Y,. (P'( u, v, q), q ''; s'', J.L, a) 

i=l 

2: r(T)- 4m(T) + L max(O, p(l;))- L Nu(li) 
i=l i=l 

2: P(l)- [4m('f(U)) + t, Nu(li)] , (by Lemma 6.2) 

= p(l)- Nu(l). 

23 



Renormalization of lattic.e Feynman integrals with massless propagators 

0 

Finally, using Lemma 6.4 we can prove that the renormalized Feynman integrand Rr satisfies the IR

condditions (II). 

Theorem 3. Let r be a lPI Feynman diagram having m loops and 

r + d = m, be an arbitrary basis of£, the set of alllL, L E Cr and of all k l for all lPI subdiagrams -y of r 
and L E C-y. Let H E 1i be given by variable ( v1, ... , vd) and constant ( u1, ... , u1' ), and U a f-forest which is 

complete on H. Then iu of Lemma 5.1 satisfies 

degr:;;}v X'u(k(u,v,q),q;s,p,a)l.,=l > -4r, (6-18) 

hence 

degr~. Rr(k(u,v,q),q;s,p,aJI,=
1 

+ 4r > 0. (6-19) 

This means that the IR-convergence conditions (II) are satisfied, and Theorem 1 is proved. 

PROOF OF THEOREM 3: We must show that 

..-. ....... r r r I 
degr;;1,(1- Tr) Yr(k (u,v,q),q ;s ,p,a) ••=•:••=

1 
> -4r. 

At first, note that the denominator of Tr'Yr is independent of qr and of sr- 1. Using Lemma 6.4.2, we get 

--""'r rr I degr-;lv7l' Yr(k (u,v,q),q ;s ,p,,a) qr=q,,r=l 

2: degr;;1•••(••- 1)7'rYr(kr(u,v,q),qr;sr,J.<,a) > - 4r. 

All what remains to prove is that 

....... r r r I degr:;;'ll! Yr(k (u,v,q),q ;s ,JL,a) qr=q,,r=l > -4r. (6-20) 

Let -y1 , ... , -y,' be the maximal elements of U(r), so that 

1. Suppose that r(U) is variable. Then Nu(r) = 2:::= 1 Nu(-ri) S 4r (=holding only if Nu(r) I 0). Using 

and Lemma 6.4.2, we get 

....... r r r I degr;-111 Yr(k (u,v,q),q ;s tJ.t,a) qr=q,,r:::::t 

...... r r r I 2: degr~. Ir(u)(k (u,v,q),q ;s ,p,a) ••=•···=
1 

' 
+ L degr~•••(•• -t)Sri\, :Y,. (P' ( u, v, q), q"; s'', p, a) 

i::::1 

> -4r. 
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2. Suppose that f( U) is constant. 

Take all mutually disjoint, connected sub diagrams A0 , ••. , Ab off /-n · ·. ~~ spanned by the q-lines and all 
lines L E .Cr(U) satisfying 

kL(O, 0, q) + qL(q) f 0. 

Furthermore, let A11 ... , Ae be the elements of { 'Yll ... , 'Yc:} which corresponds in f /11 • .. 'Yc: to vertices not 
contained in Bxo U · · · U BAb, and let Pt 1 ••• , Pl E { 'Yt, ... 1 /c:} the remaining ones, i.e. 

{p,, ... ,p,}up1, ... ,>.,} = {n, ... ,-y,} 

{p, ... p1}n{A1 , ••. ,>.,} = 0 
l + e =c. 

At first, the following lower bounds on the IR-degrees can be given. 

a. The denominator of SrTp.Yp; is independent of qr and sr- 1, hence 

degr~1 Sri,. Yp,(kP'(u,v,q),q";sP•,!",a)l 
--tl. 'II qr::::q,,r:::l 

2: degr :;;-1qr'll(,r -t)SrTp, Yp, (kP>( u, v, q), qP•; sP•, f..L, a) 

2 -Nu(pi) (=holding only if Nu(p;) = 0). (by Lemma 6.4) 

b. For Pi variable, using the same arguments as for ( 6-17), 

degr~1 Sr(l- rp.) Yp,(kP'(u,v,q),q";sP•,J",a)l 
__ u ~ qi'::::q,,r=l 

2 degr;;l•'•(•' _1/r(l - rp.)Yp, (kP• ( u, v, q), qP'; sP•, J", a) 

2 -Nu(p;), (=holding only if Nu(p;) = 0), (by Lemma 6.4). 

c. For every At, ... 1 Ae 

is a linear function, hence 

degr ~1 • 5r7',, f,, (k-'• ( u, v, q), q-'•; s-'•, /",a) I 
--tl. qr::::q,,r-1::::0 

