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ABSTRACT
We discuss the cosmological constant problem in the light of
dilatation symmetry and its possible anomaly. For dilatation
symmetric gquantum theories realistic asymptotic cosmology obtains
provided the effective potential has a nontrivial minimum. For
theories with dilatation anomaly one needs as a nontrivial
"cosmon condition" that the energy momentum tensor in the vacuum
is purelv anomalous. Such a condition is related to the short
distance renormalization group behaviour of the fundamental
theory. Observable deviations from the standard hot big bang
cosmology are passible.

1} Introduction

Theories with only dimensionless parameters are described by a
dilatation invariant (classical} action. This symmetry consists
of a common multiplicative scaling of all fields according to
their dimension. The "fundamental constants" with dimension of
mass, like the electron mass m, and the Planck mass M_, are
typically induced by vacuum expectation values (vev's)of scalar
fields. In general, such vev's may vary as a consequence of
cosmological evolution and the observed values of the )
corresponding "fundamental constants® obtain only as a result of
asymptotic "late" cosmoleogy. Quantum fluctuations may or may not
conserve dilatation symmetry. In the second case dilatation
symmetry is anomalous and an intrinsic scale m is introduced by
quantization (m is proportional to the renormalization scale;;o).

In ref.l (thereafter called I) we have studied cosmologies with a
variable Newton's "constant". In these models Mp is generated by
the vev of a scalar singlet;{ and Mg, is proportional to the Higgs
doubleté; of the standard model. As an approximation to the
effective action we used a Brans-Dicke type theory (I,(2.5}}

§° = —§a*x FH{ PR — kw23 7°X
~uF I+ VIF, 7

The dynamics of these models depends critically on the form of
the effective potential V. In particular, all effects from
anomalies will appear through V. (For a more general situation
see section 3 and the appendix.)

(L.1)

Consider first the case where the fundamental guantum thecory does
not lead to any intrinsic mass scale m (dilatation symmetry is
anomaly free). Then physics can only depend on scale ratios like
?/x, but not on é and 7 separately. In particular the

effective potential must have the form v=§4v($71}. The theory has
a glebal dilatation symmetry corresponding to a constant scaling
of all fields acceording to their dimension. {(In this ceontext the
inverse metric 85”‘has the same scale dimension as‘xz.) Since we
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observe the appearance of scales in our world, dilatation
symmetry must be spontanecusly broken. Any nonzero vev of a
scalar field induces such a spontaneous breaking. The scale
characteristic for spontaneous dilatation symmetry breaking may
be identified with the largest vev of a scalar. In our case it is
given by;( and should be in the vicinity of MP. A spontaneously
broken global symmetry leads to a Goldstone boscn, the dilaton,
which should only have derivative couplings. These couplings are
supressed by powers of MP-l. A shift in the dilaton field
corresponds to an overall change of all scales. In a theory where
only scale ratios are measurable the overall scale plays the same
uncbservable role as the phase in a theory with global U{1)
symmetry. In our model the dilaton can be identified with the

fieldd ~1lng.

A fundamental quantum theory without intrinsic scale m should be
finite. As an alternative one may consider an asymptotically free
renormalizable theory which has a running dimensionless coupling
constant. Even though the classical action may not have any scale
parameter, a renormalization scale must be introduced in the
quantization procedure. This leads to the appearance of an in-

trinsic mass scale m (which plays the same role as A in a pure

QCD theory). bilatation symmetry is said to have ano%gﬁies - it
- is not realized as a quantum symmetry. Nevertheless, for m much
smaller than the scale zfcharacteristic for spontanecus dilatati-
on symmetry breaking, we can still consider the dilatation
symmetric theory as an approxXimation. The language of symmetry
currents etc. remains useful, but the anomaly leads to some
characteristic qualitative changes. The physical gquantities are
no longer independent of the dilaton vev since the overall scale
"feels" the existence of an intrinsic scale m, even if the
connection is only weak. As a consequence, the dilaton has not
only derivative couplings. It is subject to a driving force
proportional to the dilatation anomaly, which is given by the
anomalous trace of the energy momentum tensor . It also
acquires a small mass, typically supressed by powers of mﬁx. Any
vacuum solution with static constantlz’requires the anomaly to
vanish. In general the anomaly depends onz. This governs the

_4_

dynamical behaviour for;t. As a consequence, the dilatation
anomaly determines those qualitative properties of the effective
potential which characterize the asymptotic eveclution of
cosmology. Our study of cosmologies'with dynamical Planck mass in
I is therefore intimately connected with the fate of dilatation
symmetry. In this sense the present paper should be understood as
a logical continuation of I. Although ocur treatment of dilatation
symmetry is essentially selfcontained, we recommend reading of I
for a more profound understanding of the spirit, formalism and
notations of the present work.

in section 2 we study the cosmology of scale free models {without
dilatation anomaly). We find that late cosmology leads to the
standard big bang picture provided the potential V(@Qz) has a
nontrivial minimum. In this case the dilaten mode beccmes
irrelevant for late cosmology (in the limit where its coupling to
matter can be neglected). On the other hand, if V(éﬁz) has only a
relative minimum with respect toq‘p’ the cosmeology looks like the
standard model with nonvanishing cosmological constant. In
section 3 we turn to models with dilatation ancmalies. We
formulate three conditions on the dynamics of the dilaton which
are necessary for a realistic cosmology. The trace anornaly
should vanish for some value of the dilaton field, {V (65)=0. For
this value the dilaton mass should be positive. Finally, for the
static vacuum solution with =6, the trace of the energy momentum
tensor should be purely anomalous. If the diiaton fulfils these
three conditions it is called a cosmonzj. Its dynamics drives the
cosmological constant to zero. In section 4 we establish the
connection between the "cosmon condition" and the short distance
behaviour of the underlying fundamental theory for models where
intrinsic mass scales arise only from the running of
dimensionless couplings. One finds that the trace anomaly for
static configurations is given by the‘fenormalization group
equation for the effective potential, '9;-—74%2- We discuss in
section 5 the situation where this renormalization group
eguation is governed by an anomalous dimensiona/lgi = AV. The
cosmology for this case is investigated in sectiofh 6. It is
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characterized by a cosmological "constant'!" which evolves with
time and is of the general type discussed in ref.3. Realistic
cosmology is cbtained if the anomalous dimension A is within a
certain range. We conclude this paper in section 7 with a

discussion of the cosmological constant problem.

2. Models without mass scales

Let us first investigate models without intrinsic mass scale. The

most general forml) for the effective potential is

VI, ) = 1,.(5.;7:)5‘* - vt (2.1)

withitra (dimensionless) function depending only on the ratic
Xx= t'ﬁ/;( . Possible extrema of V with respect to {i’ are determined
by

v vy x3 o
3P =( b)) v x50 ) P © (2.2)
If eq.(2.2) has a sclution, the corresponding value of é;must be
proportional to ¥. We therefore expect the existence of cosmologias
where any change in x is accompanied by an apprcopriate change lna?
50 that ?//’( remains constant.

