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Abstract 

We study possible signals of physiscs beyond the Standard Model that can be 

observed at HERA. In particular we concentrate on the effects of a second Z' 

taking the particular cases of E 6 Grand Unified theories and Left-Right Symmetric 

Models, and those of a possible four-fermion contact term derived from composite 

models. 

1lnvited lectures at XV International Winter Meeting on Fundamental Physics, Sevilla (Spain), Feb. 1987 

2 0n leav~ from Departament de Fisica Te6rica, Universitat Autonoma de Barcelona (Spain) 

1. Introduction. 

The Stindard Model of the electromagnetic, weak and strong interactions is a extremely 

succesful theory from the experimental point of view. From the theoretical point of- view 1 

however, it still has some problems and shortcomings that led to the proposal of extensions 

or drastic modifications of the SU(3)c x SU(2)L x U(l)y theory. The main problem stands in 

the Higgs sector, in particular, there is no mechanism to prevent the higgs mass to be of the 

order of the Planck scale, due to loop corrections to the bare mass. A rather unsatisfactory 

solution to this problem is to fine tune the bare mass in such a way that a cancelation with 

the loop contributions occurs leading to the desired mass :::; 1 Te V. Two possibilities have 

been proposed to solve this problem: 

1. Supersymmetry [1], where there is a cancelation between the contribution of the fermion 

loops and the one coming from the boson loops and 

2. various types of composite models [2], where the biggs is assumed to be composite 

in such a way that the integrals in the loop calculations have to be cut-off at the 

compositeness scale, normaly of the order of 1Te V. In these composite models one 

would expect also to be able to understand some questions that remain unanswered in 

the Standard Model, such as: the masses of the particles, or the number of generatios. 

On the other hand, although the Standard Model unifies the electromagnetk and weak in­

teractions, the strong interaction remains separated from the others. The Grand Unified 

Theories (GUT) [3] attempt to achieve this further unification assuming a gauge group G 

larger than SU(3) X SU(2) X U(1) and such that contains the latter as a subgroup. Finally, 

attempts to indude gravity led to the formulation of the superstring theories. These theo­

ries are, normally, formulated in a 10-dimensional space-time, but after the compaetification 

process lead to a 4-dimensional, supesymmetric GUT. 

The phenomenological predictions of all the theories and models that have been proposed 

are very similar to the Standard Model predictions at low energies, but deviations are expect.ed 

to appear when going to higher energies. The search for these deviations will, then, be an 

important task of the new generation of accelerators. V•/e cannot cover in these lectures all the 

possibilities that have been studied, rather we are going to study the modifications expected 

on the inclusive neutral current cross-sections in two different cases: 

1. The presence of a new Z', taking as a reference some specific examples like E 6 GUT 

and Left-Right symmetric models. 

2. The effects of a four-fermion contact interaction due, for instance, to some composite 

modeL 

Other cases, including the search for the supersymmetric partners of the ordinary particles 

and exotic colored particles, will be discussed by Buchmi.iller in his lectures [4]. 
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2. Search for an Extra Neutral Gauge Boson. 

2.1 Extra C(l) from un £ 6 Gmnd Unijif'd Tilfln·y .. 

Since 5U(3) x SC(~) x U(l) is a subgroup of the GUT gauge group G, in any GUT the 

number of gaugP bos.ons will he larger than iu the Standard Model. In general, these new 

gauge bosons will be very massi,•e, but iu special {"asps sornf' of them are predicted to have a 

mass of the order of tlw Fermi scale. 'I,Ve will study the expected signal of a semnd Z' for the 

extended electroweak F-;auge group: SU{2)r. X ('{l) x L~(l) originated in the breaking of an 

E6 GUT. The pheHOliJe!IOlogicalstudies of this new gauge boson started some time ago !5] 

and has recent.ly receivt>d much attention due t.o superstring theories. It has been shown \6; 
that after the compartifi,ation process of the £ 8 X E 8 heterotic superstring on a llOll-compad. 

Calabi-Yau manifold, one is left with a four dimensional E6 GUT effective theory. Further 

breaking, through the wilson loop mechanism, of E 6 leads to the SU(3) X SU(2) x U(l) x U(1) 

group that can remain unbroken until low energies [7]. 

Since one can always rotate the neutral gauge sector in such a way that the first U(l) 

in SU(2)L x U(1) x U(1) coincides with the normal weak hyperchargc group, the modified 

lagrangian that describes the interaction of t.he neutral gauge bosons with fermions 

L = eJ:',.,A~-< + . 
0 

e e JNcZ~" +gy,J'~"Z~ 
Sln wcos W 

(1) 

only differs from the usual neutral current. lagrangian in the presence of the last term. Thus, 

A.!-' is the photon field that couples to the eledromagnd.ic c.urrent. 

J:,., == )}J~'Q Jf, 
f 

(2) 

where the sum ext.ends over all the flavors f and Q f is the corresponding electromagnetic 

charge, and Z~-< is the usual Z 0 field muplC"d to tlw \urrent. 