2: degr--;_-: ><· T..\,YA,(k>..'(u,t1,q),q"'is"'',f-L,a) 
--t/.q •(.- •-l)lt; 

2 max(O, p(>.;))- Nu(>.;), (by Lemma 6.4) 

and for X; ( U) variable 

degr ~1 Sr(l - 7',.) Y,,(k"''( u, v, q), q-'•; s-'•, J", a) I 
--u 11 qi'=q,,r -1::::0 

:,_degr.--,, (l-i,,)Y,,(k-'•(u,v,q),q-'';s-'•,J",a) 
--t~.q ·(• •-l)lt> 

2 max(O,p(>.;))- Nu(>.;) (by Lemma 6.4). 

Next, we use the inequalities a.-c. to conclude the proof of Theorem 3. By assumption, the external momenta 
of r are non-exceptional, and for every internal vertex B E Br, we have r(B) 2 p(B) = 4. Applying Lemma 
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6.1 toT= (rh1 · · .,,) /Ao· · .Ji.,, we get 

Conclusions 

-- r r r I degr;;-lv Yr(k (u,v,q),q ;s ,f.L,a) qi":::q,,r:::l 

. - r r 1 
2_ degr;;-11, If(u)(k (u,v,q),q;s ,f.!,a),~r::l 

I 

+ ~ degr ;;:
1
• Sr j(p;) Yp, (kP• ( u, v, q), qP·; sP•, Jl, a) l,,~,,•"~l 

+ t degr ;;:1.sr jp,) 9,, (k'· ( u, v, q), q'•; s'·, Jl, a) I,"~•··"~' 
t::l 

- r ;> degr;;:fr(k (u,v = O,q = O),q = O;s = l,JJ.,a) 

I 

+ L(-Nu(P;))+ L[max(O,p(.\;))- Nu(.\i)} 
i:::l 

' ' 
= r(T)- 4m(T) + I:max(O,p(.\;))- L Nu(l'i) 

i:::l 

>- [4m(f(U)) + t, Nu(l';)l 

= -Nu(f) ;> -4r. 

i=l 

(by Lemma 6.1) 

D 

We have proposed a renormalization procedure for lattice Feynman integrals which applies also in presence 

of zero-mass propagators. The method is a fusion of the lattice version of the BPHZ renormalization prescription 

[4] and the auxiliary mass method of Lowenstein and Zimmermann [9,10]. It applies to a wide class of lattice 

field theories. Under very general conditions, the renormalized theory is IR-convergent for every finite lattice 

spacing, and the continuum limit exists. The set of renormalizable, IR-finite theories is constrained by the 

condition that all vertices should have an IR-degree not less than four. Apart from the possibility of massless 

propagators, the assumptions on the structure of momentum space Feynman integrals are the same as in the 

massive case [4]. The integrand should be periodic with the Brillouin zone in all the momenta, a property which 

is reflected by the fact that the counterterms are also periodic. The propagators are assumed to have only 

one pole in the Brillouin zone. In particular, the renormalization program does not work for lattice fermions 

whose propagators have poles on the boundary of the Brillouin zone. Furthermore, the integrand should be 

differentiable to such a degree that all subtraction necessary to subtract divergencies can be done without 

problems. 

With respect to universality of perturbation theory and power counting renormalizability, the same ar
guments as in the massive case [4] apply also to massless lattice field theories. The continuum limit of the 

renormalized theory does not depend on the specific choice of the lattice action. It is given by the continuum 

field theory which is described by the (naive) continuum limit of the lattice action and is renormalized by the 

BPHZL finite part prescription [9,10]. Furthermore, if all coupling constants are dimensionless, a lattice field 

theory is renormalizable by power counting if and only if its (formal) continuum limit is renormalizable. Also, 

the counterterm philosophy is the same as in the massive case. After some symmetrizations with respect to 

the external momenta of the Green functions (as described in [4}, Section 4), the subtractions can always be 

written as counterterm contributions to the lattice action, which can be chosen to be local. 

Actually, we have defined the renormalization procedure for scalar fields only. This we have done to simplify 

the notation. There is no problem to generalize the method to fields carrying internal symmetries and spin. 

This can be done by introducing so-called index-distributions in Feynman integrals [4] which associate every 

line ending with a set of symmetry labels. The definitions (2-27),(2-28) of divergence degrees are replaced by 
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for every line L and 

r(VB) = min degr
1
-,} ( )VB({lL,<>L}B;s,/L,a) 

{cds-- L s •-1 

for every vertex B, where the maxima and minima are over all possible symmetry labels of line endings at the 

vertex B. 

