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A convergence theorem for lattice Feynman integrals with massless propagators

A Convergence Theorem for Lattice Feynman Integrals with Massless Propagators

TroMmas Reisz®

Deutsches Elektronen-Synchrotron DESY, Hamburg

ABSTRACT. It is shown that for non-vanishing lattice spacing, conventional infrared power counting conditions are
sufficient for convergence of lattice Feynman integrals with zero-mass propagators. If these conditions are supplemented
by ultraviolet convergence conditions, the contimuum linit of such a diagram exists and is universal.

1. Introduction

In a recent paper (1} we have proposed a convergence theorem, which states existence of the continuum Hmit
for a wide class of Feynman integrals with a lattice cutoff if certain ultraviolet (UV} power counting conditions
are satisfied. What is counted are lattice divergence degrees in Zimmermann subspaces, i.e. in affine subspaces
of the integration momenta. To avoid infrared {IR) singularities, we had assumed a]l propagators to be massive.
In the present article we extend the considerations to integrals containing zero-mass propagators. While the
lattice provides a UV-cutoff, IR-singularities are expected to be quite the same as for continuum diagrams. As
will be shown, IR-power counting conditions similar as for continuum diagrams {2-5] are sufficient to guarantee
the convergence of lattice Feynman integrals, at least for non-vanishing lattice spacing. If these conditions
are supplemented by the UV-power counting conditions of (1), the continuum limit of the Feynman integral
exists and coincides with the formal limit, i.e. it is given by the integral resulting from the @ — 0-limit in the
integrand.

This article is organized as follows. At first, in Section 2, the notion of an IR-degree is introduced in a form
which is similar to the definition of a UV-degree in [1]. The power counting theorem for Feynman integrals
with zero-mass propagators is formulated in Section 3. As in the massive case, the denominator of a Feynman
integrand can easily be treated, whereas the numerator must be estimated in such a way that UV- as well as
IR-power counting conditions are taken into account {Section 5), and such that the corresponding estimates
have a well defined cutoff behavior. This behavior can be determined using the auxiliary theorem stated in
Section 4. Applying the auxiliary theorem and using the estimate of the numerator, the proof of the power
counting theorem is given in Section 6. Finally, the last two sections are devoted to the proof of the auxiliary
theorem.

2. TR-degrees on the lattice

Throughout this paper we will use the notations,definitions and statements of [1], especially the function
classes Crp, € and CF,, €° and F. We shall use multi-indices to simplify the notation. Set Ng = N U {0} =

mt

{0,1,2....}. For b € NZ,u € R™ define

bl = byl -, !
wt = ull’l ufl"

il

i

ibl
i=1

We now define an IR-degree for functions in C, depending on variables u ("internal” momenta), v, g {"external”
momenta} and the lattice spacing a.

Definition 2.1. 1. Let m € Z and V(u,v,q:a) € Gy of the form

- 1
Viu,v,q;a) = — F(ua, va, qu). (2-1}
a
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For given q let s, be the largest non-negative integer such that

g¢
(5(—*}5’(1.'.(1., tra,qa.)) =0 imvanda >0, for all ¢ £ N{, |e] < sq. (2-2)
uc
u=0
Then the IR-degree of V w.r.t. w is defined by

degr~ V = s,. (2-3)

f
2. LetVe(, V= ZEE] Vi, Vi € C, for some my € T, m; £ my fori # k. Then we define

degro, V = mi}] degr - V7. {2-4}
2 v ie] ——ulv

An equivalent definition is the following. For V € C, 5, = degr ;\TV if and only if
V(A v, a) = Bluyv,gia) A = O(A**1), A 0, (2-5)

where B(w,t,gq;a) Z 0 in u, v, a, for fixed ¢ (B is a polynomial in v and ¢!*® in v).

It is important to note that this IR-degree may depend on the external momenta g. Following com-
mon use, we write all momentum variables which are not fixed as subscript in degr, e.g. u,v in (2-3}. If
9°F{ua,va,qa)/0u|,_, = 0in v and a for all ¢ € N}, we set degravv =400 FV{uv,q;e)F 0inu.va

V =0.
v

and independent of u, then degr o

From the definition of an IR-degree, we easily get

Lemma 2.1. Let Vy,...,V, € C. Then

P

1 degro M V> Jin degr oy V: (2-6)
izl T
r P

2. degr v H V> Zdegr;lvVi (2-7)
i=1 i=1

: &

3. degrav@V > degr~ V- I} {2-8}

!
4. degr aﬂgv > degr;lt_ v (2-9)

Next, we consider functions in the classes (5, and C°, i.e. functions in C,, and C whose continuum limits
exist. Every V € C¢

‘“m

has an expanston for small lattice spacing a of the form
Viw,v,qa) = L Flua,va,qu) = P(u,v,q) + R(u, v, g;a),
am
where the continuum limit P of V is a homogeneous polynomial in u, v, q and R vanishes for @ = 0. In general,
degry P 2 degr; V. (2-10a)

where the IR-degree of a polynomial is defined in Appendix A. In particular, with respect to all momentum

variables u, » and ¢ .
degr . P = degrmV if P{u,v,q) £ 0. (2-10b)

In Section 5 we will state a general estimate on the remainder R which respects the IR- and UV-properties of
the function V' and allows to determine the cutoff behavior of Feynman integrals having R as the numerator
of the integrand, by application of an auxiliary theorem stated in Section 4, which is a generalization of the
auxiliary power counting theorem in [1] to diagrams with massless propagators.

The integrand of a Feynman integral on the lattice belongs to the function class F [1]. For F &€ F an
IR-degree is defined as follows.
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Definition 2.2. Let F & F,
V(u:- vV, 4 ki, CL) (2_11)

F(u,v,q;p,a) = Clav.gina)
y 3 ¥ k]

Then the IR-degree of F with respect to u is defined by

degr oy F = degr;;lvV — degro, C. {2-12)
Recall that the denominator in (2-11) is of the form

(il ;
C= H ( 512 ) + )u*lz) 1 ,LL.;? >0, (2_133)

i=1

where the four-vectors I; # 0 are given by

{u,v,q) Zb:k v + Zczk ak + L‘ dik Gr. (2-13b)

The IR-degree of the denominator is already determined by the IR-degree of its continuum limit:

"?i(lia) 2 2y 0 if p.f >0 or (bﬂ_, . --,b{d) # 0 or E:zl d{k qx # 0‘
QS_S,EW( 22 + Fh‘) degruw (l'i + F"z‘) 13 if u2 = 0 and (biy, ..., big) = 0 and 2:’21 dix qx = 0.
‘ {2-14)
Note that ‘
- m(lia ni(la) =
degr T I_Il ( 2 ) Z degr ( +us .,
and for every F € F .
’ degruh 111'116 F(‘IL,‘U, Q;Pﬂa’) bt degrflvF(urvsq;”‘!G)‘ (2_15)
Finally, as a corollary of Lemma 2.1, we state
Lemma 2.2. Let F,Fy,...,F, € F. Then
. - > ~ F; 2-16
1. degrg Zl F niun degr o, ( )
P
2. degr o H F > Zdegr ;I[vFi (2-17)
z
3. degroy Bl —=F> degrA — it} (2-18)
!
4. degraﬂﬁF > degravF {2-19)
3. The power counting theerem for Feynman integrals with massless propagators.
We consider - .
Tlamar = [ e dn Flkgina), (3-1)
where
Flk, g p a) = V(k, q,u,a)/( (kg p,0) € F,
Clh, g p,a) = [P D43, w0
i=1
{vanishing masses are allowed}. Furthermore, let £ be a natural set of four-momenta containing Iy, ..., [1]-

At first, we repeat the definition of UV-divergence degrees [1] and then define IR-divergence degrees.
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1. Let
u :liﬂ"')u :Ii
' 4T (3-2)
"M = lj),...,'ﬂm_d = l.’fmwd

be an arbitrary basis of £ wrt. & !, 1 < d < m. By fixing v1,...,%n-q, one defines a class H of affine
subspaces of the space of integration momenta k. (#) = (uy,...,uq) is called the parametrization of H, and

{v) = (v1,...,v4) are the complementary parameters of H. As in [1], we define for F(k,q;p,a) € F
degr 1(q; p, @) = 4d + degroF (k(v, v, q), q; 1, a)- {3-3)

The set of all such H, for all bases {3-2), is denoted by MUY (this is the set H of Zimmermann subspaces of
[1). Here we write UV to distinguish this set of subspaces from the set H'? defined below).

2. Let M= {liju; =0;i=1,...,n}C L. For every basis (3-2) such that
li,y.. i, eMm {3-4)
and d > 1, we define a subspace H as above. The set of all these H is denoted by HIR. Obviously, HIR C HUV,
For H € H'® we define the IR-divergence degree

-~

degr 1(g; sty @) = 4d + degr oy F(k(u,v,9), g; 1, @) (8-5)
We now state the power counting theorem which applies to lattice Feynman integrals with massless propagators.