J;~c = L {f L1'~-'(T3f - sin2 OwQJ )h ---'- f R1-~'( -sin2 OwQt )JR}- (3) 

In (3) hand fR denote the left. and right hand("d eompouents of the fermioni' field and T3f 

is the third component of tlw weak isospin. Finally, Z' in the third term of eq. (1) is the new 

neutral gauge boson field that couples t.o 

J '" ';--'(-/ "J" J ~ -~ "Jc' J ) = 6 Li fL L ' R1' fR R' 

1 

( 4) 

where l"L. and YJR au the charges to which the new Z' couples and depend on the model we 

study. 

To fix the new charges YJL and YJn we assume that the extra U(1) appears as the result of 

the breaking of the grand unification group E6 . The 15 fermions belonging to one generation, 

together with 12 new, exotic. fermions are assigned to the fundamental representation of 

E6 • The particular values of the charges depend on the breaking scheme of this group into 

SU(3)c x SU(2)L x U(1)y x U(1)Y'· To parametrize the extra U(l), consider the following 

scheme. 
E, ~ S0(10) X U(1), ~ SU(5) X U(l), X U(1)., (5) 
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Table 1 Quantum numhers of tht> left-handed fields of a fermion 27-plet of E6· 

!50i!Oipu(5lj_L:field'-[5u(3kTQ ~· ~T,__l_ ___ _l'~-.--. __ I 
lG i 10 ~-~~----i- 1 . 1 · 0 ~; ~cosa:+hliOsma: ! 

I 

b 

0 

: I d #. I -1/3 i 1/2 ! 
' c 3 ? 13 I 1/? I 

I f---" _, , , - ' ~ 
I . i l7- . 3· I -2/3 i 0------j 

~;-----;:r-----+- 3' I t/3 . 0 I - eO"s o - ~sino: 
I I I ' 2,j6 2Vl0 

~~ 1 -1 I -1/2 ; 

L---l--~-
1 0 1/2 

I 1 ; N c 1 0 I 0 ~,]6 cos a: + ~ sin o: 
' . ' 
•--5,--- i he I 3' 1 1/3 0 ' ' . 

'-
- 7s cos o: + 7iO sm o 

I E 1 I -1 -1/2 
! 

I 
1/2 

! I "• 1 0 

! 
5 ' 

h 3 -1/3 0 -Ts cos a fto sino 

E ' 1 1 1/2 
'1----JvEc 1 0 -1/2 

I 1 n 1 I 0 0 :.76 cos 0: 

where the Standard Model group SU(3)c X SU(2)L x U(1)y is a subgroup of SU(5). The 

extra U(1) will in general be a linear combination of U(1)\ and U{l),., characteri-zed by the 

angle o:: 
Z' = Z.;, cos a+ Z\ sino. (6) 

Note that. this is just a parametrization of the extra U(l) and does not mean that E6 must 

actually be broken following this scheme. A se('.ond comment is in order here. As can be 

seen in eq. (5) then are two additional U(1) groups in E6 originating two new, neutral gauge 

bosons: the one in eq. (6) and the orthonormal combination. We will introduce here the 

symplifying assumption that only Z' is light, while the orthonormal U(1) is broken at a much 

higher scale and does not affect the low energy phenomenology. With these assumptions the 

charges for the left-handed fermions in the first generation are given in Table 1. Two identical 

copies of it describe the second and third generations. 

The only parameter in the lagrangian, eq. (1 ), that remains t.o be fixed is the coupling 

('Onstant 9Y'· We take for it the value 

f5 ' 
9Y' = V3cos0w' 

(7) 

that comes from the assumption that the renormalization group evolution of 9Y' is the same 

that the one of gy. The normalization of the coupling constant in eq. (7) and the charges 

in Table 1 are such that in the E 6 limit (when sin2 Ow = 3/8) 9Y' is equal to the SU(2)L 

coupling constant 9 = e/ sin Ow. 

In general, the fields that will develop a mass in the symmetry breaking of SU(2)_L X 

U{1)y x U(l)y• into U(l).m will not be Z and Z', but. a mixture of these fields, Z1 and Z2 , 
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,.--.-- -~---~,..---..._-..-.,,....-

given by 

( z, ) ~ ( co' e '"' e ) ( z ) 
Z 1 -sm8 cosO Z 1 (8) 

where, without introducing new assumptions on the biggs sector, the angle (} can take any 

value in the range -Tr/2 :S (} :S: 1rj2. We will assign the low mass eigenstate, Zl, to the 

observed particle. In the absence of mixing the Z1 mass coincides with the Standard Model 

mass, mz, as can be seen in the relation 

m~ = m~1 cos2 8 + m~1sin
2 0 (9) 

that can be deduced directely from eq. (8). This limit can also be approached for large values 

of mz1 since 

ian28 = m~- m~ ' ' mz,- m~ 

vanishes when mz
1 

___. oo. 

The effective neutral current lagrangian written in terms of the mass eigenstates, 

L = eJ_:'mA"' + . () e () (JiZ1~' + JfZ2.,), 
SlD W COS W 

where 
Ji = cos8JNc + sin8.Jfsin8wJ'"' 

Jf = - sin8J.~c +cos B.ji sinBwJ''', 

contains five free paramef.ers. They are: 

1. the angle a specifying the charges, 

2. the two masses mz, and mz, 

3. the mass mixing angle 8 and 

4. the Weinberg angle sin2 8w. 