This can be seen more easily by performing a Weyl scaling cf the
metric{Il, section 4). The rescaled potential now reads

(E=M1n(/M) , p=FM/X)

(2.3)

W(@,G)#v-(% Yot = wpoxt Mt

x = Z = P (2.4)
X 1

1} The discussion of this section formally includes terms Llike ﬁle

or:z4. They are, however, at variance to the spi;it of I,

_6—
We note that W is completely independent of & . Therefore & is a
massless Goldstone boson which has only derivative couplings
according to (I,4.6). All particle physics depend conly on the
ratio x=?/M. The scale M itself is arbitrary and one obtains
equivalent physics for any choice of M. For "quasistatic"”
cosmologies with ﬁ constant, one out of the three scales éi;r and
ﬁ is irrelevant., Physics depends only on the ratiocs @Zz and ﬁﬂz.
This generalizes to evolutlonary cosmologies which depend in
addition on ratics like ﬁc( etc.

The asymptotic behaviour of "scale free'" cosmologies depends on
the possible existence of a minimum of W which must obey

Xo 5 (Xe) = - vix) (2.5)

If equation (2.5} has no sclution, the field.?>cannot be
asymptotically static and cne is confronted with the problems of
cosmologies with varying ?2GN {similar to the case «#0) described
in I, sectieon S5)}. On the other hand, if a minimum of W exists it
is reasonable to assume that @/M settles at Xy at an early stage
of the evolution of the universe, leading to an asymptotic
behaviour with «=0. Up te the additional Goldstone boson G the
cosmology is of the standard type. In particular, the value w(xo)
acts as an effective cosmclogical constant. Realistic cosmologies
require V(x )} to vanish or be very small. From the field equation
(1,4.12), (a+4u} 3% +1/2(0W/36')=q*, we conclude that &
approaches asymptotically a constant value { we assume here q¢=0)

G = C,' +C;,ﬂ¢f(—3Ho'é) forH:HD

4-3 -
7 for H =4t 1 (2.6)

G = C4+sz
In both cases it can be neglected for late cosmology. The
asymptotic value Cl is irrelevant. In conclusion, scale free
models can give realistic cosmologies of the standard Friedmann
type provided the parameters of the mocdel are such that the
cosmological constant W(XO) vanishes and X is very small (gauge
hierarchy). The scale free version of the Brans-Dicke type action
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(L.1) differs from the standard model with fixed Newtons constant
only by the presence of the Goldstone bosong. For dr=0 this is
irrelevant for late cosmology. Despite its long range, observati-
on of effects due to an exchange or production of this Goldstone
boson may be difficult, due to its purely derivative couplings
which are suppressed by powers cof the Planck mass Mp. We note
that for W(x0)=0 realistic asymptotic cosmology is obtained for
arbitraryew @W»=-3/2). This may seem puzzling. Inserting the
asymptotic vahua$=x0z; the effeitive action (1.1) reduces to the
action of the Brans-Dicke theory without potential. Standard
Brans-Dicke theory, however, is consistent with cbservation only
fore >500. The difference comes from the coupling to matter. In
the standard Brans-Dicke theory the nucleon and electron masses
are treated as intrinsic scales. For varylng;( the observable
value of Newton's "constant" G, “ﬂx changes with respect to
particle masses. In contrast, a dilatation symmetric quantum
theory implies that all particle masses must be proportional to %
(e.qg. me~q‘;~z). The observable ratios m;GN etc are therefore
static for asymptotic cosmology. In the formalism of I, section 2
theJZ dependence of particle masses leads to a nonvanishing right
hand side of the scalar field equation (I, 2.7} for the matter
dominated epoch (EZ¢IH. In view of (I,4.14) and (I, 4.19) this
is indeed required for the decoupling of the dilaton mode from

. matter (&r=0).

It is instructive to understand the Goldstone boson appearing in
scale free models in terms of dilatation invariance. The actiocn
(1.1) with a scale free potential (2.1) is invariant under global
scale transformations of the fields.

A oL A
P = £ @
o
A = e x
Al ,_.u”
A
In the Weyl scaled version they read

¢ = ¢ ﬁ/w""’g/w

(2.7}
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G = 6 +aM (2.8)
The field ¢ is therefore the Goldstone boscon which originates
from spontaneous breaking of dilatation symmetry for any nonzero
value of ﬁ orz'.z) It is straightforward to construct the
conserved current corresponding to dilatation symmetry. Expressed
in the Weyl scaled fields it reads

' z
J’: =3H3_”*[(6+m+%)g}f‘+%¢/_" ¥ (2.9)

Its divergence obviously vanishes as a consequence of the field
equations for@¢ derived from (I,4.6). Of course, we could
equivalently construct3) the dilatation current from the original

action (1.1):
3 = zg‘*g’”[(ww)z%x + PP } (2.10)

For a check of its vanishing divergence we can use the field
equations$ (1,2.6)-(I,2.8) and the identity for a dilatation
symmetric potential

N o, ox
X3z *?% = ¢V (2.11)

2) The true Goldstone boson contains an admixture of ? to‘R’of
the order Xg*

3) For a global infinitesimal transformaticn 59" -Go—fP. witha
constant and 0’ a differential operator or a constant, and a
Lagrange den51tyde containing terms with up to two derivatives of
the flelds?, the symmetry current is .

- K

» .7 A—
I a%(aca,.cr) aﬂ_acaua P ))*39(0‘?"3(%%?’.)
where K is Obtained from J.t' =w 2. K™ In our‘conventions the
curvature scalar is /A

A~ f; e

Ly
R g/‘ 9"9(3 3;3-95‘ *9“?)"' M G‘r'v P .
The term~6xa, in (2. 10) is the contribution from the
gravitational part of the action.
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on a manifold4) parametrized by cartesian coordinates x*we can

also formulate a particular general coordinate transformation
—l a
x* - 27" x

~ —> 28 A~ (2.12)
g~ £  Gu
The infinitesimal transfermation is
x* - x"-r?“‘-.—.-.x"-ecx"‘
y - Ay, &
Sq":'-"? g P = X R
SGp = =3§"22, -2 € G2 - F1 F v
= oc(J<AEh -+ 2—)'3/ud
Combining the transformations (2.7} and (2.12) gives another

(2.13)

version of dilatation symmetry where the coordinates instead of
the metric are scaled.

86 = w(XP%n+4)F | Sp=allR+ X
Séiuv ===£J(2123 é;;u#

It is adapted to a special coordinate choice (cartesian

(2.14)

parametrization) and often used to study dilatation
transformations on flat space. The corresponding symmetry current
in flat space can be constructed from the energy momentum ten-

51

sS0r .

For dilatation symmetric theories it follows immediately from
{2.11) that any extremum of ng,f) can only occur for wvanishing
potential VTZJ£)=0' The condition for a wvanishing cosmological
constant amounts therefore to the requirement that V has a

minimum
v s 2V ~ :
%{(Zo,%)'-‘- —g,»r(z,,%):o (2.15)

4) For manifolds with nontrivial topology cartesian coordinate
systems can be chosen for the different coordinate patches
separately. ' .

- 10 _
It follows from the general form of the potential (2.1) that for
any extremum at (z,i) there is also an extremum at (e," ,e"f). The
potential must therefore have a flat direction. Conversly, a flat
direction starting from the origin must be at V=0. Flat
directions arise when the potential depends only on one
particular linear combination of{v’ and ¥ . This could be a
consequence of some unknown symmetry. We also note that for V
convex or bounded from below a zero of v(ﬁ[z) is sufficient to

‘produce a flat direction. Any point where V vanishes must be a

minimum in this case. We may summarize this section by the
following general statement: If the effective potential of a
dilatation symmetric gquantum theory has a nontrivial minimum,
such theories always lead to a Brans-Dicke theory, but with
variable particle masses (mevgjetc). Such a theory leads to
realistic asymptotic cosmology (provided that there is no
instability in the kinetic term of the Brans-Dicke scalar,
w>-3/2).

