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ABSTRACT 

We discuss the cosmological constant problem in the light of 
dilatation symmetry and its possible anomaly. For dilatation 
symmetric quantum theories realistic asymptotic cosmology obtains 
provided the effective potential has a nontrivial minimum. For 
theories with dilatation anomaly one needs as a nontrivial 
"cosmon condition" that the energy momentum tensor in the vacuum 
is purely anomalous. Such a condition is related to the· short 
distance renormalization group behaviour of the fundamental 
theory. Observable deviations from the standard hot big bang 

cosmology are possible. 
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1) Introduction 

Theories with only dimensionless parameters are described by a 
dilatation invariant (classical) action. This symmetry consists 
of a common multiplicative scaling of all fields according to 
their dimension. The "fundamental constants" with dimension of 
mass, like the electron mass me and the Planck mass Mp, are 
typically induced by vacuum expectation values (vev's)of scalar 
fields. In general, such vev's may vary as a consequence of 
cosmological evolution and the observed values of the 
co.rresponding "fundamental constants" obtain only as a result of 
asymptotic "late" cosmology. Quantum fluctuations may or may not 
conserve dilatation symmetry. In the second case dilatation 
symmetry is anomalous and an intrinsic scale m is introduced by 
quantization (m is proportional to the renormalization scale~). 

In ref.l (thereafter called I) we have studied cosmologies with a 
variable Newton's "constant". In these models Mp is generated by 
the vev of a scalar singlet;r and me is proportional to the Higgs 
doublet f of the standard model. As an approximation to the 
effective action we used a Brans-Dicke type theory (I,(2.5)) 

s· =- ft~~>x (" f x~ R. 
-~ /f ~,« <P 

i'-«J ? X ;v" ;r 

+-V(i,;rJ3 I 1.1 l 

The dynamics of these models depends critically on the form of 
the effective potential v. In particular, all effects from 
anomalies will appear through v. (For a more general situation 

see section 3 and the appendix.) 

Consider first the case where the fundamental quantum theory does 
not lead to any intrinsic mass scale m (dilatation symmetry is 
anomaly free). Then physics can only depend on scale ratios like 
'f; IX, but not on fJ and ;r separately. In particular th_e __ _ 

effective potential must have the form v=;4u(~/ll· The theory has 
a global dilatation symmetry corresponding to a constant scaling 
of all fields according to their dimension. (In this context the 
inverse metric 9 ~~has the same scale dimension as ;:2 . ) Since we 
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observe the appearance of scales in our world, dilatation 

symmetry must be spontaneously broken. Any nonzero vev of a 

scalar field induces such a spontaneous breaking. The scale 
characteristic for spontaneous dilatation symmetry breaking may 

be identified with the largest vev of a scalar. In our case it is 

given by ;t. and should be in the vicinity of Mp. A spontaneously 

broken global symmetry leads to a Goldstone boson, the dilaton, 

which should only have derivative couplings. These couplings are 

supressed by powers of Mp-l· A shift in the dilaton field 

corresponds to an overall change of all scales. In a theory where 

only scale ratios are measurable the overall scale plays the same 

unobservable role as the phase in a theory with global U(l) 

symmetry. In our model the dilaton can be identified with the 

fieldG' ~ln,t. 

A fundamental quantum theory without intrinsic scale m should be 

finite. As an alternative one may consider an asymptotically free 

renormalizable theory which has a running dimensionless coupling 

constant. Even though the classical action may not have any scale 

parameter, a renormalization scale;" must be introduced in the 

quantization procedure. This leads to the appearance of an in­

trinsic mass scale m (which plays the same role as AQCD in a pure 

QCD theory)~ Dilatation symmetry is said to have anomalies - it 

is not realized as a quantum symmetry. Nevertheless, for m much 

smaller than the scale X characteristic for spontaneous dilatati­
on symmetry breaking, we can still consider the dilatation 

symmetric theory as an approximation. The language of symmetry 

currents etc. remains useful, but the anomaly leads to some 

characteristic qualitative changes. The physical quantities are 

no longer independent of the dilaton vev since the overall scale 

"feels" the existence of an intrinsic scale m, even if the 

connection is only weak. As a consequence, the dilaton has not 

only derivative couplings. It is subject to a driving force 

proportional to the dilatation anomaly, which is given by the 

anomalous trace of the energy momentum tensor .J;'~ It also 
acquires a small mass, typically supressed by powers of m/~. Any 