(10) 

(I!) 

(12) 

To further reduce the number of free parameters, we can assume that the higgses responsible 

of the electroweak symmetry breaking are all in doublets or singlets of SU(2)L, as it is 

suggested in superstring theories. In this case, we have an additional relation, 

mfv 
p= ----=1, m1 cosBw 

(13) 

that allows us to write sin2 Bw in terms of the two physical masses and the mass mixing angle 

I ( P§;M') sin2 8w = - 1 - 1 - ~, , 
2 · mz 

where mz depends on mz,, mz, and() as it is expressed in eq. (9), and 

1-12 = 
7!'et(me) 

/2Gp(l- 6c) 

5 

= 38.65 GeV 

(14) 

(15) 

includes the Standard Model one loop radiative corredions, t:.r =:= 0.070 ± 0.002 [9j. In our 

numerical calculations we will take mz, = 93.3 GeV and then calculate sin2 0w according to 

t.he preceding formulae as a function of mz, and 8. 

We are now iu position to calculate the cross-sections of deep inelastic eL,RP scattering. 

In terms of the usual variables Q2 = -q2 and x = -q2 j2pq, where q is the four-momentum 

of the exchanged boson and pis the one of the incoming proton, it is given by [10] 

da(e- L R) 2na? 
dxdQ; ~ xQ' (1 + (1 - y)') (F,L,R(x,Q') + h(y)xFf'R(x,Q')), (16) 

where y = Q2 j xs ( Js is, as usual, the center of mass energy that for our numerical exaniples 

we will take to be the maximum HERA energy JS = 314 GeV) and h(y) = {1-(1-yyz}/{1+ 
(1 -·y)2

}. The functions 

F,'·R(x, Q') ~ l.>{xqf(x, Q') + xq1 (x,Q')}F,~'R(Q'), 

xFf'R(x,Q') ~ l.>{xqf(x,Q')- xqk,Q')}i'f;R(Q') 
(17) 

contain the scaling violating quark and anti quark distribution functions in the proton, q1('c, Q2 ) 

and q1( x, Q2
), and the electroweak charges and parameters that enter in 

F2~'R(Q2 ) = Q} + z=;"'1{(v;e ± a;e)2 (v;/ + a;/)P;2 - 2Q,(v;€ ± a;e)v;,P;} 

+2(vie ± at.)(l•ze ± aze)(vtfV2f + UttG·zt)PtPz, 

(18) 

jL,R(Q') ,, ±2{L;~=l ((vie± a;e)2v;,a;!P; 2
- Q,(v;e ± a;e)a;,P,) 

+(viE± Ute)(vze ± aze)(vlfalf + atJVzt)PtPd, 

where P; = Q2 /(Q2 + mz,') are essentially the Z; propagators and 11;
1 

and a;
1 

are the vector 

and axial charges that, taking into account the Z- Z' mixing, take the form 

( ,,, ) I ( w,e ,;ne ) ( T,,- 2Q1,in'Bw ) 
~ 

sin 28w - sinB cosO j~sin8w(Yj'" + YltR) ,,, 
(19) 

( a,, ) I ( woO ,;no ) ( T,, ) ~ 

sin 28w -sin() cos() jf sin Bw(YJL - YJR) · a,, 
The positron cross-sections du(e!,n)fdxdQ2 can be obtained from eq. (16) replacing F2L,R ___. 

F2R,L and xF3L,R ---) -xF3R,L. VVhen taking the limit mz, ___. oo, that is Pz _, 0 and() = 0 we 

recover the Standard Model expressions [11]. The cross-sections, however, are not the most 

sensitive quantities to look for the presence of the second Z. We will also be interested in 

studying the deviation from the Standard Model predictions for the six asymmetries that can 

be constructed if polarized electron and positron beams are available: 
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1. t\vo polarization asyunnetne~ 

2. two chargP asynundries 

3. and two mixed asymmetric:-:-

.4: ~ LR 

A-1 
IL 
RR 

r+ 
CR 
RL 

1lrr = 1 - drr = H 

drY"- L ' drY:=. H. 

da· -da' 
L L 
R H 

da~ 
R 

+ Jcr+ 
c 
R 

da- - Ja+ 
C H 
R C 

dd- + da+ 
L R 
R L 

(20) 

(21) 

(22) 

Note that since there are only four independent structure functions, eq. (17), only four of 

these asymmetries are independent. 'Ve will study, however, all of them because we do not 

know a priori which one is more sensitive to the Z' presence. 