Theorem 1. Power Counting Theorem. Consider the integral

Tlgipa)= [ - d*nm F(k, g p,0) (3-1)

and suppose the integrand is of the form

Vik,g;u,a
Pl i)~ G5 g ) €7

where V € C° is (27 /a)-periodic in every component of k, and

n

T L k: a ‘

i=

=

Suppose, furthermore, the line momenta I; are contained in a natural set £ of momenta and assume that for
every H € HIR

-~

degr ~I(g;p,a) > 0. {3-6)

Then the integral (3-1} is absolutely convergent for every a > 0. I, in addition, for every H € HYY we have

degrgI(gi pr,a) < 0, , (3-7)

-~

the continuum limit of I(q; 1, a) exists absolutely and is given by

s T - 4 Pk, q, 1}
lT%I(q;Mua):[wd ky--d%hy m, (3-8)
where
P(k,q,p) = im V{k.g; p, a),
E(k, q,p) = lim C(k, g; 4, @}
1;12[1] or S;ction 4 below. ty,..., ug1y-- ., Um_a € £, and the Jacobian satisfies det[d(u,v)/dk] # 0. There is at least one basis
of £ w.rt. k.
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Note that vanishing masses are allowed, and that convergence is stated for given (fixed} external momenta
g. Furthermore, the integrand is always assumed to be periodic. As in the massive case [1], if P # 0, the set
L' ={l,..., 1} contains a basis of £ w.r.t. k (otherwise {3-8) would be UV-divergent). Hence, in this case it
is sufficient to consider £’ instead of £. Note that

degr,, 0lu;Er}J Fu,v,q; p,a) < degr~F(u,v,¢; p, a) {3-9)

and
degru}v ].iII‘lJF(M,‘U,q.‘,,M,Q) > degravF(u,v,q;p, a‘)‘ ‘ (3—10)

Hence, by {3-6), (3-7) and the power counting theorem of Lowenstein and Zimmermann [2,3] 2, (3-8) is abso-
lutely convergent.

The idea of proof is quite similar to that of the power counting theorem for Feynman integrals with massive
propagators [1]. Again, it will be sufficient to consider

”

- H Vik, g ‘
Tgip,a) = f Ay - dh — (k,gia) (3-12)
mF [T (242 + )
i=1l @
where V € Cf, for some mg € Z. Without loss of generality we also assume L to be of the form {I;,...,Ix}

for some N > n, and that ky, ..., k;, belong to L.

In the first step of the proof, the integration domain of (3-12) is partitioned in a way depending on the
configuration of the line momenta [;. It is distinguished between I; in neighborhoods of the poles of propagators
and outside of them. A propagator can be estimated by its continuum limit or some power of the lattice
spacing a, respectively. Again, the numerator causes some technical problems, and we need an estimation which
respects UV- as well as IR-degrees. In the next section we state an auxiliary theorem which describes the cutoff
dependence of generalized continuum Feynman integrals with zero-mass propagators. Then, in Section 5 it is
shown that the numerator of (3-12) admits an estimate such that this auxiliary theorem applies to the integrals
resulting from the partition of (3-12) explained above.

4. A power counting theorem for generalized continuvam Feynman integrals with zero-mass prop-
agators.

To formulate the auxiliary theorem, we will use the notations of the auxiliary power counting theorem of
[1]. For completeness, they will be repeated here.

Let k = {ki1,...,km) {loop momenta) and ¢ = {g1,...,9»m) {external momenta), ki, q; € R* and let L
denote the space of linear mappings [ : R*™ x B*M _, R of the form

I(k,q) = K (k) + Q(q) (4-1)
K(k) :Zaiki; acR,i=1,...,m (4-2)
i=1
M
S Q)= by b ER =1, M (4-3)
i=1
Elements Iy, ...,1, are called linearly independent w.r.t. & if their homogeneous parts in & are linearly indepen-

dent. {I,..., .} C MC Liscalled a basis of M w.r.t. kif every | € M has a unique representation

s

I(k,g) = > eililk, @) + Qla), (4-4)

i=1

where ¢; € R:i=1,...,s and Q is linear. We define rank;, M = s.

20r by the auxiliary theorem below,
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lLet £ C L be a finite subset

£={lilk,g) = Cijk; +Qilg) | i=1,...,N}, (4-5a)
i=1
where
rank(Ci;) = m
(City-- -, Cim) £ 0 foralli=1,...,.N | (4-5b)
P2l ifitj

so that rank; L = m. Let N C £. We consider the behavior of the integral

AL
= ! Z(Ak,q)
Vo Gy .. ghp, AN 4-6
Tiigw= [ dthath, o) (4-6)
for large A, Here ' _
E(k,g,n) = [[(# (k@) +ud)™, w220, meN={1,2..}, (4-7)
v .

and [],- means the produkt over all I; € . Note that vanishing masses are allowed. The integration runs over
all k € R*™ constrained by I#(k,q) < A%, i=1,..., N. The numerator is of the form

— 1 1 .. . 3 =Pt
Z(X k,q) = min (;!‘g{}} | M5k, g} min A

cu(k,qn), (4-8)

where I, J;, K; are finite sets, py € Ng = {0,1,2, ...}, and Mz, Cy are polynomials. I subscripts the set of all
S € S (including S = 0), where
SIJ = {l,_ [ JV’Ip,.i = 0}. ’ (4—9)

In the following, 2 function which is of the form (4-8) will be called a nominator function.

Next, we define the sets HY" and W’ as in Section 3, but instead of (3~4) we now let I;,,.... 4, € S for
defining H’, and £ is given by (4-5). Note that we do not assume £ to be natural here.

We now refine the notion of ordered sequences of Zimmermann subspaces as defined in [1], Section 5.

Definition 4.1. Let

wl) L ) (4-10)
'v(l), et
be an arbitrary basis of L w.r.t. k. A sequence Hy,..., H, of subspaces in HUV is called ordered in u w.r.t.
the basis (4-10) if
1. Hy,..., H; is ordered w.r.t. the basis (4-10), and (4-11)
-11

2. The parameters of every H; are contained in {(u‘), ..., u(’)).

This notion will be very useful below when we define an ”admissible” numerator Z(A,k,g). To this end,
we first introduce sets i/; and U defined as follows.

1. Uy 1s the set of all pairs {H, S) such that

a. HeH"Y,8C 5.

4-12

b. The complementary parameters of 5 contain a basis of $ w.r.t. k. ( )
2. Uz is the set of pairs (H, S) such that
a. He ®HE 8C8,.

(4-13)

b. The parameters of H are contained in a basis of § w.r.t. k.

6
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A set of two maps

o2z 4-14
(H,S) — §(H,S) (4-14a)
and
Us — Z
(4-14b)

(H,S}) — p(H,S)
is called a degree set. In connection with the following defintion it generalizes the notion of a UV-set as defined
in [1].

We want to state the cutoff dependence of the integral (4-6). We assume that the numerator Z{)\, k,q) is
admissible w.r.t. a given degree set:

Definition 4.2. Suppose §(H,S), p(H,S) is a degree set. A nominator function Z(Ak,q) is then called
admissible w.r.t. the degree set, if for every S € So there-is an i € I, so that for every basis (4-10) of £ w.r.t.
k, where ull), ... u(") is a basis of § w.r.t. k, the following conditions hold.

1. Mj(k,q) = Mi;(u,q) for every j € Ji, L.e. the polynomials M;; depend only on the basis of S and on the
external momenta q°.

2. For every sequence H1,..., H; of subspaces of H'R which is ordered in u w.r.t. the basis (4-10), there exists
j € Ji, so that *
degl o, jw, Mi; 2> p(Hg, S) forallg=1,....1 {4-15)
Here (z,) denotes the parameters of H; and (24, wg) = (u, v).
3. For every sequence Kq,..., K, of subspaces of HYYV which is ordered in v w.r.t. the basis (4-10), there is a
le K, s0 t}:at .
degr, 1. Cu —par < §H, 8) forallg=1,...,s, (4-16)

where (y,) denotes the parameters of Hy and (yg, 25} = (w,v).

The notion of an admissible numerator w.r.t. a given degree set generalizes the idea of an ultraviolet set
of [1]. It enablés us to control the ultraviolet as well as the infrared behavior of the integral (4-6).

We now define IR- and UV-divergence degrees for integrals of the form (4-6) with a numerator Z(A, k, ¢
which is amissible w.r.t. a given degree set (4-14). For H &€ HUY | parametrized by (v) = (v:,....vq4), 2
UV-divergence degree is defined by '

w{H) = degryzI, = 4d + §(H) — degr, E(k, g, p), (4-17)
5(H) = max§(H, S). ' (4-18)

The maximum is over all § with (H,S) € U,. Furthermore, for a basis

’itlzlil,...,u.,.:l."r .
(4-19)
wr = lj, yeo ey Wm—r — ljm—r
we define for every H € H'R parametrized by (¢} = (u1,...,u,), an IR-divergence degree by
r(H) = degr gl = 4r + p(H) — degr i E(k(u, v, g}, g, 1), ’ (4-20)
p(H) = 11}Sinp(H, 5). {4-21)

The minimum is over all § with (H,S8) € i;.

The following theorem states the cutoff dependence of integrals (4-6) if a degree set is given w.r.t. which
the numerator Z(A, %, ¢) is admissible.