vacuum solution with static constant.:{ requires the anomaly to 

vanish. In general the anomaly depends on;r. This governs the 
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dynamical behaviour for;r. As a consequence, the dilatation 

anomaly determines those qualitative properties of the effective 

potential which characterize the asymptotic evolution of 

cosmology. Our study of cosmologies with dynamical Planck mass in 

I is therefore intimately connected with the fate of dilatation 

symmetry. In this sense the present paper should be understood as 

a logical continuation of I. Although our treatment of dilatation 

symmetry is essentially selfcontained, we recommend reading of I 

for a more profound understanding of the spirit, formalism and 
notations of the present ·work. 

In section 2 we study the cosmology of scale free models (without 

dilatation anomaly). We find that late cosmology leads to the 

standard big bang picture provided the potential v<f.z> has a 

nontrivial minimum. In this case the dilaton mode becomes 

irrelevant for late cosmology (in the limit where its coupling to 

matter can be neglected). On the other hand, if V(~,z> has only a 

relative minimum with respect tof the cosmology looks li~e the 

standard model with nonvanishing cosmological constant. In 

section 3 we turn to models with dilatation anomalies. We 

formulate three conditions on the dynamics of the dilaton which 

are necessary for a realistic cosmology. The trace anomaly 
~--should vanish for some value of the dilaton field, ~(~)=0. For 

this value the dilaton mass should be positive. Finally, for the 

static vacuum solution with~=~ the trace of the energy momentum 

tensor should be purely anomalous. If the dilaton fulfils these 

three conditions it is called a cosmon2J. Its dynamics drives the 

cosmological constant to zero. In section 4 we establish the 

connection between the "cosmon condition" and the short distance 

behaviour of the underlying fundamental theory for .models where 

intrinsic mass scales arise only from the running of 

dimensionless couplings. One finds that the trace anomaly for 

static configurations is given by the renormalization group 

equation for the effective potential, ~=j<~· We discuss in 
section 5 the situation where this renormalt;ation group 

equation is governed by an anomalous dimension,;P~= AV. The 
cosmology for this case is investigated in section 6. It is 
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characterized by a cosmological "constant" which evolves with 

time and is of the general type discussed in re£.3. Realistic 

cosmology is obtained if the anomalous dimension A is within a 

certain range. We conclude this paper in section 7 with a 

discussion of the cosmological constant problem. 

2. Models without mass scales 

Let us first investigate models without intrinsic mass scale. The 

most general form 1 l for the effective potential is 

V(o/, X) = v-( f) cp" Nt­
- tr(><)cp I 2.1 l 

withtr a (dimensionless) function depending only on the ratio 

x=fl1. Possible extrema of V with respect tof are determined 

by 

vv 
dCf 

dtr ) ~ 3 
= ( '1--v-(x) 'I-X~ 'f =0 I 2. 2 l 

If eq. (2.2) has a solution, the corresponding value of q5must be 

proportional to X· We therefore expect the existence of cosmologi~s 

where any change in X is accompanied 

so that f II( remains constant. 

• . N 
by an appropr~ate change ~n cp 

This can be seen more easily by performing a Weyl scaling of the 

metric(!, section 4). The rescaled potential now reads 

IG"=M1nl,t,/M), 'f"'fMI;tl 

'vv'(cp,<S") =v-(~ )cp~'- = v-(x)x""H"" 

x=!E.=Cf' 
;:( H 

I 2. 3 l 

I 2. 4) 

l) The discussion of this section formally includes terms like p2x2 

or _x 4 . They are, however, at variance to the spirit of I. 
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We note that W is completely independent of U' . Therefore 6' is ·a 

massless Goldstone boson which has only derivative couplings 

according to (1,4.6). All particle physics depend only on the 

ratio x=f/M. The scale M itself is arbitrary and one obtains 

equivalent physics for any choice of M. For "quasistatic" 

cosmologies with fi constant, one out of the three scales ~, ;;r and 

H is irrelevant. Physics depends only on the ratios ~IX and H1z. 
This generalizes to evolutionary cosmologies which depend in 

addition on ratios like ~IA2 etc. 