We first want to identify what. are the charges for which the effects of the second Z 

are larger. So. in Fig.1 we plot the six asymmetries as a function of cos a [18] 3 • In these 

plots we fix the other free parameters to be: m z, -'-' 200 Ge V, 8 = 0. VVe have chosen the 

kinematical point x -=- 0.3 and Q2 = 20000 GeF2
, which gives a rather accurate idea of 

the effects one can expect. to see in a more realistic situation as will be shown later. The 

dotted lines are t.he Standard Model predictions for each asymmetry. Sinc.e we have chosen 

a particular kinematical point, this is just a number and appears as a horizontal line in 

t.he plots. ';Ve alread~· observe that the effect.s of the presence of Z2 will be very different 

in different asymmetries in such a way that we will have to look for the most sensitive 

asymmetry in each model we study. This will never be A£t which, although has very large 

values, turns out. to show very small deviations in the whole range of coso:. In any case, for 

coso: :S: -0.5 the difference between the Standard Model and the two Z model predictions, 

OA = IA(Z1 • Z2 ) ~ A{Z):, is very small for all the asymmetries (bAs; 0.03), thus making the 

search for for Z 2 in these models very difficult. WI" can also observe in Fig. 1 that for almost all 

the asymmetries. except for A!~, there are two values of coso for which h'A = 0. Almost all of 

them depend on the kinematical point we have chosen to plot. these curves. The two exceptions 

are cos a= 3-/6/8 in A£~ and wso = --/6/4 in AR.i. These mixed asymmetries turn out to 

be proportional to the left and right handed couplings of the electron to Z 21 respectively, and 

those values of o: are such that L~~(cosa = 3-/6/8) = 0 and R,,(coso: = --/6/4) = 0. These 

zeroes, however, will move when changing the value of 8 because of the contribution from 

L~ and Re that enters int.o L~., and Re1 through the mixing mechanism (see eq. (19)). Some 

bounds on mz2 have already been obtained from the available experimental data [12,13,14]. 

Imposing that the agreement between the experimentally measured !V .. dlz + )V ... I" + )V .. ,\2 = 

0.9984 ± 0.0021 and the unitarity value of 1 is not spoiled by the contribution of Z 2 trhough 

-m au our numeJJCW calculations we use the quark distribution functions of Duke and Owens (set I) [19). 
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the box diagrams of Fig. 2, MarCJano and Sirlin .12_: have shown that mz
2 

S 200 Gd" is 

already exduded in the range -0.7 · \OSn · __ 0.4. Th~" strongest bound, mz2 S 275 GeV, is 

obtained for coso ::::: - 0.26. while in the rang!" coSo _.:: 0.67 and cos a S -0.91 no interesting 

bound (lower t.hnn lOOGfl/) is found with this mct.hod. 

Among all thl" models shown in Fig. 1 there arc three theoretically preferred possibilities 
. ~-

for Z'. Model A is defined by cos u ..:- y'5/8 and appears in the no-s, ale supergravity scenario 

)5), where E 6 is broken at the compactification scale down to SU(3)c X SU(2)L X U(1)y X 

U( 1 h·, which remains unbroken until the Fermi scale. In models B and Cone starts with two 

extra U( 1) and one of them is broken via large vacuum expectation values of the SU( 3 )c X 

5U{2)L x U(1)y singlets nand N~ respectively. Model B is then characterized by coso= 0 

and model C by coso:= -)15/16. These two last models have the attractive feature that 

can accomodate light neutrinos in a natural way [16,17]. We choose these models for a more 

detailed analysis of the dependence of the effeds due to the Zz on the mass mz2 and mixing 

angle 8. We show in Fig. 3 the contours for h'A = 0.04 in the plane (B,mz
2

) for the three 

models and for the most sensitive of the polarization (solid line), charge (dash-dotted line) 

and mixed (dashed line) asymmetries in each case [18]. Preliminary analises show that this 

precission can be achieved with a careful study of the Q2 dependence (see [11] for a similar 

study of the sensitivity of the asymmetries on sin28w ). The kinematical point used here is the 

same as in Fig. 1, namely :r = 0.3 and Q 2 = 20000 GeV2
. The present experimental bounds 

from an analysis of all the available neutral current data, including v-hadron, ve, eN, f.LN, 

c+ c- and direct production in the SppS collider [13] for models A and B are also included 

(thick line) and have been extrapolated to larger values of mz., following their asymptotic 

behaviour of 1/mz., (dotted line). If no effect with h'A 2': 0.04 is observed, the mass mz., and 

mixing angle 8 are restricted to the interior of the curves (region of large mass and small 

mixing angle). 

Two regions can be distiguished in these plots. The region oflower mz1 and small mixing 

angle, and the region of large mz.,. In the latter region one is probing the dependence of 

the asymmetries on sin2 8w, while the contribution of the terms including the exchange of 

Z2 is very small. For this reason, the contours are very similar in all models in this region 

and the most sensitive asymmetry is ·AiR (see ref. [20]), while the mixed asymmetry ARt 

essentially provides no bounds. More interesting for us is the first. region where the effects of 

the Z2 propagator manifest. The contours are now much more model dependent and open the 

possibility of discriminating among different models if an effect is observed. As was expected 

from Fig. 1 the effects induced by model C are rather small and it. will be very difficult to 

probe masses larger than~ 150 GcV. Model B is slightly more sensitive and masses up to 

,...., 200 GclF could be observed. Finally, in model A the mixed asynimetry Aii:t allows to 

probe masses up to ""300- 350 GeV well above the present bounds [13]. 