311 this holds for one basis of &, it holds for any other basis of & also.
1For the definition of degry see Appendix A.
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Theorem 2. Auxiliary Theorem. Suppose the nominator function Z(A, k, q) of (4-6) is admissible w.r.t. a
given degree set. Denote the corresponding divergence degrees by w(H), H € HUY | and by »(H), H € H{R,
Suppose that for every H € H'R

»(H) > 0. (4-22)

Then the integral T, (g, i) exists for every finite . Furthermore, there exist constants K(p,q) > 0 and c(g, q) >
0, so that for A > K{u, ¢}

1 if max w(H)<0
— . -1 m - i
Ta(g, ) < clp,q)-{ A7 1087 A if max w(#)<Oandallps>1 (4-23)
APEX e auv[w(H) logmA if max w(HY>0
HEHEY

The proof of the auxiliary theorem is posiponed to Sections 7 and 8.

We now state a corollary to the auxiliary theorern which will also be needed later on. Let

[Pk, q)|

_—W%E(k,q,u)’ (4-24)

o AL
JA(Q': ”) = f d4k1"'d4km

where P{k,q) is a polynomial and E(k,q, p} is given by (4-7). For such an integral divergence degrees are
defined as follows. Let #YY and MIF as above. For H ¢ HVV, parametrized by (v) = (vy,...,vy) and with
complementary parameters (z) = (21,..., 2m_g), so that k = k(v, z, g}, we define a UV-divergence degree by

w(H)=degry T = 4d + degr, |, P(k,g) — degr, |, E(k, g, p). {4-25)

An IR-divergence degree for H € H!® parametrized by (u) = (%y,..., %, and with complementary parameters
(w) = (w1,..., Wm-r), so that k = k{u, w,g), is defined by

r(H)=degt g Js = 4r + degr .|, Pk, q) — degr, ., E{k, ¢, p). (4-28)
Corollary. Let
AL
= : Plk,g)i -
- diky - dihy, |______ _
T (g, ) f 1oe-dih Bk, g.) (4-24)

Suppose that for every H € HIE .
r{H) > 0. (4-27)

Then 7;((1,;1) converges for every finite A, and there exist constants K(u,q) > 0 and c{u,q) > 0, so that for
A > Kk q) '

1 . if Hm‘ft%( w(H) <0
— v
Talg ) < elunq)- AmEy e v Wl oo™ ) if max w(H)>0 (4-28)

This is a direct consequence of the auxiliary theorem and is proved in Appendix B. Both the auxiliary
theorem and its corollary will be used below to determine the cutoff dependence of the integrals into which the
lattice Feynman integrals (3-12) are partitioned, as described at the end of Section 3.

5. Bounds on the numerator of a lattice Feynman integrand.

We now state an estimate for the numerator of a Feynman integrand (3-12) which allows an application of
the anxiliary theorem of Section 4. To this end, let £ again denote a natural set of line momenta and M C L.

Define a degree set D as the set of the following two maps.
1. For every H € HYV and every § C M, set §(H,S) = degr-V', where (v} is the paramet.rization of H.

2. For every H € H'® and every § C M, set p(H,S) = degr 2o ¥+ Where {u) are the parameters and (v) the
complementary parameters of H.
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Theorem 3. Let V(k,q,a) € C;, for some my € Z and (ke,qga} be bounded. Then V can be estimated by

Vik,gia) - Plk,@)l < a® 3 Zy(k,) (5-1)
b B

where B Is a finite set and p € N. For every b € B, o Zy(k, g) Is 2 nominator function which is admissible w.r.t.
the degree set D. Furthermore, P{k, q) = mg—o V(k,q;a}. For every H € HTE, the inequality

degr,, P > degral_V {5-2)

holds, and for every H € HUY, we have

degr, |, £ < degr-V, (5-3)

ulv

where (u) denotes the parameters of H and (v} the complementary parameters.

Every function a?Zy is of the form (4-8) with A replaced by a~!, where all powers of a are equal to
p. If P{k,q) £ 0, p can be chosen to be 1. If P(k,q) = 0, p is the largest natural number such that
limg_g V(k,g;a)/a? # 0 exists. Note that all the § and p of the degree set D are independent of subsets
8§ C M (cp. (3-4) and {4-12)f). The & are independent also of the external momenta q. However, the IR-
degrees are not so. The theorem looks like Theorem 3 in [1], the only difference being that we are now able to
contro] also the 1R-behavior.

The proof of Theorem 3 is postponed to Appendix C. We now start to prove the power counting theorem
using this estimation and the auxiliary theorem.

6. Proof of the Power Counting Theorem.
At first, the integration domain of (3-12) will be partitioned as indicated at the end of Section 3.

Igipa) = Z > (g e), (6-1)

IC{T n} =

where for every.J the sum over z is finite, and for every sector J, z — (z: € Z4ie J)

- N Vik,q;u,a) ‘ T 27
I;.(g p,0) = / d*ky - d b A JTet=e =1t = =z ) ] @) (6-2)
-z I (”——L—l":;a +uf) e @ . g7

i=1

Here, © is the Heaviside step function, ©(2) = 1 for # > 0 and O(z} = 0 for # < G, and

o.(l) = 0 il - % z|| < Ze for some 2 € Z* o
R otherwise,

and ¢ is a positive constant. If ¢ > 0 is small enough, for every J, z one can find a translation k; — k; +(27/a)é;,
i=1,...,m, s0 that
2T .
i — L+ for allic J. (6-4)
a

This is a direct consequence of the naturalness of line momenta ([1], Appendix I}). Hence

Tulgma)= [ a% - d'h, = Vik g:0) (He{§s~|;zs|))-ﬂee(zf), (6-5)
gz ied

0
=1 ("—fxza) +#3) T

where )
(kj)zgf"—?—w(éj)ujxll"1m|i:1!!4} (6_‘6)
a a

T 2

Ty = {(klv"'akm)en‘iﬂll— — (é‘?)l

I/

a

Using Theorem 3, we write V{(k,g;a) = P(k,q) + R{k;q;a) and 17, = f_?; + :ffz, where

= Pk, q) T -
7o = / &k - dE, b (H o(Ze- 1;zi||)) e (6-7)
e Ty (ﬂ_’azia) + #f) ies @ g7

9




A convergence theorem for lattice Feynman integrals with massless propagators

and .
- R(k,q;a) ™
®’ = f &k, - dk ik [TeZe- ) - [T oetk). (6-8)
oy ITi-, ("1_(___:;-;3} + ﬂf) s ¢ igt
R(k, ¢;a) admits an estimate of thé form
IR(k1Qla‘), < a? Zzb(kv q)w - (6—9)

beB

where p € N, B is a finite set, and for every & ¢ B the function a?Zy(k, ¢) is a nominator function which is
admissible w.r.t. the degree set D, defined at the beginning of Section 5.

As an elementary property of the propagators, for small enough ¢ there are constants a and 7, so that

1 o
- < (6-10)
Wta(t;al + #42 [l2 -+ ,DLE
for all |l;|| < (w/a}e, and
1 2 :
i < 7a (6-11)
o) 4

whenever [{l; — (27/a)z|| > (n/a)e for all z € Z*. Let h be the number of elements of J. Using the bounds
(6-10),(6-11), we get the estimates

- - - Pk, q)|

T0(q 1, a)| < Iy, (g, 1 0) = a*(va?)" ’*f dky - -dh _L— 6-12
;. (q )| < 7:(g ) ( ) ., 1 n Hiel (13 +#1;) ( )

and ) .
(g mall < 315 (g 1, 0), (6-13a)

bcB .

where . k.0

+(b) hyo 2yn—h 4 4 P Zy(k, q
I3 (g, p,a) = a*{va f dky - dhy | (6-13b
g =ty | A Meey (7 ) )

6

e = {(ki, .., km) € R*™ | ||L|| < - foralll; € {ZJ}, (6-14)
CJ:{ljijGJ}U{kl,...,km}gﬁ, {6-15}
§= _max (we, 4 (1 + U%J)) . . (6-18)

To every integral in (6-12) or (6-13) we now apply the auxiliary theorem or its corollary, respectively. All the
integrals are of the form needed, A being replaced by 6/a and £ by £;. The corresponding sets of subspaces
HYY and HIR are defined by basis of £; w.r.t. k. By (6-15), KTV C WYV and HIF C HIR.

We first consider the integrals T_(,bz). Every integral in (6-13) satisfies the conditions to apply the auxiliary
theorem with the degree set
§{(H,S) = degr~V and p(H,S) = degr;’wV, (6-1T)

for H € Hi® with parametrization (u) = (u.(l),...,u(")) w.r.t. a basis (u,w) of £; and for # € HYV with
parametrization (v}, respectively. Remember that the § and p are independent of the subsets § C M. In the

notation (4-20}, for every H € HIR, parametrized by (u) = (&1, ..., u(")) and with complementary parameters
{2}, )
(b
degryl; (g, i,a) = 47 + p(H) - degr H (lf + u?)
ied
= [4r+ degrawv — degr;lm(-'] + degray H (17 + ,u,f) >0, (6--18)

igJ

10



A convergence theorem for lattice Feynman integrals with massless propagators

where we have used (3-6). Hence, using the auxiliary theorem, all integrals in (6-13) are convergent, for every
finite lattice spacing a. Furthermore, for every H € HYY, with parametrization (v) = (v1,...,vq)

deng-I_.(sz)(Q! s Ol) =4d+ '5(H) - deg[v H (112 -+ pzz)

ied
= [4d + degr-V — degr;C] + degr, H (B +pd) (6-19)
igl
< 2(n — h),
where we have used (3-7), L.e.
dearg o (g pa) < 2(n—h)~1 forall H € HYY. (6-20)

Using the auxiliary theorem, there exist positive K and ¢, so that for all a < K-?

a. ifn—h>0, Tf,bj(q, w,a) < e(a®) a B —r=1 166™ g = c a log™ a. {6-21)
b.ifn—-h=0, Tgb:)(q, p,a) < calog™a {because of p> 1). (6-22)

This means that the remainder f:i does not contribute in the continuum limit, If P(k,¢) = 0, all fgz vanish,
and the proof of the power counting theorem is complete.

