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ABSTRACT. A renormalization procedure is proposed which applies to lattice Feynman integrals containing zero-mass
propagators and is analogous to the BPHZL renormalization procedure for continuum Feynman integrals. The renormalized
diagrams are infrared convergent for non-exceptional external momenta, if the vertices of the theory satisfy a general
infrared constraint. Under the same conditions as in the massive case [4], the continuum limit of the renormalized theory
exists and is independent of the details of the lattice action.

1. Introduction

Feynman integrals with a lattice cutoff have a very specific structure. They are absolutely convergent for
finite lattice spacing, if all propagators are massive. The continuum limit behavior of such diagrams is described
by a lattice power counting theorem [3], which uses a new kind of an ultraviolet (UV) divergence degree (the well
known power counting theorems of Weinberg [1] and of Hahn and Zimmermann [2] do not apply to diagrams
with a lattice cutoff). On the basis of such a power counting theorem a renormalization program for lattice field
theories has been given [4], which is analogous to the BPHZ finite part prescription for continuum Feynman
integrals [5].

These methods work for massive field theories. In the presence of massless fields, additional arguments
are needed to avoid infrared (IR) divergencies. It has been shown [6] that the UV-power counting conditions
only have to be supplemented by IR-power counting conditions, and IR-singularities are tractable by the same
methods as in the continuum [7,8]. In this article, we use this power counting to give a renormalization procedure
for lattice Feynman integrals with massless propagators.

in outline, the idea of the construction is as follows. As in the massive case, the continuum limit is
controlled by UV-divergence degrees. As a convergence condition, they should always be less than zero. This
can be achieved by appropriate subtractions. However, in the presence of massless propagators, subtractions
at zero momenta are no longer IR-convergent. The IR-divergencies can be avoided by choosing the subtraction
points at non-exceptional momenta, and by additional finite renormalizations, which are chosen in such a way
that in the sum of all diagrams to a given order all IR-singularities drop out. For example, in a gauge theory
the renormalized coupling may be defined as the value of an appropriate vertex function at non-exceptional
momenta, whereas the self-energy of the gauge field has only a wave function renormalization and vanishes for
sero external momentum. However, when we want to renormalize diagrams separately by the forest formula,
we run into the problem of IR-singularities also if we choose normalization points at non-exceptional momenta
(cp. Section 2.1). For instance, to make a two-point diagram UV-convergent, in general two differentiations are
necessary. This produces an IR-singularity by differentiating a propagator twice.

To prove the convergence of a renormalization procedure we shall use the power counting theorem of
(6]. This necessitates all subtractions and differentiations being collected in the integrand, leading to a forest-
formula like expression. As indicated above, this induces IR-divergencies also for subtractions at non-exceptional
momenta. A possibility to overcome this problem is to introduce auxiliary masses in the counterterms. This
means we employ the (lattice-modified) BPHZL renormalization procedure of Lowenstein and Zimmermann
[9,10]. Propagators of a bare mass pu (which may be zero) get a mass-dependence of the form

uz—f-(.'s—l)zl'lrﬁ'z , B4 MEso.

s is called the mass parameter. Counterterms are now constructed for s = 0, and after all subtractions are done
we set s = 1, so that we get a renormalized theory of the original model. Two important points must be taken
into account.
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Renormalization of lattice Feynman integrals with massless propagators

1. Due to the auxiliary mass dependence of the counterierms, to get all UV-divergence degrees smaller
than zero, differentiations not only with respect to the external momenta but also with respect to the mass
parameter s are necessary. This means that subtractions are combinations of lattice subtraction operators and
Tayior polynomials in 5. They will be called generalized subtraction operators.

2 Additional finite renormalizations are necessary to avoid IR-singularities by renarmalized subdiagrams.
For instance, inserting a self-energy subgraph into a massless line usually produces a non-integrable singularity.
This difficulty is solved by imposing a normalization condition so that such a diagram vanishes for zero external
momenta and s = 1.

Both conditions are satisfied if instead of the subtraction operator ?qé [4] we employ

~p—1 To—1 T8

tq(s—l) + (1 - tq(;—l)) tqn (1_1)
o being the IR-divergence degree of the diagram, and the { are generalized subtraction operators. Using these
subtractions, the renormalized theory is IR-finite for all s, including the case s = 1, and the continuum limit
exists if

1. the external momenta are non-exceptional, and
2. #(V) > 4 for all internal vertices V,

where »(V) is the (lattice-) IR-degree of the vertex V (defined below). An internal vertex is one with no
external line. The latter constraint restricts the class of renormalizable, IR-finite theories. For instance, a
massless ®3-theory is IR-divergent in four dimensions (r{$?) = 3). Note that we have made no statement about
the TR-behavior of the bare theory. The renormalized, massless &*-theory is IR-convergent, but the bare theory
15 not.

In Section 2.1 we give a 1-loop example which should show the efficiency of the auxiliary mass method.
The reader who is familiar with the method may skip this subsection. In the remainder of Section 2, general
notations concerning Feynman diagrams with an arbitrary number of loops are given. They are essentially
the same as in the massive case [4], and we only sketch the most important ones. Furthermore, generalized
notions of infrared and ultraviolet lattice divergence degrees are introduced. Due to the introduction of the mass
parameter s, this generalization of the lattice divergence degrees defined in (3] and [6] is necessary. Finally,
the definition of a generalized subtraction operator (GSO) is given. The main theorem which describes the
renormalization of lattice Feynman integrals and lattice Green functions is given in Section 3. In Section 4,
important properties of GSO’s are given. In the remainder of this article, the theorem is proved, using the
properties of GSO’s and the power counting theorem of [6], by showing that all UV- and IR-power counting
conditions of this theorem are satisfied.

2. The auxiliary mass method and generalized subtraction operators
2.1. A one loop example

Before we are going to define the renormalization prescription to every order, we shall consider the auxiliary
mass method for the one loop case. To be specific, consider the scalar @*-theory. The propagator is given by

— 1
A(k; 8,a) = m———mrr——, (2-1)
k? 4 (8 1)2M?2
where
~ 2 . ka S
ki=ssinos, i=l...,4 K :;(k;), (2-2)

and M # 0 is an auxiliary mass. a denotes the lattice spacing. For s =1, the propagator is massless. A one
loop contribution to the four-point function is of the form (Fig.1)

- xfa dik - -
I(g;s,a) = o @ A(k;s,a) Alk + ¢;8,a). (2-3)

To renormalize the diagram, following the ideas of the (lattice) BPHZ procedure, one should subtract from
the integrand its value at vanishing external momentum g. However, for s = 1, this produces a non-integrable
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IR-singularity, i.e. for the massless theory this method does not work™The idea of Lowenstein and Zimmermann
[9,10] consists in subtracting at ¢ = 0 and simultaneously at s = 0, i.e. giving the counterterm a mass. For
non-vanishing g, the rencrmalized Feynman integral

N /e 14 = - -
Rigis,a) = [ . s [Btkis.) Ak +0.0) - (Bki0,0)] (2-4)

is IR-convergent also for 5 = 1, and the continuum limit exists. Summing all contributions of the form (2-4), we
get the renormalized four point function at one loop order. Tt depends on the auxiliary mass M. However, this
dependence is only exhibited by a momentum independent and finite (i.e. in the continuum limit convergent)
term, and hence may be compensated by a finite counterterin to the lattice action of the form

at Z c(M) ®%(no),

ngZh

which satisfies the IR-constraint alluded to in the introduction. In this way, normalization conditions at non-
exceptional momenta may be implemented.

If a diagram having a UV-divergence degree greater than zero is to be renormalized, we clearly have to
differentiate not only w.r.t. the external momenta, but also to the mass parameter s. Otherwise, the UV-
divergencies would not be cancelled because of the different mass dependence of the bare and the counterterm
integrand. This situation happens e.g. for two-point functions.

One may try to apply subtractions at non-exceptional external momenta instead of using the auxiliary
mass method. However, this does not work if subtractions are directly applied to the integrand. To see this,
consider the Feynman integral (Fig. 2)

- Tl gt - -
J(g;8,a) = / . Vi(k,q;a) Va(k, g;a) Ak;8,a) Ak + ¢;3,a), (2-5)

where the vertex functions Vi, Vo satisfy
Vi(Ak,Ag;a) = O(A) as A — 0, {2-6)

and A is given by (2-1). Diagrams of the form (2-5) appear in perturbative lattice gauge theory. The conditions
(2-6) insure that the IR-constraints on the vertices are satisfied.

The UV-divergence degree of J is at least two. It can easily be seen that a subtraction operator 1, 4]
does not apply to the integrand of (2-5) without producing a non-integrable singularity, even if we choose a
subtraction point g # 0. For, if A(k + q) is differentiated twice with respect to g and then g is set equal to g,
we get such a singularity at & = —§. For this reason, we employ the auxiliary mass method which circumvents
this problem. Normalization conditions at non-exceptional momenta may be itmplemented afterwards by finite
counterterm contributions to the lattice action, satisfying the IR-constraint.

Finally, some words are in order concerning the IR-constraints mentioned in the introduction. Consider
the Feynman integral (2-5) again, but now set Vi = V3 = 1. The vertices then have an IR-degree equal to three
{three massless legs). J is the one loop contribution to the unrenormalized two-point function in the lattice
$%-theory. As before, we make the subtraction of order two at ¢ = 0 and s = 0. Then J remains IR-finite, and
the continuum limit exists. However, inserting (2-5), or its renormalized expression as just described, into a
massless line which is integrated over, results in an IR-divergence. Consequently, to get a finite result we should
subtract from (2-5} its value at ¢ = 0. But J(g; 8,a) does not exist for ¢ = 0 and s = 1, and the same holds for
its renormalized form. This means that the massless $3-theory is IR-divergent in four dimensions.