The asymptotic behaviour of "scale free" cosmologies depends on 

the possible existence of a minimum of W which must obey 

X ~ (Xo) = o e>x If- v- (x.,) I 2. 5 l 

If equation (2.5) has no solution, the field~ cannot be 

asymptotically static and one is confronted with the problems of 

cosmologies with varying 12GN (similar to the case~tO described 

in I, section 5). On the other hand, if a minimum of W exists it 

is reasonable to assume that ~1M settles at x 0 at an early stage 

of the evolution of the universe, leading to an asymptotic 

behaviour with ~=0. Up to the additional Goldstone boson c) the 

cosmology is of the standard type. In particular, the value W(x
0

) 

acts as an effective cosmological constant. Realistic cosmologies 

require v(x0 ) to vanish or be very small. From the field equation 

(1,4.12), (6+4w)~;~ +ll2(~~~~~)=q~, we conclude that~ 

approaches asymptotically a constant value ( we assume here q~=O) 

G' = c."~- c. ""'f(-3H.t) 

G' = c~ .,. c.,. t 
4-37 

for H = H0 

-1 
for H =1t I 2. 6 l 

In both cases it can be neglected for late cosmology. The 

asymptotic value c 1 is irrelevant. In conclusion, scale free 

models can give realistic cosmologies of the standard Friedmann 

type provided the parameters of the model are such that the 

cosmological constant W(x0 ) vanishes and x
0 

is very small (gauge 

hierarchy). The scale free version of the Brans-Dicke type action 
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(1.1) differs from the standard model with fixed Newtons constant 

only by the presence of the Goldstone boson~. For q~=O this is 
irrelevant for late cosmology. Despite its long range, observati­

on of effects due to an exchange or production of this Goldstone 

boson may be difficult, due to its purely derivative couplings 

which are suppressed by powers of the Planck mass Mp. We note 
that for W(x0 )=0 realistic asymptotic cosmology is obtained for 
arbitrary ev W>-3/2). This may seem puzzling. Inserting the 

asymptotic valuef=x0z, the effective action (1.1) reduces to the 

action of the Brans~Dicke theory4] without potential. Standard 
Brans-Dicke theory, however, is consistent with observation only 
fort.J >500. The difference comes from the coupling to matter. In 
the standard Brans-Dicke theory the nucleon and electron masses 
are treated as intrinsic scales. For varying;r the observable 

-2 value of Newton's "constant 11 GN..., 't changes with respect to 
particle masses. In contrast, a dilatation symmetric quantum 
theory implies that all particle masses must be proportional to X 
(e.g. rne""'f"'/0· The observable ratios m:GN etc are therefore 
static for asymptotic cosmology. In the formalism of I, section 2 
the ;t dependence of particle masses leads to a nonvanishing right 
hand side of the scalar field equation (I, 2.7) for the matter 
dominated epoch (q~'f-0). In view of (I,4.14) and (I, 4.19) this 
is indeed required for the decoupling of the dilaton mode from 

G' matter {q =0). 

It is instructive to understand the Goldstone boson appearing in 
scale free models in terms of dilatation invariance. The action 
(1.1) with a scale free potential (2.1) 
scale transformations of the fields. 

<p 

il 
N 

~" 

.-.~ 

->£.'1' 

-> 

-> 

e."' X 
-u ~ 

e "} /'" 
In the Weyl scaled version they read 

rp -> <p ' ~r - ~/'"" 

is invariant under global 

I 2. 7 I 

- 8 -

G' ~ G' -r ot.H I 2.8 I 

The fieldU is therefore the Goldstone boson which originates 
from spontaneous breaking of dilatation symmetry for any nonzero 

value of; ort. 2 ) It is straightforward to construct the 
conserved current corresponding to dilatation symmetry. Expressed 
in the Weyl scaled fields it reads 

J:,. ZH<Jv.,{(6+lf<.>+t..)<>/'-r !J 'f;"" J 12.91 

Its divergence obviously vanishes as a consequence of the field 
equations forG derived from (1,4.6). Of course, we could 
equivalently construct3 ) the dilatation current from the original 
action (1.1): 

J/ = ziiif'"'f<'-+k.:>>;(d,x.,.. ¥ :J, f 1 12.101 

For a check of its vanishing divergence we can use the field 
equations(I,2.6)-(I,2.8) and the identity for a dilatation 
symmetric potential 

;>V 
~ 3;( 

" ClV 
-t- '1' ~ = {L-V 12.111 

2) The true Goldstone boson contains an admixture of f to ;t of 
the order x 0• . 