Thus, let us assume that P{k,q) £ 0. For every H £ HIR with parametrization (u) = (u1,...,u,) (and
complementary variables {(w) = (wy,..., Wm_,) W.I.t. a basis {u,w) of L)

degr | P > degr Elwv' (6-23)
Hence, in the notation of (4-26), using (3-6)

_O
degr a1y, (g, 1 @) = 4r + degt ujo P(k, ¢) — degrujw [ [ (F + 45)
i ' il

47 + degrawV — degr:lw(?l + degr ujew H (Z +u?) > 0. (6-24)
igd

IV

Hence, by the corollary to the auxiliary theorem, f_.;:(q, p,a) is absolutely convergent for every finite a > 0.
If in addition (3-7) holds, then for every H € ’HF{V with parametrization (v) = (v1,...,%q), (z) being the
complementary parameters of H,

degi g1y, (g, 1, ) = 4d + degr,, P(k, q) — degr, . [] (& + 1)

icd
< 4d + degroV — degr;;C] + degr, H (17 4 1) < 2{n — h), (6-25)
igJ
hence N
degryl;. (g, pma) <2(n—h)—1 (6-26)

for every H € HYY. Again applying the corollary to the auxiliary theorem, there are constants K and ¢, so
that for alla < 1/K

a. fin—h >0, TO g,y Q Scaz)"fh-a"[z(”"h)_l‘] log"a=calog™a 6-27
72\ g g
b.ifn—-h=0, ng(q,p,a) < ¢ : (6-28)

We thus see that the continuum limit of f(q; t, a) exists. As in the massive case, by the naturalness of line
momenta, there is only one sector which contributes in this limit, given by J = {L,..., n} and z = 0. Using the
dominated convergence theorem of Lebesgue, we get

[=<]

I Pk, q)
lim I{g;p,a} = / dily - d ey : 6-29
a—0 (q ) - o0 ! Hi:l (112 + “12) ( )

11



A convergence theorem for lattice Feynman integrals with massless propagators

This completely proves the power counting theorem for Feynman integrals with massless propagators.

7. A lemma about IR-behavior.

To prove the auxiliary theorem we need a statement about the IR-behavior of generalized continuum
Feynman integrals. The integrals considered in this section are of the general form

r!;lei}l [ Mi{u)]

7: f d4u1---d4uu, T 7 rogm (7_1)
12<1in W [y (2 (w)?)ms
where uy,...,u, € R*, W= {l;{x})|7 = 1,...,w}, and the I;’s are linear combinations of uy,...,u, in such a

way that rank W = » Wlthout loss of generality we assume the l? to be mutually different. V is a subset
of W, and for i €V we assume n; € N. I is a finite set, and all Af; are polynomials in the components of
%1, ..., %,. The integration domain consists of those u satisfying I2(u) < 1 for all ; € W.

A set HTR of equivalence classes of affine subspaces of (u1,...,u,) is defined as in Section 3 (with W for
L,V for M and u instead of k). To make a statement about the convergence of (7-1), we introduce the notion
of an JR-set for the family of polynomials M;%.

Definition 7.1. The set {p(H}|H € H!R} is called an infrared-set (IR-set), if

1. p(H) ¢ Z for all H € H!E,

2. For any basis (xy,...,2,) of W w.r.t. u and any sequence H,,..., H, of subspaces in H'® which is
ordered w.r.t this basis, there is an i € T so that

degr , jw,Mi > p{H;} forallj=1,...,1, (1-2)
where (2;) are the parameters of H; and {z;,w;) = {21,...,2,),5=1,...,t

The integral (7-1) does not depend on external momenta. In (7-2), no momenta are fixed (in the sense of
Appendix A). For this reason we will omit the complementary variables throughout this section (and only here)
once a basis is given, i.e. we write

degr. M; = degr ., Mi.

Depending on an IR-set, we define divergence degrees of (7—1) for arbitrary H € H!® as follows. Let

zny =L, oz, =, ‘
1 1 ] 4 (7v3)
wy =, we, =1,
be a basis of W w.r.t. u, where l;,,...,5;, € V, then for H € H® parametrized by {z) = (2q,...,z,), we define
an JR-degree of {7-1) by .
r(H) = 45+ p(H) — degr . | (B(u(z, w)))"™ . (7-4)
A%

Lemma 7.1. IR-Lemma. Assume that a degree set is given. Let {r(H)|H € 'R} be the correspondmg set
of IR-divergence degrees. Suppose that for every H ¢ HIR

r(H) > 0. . {7-5)
Then the integral
N mm [M( )I ‘
7= f dhug - dbu, S (7-1)
121 in W Hv

is convergent.

We now prove the lemma by induction on the number » of four-dimensional mtegratmns The idea of proof
1s similar to that of the auxiliary power counting theorem of [1 {1]. The integration domain is decomposed into

®cp. the notion of a UV-set in {1].

12



A convergence theorem for lattice Feynman integrals with massless propagators

various parts and the resulting section integrals are split appropriately with the aim to do one integration in an
elementary way and to apply the induction hypothesis to the other integrations.

The case r = 0 is trivial. Hence let » > 1. For every £ = 1,...,w we define a sector Xy C R*" as the set

of those u satisfying
Blu) <F(u) <1 foralli=1,...,w. (7-6)

Next, we make a linear non-singular transformation

»

1 = Z(Af)ij ui;  (Ag)i; Ry 4,5=1,...,7 (7-7a)
=1

so that
t; = le(u) and det(4g) = 1. (7-7b)

Define W = W\ {i¢} and V¢ = V\ {l¢}. For every £ and S C V¢ we choose a basis
Z1y e r Zey Ulyer oy Uroy1 (7-8a}
of W w.r.t. (23,...,1,) such that z,,..., 2, is a basis of S w.r.t. (t2,.-.,t-). Then vy, ..., 0,1 € We\ S and
w=ulz v, t) = fes(z, v ty) (7-8b)

is a linear function. Every [; € S has a (¢, S-dependent) representation

li(z,tl) = ZC;J' zj +di ty. {7-9)
. i=1

Let My be the set of all H ¢ HI® which are parameétrized by a basis of ¥V w.r.t. (u1,...,u,). Set

A= mip o) - (7-10)

For every £, 8 C Ve, let Hy, ..., H; bean arbitrary, ordered sequence of spaces of HIR 5o that

a. for j=1,...,t— 1, H; is parametrized by (k;) C 5. (1-11)
b. H, is parametnzed by a basis (k¢) of V (2 8) wart. (ug,..., ).
By assumptioﬁ, for every such sequence there is an i € I, so that
degri, M; > p(H;) forallj=1,....t (7-12)

The set of all these i € I is denoted by J(£,5).

We now give an appropriate estimation for the integral 7 (Lemma 7.2} which allows us to apply the
hypothesis of induction (Lemma 7.3).

Lemma 7.2. For any 0 < ¢ < 1, the integral (7-1) admits an estimate

J=< Z Z Z f d*y |[t]]7 - jg?y(i ), ’ (7-13)

£=1 SCVe yeY(£.,5)

where Y(f, S) are finite sets, n > —4 and

—int 1
T {t f cdty) —— e e——
sttt = 12z 4])< el inS : P [ls (2, 8™
min 1P1y(v 1) - Tip{2')| (7-14)
/ oty i€l(¢,5)
n'(e,S) ot s (w50

13



A convergence theorem for lattice Feynman integrals with massless propagators

where t{ = t1/{|t1]},

1> N> I L eV \S
(', 4)) 2 € i L € Vi \ } (r-15)

(¢, 8) = s, e
&) {(1’1, et s Pl 8) if € We \ Vg

and for every £, 8, u(Z',v',1]) = fes(2',v',1]), where f¢s is defined in (7-8b). For every i € I(£,5) and every
¥y €Y (¢, S), Py and T;y, are polynomials, and for any affine subspace of the (z')-variables, parametrized by (%)
say, we have

degr +Tiy(2') > degr~M;(u(z', v, 1})). (7-16)
ProoF: Applying the transformations (7-7) and (7-8) to J for every £ and § and noticing that

UF1Xe = {(21,-00u0) en*fizz( u) < 1foralll; € W},

we get
w
Ty, Tes» (7-17)
£=1 SCVy
where ]
Te. :/ d“tf oo dhz,
b £2<1 ' <2 in § ' RRGE ‘
min |M; (u(z, v, 1))| (7-18)
/ diuy - do,, g €L — )
a(¢,5) Hv\.s(fj) L
and C '