If, instead of ¥V} = V3 = 1, the vertices satisfy (2-6), which means that r(V1) = 7(V3) > 4, then J exists
for g = 0 and s = 1. Furthermore, by finite renormalizations, it can always be achieved that diagrams with two
massless external lines vanish at zero external momentum. This means that massless bare fields remain massless
after renormalization. The same situation occurs for diagrams with three massless external lines. In general,
these are the only basic field vertex functions whose overall subtractions imply additional finite renormalizations.
They are convergent even for zero external momenta, whereas in general exceptional external momenta must

be excluded.



Renormalization of lattice Feynman integrals with massless propagators

2.2. Diagramuinatic notations

We now give some general notations which will be needed later on. In part, they are the same as in [4].
Only the modifications and additions will be pointed out here.

In perturbation theory, a 1PI function, i.e. a one-particle irreducible (1PI) Green function is written as an
asymptotic sum of contributions

N M
< H P4, nia) - H[Q;] >01PI (2-7)
i=1 =1
where
[Q;)=a* Y Q;(4,na) (2-8)
ngkt

in general is a contribution of the interaction part of the action. The subscript in (2-7) indicates that (2-7) is
the 1P] part of

1 il M
Z; D(A) H P;(A,n;a) - H{QJ} . e“Sn(A)’
i=1 i=1

where

Zo = fD(A) -e~Fol4)

and D(A) = Hi,nez’ dA;(na). A represents all fields A; and S is the free part of the action. P;(A4,mn;a) and
Q;(A, n;a) are polynomials in the Jattice spacing a and the fields A at n;a and neighboring lattice sites, and
they are homogeneous in the fields A. They represent basic fields or composite operators.

(2-7) is a sum of 1P Feynman diagrams. We recall that a diagram is called 1P1if it is connected and
does not get disconnected upon cutting any one of its internal lines [4]. Divergencies manifest themselves in
1PI diagrams when the cutoff is removed. Such diagrams must be renormalized. Note that in our notation
we distinguish between 1PI functions and vertex functions. The latter are amplitudes which result from a
Legendre transformation of the generating functional of connected Green functions. They are not always 1P],
e.g. for theories with spontaneous symmetry breaking. However, every such diagram is mainly a product of
1PI graphs, and the latter can be renormalized as described below. In particular, tadpole diagrams vanish
after renormalization. When we take into account symmetries, the vertex functions must satisfy corresponding
Ward-identities. After renormalization of all 1PI functions (to a given order), normalization conditions of vertex
functions are to be implemented by additional finite renormalizations of proper functions, satisfying the IR-
constraint indicated in the introduction. This must be done very carefully not to produce new IR-divergencies.

In the following we consider the 1PI functions in momentum space

N _ M N
JIRCORIICH (2m)" 623 ), (2-9)

i=1 0,1PI

where 52(Q) = 3,24 6*(Q — 2 m) for @ € R% (2-9) is a sum of 1PI momentum space Feynman integrals.

In what follows we are using the notations of [4]. Here we only sketch some of them. Let I' be an arbitrary
1PI diagram
I = (Lr, &r, Br, ¢r, ¥r ).

Ly (£r) is the set of internal (external) lines of T and Br is the set of vertices of . Every internal line L € Lr
is mapped by ¢r to its endpoints Ay, By € Br: ¢r(l) = (Ag, Br). Every external line E € £r is mapped by
Yr to its endpoint By = ¥r(E) € Bp. The latter are called external vertices of I'. A vertex is called an internal
one if it is not an external vertex.

An external line E € Ep carries an external momentum gg flowing into the diagram I'. g denotes a basis
of the external momenta of T, e.g. ¢ = (gg,,---)9EN_, ), Where N is the number of external lines of T'. gg, is
given by momentum conservation. Every internal line L € Lr carries a momentum [z, flowing from its outgoing
endpoint Ay to its ingoing endpoint By and being a sum of the internal and external line momenta of L (4]

In{k,q) = kr(k) + qr(q),

4



Renormalization of lattice Feynman integrals with massless propagators

where (k) = (ky,..., km) is a basis of the internal (=loop) momenta of I'. At every vertex, momentum conser-
vation holds.

To every L € Ly corresponds a propagator

ﬁL(IL; S,ﬂ,ﬂ.)

BL(IL;s,u,a) = 2 . , (2-10)
145 ers (tns@) + (s — 1)2ME; + pd]
where n{L) € N and the auxiliary masses M;y; are restricted by
Mi; +u%; > 0. (2-11)

Furthermore!, ey; € C§, satisfying

1
eri{lLia) = ‘a"z“nLj(IL@)
neillea #0) >0 ifly € BZ = [-n/a, x/a)?, (2-12)
NLj (lLa) BZ-peIiOdic in IL,

lim eLj(lL;a) = li
a—0Q
s is the mass parameter mentioned in the introduction. The numerator is of the form

Bo(ln; o ma) = 3 PO(u, ) Vip(iz; 0), (2-13
(
(i}

where the sum is finite, P{*) are polynomials and Vi) € Cp, BZ-periodic in Iz, m; € Z. For every vertex B € Br

we have a function N
Ve({lr}p: 8, 1a) € C°

of a form (2-13) in variables {1}, which are the momenta of lines at the vertex B. Vg is always assumed to
be periodic with the BZ in all momenta.

The untenormalized Feynman integral of T is given by

Tola: s, u,0) = / d*ky - d*kem In(k, g5 8,1, @), {2-14)

where m is the number of loops in T’ and

fl"(k: ‘1;3,#,@) = H ?B({IL}B;31"‘"G) ) H BL(IL;syﬂ'a G,). (2_15)
BeByr Lelr .
This function belongs to the class of functions F.

To define a renormalized Feynmman integral we need a precise definition of internal and external momenta
of T' as well as of every 1PI subdiagram v of T': k7,¢". This is done as in (4], Section 2.2. In addition, in every
propagator and vertex of v we have to substitute the mass parameter s by s7. Correspondingly, the substitution
operators of [4] must be generalized. For 1PI subdiagrams 7, ¥ of I, 7 being a subdiagram of v,

Syt kT — kT (k7)

g —q(k.q") (2-16)
g — 87,
so that
Sy f(kT,q" 8 u, a)= f(k"(k"),q¢" (X7, q'); 87, g, ). (2-17)

1The function classes CS,, C¢ and F used here arc defined in (3] or repeatedly in [4], Appendix A.

5



Renormalization of lattice Feynman integrals with massless propagators

When applied to k7, g7, S, is defined as in [4]. We remind the reader that the k7-dependence of ¢” via S5,
occurs only by the explicit k'-dependence of external lines of 7, and that k7 is independent of g7 via S,. Line
momenta are always chosen in such a way that they are natural in the sense of [3].

The notion of a T-forest {set of non-trivial, non-overlapping 1PI subdiagrams of I') and related notions are
defined in [5] or [4], Section 2, for instance. Especially, for any 1P1 subdiagram v of T,

Uly) = {4 € U |7 is a subdiagram of y and v' # v},

and ¥(I7) = /7 - - - ¥, where 71, ..., 7. are the maximal elements of Uiy).
2.3. Infrared and ultraviolet degrees

As mentioned in the introduction, the auxiliary mass method implies that we also must differentiate a
Feynman integrand with respect to the mass parameter s, to gel convergence of the integral in the continuum
limit. To describe the order of subtractions by divergence degrees, we have to introduce IR- and UV-degrees
with respect to momentum and mass variables. We consider functions V € €° and F € F of momentum
variables (u1,...,u,), (v1,---,%a) (@1, +Quw)s (&),---, ;) and of s of the form

V(u;%q{(‘l;&#-,a E LP My, 8 u v, Q!Q? )9 (2"18)
il

where [ is a finite set, P, # 0 are polynomials and V; ¢ €, ,m; € T, m; # my if i # k, and

m, !

Viu,v,q,q;8,p, @)

F ; 2-19
(000Gt ) = G g ) (19
The numerator V £ (¢ is assumed to be of the form (2-18),
Clu,v,q,q; 8, 1, @) H Hu, v, q,§ 8,0, a) ne No=1{0,1,2,...},
Cifu,v,¢, G 8,1, 0) = ee-(l,-;a} + (s~ 1)PM7+p?, e © C5of the form (2-12)
: (2-20)

d T w
o, - —, _
L = E bigvet ) cirunt D dinq 2 €ik Tpe s
k=1 ko1 k=1 k-1

(bil,...,b,‘d)-}é()()l[ (Ci],...,(.'ir) :f 0

foralli=1,...,n

Below u will denote the parameters of a Zimmermann subspace H [3], v will be the complementary parameters,
and g, 7 the external momenta of a diagram. § represents those external momenta appearing in the parametriza-
tion of H. IR-degrees are always defined for fixed §. Non-fixed variables like w,v, ¢, s — 1 are always explicitly
indicated.

UV-degrees are defined as follows.

degr;q‘V(u, v, ¢, q; 8, 1, Q) = max (déé}' P+ degrﬂ ) (2-21)
degrapF(u, v, g, q 8 Hy a) = dEngq‘ V- degr;},c’ (u'l v 4, G5 8, 1y Cl.) (2“22)
= degr;q‘V — 2Nygs,

where n,g, is the number of factors C; depending on w, ¢ or 5. IR-degrees are defined by
degr ugls-1)v ('H, v, ¢, §; 8, 1, (L) = ]21}‘ (_d_'ig_r a1 P 4 degr 1?9|1?V;) (2_233)
degr ~ Degts- )V('u, v, 9,08, 1,a) = rlng}l idf;g_r:le,- (2-23b)

and

degr o~y Pl v, 0 T ma) = degr oy Vw0, .G s 0,0) —degr o,y Clu, 0,0, G 8, 44,a) (2-24a)

= degra}(,_l)lvV(u,v, 'Lif;‘;l’-,ﬂ) - 2‘”111("”

6
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where My, is the number of C; which depend only on w,g and (s—1) (i.e. (bs1,...,bia} = 0 and S 1€k Ty =0
and p? = 0), ' .

degl‘ avq(i—l)F(u’ v, q,4; 8 My a’) = deg‘-‘;‘|w(,_1)v(“s v, q, G 8y ks a) - degravq(‘_l)C(u, v, ¢, T 5, 14 tl) (

- 2-24b)
= .d_eg:hq(‘—nv(u? v, q: q; 5, 14, (I.) - 2m,,

m, being the number of C; depending only on 2 (ie. (bir,... big) = 0, (diz,...,din) = 0, Yror €k =0
and p? = Ml.2 = 0). degr, P; and degr, 1F; are the usual UV- and IR-degrees of polynomials (defined in [6},
Appendix A, for instance).