3. Dilatation anomaliesS)

Even if we start with a dilatation symmetric action without any
mass parameter the properly rencrmalized quantum field theory
sometimes needs the introduction of a mass scale. This occurs if
there is no scale invariant way to define the functional measure
in the functional integral. In this case renormalization
necessarily involves the introduction of a scale, the
renormalization scalg/c. For scale dependent (running)
rencormalized dimensionless couplings g5 the theory must ke
defined by specifying their values gi&“) at a certain scale &. In
such theories the dilatation symmetry is broken by the
guantization - the theory has a dilatation anomaly. A typical
example is pure QCD: The dilatation anomaly is the anomalous
trace of the energy momentum tensors]

5) Parts cof this and the next section have been obtained in
collaberation with R.D. Peccei and J. Sola and are published in
ref.2,
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(

& ﬁ gs) FF* (3.1)
7 js ald

with g the strong gauge coupling and/ﬂ(gs) the well known

/3-function of the sU(3) gauge theory.

In presence of an anomaly the dilatation current is no longer
conserved

%j; -4 =§&( +73') (3.2)

~
Here we have included a possible dilatation anomaly 'ﬁg_}n the
gravitational sector. We can account for the anomaly @‘in the
effective potential ford; andy . Anomalies introduce an explicit
dependence of the effective potential V on the renormalization

scale/u
vV = V(zfﬁj/, 7: 7)) (3.3)

For example, in pure QCD the expectation value of F:'E;,, should
be of the order AQCD‘ The anomaly gives a constant contribution
to V, proportional to/u expf - 91:—-3') In general, the anomaly
measures the deviation of the effective potential vV from its

. scale invariant form

:a;‘ "“V‘X%_é% (3.4)

Similarly, in the Weyl scaled version withd=3$’{¢.‘+§é) , ohe has

Lo
& = smp(- ) o 2L (3.5)
i MO 2
As a conseguence of dilatation anomalies the potential W now
depends on ¢ and & has in general non-derivative couplings.

- 12 -
For any possible solution with constant and static fields @5’ and
the divergence of the dilatation cdurrent (2.9) or {A.3) must
vanish.G) such solutions are therefore only possible for values
9 . S for which the dilatation andmalyA. is zero. Let us assume
that ? has_reached a static constant value @ so that 2 ? =0. The
field equation for G is then given (see appendix) by

/(G)Gj/} +g(€)6;’“ ;-’,T-ﬁ(s’) (3.6}

S
a : Il ]
where 19'({) is the anomalyé; +ch', with all terms containing

derivatives of ¢ subtracted. Obviously, the anomaly #6) acts as
a driving force forg .

Solutions with constant static G'=8 require
Hes) =0 (3.7)
These solutions are stable conly if the mass term for the .

excitation is positive {or vanishes)

2 i 377’
e T T Mite) 3¢ €6o)

The effective cosmological constant for =6 is W(Gs). It should
vanish for any realistic cosmology and we must require

2 0 (3.8)

Wia) = © (3.9)

Otherwise the universe approaches asymptotically an exponential
expansion (W(&,)>0) or a catastfophic contraction (W(G,)<0}. Such
a behaviour would be much more singular than the Brans-Dicke
cosmologies with VO#O discussed in I, section 3, which approach
flat space asymptotically.

6) This is similar to the axion71. In our case the dilatation
anomaly plays an analogous role to the strong CP vioclating
parameter ‘E‘Y
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For solutions fulfilling (7.9) the actual value of G, is irrele-
vant. In addition, we have a freedom in the definition of G
and M in eq.(I,4.5), since ¥ =M exp®/M remains unchanged under the

transformation
-~
- -
¢/ = e T (e+axh)

* -
) - {3.10)
M = e "M ,
We use this freedom to set G; =0. It is the corresponding value of
M which is related to Newton's constant by (I,4.2).

Let us look somewhat closer at the role of the dilatation anomaly
in the gravitational sector (see appendix) in view of the

combined conditions (3.7) and (3.9): From the definition ofﬁ'(c) {A.3)

one sees immediately that they require

a/.:«

This holds for any arbitrary function hig) (if it is not too

{6z) = O (3.11)

singular for ¢-»&). We conclude that the dilatation anomaly in
the gravitational sector does not play an essential role for
such theories. For the remainder of this paper will use the
simplification %: o (Ah=41).

We can express (3.7) and (3.9) as conditions on V
W%, 6) - 255 (20, ) - cp S (%, $)= O
Vv { Rglgﬁ;) =

The minimum of V must be at zero. This corresponds to the usual

{3.12})

finetuning condition for the cosmolegical constant. In our

context, however, this has a perhaps more physical interpretati-

on: We require a model with the property that the trace of the
energy momentum tensor in the vacuum with statlc A
and?a (T"‘utlv) is given by its anomalous part 13/’.'“

—T}“(Zo, P ) =12; (Zo,‘;’:) . (3.13)

- 14 -

~ .
If a static j, exists ‘gf‘(,’(,) must vanish and if in addition the
stability condition (3.8) holds, the cosmology necessarily
approaches flat space asmyptotically. The field ¢ is then called
a "cosmon""™ . Its dynamics drives the anomalous trace ﬂ”‘and by
(3.13) the cosmological constant to zero. Realistic cosmology of
the standard type is obtained provided the energy stored in
coherent cscillations of the cosmon never exceeds the radiation
energy during the usual radiation dominated epochsj. This depends
on "initial conditions™ for the amplitude of cosmon oscillations.
Since the cosmon always couples to the anomalous trace%pf its
evolution in the history of the universe may be rather
complicated, especially during phase transitions when condensates
form. This issue certainly merits further study.

Since'& depends only on6/M we can immediately conclude that the
cosmon mass (3.8) is of the order

Py
2 )
M X —— {3.14)

H?..
Here m is typically the largest characteristic scale produced by
the ancmaly. In our apprcach, m should be at most of the order of
the Fermi scale 9%&:174 GeV. A lower bound would be given by

AQCD if strong interactions were a fundamental theory valid to
arbitrarily short distances:
w > aep o ey (3.15)
Hp

This would give an upper bound on the range of about 10 km.
Possible detection of an intermediate range cosmeon force is
discussed in ref.2. We will see below that m depends crucially on
the short distance behavicur of the full (unified) theory. A
cosmon mass guite different from (3.15) should therefore not be
excluded at this point.

4. The cosmon condition

Let us concentrate on theories where all intrinsic mass scales

(like m) appear only through the running of dimensicnless
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couplings. Physical quantities only depend on rencrmalized
dimensionless coupling constants giy4) defined at some
renormalization scale/u. Excep%/b no explicit mass parameter
should appear in the theory. In such theories the 'cosmon
condition" (3.13) reguires a nontrivial connection between the
long distance and short distance properties of a theory. Let us
assume for simplicity that the fundamental theory has cnly one
dimensionless running coupling constant g(z) and therefore no
free adjustable dimensionsless parameter. The effective potential
(3.3} must have the form

V = & v (/“ ) a7 3}/0) (4.1)

and cone finds for the dilatation anomaly

- 2V (4.2)
//u 3/0

Using the independence of V on the choice of the renormalization

scale {the renormalization group equation) one also obtains

2V
-/8 2 g(x)
ﬁ / 33/«) (4.3)

In particular, there is no ancmaly if the fundamental coupling g
is not running 96=0 ], despite the fact that all low energy
couplings may be scale dependent. The cosmon condition reads

/“/. (x.a,%) = lI‘V(x,lcg) = O : (4.4)

Oon the other hand the cosmon condition is related to the;{
dependence of the effective potential.