3) For a global infinitesimal transformation ~f't·= .c.Oj'<p,with~ 
constant and C'( a differential operator or a constant, and a 
Lagrange densityde containing terms with up to two derivatives of 
the fields~·, the symmetry current is 

" (_J!f._ "iJie ) ;,). ( iJ.E - I<,... J -~9\· ac~qo;)-d" ~(...,~q>;) ;- 'iJ (7,·cp,)d(,_d,q>.·) 
where K,.- is obtained from ile =fl.. f.- K..-. In our conventions the 
curvature scalar is 
""" t; - - """ .) ..... ~&" .... .. ... .,)fr R.=j/' §"f(J.:!,g.,..-J-~@..,~);-f"/. 5"r, -r;.. ~"• . 

The term-6x~_x.in (2.10) is the contribution from. the 
gravitational part of the action . 
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On a manifold4 ) parametrized by cartesian coordinates x~we can 

also formulate a particular general coordinate transformation 

X /" __. R. - "- >< _.,. 

~ 

9/'"' 
___, 2.«. -

e 9/'"" 
I 2.12 l 

The infinitesimal transformation is 

x"' ~ x"' -r f"' = x"'- «.x-" 
frA ~ A.~ ~ Sf - - 5 d,< <p - o<: X 0 ) <p 

$~ f:<.<~ f:<.:l- .< "' 
~ ... = -p.5 ~A~ -~.,5 ~/' .. - r dA_ 'J/'"" 

.:1 ~ 

= ol. (x d;~ + Z ) ~""'" 
(2.13) 

Combining the transformations (2.7) and (2.12) gives another 

version of dilatation symmetry where the coordinates instead of 
the metric are scaled. 

Sf = "'- ( x~&A ... "> .?f I &x = c<.(x;.c1A .. "> x 
~ ~~ ~ 

&~_.., = .(.X "';). 'iir" 
(2.14) 

It is adapted to a special coordinate choice (cartesian 

parametrization) and often used to study dilatation 

transformations on flat space. The corresponding symmetry current 

in flat space can be constructed from the energy momentum ten­
sor51. 

For dilatation symmetric theories it follows immediately from 

(2.11) that any extremum of V(X,fl can only occur for vanishing 

potential V(~,~)=O. The condition for a vanishing cosmological 
constant amounts therefore to the requirement that V has a 

minimum 

ov_ ( z. 1 <?6) = 
iJ;( 

G>V ( ~ 
iJ<f :UI%) = 0 (2.15) 

4) For manifolds with nontrivial topology cartesian coordinate 
systems can be chosen for the different coordinate patches 
separately. 
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It follows from the general form of the potential (2.1) that for 
"' . .t tll/.101 any extremum at tz,fo) there J.s also an extremum at (t~,ef.). The 

potential must therefore have a flat direction. Conversly, a flat 

direction starting from the origin must be at V=O. Flat 
directions arise when the potential depends only on one 

particular linear combination off; and;(. This could be a 

consequence of some unknown symmetry. We also note that for V 

c_onvex or bounded from below a zero of v(~/X) is sufficient to 
·produce a flat direction. Any point where V vanishes must be a 

minimum in this case. We may summarize this section by the 

following general statement: !f the effective potential of a 

dilatation symmetric quantum theory has a nontrivial minimum, 

such theories always lead to a Brans-Dicke theory, but with 

variable particle masses (mevzetc). Such a theory leads to 
realistic asymptotic cosmology (provided that there is no 

instability in the kinetic term of the Brans-Dicke scalar, 

W>-3/2). 

3. Dilatation anomalies 5 ) 

Even if we start with a dilatation symmetric action without any 
mass parameter the properly renormalized quantum field theory 

sometimes needs the introduction of a mass scale. This occurs if 

there is no scale invariant way to define the functional measure 

in the functional integral. In this case renormalization 
necessarily involves the introduction of a scale, the 

renormalization scale;U· For scale dependent (running) 
renormalized dimensionless couplings gi the theory must be 

defined by specifying their values giV") at a certain seal~. 
such theories the dilatation symmetry is broken by the 

In 

quantization - the theory has a dilatation anomaly. A typical 

example is pure QCD: The dilatation anomaly is the anomalous 

trace of the energy momentum tensor61 

5) Parts of this and the next section have been obtained in 
collaboration with R.D. Peccei and J. Sola and are published in 
ref.2. 
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/?._ r ~· > F_.,PV F;, 
z '{}• 

with g
5 

the strong gauge coupling and;5(g
5

) 

~-function of the SU(3) gauge theory. 