The degrees satisfy all "typical degree properties”. For completeness, they are listed in the appendix. Later
on we will use them without any explicit reference.

We now define UV- and IR-divergence degrees of an arbitrary 1PI subdiagram ~ of T by

wiv) = 3 w(Br)+ Y w(Ve)+4m(), (2-25)
Lely BeB,

r() = Y r(Br)+ Y 1(Ve)+ 4mla), (2-26)
LeL, BeB,

where m(y) is the number of loops in ¥, and

w(Bg) = degrﬂ,aL(lL;s, i, a)

A . (2-27)
r(AL) = degrfb(‘_l}AL(lL;s,p,a)
for L € Lr and
w(Vg) = degr—~ Va{{lL}sis,n,a)
tedst (2-28)
r(Vp) = degri~ |, VB({lr}sis pna)

for B € Bp. These definitions are valid also for reduced diagrams [4].

We will write the divergence degrees in a vertex dependent form. To every line L € L., corresponds a pair of
basic fields A;, Ax. L is called an ik-type line, having i-type and k-type legs. For every field 4;, a UV-dimension
d; and an IR-dimension 7; > 0 is defined such that

4+w(31,) < d; + dy

~ (2-29)
4 4 T(AL) > 1+ T

Let ng(B) denote the number of k-type legs at the vertex B € B, (including external legs) and ex{v) the number
of external k-type legs of v. Then we can write

wir) <B() =4+ Y [W(B) =4 - D exlr)da

Bes, k
(2-30)
r(y) 271} =4+ D {r(B) - 4] = D ex(n)h,
BeB, k
where -~
w(B) = Z ng(B)dy + w{VB)
k (2-31)

r(B) =Y nx(B)r + »(Vg).

These forms of divergence degrees will be used in the following. Especially, we will see that the IR-divergence
degrees »(B) must satisfy some constraints to get IR-convergence of Feynman integrals.

7
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A general statement about convergence of Feynman integrals with massless propagators can be made only

for non-exceptional external momenta. The external momenta ¢y,..., gy of a 1PI function
N M
JIRZCORICH
=1 i=t 0,1PI

or of a contributing diagram T are called non-exceptional {11] if

N
Ywa=0 , ac{01} (2-32)
i=1

implies that all &; = 0 or all a; = 1.
2.4, Generalized subtraction operators

We now define generalized subtraction operators which apply to Feynman integrals with zero-mass prop-
agators. Let F be a function of the same momentum and mass variables as before which is C*® in g and
s.

DEFINITION 2.1. Let § € No = {0,1,2,...} and t}, be defined by

(?;,F)(u, v, 9,4, 8, M4, a) =

8 6 o _ (2-33)
= Z 19' Z Pgh e Ql;---,qmﬂ) 'ﬁg"aq F(u,'”,q,q;‘?:#aa)
0<btg<b 1),tg=0 1 is g=0,s=0
for every function F which is C*™ in g and s, where Pg;,..;, € C] are totally symmetric in iy,...,1,, (2w /a)-
periodic in q;, ..., Gy, and ll_l.l'il) Pgiyig(@y - qus @) = @i, -+ -qi,. If for every such F
[(1—1))F)(u,v,Aq, T As, i, @) = O(M*") as X — 0, (2-34)

t ;, 1s called a generalized subtraction operator (GSQO) of the order §.

The generalization consists in that in ?;, one also differentiates with respect to the mass parameter s. By
analogy, ?&:—1) is called a generalized subtraction operator of order p, if for a function F, which is C* in ¢ and

s, the function f;f('_l)F is of the form (2-33), whgre & is replaced by p and s by (s — 1), and

{(1- i;p(wl))F](u,v, Ag, 14 A(s — 1), p,0) = O(APT1), A = 0. (2-35)
Obviously, 7, q, is a GSO of the order § if ?;'b, defined by
(g " F)(u,v q,ﬁ;s #a) =

a &
_Z Z Py —ig q1: . :Qw;a)( "'WF(H,‘U,‘LEH,#;“'))

aqi'i P

(2-36)

' £1,.,ig=0 g=0

is a subtraction operator {4] of the order § — b, for every b satisfying 0 < b < . An analogous statement holds

7P
for tq(‘_l).

We want to apply GSO’s to functions F € F of the form (2-19). To this end, we have to exclude in (2-34)
and (2-35) those values of the variables u, v satisfying

d r z
2 birtvr + Z Cintlg + Zeuz@k =0
k=1 k=1 k=1

for some ¢ € {1,...,n} with g; = 0.
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Generalized subtraction operators have important properties which are responsible for the subtraction of
UV-divergencies by applying them to Feynman integrals, and that subtracted diagrams are IR-finite. These
properties will be given in Section 4 when we have defined the renormalization procedure.

3. Renormalization of lattice Green functions.

We give a prescription how to renormalize 1PT lattice functions

N
H F;(q:) H[QJ . (3-1)
i=1 i=1 0,1PI
(3-1) is a sum of 1PI Feynman integrals. At first, we define renormalized Feynman integrals. As indicated in

the introduction and in the example 2.1, an important convergence condition is that every internal vertex B
must have an IR-divergence degree not less than four. This condition will be assumed in the following.

Let
:(EP,SI‘,BI‘1¢P1¢P)

be a 1PI diagram with m loops and jr(q; 5,1, a) the corresponding unrenormalized Feynman integral. The
renormalized Feynman integral of I is defined by

Rrlg; s, g, a) = dky - -d*ky ﬁp(k, q; 8, 1, a), (3-2)
where N -
Rr(k, q: 4 ,u,a) = Sl" Z H (_:F‘TS')‘) . IF(U) (3_3)
Uew el
Here
1. S, are the substitution operators (2-16).
2. W is the set of all I'-forests.
3. Ir(U) is the unsubtracted Feynman integrand
fr'(k?Q; 8, K, a’) (3“4)

with the following substitutions depending on a forest U:
For every line I € Lr (vertex B € Br) there is at most one =7 € U,sothat L € £, (B € By), but L & L

(B & B,:) forally' € U(7). If such ay € U exists, we write A (VB) as a function ofthe variables ¢7, k7, 57
otherwise as a function of k, g, s.

4. 7, is given by
1= 7 = (1= -3 | (3-5)
for every 1PI subdiagram v of I'. tq.f( ), 1) and ?ﬂ]’l are GSO’s.
The UV-subtraction degrees (7} and IR-subtraction degrees p(y) are given by

(1) =4+ 3 16(B) -4 - Y e()da (3-6)
k

BeB,

(1) =4+ Y [p(B)—4- > er(n)rs- (3-7)
k

BeB,

ex(7) is the number of external k-type legs of v. 7 and di are the IR- and UV-dimensions of the field Ay
(cp. (2-29)). Furthermore, the UV- and IR-subtraction degrees 6(3) and p(B) , B € Br, are constrained
by

for every vertex B € Br (3-8)
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p(B) =14 for every internal vertex B € Br (3-9)
p(B) < min(4, »{B}) for every external vertex B € By.

w(B) and r{B) are the UV- and IR-divergence degrees of the vertex B (cp. (2-31)). Note that always
ey — 1 < 8(y). Hb(y) < 0, we set ?:_Sf), =0,and if p{5) —1 < O: e-1 g,

gr{e7=1)
H (=74 5y)

yeU

5. The order of the factors in

is determined by the rule that for v1,v2 € U, 7; being a subdiagram of v,
(=7, Sy,) is ordered to the right of (-%,5,,)

For disjoint 7, ,72, the order is irrelevant.

Theorem 1. Assume that every internal vertex B of the diagram I satisfies 7(B) > 4, and that the exter-
nal momenta of I' are non-exceptional. Then the renormalized Feynman integral Rr(q; s, u,a) is absolutely
convergent for every s and a > 0. The continuum limit @ — 0 exists and is given by

o0

]in}jﬁp(q; s, p,a) = / d*k, ---d*k,, Rr(k,q, 5, 1), (3-10)
a—

-0

where N
Rr(k: q, 3, lu') = ]inéi Rr(k: q; 8, i, ﬂ.).

Iflima_o fp(k, q; 8, 4, ) Z 0, Ry is equal to the BPHZL renormalized continuum Feynman integrand defined
in {10] (with a different choice of internal momenta [4]). If limg.o Ir{k,¢; s, 1t,a) = 0, also Ry(k,q,s,u) = 0.
As for massive field theories, Feynman integrals which have a vertex with vanishing (naive) continuum limit do
not contribute to the continuum limit at all, after renormalization.

Renormalized diagrams are convergent also for s = 1. As an important convergence condition, »(B) > 4
for all internal vertices B of the diagram, i.e. those vertices having no external line. In general, they resuli
from an interaction or counterterm contribution to the lattice action. As the theorem shows, vertices with an
external line do not have to satisfy such a constraint. This means that the (non-vanishing) external momenta
provide an IR-cutoff. In most cases, the IR-subtraction degrees satisfy p(7) > 1 only for diagrams v with two
or three massless external lines, so that these are the only Feynman graphs which are affected by the additional
finite renormalizations {cp. (3-5),{3-7}). After renormalization, they vanish at zero external momenta.