82> 2ulz, o)) > if LeVe\S }

¢, S8) = {(vl,...,v,_:—l) 12 > Bu(z,v, 1)) if L€ We \ Ve

Here we have used (7-9) for every I; € S. We now decompose the polynomials in the numerator into linearly
independent homogeneous polynomials M.,, of the order a in u

u) = Y Mia(u), o (7-19a)

a>0

and furthermore, every M, is decomposed into linearly independent homogeneous polynomials T3(z) in z,

Mia(u) = ZP;aﬁ(v,tl) Tﬂ(z) , P,',,p(‘v,il) 5‘:" 0 (7—19b)

in such a way that the polynomials Piap for fixed i, a are linearly independent. Lemma A.1 in the Appendix
states that this is always possible. Hence

 Mi{u) =) Piaplo tl)Tﬁ(z) (7-19¢)
of

Using the linear independence of the M;, for fixed i and Lemma A.1 again, for any affine subspace of the
(z)-variables, parametrized by (Z) say, we get :

degr ~T5(z) > degr~M;(u(z,v,11)), (7-20)

for every T3 in (7~19c). Hence, for every £,8

Tes < [ déilf Bzl e
{ (CTN: ¥ )foralleI t1<1 1?<e?tdin § s (12(, 1))
min | Pia,p.(v,11) Tp. ()]
f d*v - -d*v_,_, i€1{¢,5)
SUES) s (B (u(z, v, 8))

14
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where the minimum has been restricted to I(§,S). Let r; = degr,M;(u) for every i € I({,5). By definition
(7-10) of A, ‘
-A>0. (7-22)

Substituting
(22, ovze) = (215, :) (1]} (7-23)
(V1,00 oy Vpmgmt) = (205 %) - 1]
and writing ] = #1 /{[t1]], we get
1
Tes < / d*ty |1]” f d*z) - dz) ———————
yelfz(;“i} #<e?in 8 ! Hs(l?(z”ti))n:
min_ [[]4 - |Poy(ef, ) Ty (2)] (=24)

. i - dbyl_, | SIES) —
];1'(5.5) wt [hns(F (u(2/, 0", )

where we have collected indices, and 7 = 4(r— 1) — degr . [[,,(#(u))™ + A. Choose any H € Hy, parametzized
by (w) = (w1, ..., wp) say, such that p(H) = A, Then

n = 4(r — 1) - degro [T(2())™ + A > 4(5 - 1) - degro, [[(2)™ + p(H) > —4. (7-25)
v v

Because of (7-22}, Lemma 7.2 is completely proved.

All what remains to show is the following

Lemma 73 There is an €p > 0 such that the following statement holds: For all 0 < ¢ < ¢o, forall§,5 C V;
and all y € Y (¢, S) there exists a constant ¢¢ s 5, so that

75 sy S5y (7-26)

Combining this statement with Lemma 7.2, the IR-lemuma follows directly.
ProoF oF LEMMA 7.3: At first, note that

P; Y T < T : P{v' €. 7-27
16???15)! 19(” 1) e )l 6‘}2?‘5); y(z ) - Y(f,g;?fer(e,s)l y(” 1)| ( )

By ||ti}] = 1,1} < L foralli=1,...,7 — s — 1, the inner integrals in (7-14) can be estimated by

const

T 161;}1;! [Tig (2"

where L is a non-negative integer. Consequently, for an appropriate constant ¢ s

1}?{1‘5) | Ty (')

—int ig

T ()< ees - / dizl .- d2) I LTERTTL (7-28)
&S5y & H{z't)<e?in S Hs(lz(z t’))

It can easily be seen that for smal] enough ¢ > 0, the integral (7-28) vanishes whenever one can find I; € & so

that d; # 0 in the representation

4

L2t = Y a2 + datl (7-29)

j=1

This follows from z{,...,z, € &. For, the set of 2’ satisfying z}_z <€ forall j =1,...,5 and (2, 1}) < €
for some I; € S is empty if d; # 0 and ¢ > 0 is small enough. More precisely, let (},..., ) be a point of the
integration domain of (7-28}. Then, for every I; € &

i) = llds 1] < el E)) + Z Jeii - =] < € (145 fel), (7-30)

15
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where {c| = max; ; |ci;|, hence

{d|
> foralll; € 8. 7
€_1+s|c| oralll; € (7-31)
If there is [; € & with d; # 0, set
0 < <1 2}
€=3 1+ slc|

Then the integration domain is empty. Cosequently it is sufficient to discuss only those & such that d; = 0 for
alll; € S,ie. I; =;(z') for all I; € §. In particular, all integrals (7-28) are constant.

Finally we show that all conditions to apply the hypothesis of induction are satisfied by {7-28). Let

M=y M= (7-32)

100

be a basts of § w.r.t. (2') = (z1,...,z;) and let Hy,..., H, be a sequence of classes of affine subspaces of (z')
which is ordered w.r.t. this basis, i.e. o

a. Hj is parametrized by (E‘.,) c{zM,.. .Y Sforj=1,...,1t.

- - (7-33)
b. The {k;} contain the (k) for j > h.

Every basis (7-32) can be completed with w = l¢ and v1,...,v,_,_; of (7-8a) to a basis

li‘[!"'1li.?w!v].?"'!’v1'—l—1

of Wwart. (u) = (u,...,u), & = fes(z',v,w) (cp. (7-8b)). To every H; in (7-33) we associate in this
way an affine subspace of (u) which is parametrized by (k;), and we associate a corresponding p(H;) € Z. By
construction of I(¢,S) and by

degr—’:jT,-y(z') > degr—g.Mi(u(z',v, w)); forallj=1,... ,fandalli¢c ]

I

(Lemma 7.2}, there is i € I(£,8), so that

degr; Ty (') > degr;,

Mi{u) > p(H;) forallj=1,...,t (7-34)

Hence the given IR-set, restricted to subspaces H of the above form, is also one w.r.t. the numerator of (7-28).

Let
& :I{l,...,z :L;
' P (7-35)
h = lk::-'-vys—? =Ikl—p

I

be an arbitrary basis of & w.r.t. (z{,...,z}), so that 2’ = z'(2,y). Let H be the affine subspace of (z],...,2})
which is parametrized by 21,...,2p, and #1,-. ., ¥s—p are hold fixed. Then

4p + p(H) — degr. [J(B(' (=, )™
]

> ap + p(H) — degr. [J(2(u(=', v, w))™ | (7-36)
v
>0

by assumption. Hence the hypothesis of induction applies to the integrals {7-28), and consequently they are
convergent. This completes the proof of Lemma 7.3 and of the IR-lemma.

|

$. Proof of the auxihiary theorem.

The idea of proof is rather simple. The integral (4-6) is divided into a sum of integrations over appropriate
sections. In every sector the numerator is estimated by one argument of the outer minimum of {4-8). The
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resulting integrals are of a form which allows application of Lenuna 7.1 and the auxiliary power counting
theorem of [1], giving the desired cutoff dependence.

At first, T is written as

f)\ = Z f)\g, (8—1)

5C8,
where the sum goes over all subsets § C Sp = {I; € A |u; = 0}, and
ME Z(Ak,q)

Dslan) = [peams O hme—a——0—,
;:‘;E:z :2?- HM(IJ' +ﬂj) 4

(8-2)

where we have written 7 = Sp \ &, and ¢ > 0 is a constant. The integration domain is restricted to those k
satisfying 1%(k,q) < €* for all {; € § and I?{k,q) > €’ for all [; € 7. For every S choose a basis

wp = e, e = 0, {(8-3a)

of & w.r.t. k and complete it by

v =4 Umee = {(8-3b)

Fm—r

to a basis of £ w.r.t. k. We write I; = L;{u, v, q). Every l; € & has a representation
r
L=Ui+Qla), Ui=) Cyuy (8-4)

Without loss of generality let the Jacobian for & — u, v be equal to one. Then

_ ' rEAS Z{(X k(u,v,q),9)
Tislg, p Sf diuy - -diu / &y, SO (8-5)
. ( ) 12<e2 in & ' ’ F2eFin T HM(IJ? + ’u';)ﬂj

As 1o Seciion 7 it can easily be seen that there is g = eo(Q, ,7) > 0, so that for 0 < € < €, Tas{g,u) = 0if
QJ # 0 for some [; € S. In the following we assume that QJ = 0 whenever I; € S, so that I; = I;(u).

By assumption, the numerator Z (A, k, g) is admissible w.r.t. the glven degree set. For any & we take the
i € I of (4-8) which corresponds to & by Definition 4.2. Then

min | M;; (=,
J’E-f.-l 5 q)l

Irs(g: S/ diuy - -diu, e ——
(0.4) P<e?in 8 b Hs(l}(“))n’
MLNS Imé{n A7Pa | Cy{k(w, v, q), )}

. / divy - drom ., = )
Brein T (TT7 (22 (x, v, 9))™) (HM\Su jlwv.g) +pg)" )

(8-6)

To the inner integral we now apply the auxiliary power counting theorem of [1], while the outer integral will be
estimated by the TR-lemma.