( 3 .1) 

the well known 

In presence of an anomaly the dilatation current is no longer 
conserved 

f J; - L1 = j~( ~ + zt) ( 3. 2) 

Here we have included a possible dilatation anomaly ~Jn the 

gravitational sector. We can account for the anomaly ~in the 

effective potential for9' and;r. Anomalies introduce an explicit 

dependence of the effective potential V on the renormalization 

sea~~ 

v ~ vrx;r;j';j,y>J ( 3. 3) 

For example, in pure QCD the expectation value of F:W~v should 

be of the orderA~0 . The anomaly gives a constant contribution 

to V, proportional to/"4 exp(- 3Jr~) ). In general, the anomaly 

measures the deviation of the effective potential V from its 

scale invariant form 

-5" / 
;;lV 

= w -;:(~ ~ ~v 
- cp~ ( 3. 4) 

Similarly, in the Weyl scaled version withi1=-;11i(f+r~), one has 

<~-"' ~ (): .... 
vi' =~r+ H)~ = 

;;,w 
-H ;:,cs-

As a consequence of dilatation anomalies the potential W now 

depends on 6' and <f has in general non-derivative couplings. 

( 3. 5) 
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For any possible solution with constant and static fields~ and;( 

the divergence of the dilatation Current (2.9) or (A.3) must 

vanish. G) Such solutions are therefore only possible for values 

<fh, Oo for which the dilatation anomaly L\ is zero. Let us assume 

that rp has. reached a static constant value qg so that Ju 'f =0. 

field equation for 6 is then given (see appendix) by 

f! 6") 6} '/- +- 'J ( «i) <5J ,t< rs;,.. - I IL - M v Co-) 

The 

( 3. 6) 

where {r(6) is the anomaly~''\~ with all terms containing 

derivatives of G' subtracted. Obviously, the anomaly ~6) acts as 

a driving force forQ. 

Solutions with constant static()=~require 

~(<5;,) = 0 

These solutions are stable only if the mass term for the 

excitation is positive (or vanishes) 

z, 
1'17,;- Mf(60) 

~~(G;;) 
~G" ? 0 

( 3. 7) 

( 3 .a) 

The effective cosmological constant for <r=cS> is W(G,;). It should 

vanish for any realistic cosmology and we must require 

W'(G;.) = 0 ( 3. 9) 

Otherwise the universe approaches asymptotically an exponential 

expansion (W(Gb)>O) or a catastrophic contraction (W(G;)<O). Such 

a behaviour would be much more singular than the B~ans-Dicke 

cosmologies with v0to discussed in I, section 3, which approach 

flat space asymptotically. 

6) This is similar to the axion 71. 
anomaly pl~s an analogous role to 
parameter iJ: 

In our case the dilatation 
the strong CP Violating 
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For sol~tions fulfilling (7.9) the actual value of G;, is irrele­

vant. In addition, we have a freedom in the definition of ~ 

and M in eq. (I, 4. 5) , since X, =M expG"/M remains unchanged under the 

transformation 
A 

) _,. ... ) 
G' -e {6'+ot.H 

A 

1-1' = e-"'- H (3.10) 

We use this freedom to set <>; =0. It is the corresponding value of 

M which is related to Newton's constant by (I,4.2). 