As a corollary of this theorem we state the renormalization prescription for 1PI functions (3-1). Such a
Green function is a finite sum of 1PI Feynman diagrams. The renormalization prescription is as follows. Every
contributing diagram + will be renormalized as described by Theorem 1. The subtraction degrees are given by
{3-8),(3-9). These conditions, however, do not completely fix the subtraction degrees of the vertices. This is
done in the following way. P: may be a basic field or a composite operator. In the latter case, there corresponds
an external vertex to P;, in every diagram 4 which contributes to (3-1). Furthermore, to every @, corresponds
a vertex in every v which may be an internal or an external one. For every composite P; and for every Q;
we denote the UV-divergence degree of the corresponding vertex by w; and 7; and the IR-divergence degrees
by 7; and v;, respectively. These numbers are independent of v and depend only on the form of P; and Q.
In the same way, let for every P, and Q; UV-subtraction degrees of the vertices be given by & and 7;, and
IR-subtraction degrees by p; and ;j, respectively. They are always chosen to be the same for all diagrams y
contributing to (3-1). Furthermore, they are constrained by the conditions

& > wy

pi < min(4,r;, §;) ‘for composite F; (3-11)
n; > max(4, 7;)

o; =4 forallj=1,..., M. (3-12)

In general, the constraints (3-8),(3-9) are satisfied for every contributing diagram if (3-11),(3-12) hold.

10
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Let Pi,..., Py, be basic fields and Pn,41,-.., P~ be composite operators, Then the renormalized Green
function of (3—1) is written as
No _ N N M
I Pitas)- T & Pita))- I]1Qil5: , (3-13)
i=1 No+1 i=1

0,1PI

and we can state the following

Theorem 2. The 1PI function (3-13) is finite for each a > 0, and also in the continuum limit a — 0, if the
following conditions are satisfied.

1. The external momenta gy, ..., ¢y are non-exceptional.

3-14
2. vy 24foralj=1,..., M. ( )

The @ -— 0-limit is given by the BPHZL renormalized continuum Green function of (3-1) [10].

From Theorem 2 we easily get a renormalization prescription for vertex functions. They are not necessarily
1P1, e.g. for theories with spontaneously broken symmetries. Nevertheless, every diagram which contributes
to a vertex function is a product of 1PI diagrams and other, finite terms. If the 1PI graphs are renormalized
as described above and such that renormalized tadpole diagrams vanish, the renormalized vertex functions are
IR-finite and convergent in the continuum limit. Every tadpole line entering a 1P1 subgraph is an external line
of this subdiagram of vanishing momentum, hence could produce an IR-singularity. Vanishing rerormalized
one-point functions prevent such IR-divergencies.

‘When Ward-identities are to be satisfied by the vertex functions, then in general additional finite renor-
malizations of 1PI functions are necessary. This can lead to non-vanishing one-point functions. In this case, it
must be checked very carefully whether no IR-singularities are produced. In particular, every vertex V with
a leg which gives rise to tadpoles must satisfy stronger IR-constraints than #{V) > 4, namely, omitting the
tadpole line, the resulting vertex V' also should satisfy the condition #(V') > 4.

The above theorem gives a well-defined procedure to renormalize theories containing massless fields (s = 1).
Massiess bare fields remain massless after renormalization. With respect to universality and power counting
renormalizability, the same arguments as in (4] go throngh. The same holds for the counterterm philosophy.
All subtractions can be written as connterterms of the lattice action, eventually after some symmetrizations of
the subtractions [4]. Also, they can always be chosen to be local. Counterterms and consequently renormalized
Green functions depend on the auxiliary masses. This dependence can be absorbed by addition of finite coun-
terterms satisfying the IR-counstraints. In this way, normalization conditions at non-exceptional momenta may

be implemented.

The constraints on the IR-subtraction degrees are stronger than those of [10]. This is not a lattice artifact.
They are necessary to avoid IR-singularities by subtractions. When we consider lattice Green functions in
configuration space, the external momenta are integrated over, and the constraints (3-11),(3-12) may be replaced
by the weaker conditions

8 > w;

pi < min(ry, &)

n 2T

4 < o < min{v;, 7).

As a simple example of Theorem 2, consider the massless lattice &*-theory with an additional $®-interaction:
$(@)ine = a* Z [g®*(na) + Aa’®%(na) |.
neZt

The IR-dimension of the ®-field is equal to one. Hence, r{®%) = 4 and r(a’®®) = 6. Powers of the lattice
spacing have no influence on the IR-degrees. Hence, the massless model is IR-finite renormalizable.

4. Properties of generalized subtraction operators

Before we are going to prove Theorem 1, we list important properties of GSO’s. The first two lemmas state
those properties of GSO’s which are responsible for the subtraction of UV-divergencies by applying them to
Feynman integrals as deseribed in Section 3.

11
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Lemma 4.1. Let ?;, and ?;,_1) be G5O’ and F € F of the form (2-19). Then

1l.a. degr;qu’('_l)F < dege-F

SO . (4-1)
b. degrzt,, F < degroF.
Suppose that for every i = 1,...,n the coefficients satisfy (bir,...,biq) = 0 only if (diy,...,din) = 0 and
M? =0. Then
wﬂ'ﬁ i° w/‘-
2.a. degrwq'tq(‘_l)F < degrvq‘F (4-2)
b. degr;}‘i;ﬁ,F < degr;&‘F.

PROOF:
- 8 8 _
degr;[m @F(u, v, ¢, G 8, 4, @)]g=0,s--1=0
- LA
< degro———— —F(u,v,q,7; 8, 14, &)

v (s - 1)® 8¢’
S dch;F('u’ v, g, —q—; &, 1y a‘)

and that proves 1.a. The proof of 1.b follows the same way. To prove 2.a, note that by assumption all propagators
which depend on g or (s — 1) are also dependent on v, hence

-— 8* &'
degr.,, [“5(:‘“_“1“)7 5;,*17(“, v, 4, T 8, 4, @)|g=0,0-1=0

& o
< e Sl — 1) o0

< degr~ F(u,v,q,§ s, n,a)— (b+ |I]).

vy

F(u,v,q,7 8, 2,a)

Consequently

- &t & _
degr;}‘(s - 1)5Pg,,-,_..l-' (q1,--.,qw;a) [W WF(u, V,4, G 8, i, @)} g=0,4~1=0
S (g + b) + degr;&,F(uavrQIa; 4, "":a) - (b+ ill)

= degr;;,F(u, v, q;@; 5 H, (1)

for |I| = g. 2.b follows analegously.

O
Lemma 4.2, Let ?;(jlx)' f;‘ G507, p—1< 6, and ?q‘:" : F — F defined by
o~ - __1 -
1-750 = (1 -2800,)0 - 1,). (4-3)
Let F € F be of the form (2-19). Then
1. degrﬁ‘?q‘:‘F < degr~TALF + 6. : (4-4)
2. degro 7S F < degro F. {(4-5)

Assume that for every i = 1, ..., n the coefficients satisfy (b;1,...,bq) = 0 only if {(d;1, ..., diy,) = 0 and M7 = 0.
Then

3. degr;i‘ "r;‘:’F < deg:;}‘ F , and (4-6)
4. degr~(1— ?q‘;‘)F < degri}a F—(6+1). (4-7)

These are exactly the properties necessary to reduce UV-divergence degrees of a Feynman integral system-
atically by application of ‘Fq':‘ . The statements 2. and 3. are direct consequences of Lemma 4.1. We only have

12
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to note that if I" satisfies the additional constraint so does ?:,F. The proof of 1. is nearly identical to that of
[4], Lemma 3.1.1. To prove 4., note that

degro(1 — ‘r"”)F(u 1,4, G 8 1, a) < degrA(l wt )F
by Lemma 4.1. Hence it is sufficient to show that
degra(l —i JF < degrn -~ (§+1),

and this is done by using the same methods as in [4], Lemma 3.1.4.
a

The following two lemmas state properties of GSO’s with respect to the IR-degrees of a function. Note
that the § are fixed momenta.

Lemma 4.3. Let Z:f, be a GSO and F € F of the form (2-19). If for all i = 1,...,n the coeficients satisfy
(di, - - -, diw) # 0 only if M? + uf # 0, the inequality

degr - lgo (e~ 1)t F > degrqu(._nF {(4-8)
holds.
Proor: At first, we have
o &
degr o(o- F(u,v,9,G 3 i 0)
’\Iq 2 38b 8 bq' ¢=0,s=0
gt & .
2 degru|q1,(, 1) 55> Bq a1 (u,ﬂ,q,qw,u, a)
> degr = F(u,v,q,7; 8, 0,2},

ulgu{a—1)

where for the first inequality we have used the constraints on the denominator of F. {4-8) is now a direct
consequence of the inequality.

D .
Lemma 4.4. Let ?&‘_1) be a GSO and F € F of the form (2-19). Then
p
i. degruq(' Vio q(. 1)F>deg1f~(' 1) F. (4-9)
2. degruiqv(l 1) q(l I)FEQ(E&(J»-].)PDF - " (4-10)

If for every i = 1,...,n the coefficients satisfy (b;1,...,b;a) = O only if (di1,...,diw) = 0 and M}? = 0, the
inequalities

)
qr(s— l)t (s-1)

"p
1- q(l—l))

3. degro, Fzdegroy ., nF , and {4-11)

g]_)
4. degr F > degr- F 4 max(0,p+1) (4-12)

wg{s—1)l» ( lgv{s—1)

hold.

ProOF: Let b Ngand = (l,...,1,) € N§.
1. For every function F € F, we have

&* &

degrug(l 1)|v a(s_ 1)6 a S

F(u,v,q,i;s,ma)]

ab 3!
w9(s-1)lv §(s — 1) Hg'
Z degr,j}(,_l)hF(uaU,Q:E3:#1 a) — (b+ 1,

q=0,4—-1=0

> degr ~ F{u,v,q,G 8,1, 0)

13
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hence for g = |

8 8
b .
degr,@,(,_lnﬂ(s - 1) Pg,i,u-i,(QIs-- -’Qw’a) 3(8 )b (9 a1 F(u v, q:‘bs Ha )] o 10
9=0 1=
> b+ Q) ~+ degra(,_l)hF(ua”: 4. 8 4, r].) - (b+ |l|)
=degr /4y, F (% 0:,0,T 8,1, 0)-
The first statement of the lemma is now a direct consequence of this inequality.
2. For every F € F, we have
8b 61
degr ~ —— — F(u,v,4,G 8, i, a)
w0 |31y g R IR
8 o' -
> degr wals— 1)in 8 7 F(H;T):Q! q; 8, i, G.)
> degr o= 1)h’F(u, v,q,§ 8, 4,a) — (b4 |1},
and for g = |{]
ab 81
bp . - =
deglum(, 1)( 1) Pg,u---z,(@'lvh-v‘]wa“) 3(3_ 1)5 aq; F(u,”.%q, 3:#‘»“) 40120

> degr ﬁ{-—l)lvF(u” 4,4 4, au'aa) - (b+g)'

.e.