%(Io,fz,)““}('g‘k\{"(%,é)=0 (4.5)

) ~
In flat space this is just the condition that static fields X, ., &

must correspond to an extremum of the potential. In presence of
curvature, however, . is determined {for 2V/ 35;:'( X ,ﬁ, )=0) by

- 16 -

2V ~ o~ . o e
Zos‘f(Zo,%) = 4-\/{;(,,%) and (4.5) is a nontrivial condition on
the theory. For flat space and static fields one has the
general identity <ﬁ;f>=<3: », This explains the historical origin
of the name "anomalous trace of the energy momentum tensor" for
the dilataticn anomaly. Indeed, once all vev's are expressed in

- . _ 4 : -
terms oﬁ/w one necessarily has VO_CWP . Using via?i—ﬂ for all
fieldsc‘v. cne chtains
i
. 2V -
P _odv v v NV gm
T/] = ¥V “'/‘-p/(a. —/'5/1' /%‘aqo,. /“a/,‘ a (4.6)

Inclusion of gravity only permits to conclude an identity for the

partial/c-derivative of ’l‘/’: {for fixed vev's of ¢.)

<> =k TES (4.7
N
As discussed in the introduction of I, there are several types of
possible sources for thelz-dependence of the efféctive potential.
It may arise from mass type terms in the effective potential for
¢, like

A\{r = gxz'é'z' - /CXF {4.8)
Such terms give no contribution toﬁf: Following the ideas of I
these terms should be absent (or their coefficients be very
small). A second source, more related to the spirit of I, comes
from the fact that the standard SU(3}xSU(2}xU{1l) model is not
expected to be valid up to infinitely high energies. At short
distances we expect that the thecory shows a higher symmetry,
possibly connected to grand unification, higher dimensiong or
strings. This symmetry must be spontanecusly brokeﬂ and it is

natural to associate the corresponding symmetry breaking scale Mx

with the expectation value of Xfand therefore with MP:

M, = 3’;;{. {4.9)

7) We note that - (1,@) =0 for allX would lead to "the Brans-Dicke
theories discussed in I, section 3, which are only reallstlc for

V(X,?:}:O-
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The ratio ? should not be very far from unity and we will take
?=1 unless stated otherwise. The change of functicns at Mx

produces a z dependence of the effective potential. As an illu-
stration we give the ;( dependence of A

the one loop approximation:

] “’f/bs)
Yoo =2l 55 1/

Here the SU(%) coupling i=s defined at a renormalization scale/¢.>>;(
r 9g= 9 ), and b5 b3 are the usual coefficients of the g3 term

in the/@ function (/G—bg ) above and below the scale M. (We have
neglected fermion mass thresholds).

eD in an SU(5) theory in

_bsy

(¥x )(4 b (4.10)

More generally, we can understand this contribution to the;{
dependence of V in terms of the renormalization group equations.
The scale invariant version of the standard model admits Higgs
mass terms in the action only in the formd.\ﬁ,(tl.S). It has
therefore only dimensionless couplings. Let us. denote their
values at the symmetry breaking scale Mx by g:i (z). Below MK, the
scale dependence of gj is given by the usual renormalization
group egquations of the standard model with/.?-functionsfﬁ Above
M the evolut:.on equations change and are detirml.ned by different
/S functlonsﬁ (In a fundamental theory the/dj are all related
toﬂ in eq.(4.2).) Formally one has

29 ()
() = x28% .
/37 .a_x lq:, gj(?) fixeof

3 ( -= 29,(x) . {4.11)
/% ) Z:_mgﬁ?“ l/;l,gygﬂ) FWa{ (qbdz)(ﬁsﬁf>

We can express the effective potential entirely in terms of the

gj(;():
V = ¢* 1"7—(%—, 3,‘(7(}) (4.12)

{The bare denotes that y and gjgr) are considered here as inde-
pendent quantities.) This implies

&y

_-/6? 29, (x) ¥
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7?:-(191 fagtz))

Neglecting the explicit dependent contributions AV (4.8) we can
.4

(4.13)

determine thez dependence of v by the "low energy"
renormalization group equations

- / 29 . = o (4.14)
¢ 39;)

In this formulation, the cosmon condition is equivalent to a

nontrivial matching condition for the low energy and high energy

/67 functions:

A S Bg,(z) ld 2 /63 39,0‘{) 18, % o (4.15)
Such a condition is certainly quite suggestive, but not well
understocd. In a theory with free adjustable parameters it seems
not particularly difficult to choose parameters such that (4.15)
holds for some xo In a fundamental theory without adjustable
parameters, however, the condition (4.15) (or its generalization
for A\{z-#o) would be a remarkable property.

5. An anhomalous renormalization group equation for the

cosmclogical 'congtant".

. . . p .
The simplest solution of having both 'ﬂ' and V simultaneously
vanishing for some value 7, would be that they are proportional
to each other:

/a% = AV (5.1)

In this case the rencrmalization group equation for V would be
entirely determined by the anomalous dimension A. The
dimensionless guantity A may depend on the dimensionless coupling
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constants of the theory. This is what happens in a pure ?ﬂ
theorya)

V= £ (£ ¢
S 7S SRR LE A
=-$G4 ¢ = -2V

In anhalogy, suppose for a moment that one could write the
effective potential of a fundamental theory with only one running

(5.2)

coupling constant g as
V= 31(1)‘? = 32'(/.& ,34) vV (5.3)

with ? independent of/A. The only fundamental mass scale of such
a theory is the scale of anomalous dilataticon symmetry breaking
generated by the running of g. Therefore the gquantity V should be
a quartic pelynomial in the various (perhaps infinitely many)

?) in this case dilatation symmetry

scalar fields of this theory.
breaking would be entirely described by the anomalous dimension

of V:

)4
2

-

/-g-/%\?r- -Zg,,‘{%%\? =-—23/g\‘>

2 (5.4)
=-%yv - av
:é A

8) The one loop approximation to the scalar potential in the
dilatation symmetric staggard medel has been discussed recently
by Buchmiiller and Dragon™ . Their method implicitely assumes an
extension of the standard model to infinitelx short distapces.

The results coincide with ocur formalism for g = For -
however, Buchmiiller and Dragon use a regularf;;tizzland z/" Zﬁﬂ
renormalization which differs from ours. It gives different
results for different coordig?ze parametrizations of Minkowski
space and leads to a term g 1ng, whose meaning and consistency
is not immediately appearent.

9} There is an appropriate generalization for fermions or other
bogonic fields. Condensates of such fields can again be expressed
in terms of scalar operators.
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A
on the other hand, scale ratios like ¢/ would only depend on the
A .
properties of V and be independent of the scale of dilatation
symmetry breaking.

Of ‘course, the assumption {5.3) is very strong and we do not
expect it to hold except for very simple theories. Nevertheless,
the property that scale ratios likeiﬁﬂz are independent of
dilatation anomalies should always be a very good approximatiocn
if the scale m characteristic for anomalous dilatation symmetry
breaking is much smaller than é‘o’ and ¥ . Consider now a relative
minimum of V with respect to all fields except;((?V?ééEO) and
dencte the corresponding value of the effective potential by

¥, {x).Instead of (5.3) we only will assume

/%Y& = AV, (5.5)
/4, .