Let us look somewhat closer at the role of the dilatation anomaly 
in the gravitational sector (see appendix) in view of the 

combined conditions (3.7) and (3.9): From the definition oft(~)(~.') 
one sees immediately that they require 

~(<5;,) = 0 ( 3.11) 

This holds for any arbitrary function h(6) (if it is not too 

singular for G"" -"'~). We conclude that the dilatation anomaly in 
the gravitational sector does not play an essential role for 

such theories. For the remainder of this paper will use the 

simplification .V~ = 0 ( A. == ~ ) • 

We can express (3.7) and (3.9) as conditions on V 

.v qv ""'-vCV( ~ 
l'-V ( ll..' <flo J - :t ~ ( ;r., 9'~) - 'P uq; 'X.' 9'. ) = o 

V( :Z.,,tf.)= 0 
(3.12) 

The minimum of V must be at zero. This corresponds to the usual 
finetuning condition for the cosmological constant. In our 

context, however, this has a perhaps more physical interpretati­

on: We require a model with the property that the trace of the 

energy momentum tensor in the vacuum with static ;(0 

and~ (~.-4V) is given by its anomalOus part ~ 
tv 1\J ...... ~ ...... Tf(A.., cp.) =if ("M,<f·) (3.13) 
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If a static ,:tp exists .g;. (~) must vanish and if in addition the 

stability condition (3.8) holds, the cosmology necessarily 

approaches flat space asmyptotically. The field~ is then called 

a "cosmon11 2J. Its dynamics drives the anomalous trace~ and by 

(3.13) the cosmological constant to zero. Realistic cosmology of 
the standard type is obtained provided the energy stored in 
coherent oscillations of the cosmon never exceeds the radiation 
~nergy during the usual radiation dominated epoch81. This depends 

on "initial conditions" for the 
Since the cosmon always couples 

eVolution in the history of the 

amplitude of cosmon oscillations. 

to the anomalous trace~ itS 
universe may be rather 

complicated, especially during phase transitions when condensates 
form. This issue certainly merits further study. 

Since1f depends only on~/M we can immediately conclude that the 

cosmon mass (3.8) is of the order 

• '""<> "' 
........ 
H .. (3.14) 

Here m is typically the largest characteristic scale produced by 

the anomaly. In our approach, m should be at most of the order of 

the Fermi scale 9L ~ 17 4 GeV. A lower bound would be given by 

AQCD if strong interactions were a fundamental theory valid to 
arbitrarily short distances: 

l-

1\~1> 
Hr 

»'~c ~ "' 2 . to-" eV (3.15) 

This would give an upper bound on the range of about 10 km. 

Possible detection of an intermediate range cosmon force is 

discussed in ref.2. We will see below that m depends crucially on 
the short distance behaviour of the full (unified) theory. A 

cosmon mass quite different from (3.15) should therefore not be 

excluded at this point. 

4. The cosmon condition 

Let us concentrate on theories where all intrinsic mass scales 
(like m) appear only through the running of dimensionless 



- 15 -

couplings. Physical quantities only depend on renormalized 

dimensionless coupling constants gi~) defined at some 

renormalization scale;U· Except~ no explicit mass parameter 

should appear in the theory. In such theories the 11 cosmon 

condition'' (3.13) requires a nontrivial connection between the 

long distance and short distance properties of a theory. Let us 

assume for simplicity that the fundamental theory has only one 

dimensionless running coupling 

free adjustable dimensionsless 

(3.3) must have the form 

constant g~) and therefore no 

parameter. The effective potential 

v = f ~ 1T (j I; J ~y)) ( 4.11 

and one finds for the dilatation anomaly 

- ~v o/ =/y ( 4. 21 

Using the independence of V on the choice of the renormalization 

scale~ (the renormalization group equation) one also obtains 

J:,.. 
/ 

j3 

av 
s - f1 d:JY') 

~ ,J< ()3 yu> 
/ ~ 

( 4. 31 

In particular, there is no anomaly if the fundamental coupling g 

is not running yB=O ), despite the fact that all low energy 

couplings may be scale dependent. The cosmon condition reads 

ov ~ 

~"' r < tt., <?. > = ~rv ( ""~ cr. ) = 0 

On the other hand the cosmon condition is related to the ;r 
dependence of the effective potential. 