982 Sigo o1yl ste- 1) 2 3B Sy iy P

This proves the second statement of the lemma.

3. All the propagators which depend on g or have a non-vanishing auxiliary mass are also dependent on v.
Hence N ,
9 L
Tieote-1) | 5T g L DT sk a)]
ige(s=1) | 8(s — 1) 8¢ ’ ! =0,0-120

a8t &
2degra (- )3 —1) 3¢ F(u,7v,9, 8 p,0)

degr o

> degr m”('_l)F(u, v,q,T; 6, 14, @).
Consequently
8t 8

degr :lqv(i—-l)(s — l)ng,i;---i,(qls Y I a) [EIT:].—)!' -8? F(u, v, 4q, a, 8, 1, ﬂ.)}
¢=0,s-1=0

> degroy , yFlwv, 0, T a0, a),

and this proves the third inequality.
4. (1~ ?:(,_1))F is of the form

V(“ v, ¢, ;8 1y 0 )
C(u,v,q,7; 5 #,a) C(1,v,0,3; 1, g, a)pt?’

{(1 q(. 1))F](u v, q, ¢80 )

where V, € C°. Using the behavior (2-35) of the subtracted function and that V, € C™, we get
Vo(u,v,2q, T 1+ Ale ~ 1), 1,a) = O(N*+1), A 0.

This yields

degr ~,_1)jo V, > dege o V, + max(0,p + 1).

Clgv(a—1)"P

14
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By the constraint on the denominator, we get

C(uu v, 4, q; _3! Jty a) = degr "1;|q‘v(l-—1)c(u’ v, q, E; 8y M, a):

hence

d_e;gf_;;;(;—lnv[(l - E;P(,_l))F}(uw v q, ﬁ; 8, K,y a)

2 degr;lq,ﬂ('_l)Vp(u,v,q,E; 8, 1, a) —‘degr;iqv(,_l)[C(u,v,q, G s ma) Clu, 0,31, 4,a)" 1+
+ ma.x(O, 14 + 1)
= degraqv(‘_l)(l mt;’{‘_l))F + max(0, p + 1)

> degr;lq”(‘_l)F + max(0, p + 1),

where we have used Lemma 4.4.3.

5. Convergence proof

To prove Theorem 1 we show that all conditions to apply the power counting theorem of [6] to (3-2) are
satisfied. Let T be a 1PI diagram and m the number of loops in I'. The subtracted Feynman integrand {(3-3)
corresponding to I' is of the form :

Vik,g 8 1 a) (5-1)

Rr(k,g; 8, p,a) =
rik.gi s, a) Bi(k,g; s, i, a) Ba(k; p, @)’

where
n(L)
Bik,gs,ma) = [[ ]I (ew(’mﬂ) +(s — 1P MZ; + ui,-),
Lely j=1 (5 2)
n(L) na;{L7) n2; (L)
mathswa) =11 1L [eosiirs ety ou| [eutiliovudy]
¥ LeL, j=1
ny;(L,v), n2;(L, ) €{0,1,2, .. .}, the first product is over all 1PI subdiagrams v of ', and
lr(k,q) = kg(k) -
A 3 f;( )+ q1{q} (5-3)
k] = kp(k).
ﬁp belongs to the class of functions F and is periodic in ki, o ko

Let £ be the set of all [, L ¢ Lr, and of all k] for arbitrary 1PI subdiagrams ¥ of T and L € L,. The set
£ is natural [4].
Let
Uy ooyt
1 * (5"-4)
U104V

be an arbitrary basis of £, » +d = m ( %1,..., %, ?1,...,v¢ € L and det(9(u,v)/8(k)) # 0), and let H be

a Zimmermann subspace, i.e. a class of affine subspaces of (k1,...,km), defined by constant u;,...,u, and
variable vy, ..., vq. Then all k, k7 are linear functions in u, v, ¢:
k=k(u,v,q) , k& =k"(v,vq) {5-5)

{v) = (v1,...,va) is called the parametrization of H. The set of all classes H, for all bases (5-4), is denoted by
H.

We will show that for every H € M
4d + degr;-ﬁp(k(u, v,q),q; 8, i, a) < 0, ifd>0 (D)

15
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47 + degr o ﬁp(k(u, v,g},q; 8, 1, a) > 0, ifr > 0. (11)
— 1

=

Then all the conditions are met for the power counting theorem of {6} to apply to the renormalized Feynman
integral (3-2), and Theorem 1 is proved. Note that (II}) must only be shown for s ='1. If s # 1, all propagators
are massive and (II) is trivially satisfied.

To prove (I) and (II) we will use the method of complete forests [5]. ﬁp(k, ¢; 5, &, a) Is written in a form
which depends on H, i.e. as & sumn of terms which are described by complete forests .and satisfy (I) and (I1}. A
I-forest U € W is called complete on H, parametnized by (v), if T € U, and if for any ¥ € U all lines of 7(U)
ate constant on H relative fo v, i.e.

k7] (u, v, q) is independent of v for every L & Lywyy ., or
all lines of ¥{U') are variable on H relative to v, l.e.
k7 (u,v,q) is dependent on v for every L € Lyu).

F(U) is said to be constant or variable on H, respectively.

Lemma 5.1 [5]. Let T be a 1PI diagram, H € H and WH the set of all T-forests which are complete on H.
Then

Re(k,qis,pa)= 3 Xuy(k,q s pa), (5-6)
Uewk
where
XU(",Q;&N:G) = (1 _ATT') Yr‘(kraqph‘-‘r:#;a) ] (5—7&)
kT —kigT—gq;aF =2
and .
?:,(k"’,q"'; s, u,a) = f;(g)(k“f, q';8, pu,a)- 5, H f(q',-)i}.h(k“, g7 8", a), (6-7b)
=1
for any v € U, 711,...,7. being the maximal elements of U(vy). For minimal v set ?7 = f,,,.
Flv) is defined by
= . [1-7 if v € B{U) _
fin) = { %, ify¢B(), -8

where B(U) is the set of all ¥ € U having 5(U) variable on H and being a maximal element of U(7) for some
T € U having T{U) constant on H.

Let U be a I-forest, v € U and 71,...,7, the maximal elements of U(y). Then S, means a linear

substitution
Syt kT — ET(RY)

g™ — " (k7,q") (5-9)
e g,
where the k7-dependence of g** is only by the explicit 7-dependence of external lines of ¥;, and k" is inde-

pendent of ¢7. Especially, if H € M is given by variable (v) and constant (u) and if (U} is constant, then
q"*{k?,q") depends only on u and ¢7.

The prove of the UV-convergence conditions (I) is along the lines of the proof [4]. Let H € H be defined
by variable (v) = (v1,...,v4) and constant (%} = (u,...,u,), and let U € WH¥. For y € U define

Mu(y) = 43 m(=(U)), (5-10)

where the sum is over all 7 € U(y) U {v}, ¥(U) variabel, and m(T(U)} is the number of loops in 7(U'). For
¥ =T, My(T) > 4d [4]). Then the following lemma holds,
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Lemma 5.2. Foreveryy €U

1. degr;f’y(k"(u,v,g),q*;s"’,,u,rz) < —~My(y) for F(U) constant, (5-11)
equality holding only if My (v} = 0. .
2. degr@”?.r(k'f(u, v,¢),¢";s i, a) < 8(v) — My(y) for ¥(U) variable. (512}
ForT,
3. degr~Rr(k(u,v,q),q; 8, it,0) < —4d. (5-13}

The proof of Lemma 5.2 is quite similar as the proof of (4], Lemma 5.2, the only difference being the
appearence of the mass parameters s7. Nevertheless, as Lemma 5.2 of (4] is a consequence of the general
properties of a subtraction operator listed in Lemma 3.1 of [4], the validity of the above lemma is based on the
corresponding conditions of generalized subtraction operators listed in Lemma 4.2. For this reason, the proof
is left as an exercise to the reader. By Lemma 5.2, the UV-conditions (I} are satisfied.

6. Proof of the IR-convergence conditions (IT)

To prove the inequalities (II) we will use the technical notion of an augmented diagram {10] T of T. T is
constructed by collecting all external lines of I" into a new vertex By. Momentum conservation in I' implies
momentum conservation in By. If I' has more than one external line, I' is 1PIif ' is. If I has no external lines,
then I' = T'.

More precisely, let
I = (L:I's EI‘,BIH ¢I‘1 ¢F)

be a 1PI diagram having at least one external line. Then the augmented diagram T of T is defined by

f\ = (JC'I'\'a E‘fa B‘f\’?‘ﬁ’f! ¢i§)a
where

EF = LprUé&r (Lr\ﬁgr :ﬂ)

Ef =0

BF = B]"U{Bg}, BOQBF
and

¢E ﬁi"- — B_[-‘ x BF
$=(L) = ¢r(L) if L € Ly
$=(E) = (Bo,yr(E))  ifE € £r.

The domain of 1/}; : & — By is empty. Every line L € Lg \ Lr is called a ¢-Linie of T.

We now state two lemmas which are consequences of the assumed non-exceptionality of the external mo-
menta and the IR-constraints (3-9). They will be useful later for the induction through a complete forest.