Lemma 8.1, Set

_ A LA\S {g}(n/\ P;zl(’ﬂ( (uleQ)vQ)l
Tistgun = [ duedion, SN
EretinT T Iy @ @) T, Gl a) +4d)™
There exist Ks(p,q) > 0 and es{p, ¢) > 0, so that for all (w1,...,u,) € R*", satisfying I2(u) < €? foralll; € S,
we have
1 if maxgepuv w(H) <0
Trs(a.u,p) < es(pg)-§ 271 Jog™ A if maxgeyuv w(H) < Oandifallpy >1 (8-8)
A™E g g [W{H)] log™A if maxgequv w(H} >0
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for all A > Kg{p, q), where the ultraviolet divergence degrees w(H) are given by (4-1T7).
Proo¥: Let R be the set of all I; € A\ § which depend only on u and q. Then

1 1 .
g\

and
1

<
[12(u, ) + ui]™ ~ (p3)™
Hence without loss of generality we assume R = 8. For l; € T we have

forl; € (M\S)NR  (u? >01). . (8-10)

lf'lgnz Sl+1§ 1)
for any #* > 0. Consequently
Tyslgup) < e f S et ‘2}5‘*""’"i%k(u,v,q),qn
S B>ein T i T 11 ¢ 12 +n?) HM\so +I~¢32)"j

AL\S llglm)\ P Cu(k(v, v, q), 9)
<e¢ / d*vy - v - (8-12)
Ty B g+ 1) Thans, (Bl v.9) + 62)"

where ¢(€) is a constant. Now let

un :l,‘l,...,wdxl.id (8—13)
Zlzlig_',,;---,zm-%—d:lim_r' . .
be an arbitrary basis of £\ & w.rt. {(w,...,¥m.r). Variable w and constant z define a class H of affine

subspaces of {v1,..., ¥m—r). The set of all such H, for all bases (8-13}, is denoted by ’Hgv. Every basis (8-13)
of £\ can be completed to a basis of £ w.r.t. k by adding u1, ..., u, of (8-3a). In this way, every H € TV is
considered as a subspace of (k), where (z) and (u) are hold fixed. This means 'H YV CHUV. To every H ¢ HYY
we associate the corrésponding §{H,S) of the given degree set. .

Every sequence Hy, ..., H, € HY" which is ordered w.r.t. the basis (8-13) of C\S is a sequence of subspaces
which is ordered in (w, z) w.r.t. the basis (w, z,u) of £L. Hence, by assumption, for every such sequence there

exists [ € K; so that . ‘ .
Cy — pu < degy Cit — pit < 6(Hy,8) Tarallg=1,...,s, (8-14)

Zglygmsus

degrz! g

where (z,} are the parameters and (1,) are the complementary parameters of H, w.r.t. (8-13},i.e. (2, 9,) =
(w, z). This means that the set {§(H,S)|H € HZ"} is & UV-set for the numerator of (8-12) in the sense of [1]

which is independent of u. Furthermore, for any H € Hgv, parametrized by (=) = (z1,...,2.), we have
ws(H) = 4e + 6(H, S) - degr, [[(Z + pl)™ — degr, ] (2 +u2)™
7 NS (8-15)
<w(H)

because of §(H,8) < §(H), where w(H) and §{H) are given by (4-17) and (4-18), respectively. Thus, all the
conditions are met to apply the power counting theorem of [1] to (8-12). Hence, there exist Kg(u, g} > 0 and
cs(p,g) > 0 %, so that for all A > Kg(u, q)

i if MaX e nyv w(H) <
T;S(q’ u, 1) < cslpq) - A7 log™ }\[ - if maxy cyyv w{HY < O0andifalip; > 1 (8-16)
- Al P if maxycqyv w(H) > '
1 if maxgeyvv w(H) < 0
< es(i,g)- ¢ X7 log™ A if maxgeyuv w(H) < Oand ifallp; > 1 (8-17)
AMexyequv(WlH)] [oom ) if maxyoyov w(H) >0

O

Having determined the cutofl dependence of the inner integrals, we now turn to the remaining integrations.

8u is bounded and {§(H,S)} is independent of u, hence K5 and cs can be chosen o be independent of wu.
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A convergence theorem for lattice Feynman integrals with massless propagators

Lemma 8.2, The integral
lf%iJn | M5 {x, a)l

T :/ d*uy - dtu, J'——-—— ) 8—18
s(9) B<ctin s ' [Ts(2(w))ms ( )

is convergent for every S.

Combined with Lemma 8.1 this means that there are K(u,q) > 0 and e(u, g) > 0, so that

1 if maxgenov w(H) <0
Talg m) <elp,q)- A7 log™ A if maxyeyvv w{H) < 0and all piy > 1 (8-19)
)‘maxﬂ.eﬂuv[wlﬂ)} logmz\ if maXpgenvv “”(H) Z 0

for all A > K (g, q), which completes the proof of the auxiliary theorem.

PROOF oF LEMMa 8.2: We use the IR-lemma of Section 7. (8-18) is of the form (7-1), where & stand for
W=7V and Tg for 7.

Let
=,z =1
P (8-20)
wp = l"-+1’ yWey = lm,.
be a basis of & w.r.t. (u,...,%,). We define HEE as the set of all classes H of affine subspaces of (U1, ., U
which are given by constant wy, ..., w,_,, for arbitrary bases (8-20). Every such basis of S can be completed

with v, ..., Um—r € £\ S of (8-3b) to a basis of £ w.r.t. k. In this way, every H € HIR can be identified with
a subspace of (k) and we can associate to H the corresponding p(H,S).

Every sequence Hi,..., H, € HL® which is ordered w.r.t. the basis (8- 20} of § is a sequence of subspaces
which'is ordered in (z, w) w.r.t. the ba51s {z,w, v) of £. By assumption, there is a j € J;, so that

degr iy, Mij > c?egrzgiygvl.._vm_rMij > p(Hy, §) forallg=1,...,1, {8-21)

where (2,) are the parameters and (yg) are the complementary parameters of Hy. Hence, {p(H, S)|H € HER}
is an IR—sefc for the numerator of (8-18) in the sense of Deﬁmtlon 7.1. For every H € HLE, parametrized by
(z) = (51,..., 2}, '
rs(H) = 4s + p(H, S) — degr . [J1(u(z, v))]™
— " .
> 45+ p(H) — degr. [[ ()™
N

>0

by assumption of the auxiliary theorem, where p(H) is given by (4-21). Consequently, all conditions to apply
the TR-lemma are satisfied, and Lemima 8.2 is proved.

a

Conclusions

We have generalized the convergence theorem for Feynman integrals with a lattice cutoff of [1] to lattice field
theories with massless fields. Infrared power counting conditions are sufficient for the convergence of diagrams
with finite lattice cutoff. If these conditions are supplemented by the ultraviolet power countlng conditions of
[1], the continuum limit of a lattice Feynman integral exists and is equal to the formal limit, i.e. the integral
over the continuum limit of the integrand. Apart from the possibility of zero-mass propagators, the general
assumptions on the structure of the lattice integrand are the same as in the massive case [1i. It should be
periodic with the Brillouin zore in every loop momentum, the propagators should have only one pole in the
Brillouin zone, and the line momenta should be natural. While the last condition can always be satisfied by an
appropriate choice of the loop momenta, the pole’condition is a genuine restriction. In particular, the power
counting theorem does not apply to fermions with propagators having poles on the boundary of the Brillouin
zone. Such propagators would require stronger assumptions to be made on the structure of Feynman integrands
on the lattice, in addition to the periodicity.
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A convergence theorem for lattice Feynman integrals with massless propagators

Ina forihcoming paper, following the ideas of Lowenstein and Zimmermann, the power counting theorem
will be used to construct a renormalization scheme for a wide class of lattice field theories containing massless
fields [6].
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Appendix A. UV- and IR-degrees for polynomials.

Let P be a polynomial in variables , w and ¢. P can be written as

Ply,w,g)= Y Qalw,q) - Malu), (A-1)
where M, are linearly independent homogeneous polynomials and
Qol(w,q) £0 in w (g fixed!).
The UV-degree of P w.r.t. u 1s defined by
ahé-gfumP = max degr My, (A-2a)
and the IR-degree is defined by
degr 1, P = n';in degr M, (A-2b)

where degr M, is the homogeneity degree of M,. Note that the degrees defined in this way depend on the
external momenta g. Sometimes for the UV-degree we will use the shorthand notation

degr, P(u, w, q) = degry P (u, w, q).

In general,

degrumP(u, w, 9-) < degr‘uthp(ui w, Q)
and '

degr .1 Plu, w,q) > degr o Plu,w, q).

For "exceptional” momenta g, the latter 1s a strict inequality. If P is the denominator of a momentum space
Feynman integrand, these momenta destroy the convergence of the Feynman integral, hence they must be
excluded. :

We list the most important properties of degr and degr. Let F, Fy,..., F, be polynomials in %, w,g. Then

degr,,,, F" = n degr,| . F (A-3)
degr | F™ = n degr 4., F {A-4)
degruhﬂ H Fj = Z degruhﬂ FJ ' (A_5)
=1 i=1 _
degr o |w H Fi = Z degr y|w Fj (A-6)
j=1 i=1 ’
degruh.v ; Fj < j:nll?.'.}.c,r degru]w Fj (A—T)
degr 4, ; Fj 2 min degrupFj. (A-8)

At two stages of this paper we need the following
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Lemma A.l. Let P be a polynomial in variables v, v. P can be written as

= L R0 Qols) Qo 20 (A-9)

where R, are linearly independent homogeneous polynomials, so that all polynomials Q. for « with the same
degr R, are linearly independent.