Such a behaviour would be suggested if Vo(x) is the only relevant
gquantity with dimension of mass. We may call (5.5} the
renormalization group equation for the cosmological "constant".
More generally, if A is a function ofz‘, it only c<¢an depend on
the ratio méx where m is the physical scale generated by the
dilatation anomaly. (Remember that '@:: and VO’ and therefore A,
are physical quantities which must be independent under a
simultaneous change of/ufand g}a).) It will be sufficient for

our purpose if A(m/x) approaches a constant A®0 in the limit
where m/x goes to zero. '

A renormalization group equation of the type (5.5) has important
consequences. Consider the case where A can be approximated by a
constant. For an asmptotically free theory A should be positiv.
Using (3.4) and (4.2) one obtains ‘
m A
Vo = af —/:(—) 4 (5.6)
~A'-

For A<4 the anomalyq; =AV0 vanishes for 2b=0. In this case all
scales disappear for the static solution xo= $0=0 and dilatation

symmetry hecomes restored for such a solution. For A»4 the trace
anomaly only vanishes for‘x-aau. There is no finite static;(o
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fulfilling (3.7} and we expect that ¥ moves asymptotically to
infinity. We will discuss the corresponding cosmology in the next
section. The intermediate case A=4 corresponds to the discussion
in I, section 3 with the important difference that now«ﬁfz
instead of 5 is kept constant. For all cases the renormalization
group equation (7.20) is inconsistent with (3.7) for fimnite
nonvanishing.zo unless a0=0.

Nevertheless, for A>4, the cosmon condition (3.12) is fulfilled
asymptotically forﬂfacv . For large enough ¥ the cosmological
constant Vo beccmes arbitrarily small. Any nonvanishing positive
a, may be absorbed by a redefinition of m and we take a0=l. The
scale m may then be identified with the characteristic scale
generated by anomalous dilataticn symmetry breaking. In a funda-
mental theory it is the only intrinsic scale and sets the units
for all other operateors with dimension of mass. In units where
today's value of ¥ is z;=1.7.1018 GeV the scale m is bounded by
today's observed value for the Hubble parameter

Ho = 24, 40 2 eV

2.2 <
Vo 5 3-%;’:1"— - (3-107%ev)" 4,

y £ (7 - 82) (5.7)
_I V% /A (1+3), % .
m={%)" 2, s 1w A7 a0
For A>4 the bound on m is bigger than 3h
approaches this value for A->4.

01/2'10“3ev and it

One may ask if it is reasonable that today's value of VO is in
=46 GeV4 or smallexr although individual )
contributions from QCD and weak symmetry breaking could have a
characteristic size of (10_2 - 108) Gevq. Let us first discuss,
this guesticn for the contributions to the dilatation anomaly'eft
FPirst of all we note that "individual contributions® from
different sectors of the theory are not really well defined. Weak

interactions and QCD are not independent. (For example, guark

the range ~ 10

masses arise from weak symmetry breaking and play a rele in QCD.)
As a consequence @ﬁ‘(and Vo) is.not simply an addition of a pure
weak and a pure QCD plece. If we nevertheless decide on some
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definition fer the individual contributions toé?n, they will
typically reflect how the effective potential changes if one
varies a certain degree of freedom while keeping the others
fixed. This is connected to the physics determining scale ratios.
Scale ratios like AQCD/értypically depend on dimensionless
couplings and are unrelated to the fate of dilatation symmetry.
Individual contrlbutlons to ﬂ‘ may therefore be large (for
example ~? } even for a theory where dllatatlon symmetry has no
anomaly at all. The total dilatation anomaly'o' is related to
different physics, namely the connection hetween the over-
all. scale of vev's and the intrinsic scale m. It can be much
smaller than the individual contributions. These must simply
cancel if the theory either has ne anomaly, or if the anomaly
vanishes in the vacuum as .2 result of the dynamics of the Y
-field (ﬁﬂ(zo) 0), or if €9 vanishes asymptotically for m/7—>0.
In the latter case the ex1stence of two different scales m and g
{characterizing intrinsic and spontaneous preaking of dilatation

_symmetry) is crucial.

The minimum value V of the effective potentlal is a quantity
cennected with a scale ratio, namelyfalx A priori it is
therefore not necessarily related to the fate of the overall
scale and could be of the order of itg individual contributions
even if%: is much smaller. For theories which establish a
connection between VO and!9 however, the situation is
different. Foréﬁ = AVD (5. 5) the physics responsible for a smallﬁ
also leads to a small value VO’ independent of the size of its
individual contriputions. A potential VO of the form (5.6) would

then be natural even if individual contributicns to V,are of the

~order 64 or even larger. We note in particular that no small

dimensionless coupling appears in (5.6). The smallness of today's
value of VO directly obtains from the small ratio m{x. We still
have to ask in this case if a value of;{ much larger than m is
natural. Already the most naive consideration for a theory with
only one mass scale m (and without very small dimensionless
quantities) would suggest that the possible values for an
asymptotic solution forz should correspond to Xxm, ¥ =0 or Z—;oo.
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We will see in the next section that it is the latter case which
is realized for Vo of the type (5.6). The smallness of today's
value of m({ obtains then naturally as a result of the age of the

universe.

A fundamental theory leading to the evolution equation (5.5} can
therefore predict a very small value for both 5?‘and Vo fas
observed today) as a dynamical result of the evolution of the
universe. The cosmen conditions (3.7), (3.8}, (3.12), (4.5),
{4.15) must be fulfilled today within a very good approximation!
This places a restriction on the allowed values of the
dimensionless coupllngs of the effective low energy theory. This
condition, VO<H0Mp is equivalent to the usual fine tuning
condition for the cosmelogical constant. In our case, however, it
deces not obtain as a result of a special choice of fundamental
coupling constants but rather as a consequence of the short
distance behaviour of the theory leading to (5.5). For any ground
state consistent with (5.5) the dimensionless couplings must
adjust to give a tiny value VO today. {For the example of a
higher dimensional theory the shape of internal space must adjust
correspondingly.} If the most general terms in‘AVk(4.8) would be
present this only would restrict the allowed value of the
uncbservable couplingy . If we discard dvx according to the
spirit described in the introduction of I, the model becomes much
" more predictive. For a short distance behaviour (5.5) andivy =0
the perturbative approximation for the effective potential of the
Higgs doubklet leads to a prediciton for both the Higgs boson mass
and the top guark mass (in case of three generations). Indeed,
since for the vacuum WR& 0 and ?V/dy # 0 holds, the dilatation
‘anomaly for the weak Higgs doublet is given by Vbs llggf {5. 2)
This should be at most of the order of the QCD contrlbutlon~ﬂmm
The,ﬁ -function for the quartic scalar coupling must therefore be
very small., The positive contributions to/éh arising from the
gauge interactions must cancel the negative contributions from
the Yukawa coupling of the top gquark. If the one loop

approximation for the effective scalar potentiallOJ is valid one
obtains a top gquark mass #80 GeV. For this value of m, the mass

of the physical Higgs boson is unusually small, below 1 GeV.
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6. Cosmology with time variation of the cosmological "constant”

In thls sectlon we study the cosmology with a potential V gz)
={m/) z . The discussion is analogous to the model of I, section

10} However, here we assume that

3 {which is recovered for A=4).
54[ instead of ¥ is time independent. We will use the Weyl scaled

field equations (I, 4.18) with $=0. The potential reads
W (&) =(-—) r«;"‘ 2eep (- 4 ) (6.1)