Let T be a 1PI diagram having m loops and T the augmented diagram of I'. For every 1PI subdiagram «
of I', the IR-subtraction degree is given by

o) =1+ 3 [o(B) - 4]~ ¥ er(r)ra, (6-1)

Ben, k

where the p(B) are constrained by (3-9). Let E{(I') be the number of g-lines of T and 1, .. .,Y be muinally
disjoint 1PI subdiagrams of T, T & {71,-..,7e}- '

Suppose that an arbitrary parametrization of the loop momenta of T' of the form

"
ki(w,p) = ZDij'wj + Pis i=1,...,m (6-2)

i=1

17
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is given, where det{(D) £ 0 and p; are fixed momenta, so that for all line momenta Iy, I ¢ Lp

m
Iy = lp(w,q,p) = Y _(Cr);w; + Qulg) + Filp), (6-3)
i=1
where Qr, Pr are linear.
Let Ag, A1, ..., Ay be the mutually disjoint, connected subdiagrams of f/*n -+ -9, which are spanned by

the g-lines and the lines I € Lr having @(g) + Pr{p) # 0, and so that for E(T) > 1 always By € Ap {ep.
the definition of f) and for E(T) = 0: Ag = 0. By momentum conservation, all A1, ..., Ay are 1PI, hence their
number of loops m(A;) > 1, i = 1,...,b. Furthermore, let Ay,..., A, be the elements of {y1,...,7.} which
corresponds in ‘f‘/'n .« .4, to reduced vertices not contained in By Y --UBg,.

Lemma 6.1. If the external momenta of I' are non-exceptional, we have
m(Re) > E(T) - 1. (6-4)
If in addition for all internal vertices B € Br r(B) > 4 and p(B) > 4, the inequahty

»(T) + imax(o,p(/\i)) —4am(T) > —4m(F /v 7e) (6-5)

holds, where T = (f/*n = v'rc) /Ag--- Ay, and #(T') and m(T') are the IR-divergence degree of T and the number
of loops in T, respectively.

For non-exceptional external momenta and E(I') > 2, Ag is 1P1. If E(T) = 0, Ao = @, and for E(T') = 1,

Ly consists of one g-Linie.
a

Proor: We always have m(Ag) > 0. If E(I') > 2, and the exiernal momenta of T are non-exceptional, the
diagram spanned by the lines of Lz, M £7/y,.-y, 18 connected and contains all external vertices of T/m e
This proves the first statement.

To prove the second statement, we first note that if Ao = f/‘n -+ +7¢, (6-5) is trivial. Thus, let us assume
that Ag # I'/7 - .. The number of loops in T satisfies

b

m(T) = m{T/m v}~ > m{A;)

i=0
b
< m(T/y1 - ve) — (B(X) = 1, (1 - 8gry0) — Zm(i,—) (6-6)
i=1
b
= m(T/7 7))~y m(Ae).
i=1
Furthermore
»(T) - 4m(T) > 4+ Z [»{B) — 4] — 4m(T) (by (2-30), T has no external legs)
BeBy
>4+ 3. [r(B) -4+ i: (Z ex(di)re ~ 4) +
BeBrnBr i=1 \ k
b
+ Z (Z en(Ai)ri — 4) + (Ze (Ao)r — 4) {1 — 8g(r),0)
i=1 \ & k
b .
— 4m(F/7 -7} + 4 Y m(Ks) ( by (2-31))

> zi: (Z eh(n\")rk - 4) —4m(I‘/71 ---7.,),

18
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where we have used 7, > 0, m{A;} > 1 for alli = 1,...,b and that »{B) > 4 for all internal vertices B € Br
(Br M Br contains only internal vertices of I'). Finally

~(T)+ Y max(0, p(A;)) — 4m(T)

i=1

>i(2ek()\i)rk-—4) +Zezmax (0,4 Ze" e + Z - ) —4m(T/y; - ¥e)
i=1 k i=1 k .

BEBA

> —4m(T /vy ve)

where we have used that all B € B,, are internal vertices and for them p(B) > 4.
a

To state the second lemma, let 1,..., ) be the connected, mutunally disjoint subdiagrams of T'/v1---7c
spanned by the lines L € Lrjy,...y, satisfying Pr(p) # 0. Every X; is 1PI and satisfies m{Z;) > 1.

Lemma 6.2. Set T = (I'/y1---7.) /1 - Dy If all vertices B € By satisfy p(B) < 4 and p(B) < r(B), the
inequality

T)+ 3 max(0, p(n:)) - 4m(T) > p(I) - 4m(T/7i -+ 7e) (6-7)
i=1
holds.
Proo¥F: Let Ay, ..., A, be the elements of {,...,7.} which corresponds in T/y1 -+ to those vertices not

contained in Bg U --U Bg,. Then, using m{T) = m(T/y - ye) — 21 _, m(Z;), we get

r(T)+ Y max(0, p(v:)) — 4m(T) =

= e b
- [4 + Y B -4+ (Zek(/\ K — ) +y (Zek(fi)rk - 4) = e(T)m
BeBynByp i=1 i=1 k
b I
am(T /v - ye) — 4 }: m(T:)| + Z max(0, p(7;))
>4+ Y [(B)-4] +Z(Z 7‘;,—4)—26;,(T)rk
BeBrnBp k

EBeB,,;

+Zmax(0,4—2ek ¥i)rh + Z _4)_4m(r/71...7c)
izl

{by rx > 0 and m(ﬁ;) > 1)

> (4+ 3 (e(B) ~ 41— Zek(r)m) —am(T /7 ve),

BeBr k

where we have used ex(T) = ex(T) for all k and p(B) < r(B}, p(B) < 4 for all vertices B € Br.
C

Using the mechanism of complete forests we now prove the IR-power counting conditions (II). The starting
point is Lemma 5.1. The idea of proof is along the lines of [10].
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Always in the following let T' be a 1PI Feynman diagram and m the number of loopsin T', H € K given by
variable {v} = (v1,...,vq) and constant (u) = (u1,..., %), and let U be a T-forest which is complete on H. At

first, for every v € U we define
Ny(y) = 4Zm(?(U))- {(6-8)

The sum is over all 7 € U(y) U{r}, 7(U) constant, and m(T(U)) is the number of loops in 7(U). For v = T,
Ny(T) < 4r. This follows from My(T) = 4m — Ny (T) > 4d and 7+ d = m (cf. (5-10)).

The next lemma states the action of the operators 7, onto ¥,,.

Lemma 6.3. For every ¥ € U, the following inequalities hold.

L
degrs viproy T Yo (K7 (2,2,9), 67 57, 1, 0) >
degru]gw(” 1)17 (7" (u,v,9),¢7;8", 0, a) for ¥(U) variable (6-9)
> mln[degr Gg¥(sr—1)]v ‘y’(k (ua v#Q)? q7; 8", i, a) - (P('T) - 1),
" for F(U) constant.
degrﬂm.w(‘_r 1)Y (" (u,v,q9),47; 8", pu, a)]
2.

degl’ ugY(sY— 1)]1:" Y’Y(k.f(u‘? v, 9)! q’r; 57: Hy a) >

degr ~ Tlgve(er—1) 7 (k”f(u,v,q),g";.q*,p, a) for p(v) < 0 (6-10)

> ¢ minfdegr — . ¥y (k(u,v,9),4"; 67, p,0),
N for p(v) > 0.
degrulqw(n 1)Y (k.r(u! v, Q)’ q')’; 31’ Hy a) + P(‘Y)]

3. Suppose ¥(U) is variable. Then the inequality

degr@(ﬂ_l)lv(l —F)Y, (k" (v,v,9),¢"; 8", p,a) >

(6-11)
> degr (

Sgrotaron)Tr (K7 (4, 2,),47; 87, 1, ) + max(0, p(7))
holds.

PROOF: T, is written in the form

Ty = Tt Ty - TaFy = T+ {1 )y,
where . 5]
—~ ~o(r)-1
Tyl = tq"’(ﬂ' 1) 12 - tq'r,v

If ¥(U) is variable, every factor in the denominator of ¥, depends on v or is independent of ¢" and (7 —1).

L.a. Using {2-11), Lemma 4.4.3 and Lemma 4.3, we get

degr Hgre(sT-1) (1 - ?—,1 )?12?7(]"'7 (u: v, Q), g7, u, a)

2 degrulq‘w(l? 1)1'72? (kT(u v q) q‘)';s’r, ,u,a)

> degru‘ vo(sv-1)7 (k (u, v, Q) q'; 87, u, a’)
b. Using (5-7b), (5-8) and Lemma 4.4, we get

d_e_ﬁimqw(n—n?ﬂ??(k.r(“’"":Q)’ q';8",p,a)
degr ’“|qw(n-1)?'7 (" (u,v,q),97;8",p,a) for F(U'} variable
degr — (e 1)le (B7(v,v,q),q7; 8", m,a) — (p(7) ~ 1) for (U} constant.

>
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Taking the minimunt, assertion 1. follows.

2.a.
df‘gl‘uq, er—1 |,n(1 - 771)T72Y (k (uv”7Q)?q7;s‘Tap’a’)
> degr ~ degro aoiero l)rngT(k (v, v,9},¢7; 87, 1, a) + max(0, p(7}), (by Lemma 4.4.4)
> degro ity ¥, (k7 (v, v,9), 475 87, 4, @) + max{0, p(7)), (by Lemma 4.3},

b. Note that p{y) < 0 implies 7,1 ¥,, = 0. If p(7) > 0, we get

d_ggzt;/;*(nﬁl)w?’)'l?‘f(ky(ua CE Q)v AU a')
> degr PRICRES 1)!1,? (k'r(‘u,, vy Q)’ (17;81,%‘1) (b)" Lemma 441)

Assertion 2. now follows by taking the minimum.

3. Let ¥(U) be variable. Then Lemma 4.4.4 yields

degruqy(,—y 1)‘1,( - :';'Yl)Y (kT(u v q) qTr 371 )u:a')
> degroy vy Yo (k7 (% v,0),47; 87, 1, 0) + max(0, p(7)).
Using 1 — 7 = (1 — %1)(1 — %2) and 2.a, the assertion follows.
[
Using Lemma 6.3, we get the following lemma which states lower bounds on the IR-degrees of the functions
defined in Lemma 5.1.
Lemma 6.4.