Let uw = f(, W) be linear and homogeneous. Then

degr;‘ERq(u) > degra;ﬂP(u,U) for all a. {A-10)

Proor: P can always be decomposed into linearly independent homogeneous polynnomials Ma(2):

(u,v) ZMG Qalv). | ‘Q_a(v);é().

For any 3 let
B =degr My, =--- = degr Mo,

with n maximal and
Qot;)-"‘)Qa(: tSﬂ

be linearly independent with ¢ maximal, so that

i
Qq, = Zc,-jQ(,,. for all ¢ with¢ < i < n.

i=1
Then i} .
3 Mo (u) Qa,(v) = Y Ra{u) Qa,lv),
=1

i=1

where
T

Rofu) = Mo (u) + Z cjiMe;

izt4l

The Rq,, i = 1,...,1 are linearly independent and homogeneous of de-gree 3. Doing so for all 3, the first part
of the lemma follows.

Let w = f(%, %) be linear and homogeneous. Write every R, in a pariition {A-9) as

 Re{w)= Y Sp() Vapl@), Vap(d) # 0,
<)

where S; are linearly independent homogeneous polynomials in . Every Vap{®) is homogeneous in % of degree
degr R, — degr Sp. Inserting this in {A-9) yields

Plu v} = Zqﬁ B2 Qalt) Vo (D).
The first sum is over all 3 for which « exists with Vog{%) 2 0. For every 2

ZQO{ O(,B (3 :mfo-

because of the linear independence of the @, for a having the same degr R,. Hence

degr - oRa(v) 2 degr;lap(u,v) for all ov.
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Appendix B. Proof of the corollary to the auxiliary theorem.

To prove the corollary of Section 4, the integral 7, (4-24), will be estimated by a finite sum of integrals
of the form (4-6) to which the auxiliary theorem applies, and such that the numerators of the integrands are
admissible w.r.t. the degree set £, consisting of all §(H,S) = degr,.P, H € HYY, and of all p(H,S) =
degr ., P, H € MR (¢p. (4-24)f). Note that the p and § are independent of § C So.

We first mention the following fact. Let P{u,v,g) be a polynomial and

Plu,v, g ZRg(u Qe(v,q) : Qulv,g) Z0in v, (B-1)

a decomposition of P into linearly independent homogeneous polynomials R; in u. Let

v = Du + Eg

(B-2)
v = Av + Bu + Cq

be an arbitrary linear transformation, where A and D are invertible matrices. Then, for every partition (v') =
({17, (2}, we get .
degr,‘,(;)h,(;)u,Qg < degr,,(:”.p(z)u.P for all g. (B—3)

Using the linear independence of the R, this follows directly from

degr, )y (31 Qe(?, @) = deBT, i p000 Ry(u) Qg(v, g)
< degr, )y Plu, v, ).

To prove the corollary, let first § C &g be an arbitrary subset (cf. {4-9)). Let

Wiy vay Un
{(B-4)
Vise ooy Um—rp

be a basis of £ w.r.t. k such that uy, ..., u, is a basis of & w.r.t. k. Then there exists a decomposition of the

numerator P of (4-24) into linearly independent homogeneous polynomials R,
P(k(u,v,q), ZR (v)Q,(v,q) with Q,(v,q) % 0in o, (B-5)

so that for every partition (u) = (u*) «(?))

degr ,jun Ry > degr oy, P forallg € G. ‘ (B-6)

This is proved in Appendix A. A decomposition (B-5) is possible for every basis (B—4) of £ w.r.t k, for fixed
& C &y. Hence, with an appropriate set .J,

[Pk, q)| <min > |Ro(k,q)] - |Qq(k, 0)l

9EG;

Writing G = ®;¢7G; 7 and setting for (g;)jes € G: Rjy = Ry, @iy = Qg,, we get

IP(k,q) < 3 min (IR;olk, )l - 1Qs4(k q)])

QEG

< Z (mm|RJg k, q)| )ZIQJQ k. q)l

gEG jeJ

<Y (mppol) ckal (8-7)

leX

" This notation is explained in Appendix B of refs. f1}.
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where X = G ® J and for I = (g, h) € X we have written M; = R, and Cp = @u,.

Let
I t
Upyeo oy Uy

’
Viyeooy Vs

be another basis of £ w.r.t. %k such that w}...,ul is a basis of 5. Such a basis is related to (B—4) by a
transformation of the form (B-2). Writing (v') = (v(!), v(*)) and using (B-3), we have for all C; of (B-T)

degrv(’)h“’u‘cl < degr,,(ni,,(;)u.P foralll € X.

Furthermore, by construction, all M;; of (B-7) depend on ' and ¢ only, and one can always find a j € J, so
that for each partition (u') = (u*), u(?)

degru(1)|u(2)~aMﬂ > degruu;fﬂu)vp foralll e X.

Until now, & is hold fixed. Taking the minimum of (B-7) over all § C S, we get

Pl s mip 3 (min Mlk,)) - k)

(B-8)
< Zzi(k?Q)a
leY
 where
200) = mip (1Gutk 01 g Wsn(h.0) ). (B-5)
7is an apﬁropriate finite, set, ¥ = ®;crX;, and for (Li)iesr € Y, we have written Miji(k,q) = My, (k, q),

Culk,q) = Ci,(k,q). Every Z is a nominator function which is admissible w.r.t. the degree set £, consisting
of all §(H,S) = degrﬂlzP H € HYY ((v) being the parametsization of H and (z) are the complementary
parameters) and of all p(H,S) = degr, ., P, H € HIR (parametrized by (u) with complementary parameters
(w)). Note that all §(H, S) and p(H, S§) are independent of S C Sq.

Using (B-8), we get
Zi(k, q)
Ju) < / dPhy e d ey B-10
e Z v E(kr% #) ( )

Y

The divergence degrees (4-17) and (4-20) are given by {4-25) and (4-26}, respectively. Thus, all the conditions
are met for the auxiliary theorem to apply to every integral on the right hand side of (B-10). This proves the
corollary.

O

Appendix C. Proof of the numerator bounds.

In this appendix, Theorem 3 of Section 5 is proved. The proof is similar to that of the corresponding
statement of [1], and below two lemmas are taken over literally. However, we have to consider IR- and UV-
degrees simultancously. Consequently, the proof is more tedious here.

For § = {é1,...,8,) € N}, d€ N, d < n— 1 and multi-indices b; for i = 1,...,n let

1 if Byl + -+ lbp| =&, i=d+1,...,n
gsialbast, -, bn) = { 0 otherwise, ‘
and
; ibl|.+---+|bd|:451—6d+1and
Rga(by, ..., ba) = by| 4 o |by] <8y — Bipq, i=1,...,d—1
0 otherwise,

We state the preliminary
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Lemma C.1. Let F € C® be of the form F{zy,...,2,), & EIR’“*, and 6; € Ng = {0,1,2,...} such that
b > b ifi< k, foralli,k =1,...,n. Suppose

Floy, .y io1, A5, ., Az} = O(AY), A 0;5=1,...,n. : (C-1)

Letde N, d <n— 1. Then there exist C*-functions Fy,...;, so that

F(m;,...,;cn_) =
ba_ b _
= 37 hgalby, - ba) gajatbast, - ba) 28 -2l Pl b Fagof@, - 2a), (C-2)
b1, b
where -
(wn) = (20)
‘(yn-l) - (:Bnula:ﬂn)
(va) = (2q,. ... 2n).
Proo¥: By successive application of Lemma 6.1 of [1] to F, we get
Baga n .
F(zy,...,2q) = Z g51a{bast, -y 0n) yiy oyt Py (21,0, 20), {C-3}
barsbn
where Fy, .5, € C™ and
de“...b“(zl, R ZEE . T F )\Zﬂ) = O(Aéi_é"”‘), A—=0;1<7<d.
Applying Lemma 6.2 of [1] to Fy,,,...», yields
: ba_
de-{-:'“bﬂ(mla reey r’n) = Z h6|d(bla .. ‘1bd) mzl Tt '2‘14_11 yzd Fb;---bgbd+1---bn(x1r raay :c'n), (0_4}
ba .
where Fy, .., € C°. Inserting this into (C-3), the assertion follows.
g

From Lemma C.1, we derive a bound on a function V &€ Cf, if ordered sequences of subspaces in H'® and

HYY w.r.l. a natural set £ of line momenta are given.

[i]

Lemma C.2. Let § C £ and
w1

1) plmer)

ALY

(C-5)

be a basis of L w.r.t. k such that v1), ..., u{") is a basis of S w.r.t. k. Let Hy,..., H, be a sequence of subspaces
of HI® which is ordered in u w.r.t. the basis (C—5). Denote the parameters of H; by (z:) and the complementary
parameters by (z;). Furthermore, let K1,..., K, be a sequence of classes of affine subspaces of HUY which is
ordered in v w.r.t. (C-5). Denote the parameters of K; by (w;} and the complementary parameters by (w;).