We neglect for a moment inccherent fluctuations (f =p=q -qQ-O).
The field eguation for & is

3

G
%4—3!—4-—;‘ =c..a¢f>(A )

A m A2 (6.2)
¢ =garaan (F) M

For H(t)=7t_1 this has a particular solution

- 2H x (6.3)
§lt) = slt) + &1 £ T
provided

3y-4 = g_c,ﬁf’ sap(—A c’JH“)) (6.4)

The remaining field equations in (I, 4.18) are fulfilled for

= $0Gr) )/ (6.5)
7 e
Let us now include relativistic (n=4) or nonrelativistic (n=3)
matter (still keeping q‘=0). It is easy to see that for ¥»2/n all
matter effects become asymptotically negligible since ? decreases
vt_nY. One would end with a universe containing essentially only

coherent motions of the ¢ field coupled to gravity. Asymptotic

10) This holds for n=4. For n=3 the approximation g "0 is not
equivalent to q =0 in I, section 3.
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cosmology is given by (6.3) and (6.5}). For Y<2/n, however, the
asymptotic solutions look different. One now finds

2

Y= = {6.6)
e = & L (6.7}
%t 4 (/f - %}/) (6.8}

e T
Depending on Y we therefore have the following possibilities for
the asymptotic behaviour: for ¥>2/3 the universe is 6 ~dominated
(P can be neglected). For 1/2<¥<2/3 the universe is ¢ dominated
during the period when matter is dominantly relativistic. When
matter becomes nonrelativistic the universe turns te the usual
2/3. Finally, for ¥<1/2 both the radiation
dominated and the matter dominated periocd have the standard

/2 and a«/t2/3 respectively.

behaviour a~t
expansion laws a~t

It is instructive to interprete these asymptotic solutions in
terms of a cosmological "constant"}{ which varies with time.
There are two contributions of the & field to the energy momentum
rensor: One comes from the potential W(§) and the other from the
kinetic term-éz. The definition of the cosmological constant,
energy density and preéssure is ambiguous. One possibility would
be to identify A=W, f.=f= (6+4w)5°. This has the disadvantage
that in presence of both the ¢ field and matter {(radiation) the
ratio between p amiP would be different for the twe components
of the energy momentum tensor. We therefore adopt the definiti-

OI'I.33

pe = (3 -1)9s (6.9)

with n=4 or 3 for the radiation dowminated or matter dominated
period, respectively. This determines which part of the kinetic
term is counted in the cosmeological constant

A =w-(%- )(34-243)(.?“» | (6.10)

1
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- 2 N
p. = (3+20)6G (6.11)
The energy momentum tensor is

Too

I

A+ ec+y
(6.12)

Ty = (2-Pe~P) 4

We can express the time derivative of A in terms of A , H and G’

j=-42£_§- +4z,(-f—,—4)(3+3v)5'a(H"£iH) (6.13)

11)

This cosmology is of the general type discussed in ref.3. For

the asymptotic behaviour one has A¢/nM=H if Y<2/n. Then A

decreases faster than t~ 2

and becomes negligible. In the language
of ref.3 we have a | dominated universe but the energy density
contains now an additional contributionlpc conmpared to standard
cosmology. The energy of coherent ¢'-motion ¢ approaches 3W (2W)
for n=4(3). Its relative contribution to the energy density is

(see (6.8)).

P ~
= = )/ (6.14)
§+5s
Taking A=4 one recovers (I, 3.9,ii). For ¥>2/n the asymptotic
behaviour isAéVnM:ZH/nY and the ratio z/fk aproaches (n/2)¥-1.
For A=4, n=4 this corresponds to the solution (I, 3.9, 1i).

Comparing these cosmologies with the criteria formulated in I,
section 5, we find that the second condition (I, 5.2) is wviclated
for ¥»2/3. Helium synthesis and the background radiaticn would be
unacceptably altered for ¥»>1/2. We therefore concentrate on the
case Y<1/2 which has the standard asymptctic eveclution iaw
H=(2/n)t—l,9~ t_z,lr =const. A realistic overall cosmological
evolution with asymptotically vanishing cosmological "constant"

emerges provided

A > {8(3+2) _ {6.15)

11) For other attempts to obtaih a vanishing cosmological
constant as a result of dynamics see ref.ll,
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It may be surprising that realistic cosmolegies are cobtained even
for A smaller than four (& must be negativ in this case).
Although the potential VO increaseSA'zq_A {(compare (5.6) the
field;{ is nevertheless driven to infinity! Due to the coupling
to gravity the driving force for } is proportional 4V0/x - %%%
instead of the standard behaviour depending only on the
derivative of VO' For 0<A<4 the dilatation symmetric sclution at
Rb=0 is unstable. Instead of approaching the minimum of vo the
field ¥ moves upwards in this potential. However, VO increases
slower than(x . As a result the ratio E;zz goes to zero and
spacetime approaches Minkowski space asymptotically. Indeed,
there is no difference between A greater or smaller than four in
the Weyl scaled version. For all positive A the potential W(s')
decreases ~ exp(-¢A/M) and the cosmen condition %%; =w=0 is
asymptotically fulfilled for G = o.

For ¥<1/2 the main difference between the cosmology discussed in
this section and the standard hot big bang evolution is the
contribution of the cocherent motion of the ¢ field to the total
energy density according to {(6.14). This influences the time
scale during nucleosynthesis. Applying criterion v) of I,
section 5, this implies an upper bound on Y

Y% 0.4 (6.16)

This can be fulfilled even for small values of A, provided & is
near the critical valueaoc=—3/2. We have no independent informa-
tion on e and a small value for w- wc may not be unnatural. We
‘recall that forad=¢b the field G ceases to be a propagating degree
of freedom. Also foro=q, dilatation symmetry becomes a local
instead of a glcbal symmetry. The theory therefore has particular
properties for w- 2, and a value ¢ near® . must not be a "fine
tuning” of parameters.

Taking things together we have found a realistic cosmology where
Newton's constant decreases with time. It vanishes asymptotically
as ¥ goes to infinity. In this sense the weakness of
gravitational interactions is not intrinsic but rather a
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consequence of the evolution of the universe. Nevertheless the
ratioquz should reach a (small) constant value asymptotically.
This ratio is supposed to be an intrinsic property of the theory.
In this respect the model ressembles standard cosmology rather
than Dirac's hypothesis. Could there be observable consequences
of this scenario? Let us first estimate the mass of a "cosmon"”
excitation ¢ - & with 6, the coherent background field with
cosmological évolution (6.3):

2 ! 5w -
Mo = Gl3720) o6+ (e=c2)
- _AY wiss) (6.17)

{3 +20) M

Expressing W(G,) in terms of today's Hubble parameter H0 one
finds that today's cosmon mass is given by H0 independent of all
other parameters of the model

2 2
Mg = ‘% Ho . 16.18)

wWe find a new "universal" force with a range given by the size of
our cobservable universe!