1. Foreveryv & U

degr -~ (k"'(u, v,q), 47587, 4, 2) > o7} — Nu(7) if ¥{U7) constant.

LB agv (e 1) Y
degr |q‘vu(:ﬁ‘ 1 ')‘(k‘y(ur v, q)! q'T; ‘911 nur ﬂ.) 2 _NU(IT) (6—'12)
(= holding only if Ny (v) = 0).

2. Letv € U and X be a maximal element of U(¥).

a.
degl‘u!w”(” 1)ST?AY'\(kA(u? v, q): qA; 3A;p’1 a) > _NU()‘) (6—13)
(= holding only if Ny (A) = 0).
In particular _
degr ;Iqrv(,r_l)?rl’p(kp(u, v, q),qr; sT, u,a) > —4r.
b. TR A A
degt 2 ovopro1)S7(1 — DIVA(E (w0, 9), 475 67, 1y 0) 2 ~Nu(A) (6-14)
(= holding only if Ny (A) = 0},
for ¥(U) constant and A(U) variable.
c. R
degr -1 s, AY (R (2, v,9), ¢ 8%, 4, 0) > max(0, p(A}) — Ny (A) (6-15)
for ¥(U) constant and MU) constant.
d. N ‘
degr — 1) Sy(1 — AV (k* (4, v, @), €5 87, 4, 0) > max(0, p(A)) — Np(X) (6-16)
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for ¥(U) constant and A(U) variable.

The statements a. - d. are also valid without S, and with ¢*, (s* - 1) instead of g7, (87 — 1).

ProoF: By complete induction.

1. For minimal v, we have ¥ = (U) and ¥, = I,. In general
degr aqw(ﬂ_l)fq,(kj(u, v,9),97; 87, 1, a) > 0,

because of (2-11) for every line L ¢ £,,.

I F(U} is constant, let Xy, ..., X} be all 1PI subdiagrams of y which are spannred by the lines L € £,
satisfying k7 (0,0, ¢) # 0. Because of p(B) < 4 and p(B) < »(B) for all B ¢ B,, using Lemuma 6.2 and writing
T =~/% -5, we get

d;egqua{n_m”fv(kv(“,”aQ),qy; s7, p,a)
2 Elﬂg_r,:;(n_l)fi"(k’(%v =0,g=10),¢q";3", p,a)
= (T} - 4m(T)
> ply) - 4m(y)
= plv) = Ny(7).

This proves the first statement of the lemma for minimal v € U.
2. Let v € U and A be a maximal element of U (). By hypothesis of induction, ¥, satisfies Lemma 6.4.1.

To prove the statements 2.a and 2.b of the lemma, we use Lemma 6.3.1 and get

degr aq,\,,,(,.\kl)?l?A(k'\(ua v, q), qA; SAa M,a) > —Ny(A)

(= holding only if Ny (A) = 0)
and
dej?ﬂq*u(ﬂ-lj“ ~ Bk (2, 2,9), ¢ 87, 1, @)
2 min [gf,g.iaqzu(.x-l)?’“i‘i&.‘laqzw(n_l)ﬁ?ﬁ]
> —Nu(})
(= holding only if Ni(A) = 0).
S, 1s a linear transformation

Sy @ — @k (u,0,9),97)

A
g ~— §7,

where the k7-dependence of ¢* is only by the explicit k7-dependence of the external lines of A, i.e. lines which
belong to L3(r7). The denominator of 7,Y) is independent of ¢* and (s* — 1), hence

degrzlqw(lhl)S.,,ﬁYA(k"(u, v,q), ¢ 8%, 1, a)

2degr;lqg,,(,,.,l)?m?a(k‘\(“,”:Q)aQAQSA,F;G) 2> _NU(A)

(= holding only if Ny (A) = 0).

If 7(U) constant and A(I/) variable, every denominator factor of (1 — 7)Y} is independent of ¢* and (s* - 1)
or dependent on v, and ¢*(k?(u, v, g), ¢7) is independent of v. Hence

S¢(1 - BNk (2,2, 9), 6% 8, 1, a)
> degr g ay(pnp)(l — B (RN (1, v,0), 6% 8% 1, 0) > —Np () (6-17)
(= holding only if Ny (X) = 0).

degr

;I|q'fv(ﬂ‘—1)
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Next, we prove the statements 2.c and 2.d of the lemma. Let (U} be constant. If A(¥/) is constant, we get

degrr ?A?a\(kA(uv v, q)a qlu 3)\1 H,y G.) Z max(O,p()\)) - NU(A):' -

gr{s*—1)v

where we have used Lemma 6.3.2. If X(U) is variable, using Lemma 6.3.3, we have

— ?A)i;;\(k"(u, v, q),q"; o, a) > max(0, p(A)) — Ny (A).

degr —

ugt (4* -1} (

Using the above mentioned property of the substitution operator 5,, we get

degr‘«(‘7 Yo S ?A?A(k‘\(u:W‘I)an;3/\1“50)
>degr Dor 1)l TA?A(k’\(u, v,q),¢% 8" 1, a)
> max(0, p(A)) — No(3)
and -
degr —~ Se(1 - TA)YA(kA(u, v, q),q)‘;a)‘,u, a)

ug¥{s7-1)|®
ST (LA A, A
Zdegrﬁ(‘a_l)h(l — AV (kM (u,v,9),¢%; 87, 1, a)

> max(0, p(A)) - Ny (A).

3. Let v € 7 and ¢, - 7. be the maximal elements of U(y). By hypothesis of induction, Lemma 6.4.2 holds,

where A represents v1,...,7.. We must show that -« satisfies Lemma 6.4.1, which concludes the proof.
In general,
degrulqw( ,_1)?.,(k7(u,v,q),q”;s"’,p,a)

= degrulq"’u 17—1)77 (U)(k (u,v,q),q7;s"’,u,a)

+ Z éf_giflq—rv(ﬂ_l)s"rf('ﬁ)?vi(k“(”'v v, Q')a q'Y-'; s y by CL)
=1

>0+ i(_NU(’Yi))

i=1

> -Ny(y) (= holding only if Ny (v) = 0),

where we have used that Ny(v) > 3 i_, Ny(v), and that all propagators of fy(g) depend on {87 —1}.
Now let ¥(I) be constant.

Let Ty, ..., I; be the mutually disjoint, connected and consequently 1PI subdiagrams of (/) spanned by
the lines L € Ly satisfying k7(0,0,q) # 0. Using p(B) < 4 and p(B) < 7(B) for all vertices B € B,, and

writing T = (¥/71 -+ %) /T1 -+ - T, we get
degr — *f(n—l)h:? (" {u,v,q),q7; 87, 1t,a)
= degruqv(n L7 (K7 (4, 0,9), 475 87, 4, 0)

+ Z (k_grﬁ?r(nhnh,s‘ff('ﬁ )?7;(1"“(% v, q), QT"; s, fl)
> degr —~ ey IT (k*(u,O,O),qV;s",u,a)

+ Z degr@(,v_l)fﬁs'rf(‘ﬁ)?'Y.‘(kl“(ua v, Q)) U AN a‘)
i=1

> r(T) — 4m(T) + Z max(0, p(7:}) — Z Ny (i)

p(7) — [4mF(O)) + Y Nu ()| {by Lemma 6.2}

= p{7) — Np(7)-
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i

Finally, using Lemma 6.4 we can prove that the renormalized Feynman integrand Rr satisfies the IR-
condditions (II).

Theorem 3. Let I' be a 1P] Feynman diagram having m loops and
u] L B | u"l‘
U1,y -4 Vd,

r +d = m, be an arbitrary basis of L, the set of all I, L € Lr and of all k], for all 1PI subdiagrams vy of T
and L € L. Let H € H be given by variable (v1,...,vq4) and constant (uy, .. . u.), and U a T'-forest which is
complete on H. Then Xy of Lemma 5.1 satisfies

degr;lv )f{:[,v[k(?.t,v,qr),q;.9,,u,cuv,)"=1 > —4r, (6-18)

hence
degraw Rr(k(u,v,9), ¢ s,,u,a)‘ - -+ 4r > 0. (6-19)

This means that the IR-convergence conditions (II} are satisfied, and Theorem 1 is proved.

Proo¥ oF THEOREM 3: We must show that

> —4r,

gF=g,sT=1

éf;g_‘au(l — %) Ye(kT (v, v, 9),¢"; 8", 4, a)
At first, note that the denominator of 7 ¥y is independent of g and of s” — 1. Using Lemma 6.4.2, we get

degr o 7 Yo (k' (x, v, 9), 4% 5%, 1, 0)

gl =g,oT=1

> degr~ r_l)?r]?r(kr(u, v, q), gt st p, a) > —d4r

ujglo(s

All what remains to prove is that

degr=  ¥r(k"(u,v,q),¢"5s", 1, )

! > —4r, (6-20)

qr:q,jrzl

Let 71,..., 7. be the maximal elements of U(T'), so that

¢
Vo™, q"5 s my0) = T (B5, 055 8%, mya) + 3 SeR P (k™ g™ 8™ )

i=1
1. Suppose that T(U7) is variable. Then Ny (T) = 3°:_; Nu(v) < 4r (= holding only if Ny (T} # 0). Using
degr:lwff(v)(kr(u, v,¢), gt st ) >0
and Lemma 6.4.2, we get

degr ;:!,, f’r(kr(u, vy 9): qr; sr: Hy a)

gt =g, sT=1

> degr gy, Iy (k" (%9, 9),47: 8", 1, 0)
e 1T(V)

gT=g,aF =1
[
+ Z degr aqr,(,r_l)sf‘?'r;y'n(k“ (": v, ‘1)’ q" 5751 M, a.)
i=1

> —4r.
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2. Suppose that I'(U/) is constant.