Consider a function V(k,q;a) € C5, for some mo € Z and assume that (ka,ga) are bounded. Then V
admits an estimate of the form

V(k,gia) ~ Plh,a)| S @ 3 Flba,oob) 22213 (Quoyn (R ), (C-6)

By-be leXx

wiere

Il

Flbr,. .. b) {1 if[by|+ -+ |bif = degrz V, foralli=1,....¢

. (C-T)
0 otherwise.
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X isa finite set and p € N is independent of the sequences and the basis. Qu,..», are homogeneous polynoinials,
and P(k,q) = limo_.o V{k, ¢; ), satisfying

degr zgli,P > degr;glz V forallg=1,...,t
-5

— S (C-8)
degr,, | P < degr~ V forallg=1,...,s,
and
degry ju @bibe < degr~V + p, forallg=1,...,s. {C-9)
Note that
degfzﬂi,f(bls--wbt)zi" gt = degro |, Vi g=1..t (C-10)

The polynomials f(by, ..., &) zi" .- 2" depend only on the basis of §, i.e., they are the same for all bases {C-5)
with the same collection w1, ..., u(") and arbitrary v(1),...,2(™="}. The integer p can be chosen to be 1 if
Pik,q) # 0. If P(k,q) = 0, p is the largest natural number so that limge—_o V{k, q; a)}/af £ 0 exists.

ProoF: 1. Write V(k,q;¢) = F(ka,ga)/a™ and F'(z) = F(k{u,v,7-¢), 7 q) for fixed ¢ and variable 7 5. We -
define variables (#) = {1,..., Zs4¢41) as follows '

(w1) = (21)

(ws} = (21, 22)

(.w!)*_*(mlv"'azs) .
(v,7) = (21, -+, 2541) {(C-11)

(7e) = (Zy42y- o2 Tarti1).

(22} = (241t Tates1)

(21) = Ty4t41-

For Hj, j=1,...,tset {2;) = (Zsgrt2—5:-- - 2,4141) (Tinternal” momenta of H;) and (z;) = (@1, Bygra1-j)

("external” momenta), so that (25, %) = (1, Tyxe1). Define rogppa1-j = degr;lz Vforall j =1,...,1%
. =B %l

Similarly, for K;, j = 1,...,s, set (wy) = {®1,...,2;) and (w;) = (%j+1,-- -1 Tyst41), SO that (wj,w;) =

(@1, egr+1). Define rj = mo — degra V' for all = 1,...,s. Then, by definition of the IR- and UV-degrees,

Ty 2 rp 2o 2 Ty, and
Fr(tl,...,33j,AICj+1,...,AE,+f_+1) = O(Afj), A-—**O.‘, j: 1,...,8-}-'!‘.. (C-—l2)
2. Asin [1], define for 6 € Z

. FI(ARC].,...,/\Q‘?,+3+1)
P5($1u--‘,3:+t+1) = ilf}) 30 ’ (0_13)

G(-Th . -'-:$:+z+1) = F’(M, .- -,33.1+t+1) e P':no(zlr - --,2:+:+1)-

Let 7o € N be the largest integer such that P} (z1,...,2,4¢41) Z 0 exists. Then

-~

G(R1, .-y 25, AZj 41, -y AByqpr1) = O(AT); A= 0, 0 j<s+d,
where 7; = r; for allj=1,...,s+t+1and

s ro' if mg < 7o
0 rg-+ 1 if mg = ro,

BWe write + instead of a to avoid misunderstandings.
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and hence 7o > 7, > -+ > 7,,,. We now apply Lemma C.1to ¢ withd = s+ 1, n = s+1¢ 41, () =
(3}{,...,2,.{.!4.1),i:s+1,...,8+i+1:

Iry b, b
Gty @user1) = D flbesz,- o bogern) 55 -yl

bazabugpega

E R(by, ... by} 2t b y.ff Fopoibypugs (T2, oy 2aprga )y

bi-b,
where .
7 1 if b4+ b =Py, ims42,...,8+1+1
b ,“_}b :{ (3 s+¢+1 1 1 1
F(Bita ere+1) 0 otherwise.
[by] + -+ Wboga| = Fo — Fuqq and
T 1
Aby, .. by4a) = Byl 4+ by <Fo—7 foralli=1,....s
0 otherwise,

and Fy, 5,14, € C%. For bounded (ka,ga) and 7 = 1, using (%) = (Zogrg2—i)fori=s42,...,54+1+1, we
get

1G(10,. ., @ogsara),oy <a™ S flbr,... b)) |22 20
byebe

> Q0,0 (ks @)1,

ieX

where f(by,...,b;) is defined in (C-9) and X is a finite set. Qu,...5, are polynomials, satisfying
degrwsmgQw,._.b‘ < ‘J’Q — rg - (?‘0 - mo) + degrﬂ V, g =1,. (0“14}

Finally, note that
. 1
P(k,g)= 51“{% a—n;;V(k, ga)= P, (21,.. -,3s+t+1_)|.r:1 .

Then
degrz,|z P>7F 01 ~g= degr---F V, g=1,...,1
(C-15)
degr%lw P<my~Fy = degr;; V. g=1,...,s,
it ¥ i
and
1
|V (k,q;a)~P(k,q)| = o [Gl21a, v--,wa+c+1a)|r=1
S N fbb) 2 Y Qs (R q),
bhy-by e X
where p = 7y — mqg € N.
|
Proor or THEOREM 3: 7
Using Lemma C.2, the proof is straightforward. We have to show the validity of an estimate
[V(k.gia) ~ P(k,q)| < a® Y Zy(k,q), (C-16)

be B

where every @”Z3(k,q) is a nominator function which is admissible w.r. . the degree set D, defined at the
beginning of Section 5.

At fizst, let § C M (cp. (3-4)) be a given subset and

w®) )

o) ytm=r) (C-17)
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a hasis of £ w.r.b, & so that «/P), . v is a basis of & wort. A Let Hy, o o, My e HAE be a sequence which

is ordered in u w.r.t. the basis (C-17), and Ky, ... K, € H"" a sequence which is ordered in v w.r.t. (C-17).
Using Lemma C.2, V € Cf, can be estimated by

Vik gia) - Plha) < a? 1M S 1Qulk,a)l, (C-18)

jed leX

where Plk,q) = lima—o V{k,q;a), p € N 1is determined by the function V, and J, X are finite sets. M; and @
are homogeneous polynomials satisfying

degr. . M; > degr~ _ V forallg=1,.... tandforalljecJ,
Gepr., |z, M Z Q8L T

g

where (z,) are the parameters of Hy and (z,2,) = (v, v). and

degr,,

wglw

ng,g§degr;Jg +p forallg=1,...,sandforall jeJ, 1€ X,

(wg) being the parameters of Ky and (wg, wg) = (u,v).
We now make an estimate of the form (C-18)
a. For all sequences of subspaces of KUY which are ordered in .

b. For all bases {C-17) of £ with fixed wll) .. wl™), ie. for given (u) we consider all possible choices of (v} such
that {C-17) is a basis of £. Note that by such changes of the basis the IR-degrees degr?g!: V do not change® .
=g

We get

|V(k,q:a) - P(k,g)| < 3, [Ma(w)] min]Qulk,q),
134

where Y, K are finite sets. For every basis (u,v) of £ with given (u) and every sequence Ki,.. LK, € HYY
which is ordered in v w.r.t. this basis, there is an i € K, so that the polynomials @y satisfy

-degrwg@géﬁ < degr;;gl" +p forall 9= 1,...,sand foralli €Y.

{w,) are the parameters of Ky and (w,) the complementary parameters.
Next, we consider
a. All sequences of subspaces of H'# which are ordered in w,

b. All bases {C-17} such that w1, ..., u{") is an arbitrary basis of §. By the corresponding changes of a basis,
the UV-degrees degr~ V' do not change!? .
k]

We get
|V{k, g;a) = Pik.q)| < a? 3 min|Mjp(v,q)| - min [Cn(k, ), (C-19)
beB 2 b .
9 A change of basis
IE RN £ St Y o
_u[l) ol ) 'u'(”,. ,Ul(m—r)
is given by
u' =u

v = Au+Bu+Cq,.

where B is an invertible matrix.
10 We have
v = Du+ Egq
'
v =,

_where D is invertible. The change of the basis of & depends on the external momenta g, hence the polynomials M; are dependent
on u and g.
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where B, J, K, are finite sets and My, Cip are polynomials. For every basis (C-17) of £ such that wlt) o )
1s a basis of S, the polynomials M;, depend only on u and the external momenta g. Furthermore, for every
sequence Hy, ..., H, € HI% which is ordered in u w.r.t, (C~17) there exists j € J, so that

degr zglggMib > degr;yfigV forallg=1,...,¢and for all b ¢ B,

where (zg) are the parameters of Hy and (z4,2,) = (u,v). For every sequence Ky, ... K, € XY which is

ordered in » w.r.t. (C-17) and for every b € B there is I ¢ K3, so that
degr,, e Cp < degr~ V +i? forallg=1,...,s.
> el Wy

(wg) are the parameters of Ky and (wg,_tgg) = (u; 7). This means that, taking on the right hand side of (C-
19) the minimum over all & & M, we get an estimate of the form (C-16), where all functions af Zylk, g) are
nominator functions which are admissible w.r.t. the degree set D. This proves Theorem 3.
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