To finish this section I will briefly summarize the expected effects of Z 2 in other future 

colliders. In c+ e- collisions at the Z 1 peak direct effects produced by the Z 2 propagator will 

be hidden in the huge background. A precise measurement of Z 1 properties will, however, 

allow to get strong constrains in the value of 8. For example, comparing the values of the 

Weinberg angle obtained from measurements of the M' and Z1 masses, 

sin28w ' mw 
= 1- -,, 

mz, 

8 

(23) 



and from the couplinbg constants, 

. 2 gy'l 
s1n Bw = ---2, 

g2 + gy 
(24) 

we can deduce a model independent bound for the mixing angle. The Standard Model predicts 
t.\ = sin2 iiw- sin2 Bw = 0, but in the two Z model the mixing mechanism induces a non-zero 
value for L\. In this way a bound t.\ ~ 0.002 implies 181::; 1° for mz~ '2: 100 GeV. In model_ 
A a better bound IB! :S 0.5° can be obtained using the polarization asymmetry defined by 

A 
CTR- U£ 

POL=---, 
qR + 0'£ 

(25) 

where O'R and 0'£ are the total cross-sections for right and left handed incident electrons (the 
positron beam is kept unpolarized) [21]. The required luminosity to achieve this precission 
is L = 100 pb- 1 • To study the case (} = 0 in an interesting mass range one has to go to 
energies higher than those of LEP 1 or SLC [21,22]. If mz2 :::; 190 GeV very dear peaks 
in the cross-sections can be observed. The shape of the peak depends on the masses of 
the exotic fermions appearing in the fundamental representation of E6 • In the case that 
direct production is not kinematically allowed, effects of Z 2 can still be observed in the 
asymmetries. The most sensitive asymmetry for models A and Cis A poL defined in eq. (25), 
while the forward-backward asymmetry is the most suitable one to study model B (22]. As 
an example we show in Fig. 4 the polarization asymmetry, calculated using the expressions 
in Re£.[22], for the three models with mz2 = 250 GeV and (} = 0 and compare them to the 
Standard Model prediction. We have taken rz2 = 27mz2 /1000 which is common to all the 
models and corresponds to the case where all the decays into pairs of exotic fermions and 
all the supersymmetric partners are kinematically allowed (see Table 2). The conclusions do 
not change if we take the other extreme assumption, namely that Z 2 can only decay into 
known fermions. In this case, though, r z1 depends on the model. As can be observed there 
are appreciable differences with the Standard Model predictions at as a low an energy as 

160 GeV (in model A, for instance, 6APoL/APoL'""' 20%). 

The most efficient way of observing a new Z in proton-( anti )proton collisions is through 
its decay into electron or muon pairs. This has been, indeed, the way in which the Z has 
been discovered at CERN collider [23]. One has to reconstruct the Z2 resonance produced 
via qq annihilation from the observed lepton pair. The cross-section and, consequently, the 
detection limits depend on the branching ratio BR(Z2 _____, e+e- ,J-l+p,-) and the total width 
rz,. We are going to consider here the two extreme cases: i) Z2 is kinematically allowed to 
decay only into the known fermions (including the top quark as 'known') and ii) There is 
no kinematical suppresion for Z 2 to decay into exotic fermions and all the supersynunetric 
partners. In Table 2 we list the total width rz, and branching ratio BR(Z2 _____, e+e-) for 
the three models we are considering and cases i) and ii) [24]. Here and up to the end of this 

section we take 0 = 0. 

With these quantities fixed one can calculate the cross-section u(pp _____, e+e- X) as a 
fuction of mz

2 
and estimate the detection· limits in the three models we are considering. 

These are shown in Table 3 for the four present and future hadron colliders [24]: SppS 
(including ACOL) with a total center of mass energy Js = 630 GeV and a luminosity 
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Table 2. Z2 total width and branching ratio into e+ e- for case .. ' d ;;) [24] .. 
model rz2 (in units mz2 /1000) BR(Z2 ---t e+e ) 

A 4.5(27) 3.6(0.6) 
B 8.2(27) 5.9(1.8) 
c 4.5(27) 5.4(0.9) 

Table 3. Detection limits in hadron colliders. The masses a ·- -- GeV[24] 
model SppS Tevatron LHC sse 

A 110(160) [13] 170(280) [26] 2200(3100) 3400(5200) [27] 
B 130(170) 230(310) 2700(3300) 4500(5700) 
c 100(160) 160(270) 2200(3100) 3500(5200) 

L = 1030 cm- 1 s-I, pfi collisions at Tevatron with .,fS = 2 TeV and L = 1030cm- 2s-1 and 
pp collisions at .,fS = 17 TeV (LHC) and 40 TeV (SSC) both with L = 1033cm-2s-1

• We 
have requiered for the detection limit a total of 10 events per year of 107 seconds.· Such high 
values for the masses, however, do not allow to investigate what are the couplings of Z2 to 
the fermions and distinguish between different models. For that purpose one has to study 
-the forward-backguard asymmetry [24,27,28] and more than 10 events are clearly requiered. 