Renormalized Green functions depend on the auxiliary masses introduced by the subtraction scheme. This 

dependence may be absorbed by additional finite renormalizations satisfying the IR-constraints and leading to 

equivalent renormalization schemes. For instance, by an appropriate choice, this corresponds to subtractions at 

non-exceptional momenta plus additional finite renormalizations at vanishing momentum for two- and three

point functions necessary to get IR-finite amplitudes in higher orders. In most applications, these additional 

subtractions are needed only for diagrams with two or three massless external lines. 

The renormalization program proposed here applies also to lattice gauge field theories. After convenient 

gauge fixing, such a theory is perturbatively renormalizable by power counting, i.e. with increasing number of 

loops the order of subtractions needed does not increase, and the continuum limit of the renormalized theory 

exists. The counterterms needed can always be chosen to be local. A priori, only little can be said about their 

structure. However 1 if there exists a BRS-symmetry on the lattice, the Green functions satisfy the corresponding 

Slavnov-identities. It then should be possible to show that to every order, the counterterms needed are of a 

restricted form which allows the theory to be renormalized simply by renormalizing the parameters in the 

original lattice action. 
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Appendix. Properties of lattice degrees 

In this appendix we list those properties of the IR- and UV-degrees defined in Section 2.3 which are 

permanently used in the text without explicit reference. They are direct consequences of the definitions. 

and 

Let V E C' be of the form (2-18). Then 

degr ,7q(•-l)l" V( u, v, q, ifi s, J.L, a)\q:::0,•- 1= 0 .? degr ,7q(•-l)lt> V( u, v, q, 7j; s, J.l, a) 

degr :;;\qt~(•- 1 ) V( u, v, q, q; s, J.L, a)lq=0,,_ 1:::::o ?: degr ~qtt(•- 1 ) V( u, v, q, 7j; s, p,, a) 

degr-; V(u, v, q, q; s, t£ 1 a)lq::::O,s=D::::: degr;q, V(u, v, q, q; s, J.L, a)lq=O,•=O 

S degr;q, V( u, v, q, 7j; s, J.L, a) 

degr; V( u, V 1 q, 7j; s, /L, a )lq=O,,:::::o :::=; degr;V( u, v, q, 7j; s, J.L, a). 

(A-1) 

(A-2) 

The degrees of derivatives and of sums and products of functions of the function class :F satisfy inequalities 

which are direct generalizations of the corresponding inequalities for the UV- and IR-degrees w.r.t. the momenta 

only, as given in [3], Lemma 2.2 and [6], Lemma 2.1, respectively. 

Let F, F1 , •.. , F, be of the form (2-19). Then 

' 
degr-

1 
( _ 1

)" F; :> . min degr-
1 

( _ 1)F; 
--U vq I L..J t-1 e--U 'Vq I 

1:::1 - , ... , 

' 
degr -( _1)l "F; :>.min degr -( _ 1)l F; 
--1Lq' t> L._,; 1-1 e __ uq' " 

i:::1 - , ... , 

' ' 
(A-3) 

degr;;l•q(•- 1) IT F; :> L degr;;I••(•- 1)F; 
1:::1 i=l 

degr ;'q(•- 1)l 17 IT Fi ?: 2:: degr ,7q(•- 1)lv Fi 
i:::1 i:::1 
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and 
' 

degr~ "P:. < 
vq1 L- 1 

i::::cl 

degr ~ IT P:. < vq• ~ 

max degr-- Fi 
i::: 1 , ... ,e "V ql 

' 
"degr~ F;. L vq' 

i ::::1 i:::l 

Furthermore, for every bE No ::::;:: {0, 1, 2, ... } and l::::: (l1, ... , lw) E NZ', we have 

&' &' 
degr ;:1,.1,_ 1 ) i9(s _ 1)' aql F( u, v, q, q; s, Jl., a) 2: degr;:1,,1,_ 1l{ u, v, q, q; s, Jl., a) 

&' &' 
degr ,;q1,_ 1 )I• i9( 

8 
_ 1)b &q' F( u, v, q, q; s, Jl., a) 2: degr ,;q1,_ 1)I•F{ u, v, q, q; s, Jl., a)- (b + jlj) 

and 
-- 8' 8' --
degr-; Bsb Bql F(u, v, q, q; s,J.L, a)~ degr;F(u, v, q, q; s, J..L, a) 

-- 8' 8' --
degr~ -

8
,-

8 1 F(u,v,q,q;s,J1.,a)<degr~ F(u,v,q,q;s,Jl.,a)-(b+lll), 
vq1 5 q - vq1 

where Ill 
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