Take all mutually disjoint, connected subdiagrams Ag, ..., As of f/’n <+ -+, spanned by the g-lines and all
lines L € Ly satisfying _

kL(O’ G, Q) +: QL(‘I) # 0.

Furthermore, let A, ..., X, be the elements of {v;,...,7.} which corresponds in f/*yl -7, to vertices not
contained in By, U---U BX»’ and let p1,...,p1 € {¥1,..-,7.} the remaining ones, i.e.

{or, PP U A, A = {7, 7ed

y {+e=c.
{pl, '--Pl}ﬂ{)‘lw--s)‘e} = 0
At first, the following lower bounds on the IR-degrees can be given.
a. The denominator of Sp?pi?pi is independent of ¢" and s — 1, hence
degr :I.,,SI‘?,O‘ Ypi(km(ua v, q),¢%; 8% (1) JE S
> degr E\gru(.r-nsl“?p:?m(kpi(“; v,9),q%; 87, . a)
> —~Ny{p) {= holding only if Ny (p:) = 0). (by Lemma 6.4)

b. For p, vaniable, using the same arguments as for (6-17),

degr;h Sl"(l - :‘FP-‘) ?Pi (kpi (u7 v, Q)l qp,-; SP-" E CL)

gr=gT=1
= degf;;qrv{,p_l)sr(l - ?p.- )?p‘-(k""'(u, v,q), 9" 87, 4, a)
> —Ny(p:), (= holding only if Ny (p:) = 0), (by Lemma 6.4).

c. For every A1, ..., A,
¢ = ¢ (R (w2,9),¢")| o, = ¢ (0)

is a linear function, hence

= Y i Ail oA
degl';‘vsr“')n Y?\g(k (U,U,Q)uq 2 8 !#:a) T =g,sF =120

z degf;—;;: u?)\,.?,\i(k’”(u,v,q),q"";sl",u,a)

(s2i-1)1
> max(0, p(A:)) — Ny (X)), (by Lemma 6.4)

and for A;(U) variable

=, Vv g Ail S
dEgIa-pSF(l_T/\-‘)YM(k (u,v,9),97% s Lity @) gFmq e —120

= (jﬁj‘;’\—;(t"i_«l)tv(l - ?A")?’\i(kh(u’v?q)’ q;\i; SM: i, G-)
> max(0, p(A;)) — Ny (A:) {by Lemma 6.4).

Next, we use the inequalities a.-c. to conclude the proof of Theorem 3. By assumption, the external momenta
of I' are non-exceptional, and for every internal vertex B € Br, we have #(B) > p(B) = 4. Applying Lemma
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6.1t0T = (f‘/fn e .%) /Ao - Ay, we get

7 r r, I
degrav YFU“ ('H.,‘U,q),q y 8 nu'aa') gTogaT=1

) degruhr f r(r )(kr‘(ur v, q)! q, Sr, M, G)
jal=—=1

I
+ Zdegr;l,,f"rf(m) Yy, (k7 (u, v, g), ¢75 87, pt, @)

gT=g,C=1

+Zdegr'~ Srf( ) 3 (BN (u, v, 9), ¢ s, 1y a)

qT=g,sT=1

> dcgr;IT(k (u,v=0,g=0),q=0;8=1,p,a)
!

+ 3 (=Nu(e))+ Y [max(0, p(A)) — Nu (X))

i=1 i=1

»{T) — 4m(T +Zmax P(A ZNU ¥i)

\/

— 14m(T(U)) + Z Nu () {by Lemma 6.1)

= —NU(r) 2 —4p.

Conclusions

We have proposed a renormalization procedure for lattice Feynman integrals which applies also in presence
of zero-mass propagators. The method is a fusion of the lattice version of the BPHZ renormalization prescription
[4] and the auxiliary mass method of Lowenstein and Zimmermann {9,10]. It applies to a wide class of lattice
field theories, Under very general conditions, the renormalized theory is IR-convergent for every finite lattice
spacing, and the continunm limit exists. The set of renormalizable, JR-finite theories is constrained by the
condition that all vertices should have an IR-degree not less than four. Apart from the possibility of massless
propagators, the assumptions on the structure of momentum space Feynman integrals are the same as in the
massive case [4]. The integrand should be periodic with the Brillouin zone in all the momenta, a property which
is reflected by the fact that the counterterms are also periodic. The propagators are assumed to have only
one pole in the Brillouin zone. In particular, the renormalization program does not work for lattice fermions
whose propagators have poles on the boundary of the Brillouin zone. Furthermore, the integrand should be
differentiable to such a degree that all subtraction necessary to subtract divergencies can be done without
problems.

With respect to universality of perturbation theory and power counting renormalizability, the same ar-
guments as in the massive case [4] apply also to massless lattice field theories. The continunm limit of the
renormalized theory does not depend on the specific choice of the lattice action. It is given by the continuum
field theory which is described by the (naive) continuum limit of the lattice action and is renormalized by the
BPHZL finite part prescription [9,10]. Furthermore, if all coupling constants are dimensionless, a lattice field
theory is renormalizable by power counting if and only if its (formal) continuum limit is renormalizable. Also,
the counterterm philosophy is the same as in the massive case. After some symmetrizations with respect to
the external momenta of the Green functions (as described in (4], Section 4), the subtractions can always be
written as counterterm contributions to the lattice action, which can be chosen to be local.

Actually, we have defined the renormalization procedure for scalar fields only. This we have done to simplify
the notation. There is no problem to generalize the method to fields carrying internal symmetries and spin.
This can be done by introducing so-called index-distributions in Feynman integrals {4] which associate every
line ending with a set of symmetry labels. The definitions (2-27),(2-28) of divergence degrees are replaced by

W(BL) = max degrﬂ AL(IL,QLvﬁL:s:Ps )

ar,fr

1-(3;,) = min degrA *1)AL(1L,O£L,ﬁL;S,p,a)

agp,fr
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for every line L and

w(Vg) = {I;Iﬁiidegtm—}-B‘VB({lL,GL}B;S,H,G)
*(Vp) = {zr;l}nadegrms(,_l)VB({lL,aL}st,u,a)

for every vertex B, where the maxima and minima are over all possible symmetry labels of line endings at the
vertex B. '

Renormalized Green functions depend on the auxiliary masses introduced by the subtraction scheme. This
dependence may be absorbed by additional finite renormalizations satisfying the IR-constraints and leading to
equivalent renormalization schemes. For instance, by an appropriate choice, this corresponds to subtractions at
non-exceptional momenta plus additional finite renormalizations at vanishing momentum for two- and three-
point functions necessary to get IR-finite amplitudes in higher orders. In most applications, these additional
subtractions are needed only for diagrams with two or three massless external lines.

The renormalization program proposed here applies also to lattice gauge field theories. After convenient
gauge fixing, such a theory is perturbatively renormalizable by power counting, i.e. with increasing number of
loops the order of subtractions needed does not increase, and the continuum limit of the renormalized theory
exists. The counterterms needed can always be chosen to be local. A priori, only little can be said about their
structure. However, if there exists a BRS-symmetry on the lattice, the Green functions satisfy the corresponding
Slavnov-identities. It then should be possible to show that to every order, the counterterms needed are of a
restricted form which allows the theory to be remnormalized simply by renormalizing the parameters in the
original lattice action.
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Appendix. Properties of lattice degrees

In this appendix we list those properties of the IR- and UV-degrees defined in Section 2.3 which are
permanently used in the text without explicit reference. They are direct consequences of the definitions.

Let V € C° be of the form (2-18). Then
degr agla=1)lv Viu, v, ¢, G 8, 1, a)lq:O,l—l:O > degr .,I';](,_lnov(“: v,4,; 5, 4, @)

‘ 7 (a-1)
degra oon) V(00,0858 @)lgmoi—1m0 2 S,V 00T 040 0)
and e — —
degr;- V(u, v, 4, G, 8, a’)lg:O,x:O = degr@. V(’t&, v,q,4; 8, i, 0)19:0,::0
< degr;q,V(ﬂ,”aqjé 3a“’=a‘) (A—2)

degr—; V(u, 'U, QI .g; 3: ﬂ» a)iq:(],;-_-o S degr;V(u, 'U, Q‘a E; 3? !-"» a)'

The degrees of derivatives and of sums and products of functions of the function class F satisfy inequalities
which are direct generalizations of the corresponding inequalities for the UV- and IR-degrees w.r.t. the momenta
only, as given in [3], Lemma 2.2 and (6], Lemma 2.1, respectively. :

Let F, Fy,..., F, be of the form (2-19). Then

i=1,...,

€
degravq(,_l)g > mmedegravq(’_UFi

€
degr Sale-1)l ZF,- > min degrﬁ(‘_l)lvﬂ-

i=1,...,¢

i=1 (A—3)
e €
ie_g_‘maq(.—n I;Il Lk > E_; %:F""I(‘_I)Fi

degr =~ 1)t H Fiz Ziﬂ&‘q(._x)wﬂ
i=1 izl
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degrﬂ ZF < n?ax degrA i

i=1

e (A~4)
degrn HF deegra‘.Fi.
=1
Furthermore, for every b & Ng = {0,1,2, ...} and I = (I, ...,1lu) € N§, we have
ab BI
degruiqv(,_l)méﬁ&ffr(ua v, 4, q; 8, i, a) 2 deEruhv(, 1)F(u, ¥,¢,G 8, 4, @)
(A-5)
at & _ _
degr ~ ate—1)fo WEEF(U, v, 4, 8, i, a) > degr @(le)lvF(u’ v, 4,3 8, 4,a)— (b4 {I])
and
o ab I _ _
degrz - 3q = F(u,v,q,3 8, 1,a) < degr-F(x, v,q, G 8, i, a)
5 8 {A-6)
degrmq’ asb a IF(’U, v, q, Q) M, 2 ) S degrﬁ‘F(u'n v, 956;3,“':“) - (b+ |l|)1

where 1| = 327, L.

1=
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