2.2 Left-Right Symmetric ModelJ. 

The original motivation to consider Left-Right symmetric models is the attempt to under­
stand the origin of parity violation and introduce it through espontaneous symmetry breaking 
process as a non-invariance of the vacuum. A by product advantage is that they also allow 
to understand the smallnes of the cp symmetry breaking [8]. The simplest of the Left-Right 
models is based in the group SU(3)L X SU(3)R X U(1)B-L and, due to the existence of a 
discrete parity symmetry, gL = gR before the symmetry breaking. The fermion quantum 

numbers are 
lr. ~ (1/2,0,-1) 
QL ~ (1/2,0,1/3) 

[R ~ (0,1/2,-1) 
QR ~ (0, 1/2, 1/3), 

(26) 

where the U(l) generator corresponds to the difference between the baryon (B) and lepton 
(L) quantum numbers. The electric charge is then given by Q = T3L + T3R + (B- L)/2. 
Notice that a right-handed neutrino naturally appears in these theories allowing for a natural 
explanation of the smallness of the neutrino mass [29]. 

The neutral current current lagrangian 

" " 1 C"J L = gLW3LJ3L., + gRW3RJ3R., + 2gc B-L~-< (27) 

describes the interaction of the gauge bosons W3L, W3R and C associated with the neutral 
generators T3L, T3R and B - L, respectively, with the fermions. In eq. (27) we have kept 
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YH YL 1H·cau:-c the tli~uTie sytullletry tlia1 kt•t•p,. botb <'Oupling const.ats equal to each 

other migbt l!C' broken at a higher scale than the J;aup;t> ?-:roup. This question depends on the 

dwice of the higgc. :-;trnrtnre one make:-; ami !Jere. as \\T did in the previous section, our ouly 

assumption ou the higgs sPctor is that the hig~st's appcilr only in doublets and/or singlets of 

5["(2)L ill o:uch a \Y<l)' that the relntiou {J .=. 1 still hold:;. The neutral gauge bosons w3L, H'3R 

aud C ran he rotated to a basis containing the phot.un, A., the normal Z and tht> new gaugP 

}JosoH Z' through the transformation 

YF3L=-=xl,'
2
A-+-(1-xL) 112Z 

H13R = x~ 2A- (xLxR)112(1- xL)- 1i 2 Z + (1- XL- xn)1iZ(1- xL)- 112 Z' (28) 

C = (1 --XL- XR)
1i 2A -- (1 -·XL- xn) 112xt'\1- XLt

1f 2Z- x~f2(1- xL)- 112Z', 

where XL= e2 /gi can be identified with sin2 8w; XR = e2 jg~ is the equivalent quantity in the 

right-handed sector and the electric charge is given by £-
2 --= gJ. 2 + gj/ + g(; 2

• In this way we 

can rewrite the lagrangian (27) in the form 

L = eJ" A + e P' Z + e J'" Z' 
em 1-' a-l/2(1- XL)l/2 NC 1-' x;/2(1- :rL)l/2(1- XL- XR)l/2 JJl 

which has the same st.ructure as eq. (1). The currents J:m and J;:,c are given by eq. 

(3) respectively and 

with 

J'" = XRJ~L + (1 - xL)J:R ~ XRJ:m 

Jf = '£1 ]i~'T3Lff, 

J~ = L.1 fi'"'Tlntf, 

(29) 

(2) and 

(30) 

(31) 

From this point on the analysis of the effects induced by the new gauge boson follows the 

steps of the previous section. The free parameters we have now are 

1. mz1 ) the lowest mass eigenstate that we fix to be 93.3 GcV, 

2. mz,, the highest mass eigenstate, 

3. 8, the mass mixing angle and 

4. xn, that is equivalent to the right~handed coupling constant. 

Notice that xL has been already excluded from the list of free parameters since we have fixed 

p = 1, which allows us to calculate Z£ in terms of mzP mz, and(} (see section 2.1). 

In our numerical analysis of the effects of the new, neutral gauge boson we take as an 

example XL = XR· Indeed, we have already studied one case with Z£ f= XR· Model Bin the 

previous sectioncan be obtained as the result of the breaking of SU(2)R into a right~handed 

U(1) at a scale higher than the Fermi scale. The only difference is an overall sign in our 

previous definition of the charges in modelE. This, however, has no physical significance and 

only manifests as a change in the definition of the mixing angle () ( 9 - -8). The value of 
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xn corresponding to this casP is given by XR := 3(1 x,_)j5. In Fig. 5 we show the contour 

plots for bA = 0.04 in the case XR =XL for the most sensitive of the polarization (solid line), 

charge (dash-dotted line) and mixed (dashed litH') asymmetries. The present experimental 

bounds taken from Ref. [13j are also shown (thick line) with the extrapolation to larger 

values of mz~ following the behaviour 1(mz, (dotted line). The kinematiocal point chosen 

for this plot is, aga.ln, x =- 0.3 and Q2 =- 2 x 104 Gcu 2 in sud1 a way that these curves can be 

directely compared to the ones in Fig. 3. The Z 2 masses for () -o- 0 that can be reached in 

this case are much higher (mz, =::: 600 GeV) than the ones obtained in Sect. 2.1. This shows 

the sensitivity of the bounds at zero mixing angle to the charges to which Z' couples and, in 

particular when comparing to model B, to the coupling constant. 