For all purposes except cosmology this cosmon is massless. The
cosmon coupling to matter (take a nucleus, for example) is of
gravitaticonal strenght (ﬂ*l/MZ). It depends2 on the expectation

12) In addition there are

value of the anomaly”q:fin a nucleus.
possible contributions from spatial gradients of fields in a
nucleus., We will not attempt in this paper to estimate the cosmon
charge Q~ for the meodel considefed in this section. We only note
that as long as QN is propeorticnal to the mass of the nucleus, MN’
one would simply have an additional long range attractive force

adding to gravity. Its only consequence would be a difference

12) The formulae in ref.2 correspond to#=1/8, h free. They are
related to this version (@free, h=1) by a rescaling of x,
resulting in the identification 4(3+2@) = (1+12h)/h. Derivatives
and metric in ref.2 correspond to I, section 2, not to the Weyl
scaled version of I, section 4, which we use in this section.
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between the value of Newton's constant observed in our solar
system (or galaxy) and the one relevant for nucleosynthesis. The
first counts both contributions form the cosmon and the graviton
and is therefore larger than the purely gravitational constant
GN=MP_2. As a result the Planck mass MP could be somewhat-higher
than commonly estimated. The effect on nucleosynthesis goes in
the opposite direction than the effect from fk(G .14) and the
bound (6.16} could increase. Deviations from Qu~ My are expected
to be proportional to baryon number in leading order. They may
give rise to a baryon number dependence of the combined graviton
plus cosmon force, which does not depend on distance for the
model of this section. Experiment tells that such a baryon number
dependent contribution must be small.lz]

The cosmon coupling to matter could also have effects on
cosmology by inducing a nonvanishing value q‘ in the field
equations (I, 4.18). This may be particularly important for the
matter dominated epoch. Since in our model G does not vanish we
would predict a deviation from energy momentum conservation
according to{I, 4.18). This would lead for n=3 to an asymptotic
behaviour H=4’t-l, ?-‘#2/3 as discussed in ref.3. One also should
estimate possible dissipative effects from the decay of the
coherent ¢ motion. They could modify the contribution of Ps to
the total energy density and therefore alter (6.16). At first
sight, however, such effects seem to be very small.

In any ¢ase we should not forget that our meodel (characterized by
{6.1) mui?—const) is at best an approximation. It is conceavable
that the ratio ?/K undergoes a very slow change even for the
asymptotic behaviour, resulting in a tiny value of & for the

discussion of I, section 5. Even for p=const and a poténtial VO

fulfilling (5.5) we expect the anomalous dimension A to depend on

the renormalized coupling constants of the theory. This may
induce a weak x dependence of A - typlcally A=R 0+A1 lnx/m. For A
depending on ¢ one obtains

-4
W (c) = \T/aea,b(-;':‘éf,416')4€) (6.19)
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It is well conceavable that the G dependence of A leads to
cosmologies where both Pe and 4 decrease faster than t-2 so that
all effects form @ become asymptotically negligible (at least for
q‘=0). As an example, consider a potential which can be
approximated for & >-& by

— Ir&
Wls).-aw( G"’"s') 14?9{-'/4 ) } (6.20)
This leads to an asymptotic solution IvI=(2/n,’|t:_1,S?-vt_2 with

-G(H=H(fh%—)#z -G

EZ = 3(31'-&0)(2_4) H (6.21)
tive)* A w
Both é‘z and W {and therefore feandR ) decrease asymptotically
like t~% (1nt)%5% and become negligible for g >0.

1. Conclusions

We have found realistic cosmologies for models where Newton's
"constant" is a dynamical degree of freedom and can therefore
evolve with time. The modeis we have considered are gquite
different from Brans-Dicke cosmology due to the existence of a
nontrivial effective potential. It is crucial for realistic late
cosmology that the ratio between the scales of weak and strong
interactions and the dynamical Planck mass, @Mx, approaches
asymptotically a constant (or almost s¢). Not only the Planck
mass (~¥) but also the scales of weak and strong interactions hwﬁ)

should correspond to dynamical degrees of freedom. These scales
may also change during the evolution of the universe. Two general
types of cosmologies are possible in this context. Either‘z
approaches asymptotically a constant value Ao and similar foré;.
Realistic late cosmology is then expected to be of the standard
type. Or ¥ goes asymptotically to infinity. Depending on the
specific model the cosmology can be of the standard type, but
interesting modifications, for example for the critical energy
density of matter, the age of the universe, or the static
behaviour of coupling constants, are also possible.
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In our models the expectaticn walue of‘x is identified with the
scale of spontanecus breaking of dilatation symmetry. The Fermi
scale é’and the scale of strong interactions AQCD should
asymptotically be proportiocnal toz’. They should therefore not
correspend to intrinsic scales of the theory if cosmology is of
the type where Zfstill evelves today and goes asymptotically to
infinity. In this case AQCD and ﬁ should alsc be a conseguence of
spontaneous dilatation symmetry breaking. This is realiged if the
renormalized dimensionless couplings of the scale invariant
version of the standard model, when evaluated at the short
distance scale ¥, are either independent of ¥ or do only Qeakly
depend ony . In the first case dilatation symmetry has no anomaly
and the fundamental theory should be finite. (This could be the
case for superstrings.) For the second possibility the running of
the short Aistance couplings generates a dilatation anomaly.
Scale transformaticons are not a guantum symmetry and the running
of dimensionless couplings introduces an intrinsic scale m in the
theory. If the dependence of the short distance couplings on y is
weak, the intrinsic scale m is much smaller than the spontaneous
scale X - We discussed models where m is even much smaller than
AQCD and 45 so that ﬁZZis essentially unaffected by the existence
of an intrinsic scale and dilatation symmetry is a good
approximation for the “low energy standard model. There is
~actually no.contradiction between the observed running of the
strong coupling constant and the absence (or small role) of
dilatation anomalies. The dilatation anomaly is connected to the
running of the fundamental coupling constants of the short
distance theory and not to the evolution of the effective low
energy theory. We also have studied models where strong and/or
-Weak interactions are characterized by an intrinsic scale mVAQCD
or m~w§. The language of spontaneously broken dilatation symmetry
is still adapted (m<<)) and cosmology can be characterized by
properties of the dilatation anomaly. In such models the '
asymptotic constant ratic 6]1 must obtain as a consequence of ¥

approaching a constantzg .

In this paper we only describe late cosmology. Verf early
casmology may be quite different from the asymptotic behaviour of
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éh{. For example,;z may initially have been of the same order as
ﬁ This would have important consegquences for early cosmology
since gravitational interactions would have had the same strenght
as weak interactions! It is not clear for such scenarios if the
temperature was ever high enough to restore SU(2)xU(l) symmetry.
There was possibly no weak phase transition in early cosmology.
(In the Weyl scaled formulaticn ?-decreases from a value ~Mp te
today's scale in this case.)

What about the physics associated with the vanishing of the
cosmological constant? In general, a theory has two different
systems of mass scales. First, there are intrinsic scales. These
are generated by the running of fundamental dimensionless
coupling constants and connected to the dilatation anomaly. More
generally, if a model has intrinsic mass parameters (like a term
/afﬁglin the Higgs potential) we may formally include such
explicit scale breaking effects in the anomaly. We denote the
largest intrinsic physical mass scale by m. Second, we have
"sliding" scales. These correspond to expectation values of
scalar operators. Their value is determined dynamically and may
evolve with time. We denote the heaviest sliding scale by M.
Typically, today's value of M should be in the vicinity of the
Planck mass MP. The two systems of mass scales can move against
each other. This corresponds to the degree of freedom of a
(pseudo)dilaton. We call this excitation a cosmon if its dynamics
leads to a vanishing cosmdlogical constant. Depending on the
ratio m/M we distinguish four different scenaricos for the
cosmological constant:

A) Dilatation symmetry has no anomalies. No intrinsic mass scale
appears in the theory (m=0). There is a massless Goldstone boson
G~1n¢(unless its kKinetic term vanishes). The vanishing of the
cosmological constant is related to dilatation symmetry only
through the specific form of the effective potential. This must
possess a minimum for nonzero vev's of some scalars or,
equivalently, a flat direction. New physics could only arise if
the derivative couplings of the Goldstone boson would lead to an
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. appreciable coupling to matter. This would also influence
cosmoelegy for the matter dominated epoch (qf%O).