3. Contact Terms. 

During the last years it has been speculated wether the quarks and leptons are elementary 

or have themselves a substructure. Although there is no fully consistent composite model, it 

is interesting to experimentally look for signals of the compositness. One has then to look 

for rather general effec.ts that should be shared by all the realistic models one could think of. 

These effects can be clasified in two groups. First of all, one expects to have new particles, 

like excited states of quarks and' leptons or even exotic states (leptoquarks, leptogluons, .... ). 

The search for these new particles is dicussed by Biichmuller in his lectures /4]. Second, 

The interactions between the fermions should show some departure from the Standard Model 

predictions when going to an energy high enough to probe the substructure. We are going to 

concentrate in this second case. 

The radius of the quarks and leptons is characterized by the energy scale A through 

R = 0(1/ A). Of course, this is not a very precise definition because A depends on the 

process used to probe it. In deep inel"astic scattering the principal sensitivity is to ~q· At 

momentum transfer of the order of A the interaction is dominated by hard processes among the 

constituents, while at low Q2 the Standard Model is a good approximation for the effective 

interaction. At intermediate energies some residual interac.tions should manifest. These 

residual interactions are normally described by· higher dimension operators scaled by powers 

of 1 fA [30]. Of course, we only have to consider the lowest dimension operator involving four 

fermions because the other terms will be suppresed by powers of Js/A: 

The effective lagrangian that we are going to consider /30,31 ], 

' LEFF = LsM + e~2 L c!,l.>(e .. --l'e .. )(q, .. ;l'qfJ, 
a,b,J 

(32) 

contains the Standard Model lagrangian, LsM, corrected by an eleCtron-quark four fermion 

contact term that conserves helicity (the helicity violating terms are expected to be suppresed 

by powers of mr/ A). In eq. (32) the sum extends over the left and right components, a and b, 

of the fermionic fields and over all the quark flavors f. e can take the values ±1 and indicates 

wether the new contribution adds or subtracts from the Standard Model lagrangian. Finally, 
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the coupling constant g is supposed to be large. We take g 2 /47r = 1, which is, indeed, a 

definition of A. The constants c1,b determine what is the helicity structure of the contact 

interaction for each quark flavor. To get an idea of what is the role played by the different 

structures we will study the following cases separately: 

1. LL- eLL= 1 and CLR = eRL =eRR= 0, 

2. LR- eLR = 1 and eLL = eRL = eRR= o, 

3. RL- CRL = 1 and eLL= CLR =eRR= o, 

4. RR- eRR= 1 and eLL= CLR = CRL = o, 

s. vv- eLL = cLR = cRL =eRR= 1, 

6. AA- eLL= eLR = cRL =eRR= -1, 

where the first letter refers to the electron and the second to the quark helicity structure that 

enter in the contact interaction. In our numerical examples we take the favorable case t = 1. 

The analysis for t = -1 is similar to the one shown here (although slightly more involved due 

to destructive interference effects) and leads to detection limits for A which are normally 1 

or 2 TeV below the ones obtained fore= +1 [32]. 

The cross-sections for scattering of polarized electrons on protons can be easilly obtained 

from eqs. (16), (17) and (18) introducing P2 = a.Q2 / A 2 and the appropriate charges for each 

model. In Fig. 6 we plot 

F(x,Q')~ 

d. 
llXJij 

2~a2(J+(l-y)2) 
sx2y2 

(33) 

as a function of Q2 with X = 0.3 for the six models we are considering with e = +1 

andA = 3 TeV and for the four possible electron polarizations. Significant deviations from 

the Standard Model predictions (dotted line) begin to appear at Q2
,....., 5000 GeV2 for all the 

models, e:icept for the RL and RR models in er; and c~ cross-sections and for the LL and LR 

models in eR and e! cross-sections because these cases are not sensitive to the contact term. 

The use of polarized beams allows to determine the helicity structure of the new interaction. 

We can see in Fig. 6 that a VV contact term gives large effects in the four cross-sections, while 

the AA case induces appreciable deviations from the Standard Model in all the cross-sections 

except in e~. The LL model can be distinguished from the LR because the former only 

gives large effects for the e[; cross-section and the second for the e~ one. Finally, something 

similar happens for the RL and RR models, where the deviations from the Standard Model 

predictions appear in the e! and eR respectively. 

Similar comments to the ones in the preceding paragraph apply to the asymmetries, which 

also allow for the differentiation among the models. We show in Fig. 7a the values of the 

A£R asymmetry for the LL and RR models as a fuction of Q2 and for different values of A. 

This is the most sensitive asymmetry for these models, so we can read from the figure what is 

the maximum value of the compositeness scale that can be reached. As can be expected the 

differences with the Standard Model prediction (dotted line) are very large for A= 1 TeV 
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and decrease when increasing the value of A. In Fig. 7b, where we have plotted the predic­

tions of the AA and LR models for their most sensitive asymmetry, AR~ the same behavior 

appears ex<:ept in the AA model for A= 1 TeV for which an accidental cancelation occurs 

at high Q1 in such a way that the differences with the Standard Model are better tested at 

Q2 ,..., 1 x 104 Gel/ 2
• For higher values of A, however the cancelation disappears a:rid the 

signal is again clearer at values of Q2 :::::: 2 X 104 GeV2 • Finally, in Figs. 7c and d we show the 

predictions of the VV and LR models for their most sensitive asymmetries: AiR and AR~, 

respectively. Requiring for the asymmetry measurement the same precission as we did in 

section 2, we see that one can probe values of A up to 5 to 11 TeV, depending on the model. 

Th·e same values of the compositeness scale can be reached measuring the cross-sections ~th 

a precission of"' 12%. It depends then ori the sistematic errors, that one expects to b~ lru:ger 

in cross-section measurements than in asymmetry measurements, wether the best quantities 

to loOk for contact term effects are the asymmetries or the cross-sections themselves. 

3. Summary. 

We have studied the modifications to the neutral current cross sections and asymmetries 

produced by the presence of a new, heavy Z 1 and a possible eq contact term at HERA. For 

definiteness, we have concentrated on four particular models in the first case. Three of them 

are based in an E6 GUT and the forth is a left-right symmetric model. In all the cases 

the effects on the cross-sections are small, even for a rather light Z 2 and at the highest Q2 

values of attainable at HERA. If polarized beams are available, however, the study of the 

charge, polarization and mixed asymmetries allows to probe higher values of mz
3

• Assuming 

a precission in the asymmetry measurements of 6A = 0.04 (0.08) and choosing in each case 

the most sensitive asymmetry, one will be able to detect the effects of a second Z up to the 

following masses (taking the case 8 = 0) 

• Model A 300 (200) GeV 

• Model B 250 (150) GeV 

• Model C 150 GeV (no interesting bound) 

• LR model650 {400) GeV. 

Moreover, if a Z 1 exists in this mass range, the comparison of its effects on the different 

asymmetries will allow to determine some of its couplings and to separate it from from other 

possible sources of modifications to the Standard Model asymmetries. 

If leptons and quarks are composite objects, on the other hand, one expects that their 

interactions should differ from the Standard Model predictions at high enough energies. These 

modifications are normally parametrized in terms of four-fermion contact interactions. We 

have also studied six different contact terms of the current-current type. In this case both, 

cross-sections and asymmetries, show clear deviations from the Standard model predictions 
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for values of A not already excluded by present experillleutal bounds. Cross-sections, however, 

are expected to have larger systematic. errors than asymmetries. Requiring the same precission 

for asymmetry measurements as we did before the maximum values of A that can be probed 

a1·e 
A co 5- 10 (4- 7) T,V, (34) 

depending on the model. The higher values of A correspond to the RL model, using the A1~ 

asymmetry, while the lower values of A are for the LL model using A£fl. Again, the use of 

polarized eled.ron beams allow to study t.he chiral structure of the contact. term at the same 

time that improves the maximum value of A that can be reached. 

I want to thank R. Riic.kl for many useful discussions on the subjects c.overed in this 

lectures. 

Figure Captions 

L Asymmetries for mz, =- 200 GtV and 8 

represents the Standard Model value. 
0 as a function of c.os a. The dotted line 

2. Diagrams contributing to the corrections to li~d [12j. 

3. (a) Contours in the plane (mzl,8) for which OA = 0.04 in model A for A£fl (solid 

line), ARk (dash-dotted line) and ARj, (dashed line). The thick line is the present 

experimental bound from ref. [13] and the dotted line is the extrapolation following 

the rule 8 ....... l/mz2 • 

(b) The same as Fig. 3a for model B and A£R. (solid line), AR~ (dash-dotted line) and 

A£~ (dashed line). 

(c) The same as Fig. 3a for model C. 

4. Polarization asymmetry in e+ e- - 1-L+ 1-L- as a function of the center of mass energy 

for models A (dashed line), B (dash dotted line) and C (dotted line). We have taken 

mz2 = 250 GeV and rzl = 27mz,/1000 with the corresponding branching ratios (see 

Table 2) assuming 8 = 0. The solid line is the standard model prediction. 

5. The same as in Fig. 3b for the Left-Right Symmetric Model assuming Z£ = x 8 . 

6. Structure functions F (eq.(33)) for e£ (a), eJl (b), ei (e) and e~ (d) beams. The 

predictions of the RL and RR model fore£ and e~ beams are the same as the Standard 

Model prediction (solid line). The same happens for the LR and LL models with e}i 

and e! beams. 

7. (a) Most. sensitive asymmetry for the LL (long-dashed line) and the RR (long-dash 

dotted line) models as a function of Q2 for various values of A at x = 0.3. The 

Standard Model asymmetry is given by the solid line. 

(b) The same as Fig. 7a for the_ AA (dotted line) and LR (dashed line) models. 

(c) The same as Fig. 7a for the VV model (dash-dotted line). 

(d) The same as Fig. 7a for the RL model (dash double-dotted line). 
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