B) The intrinsic scale m is much smaller than the observed scales
of weak and strong interactions. Integrating out all degrees of
freedom of the standard model leads to an effective theory for
gravity and the field wahich is characterized by an effective
potential VDQX). If the intrinsic mass scale m arises only
through the running of fundamental dimensionless coupling
constants, the dilatation anomaly is given by the renormalization
group equation for Vv, , %:=3#)‘9n. We assume that this
renormalization group equation is determined by a nonvanishing
anomalous dimension A (2% /2 =Av,). This implies a specific form
of the potential for& , W(G)~ exp(-AG/M). As a conseguence, the
sliding scales (z,é) still move today ccompared to m and the ratio
X/m goes asymptotically to infinity. This leads to cosmologies
with a nontrivial time evolution of the cosmological constant
which vanishes asymptotically. The kinetic energy of the ¢ field
can contribute a fraction Pe to the total energy density of the
late universe. The cosmon ¢ mediates a new long range force with
at most gravitational strength. Its mass is today given by the
Hubble parameter, mﬁ'ﬂo'
Depending on the matter couplings of the cosmon this could lead
to a composition dependence of the combined gravitational +
cosmon force., If the cosmon contributes a substantial amount to
the long range force, this would influence the age of the
universe. For the matter dominated epoch the energy momentum
tensor of matter would not be conserved (qQ¢0) and the evolution
law could be modified (ant_1,7%2/3). Also, if {z‘a’/z approaches
only asymptotically a constant value, the variation of this
quantity today would lead to a time dependence of coupling
constants. All these interesting possible effects require,
however, a substantial coupling of the pseudodilaton & to matter.

C} The intrinsic mass 1s identified with the scale of strong or
weak interactionszj, m"'AQCD or. m~§; - In this case ¥ should
approach a static finite value (6“»6G,). This requires that the
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anomalous trace of the energy momentum tensor must wvanish for
some wvalue ofG(éV%G;)=O). The cosmological constant vanishes if,
for 6=6,, the trace of the energy momentum tensor is purely
anomalous ('I;(G})=¥(G’a)). The connection of this
"cosmon-condition" with properties of the fundamental theory is
not well understood. The mass of the cosmon is m,uva/M. Exchange
of cosmons leads to an intermediate range force with
gravitational strenght and typically a nontrivial composition
dependence. Depending on m, this force could be observable. The
cosmology for this scenarioc is not yet well studied. It is
influenced by the energy stored in the coherent motion of the
cosmon. For late cosmology, this depends on the initial
conditions after the last (QCD) phase transiticon and on the
matter couplings of the cosmon (q‘). Since the anomalous trace of
the energy momentum tensor depends on condensates, and therefore
also the value G, which determines the strength of gravity, the
cosmology of phase transitions may be rather complicated.

D) Finally we should mention the possibility that m:uMp. Ho
observable long range or intermediate range effects survive. All
particles except those of the standard model and the graviton
have huge masses vMp. Although our treatment of dilatation
symmetry and its relation to the cosmological constant remains
formally wvalid, it is questionable that it is helpful for an
understanding of the cosmclogical constant problem. (One word of
caution, however, applies to the last two scenarios: It is not
completely excluded that intrinsic scales appearing in particle
physics are much higher than the one characterizing cosmology.)

It is even conceavable that features of two of our scenarios are
realized simultaneously. This can happen if the effective low
energy theory has an additional approximate dilatation type
symmetry, corresponding to a rescaling of ¢ and D v in the Weyl
scaled version. (This requireS¢5Vx=0 .) With respect to such a
symmetry M plays the role of an "intrinsic" scale and the
symmetry is broken explicitely in the gravitational sector.
Nevertheless, there may be an additional pseudo Goldstone boson ¢
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with a small mass and nontrivial interactions with gravitaticnal

strength. Qur formalism with h{z)#1 can be applied to this
situation.

Although we Know from cobservation that today's value of the
cosmological constant must be tiny, we do not know which one of
our scenarics applies. The unknown physics related to this
question could well give rise tc interesting obervable effects.

Possible deviations from standard big bang cosmelogy for the late

evolution of the universe could provide important hints about
properties of the fundamental theory.
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Appendix

In order to account for possible dilatation anomalies in the
gravitational sector we generalize the gravitational piece of the
effective action

o - LAt R Sy

with h a dimensionsless function of? and y , depending on/c if
there iz a dilatation anomaly in the gravitational sector

A = £ éa 2’;//“; 3?9#)) (A.2)

The action (1.1) and the field equations of I are recovered for
h=1. This modification of the gravitational interactions changes
the dilatation current

- Z?‘i‘vz‘"{(%_‘h“ +3K34. )Za"
+u+%i%f;-,->$avf}
= Zgﬁ?ﬂ{(h)f-é& *-E;.* BH?}_&'—)HBQG'

.,.(,“.3;’ 3’?‘)<p3.,99 { (A.3)

The gravitational contribution to the dilatation anomaly is

> = P} a M
1‘%=—z7‘R(24 +¢ 355 ) (a.4) .

%, = o= )G = BARESSEG) )

{One may remove a total divergence fromﬁg and add a correspondlng
piece to Jg) For h independent of s, h= h(@/X), one has dﬁ =gh=0.
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The equation of motion for G can be derived from the dilatation
current (A.3} in the Weyl scaled version (assumlng ?~0,7 —CO

(% + 424 + 12H 3 +2 & )5 PE-T ) Sr e

oW ;a&
= -3¢ ~ M s*R

Here we define W{G)=W(e&, ) and similar for h(e).

The modified gravitational equation from {A.1) is

Ros = $R 30 = i L (2877 ) o — (2AR), g G

V

a2 §
+ggx/'/‘zf‘* boz; X!’ *?/"' +v3/‘" T ’ T/"’} (A.7)

From this we compute the curvature scalar in the Weyl scaled

version
) 1
R = - zam (=290  torah s 2 ) 5y

-+f 2 A S *T";}*3a;:- ,/- 3‘33’%-5‘-.' V"ﬂ (A.8)

Inserting into (A.6) gives (for 99 constant)
A M,
{(6‘)6' +al(s)e“s, ==-§;,"£+22£L" *ita’;"é'T/.ﬁ“;',‘-ﬁ'(s) (A.9)

z o4
A6) = 5%.:-#4244—1?1. +4u—r-i+3ﬂ’ ae—a{,"gﬁ' (A.10)

£
}(6-)-_-42,_!@. + &M as“_i-‘#‘)r&).)———lhf'sﬂtx ;;', (A.11)

We note that for ?h/d5#0 Newtons's "constant" still varies in the
Weyl scaled version iféﬁto. Also ;]G) has a contribution from the
trace of the energy momentum tensor of matter Tﬁf. such features
could be removed using a different Weyl scaling and a new varia-
ble ¢'. In the new scaling, however, dr=0 would correspond to
nonvanishing q’ and the energy momentum tensor would no longer
'be conserved in the matter dominated period for éJ#O.

Although we will not discuss this effect in detail in this paper
it may have interesting consequences for cosmology in the matter
dominated period.