,i): ( ~ w ( ~ 
vx x~, q:, ) = - X ~ M, Cf. ) = o 

(4.41 

( 4. 51 

In flat space this is just the condition that static fields .f.o, fo 
must correspond to an extremum of the potential. In presence of 

curvature, however, jt
0 

is determined (for C.V/~f(~ ,f.l=O) by 

- 16 -

~~i(;{&,%~== 1;-V(_t,,..'ii) and (4.5) is a nontrivial condition on 

the theory. ) For flat space and static fields one has the 

general identity <~~>=<~ >. This explains the historical origin 

of the name "anomalous trace of the energy momentum tensor 11 for 

the dilatation anomaly. Indeed, once all vev's are expressed in 

terms of/" one necessarily has V 0=cof4 . Using )V/~Cfi =0 for all 

fields 9" i one obtains 

dV r = 9-Y,; = /'"r ;,v C>Q!· ()V oV 
~ .. ,J< .:31- - = /-' -

~/,... I r 'O<f; / Y = i:~"' 
/ ( 4. 61 

Inclusion of gravity only permits to conclude an identity for the 

partial,-derivative of '7 (for fixed vev's of Cfi) 

< -6-"> I 
= J... /-'2- < T"' > 

'f-; "1'" / 
( 4. 71 

As discussed in the introduction of I, there are several types of 

possible sources for the;(-dependence of the effective potential. 

It may arise from mass type terms in the effective potential for 

4', like 

Lllfx '"" 
2.. ..... z. y.. ex q> +- JC/( (4.81 

~ ... 
Such terms give no contribution to~. Following the ideas of I 

these terms should be absent (or their coefficients be very 

small). A second source, more related to the spirit of I, comes 

from the fact that the standard SU(3)xSU(2)xU(l) model is not 

expected to be valid up to infinitely high energies. At short 

distances we expect that the the'ory shows a higher symmetry, 

possibly connected to grand unification, higher dimensions or 

strings. This symmetry must be spontaneously broken and it is 

natural to associate the corresponding symmetry breaking scale Mx 

with the expectation value of ,X and therefore with ~= 

Hx""tX ( 4. 91 

-7) We note that .ft(t ,i)=O for all/[ would lead to the Brans-Dicke 
theories discuss~a in I, section 3, which are only realistic for 

V(x_1 .P:J=0· 
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The ratio ~ should not be very far from unity and we will take ... 
1=1 unless stated otherwise. The change of;d functions at Mx 
produces a ;( dependence of the effective potential. As an illu­

stration we give the;( dependence of 1\QCD in an SU(S) theory in 
the one loop approximation: 

II _ ... ~} <&,.1&3 )(""' 

4<1> - -, • .~.b. ~ 1 r x /"- ~) 
Here the SU(S) coupling is defined at a renormalization 

coefficients of the 

(4.10) 

scale~>>J( 

g 3 term , g
0

:=: gJtl1 and b 5 , b 3 are the usual 

in the J8 function y&=bg3 ) above and 
neglected fermion mass thresholds). 

below the scale Mx. (We have 

More generally, we can understand this contribution to the ;r 
dependence of V in terms of the renormalization group equations. 
The scale invariant version of the standard model admits Higgs 
mass terms in the action only in the form 4~< 4. 8). It has 
therefore only dimensionless couplings. Let us. denote their 
values at the symmetry breaking scale Mx by gj(Al· Below Mx, the 
scale dependence of gj is given by the usual renormalization 
group equations of the standard model withj9-functionsjdj· Above 
M the evolution equations change and are determined by different 

X · ~ A 
~-functions /Jt· (In a fundamental theory thejJj are all related 
to;G in eq.(4.2).) Formally one has 

A<xJ = x ~fii<:r.J ~ ~ 1 . d ;:r / 'I' 1 &Jjf 'f) fix..t 

A I.X.) = ;( d':i (;r.) 
a ;~ ;;r I/'' '/j(j<l f<xe« (,f~xo/) 

( 4.11) 

We can express the effective potential entirely in terms of the 

gj<x), 
~ 

v = o/".;:;:. ( i ) ~;(;tJ) ( 4.12) 

(The bare denotes that .X and gj (,() ar.e considered here as inde­
pendent quantities.) This implies 

-ff-""' . ,J ".;; ~ 'r 
/ = -I i ()~i <;(} cp 

17:. = )It 
d- " (;(~+-;1 
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oi> 
d9jl:C) 

) o/ 'r 
Neglecting the explicit X dependent contributions £l~(4.8} 

determine the X dependence of ~ by the "low energy" 

renormalization group equations 

'Y()i) 
"" Cl;( 

<~v 
+ ~i ~ilX) =0 

(4.13) 

we can 

(4.14) 

In this formulation, the cosmon condition is equivalent to a 
nontrivial matching condition for the low energy and high energy 
~~functions: 

ciT 
fii ~;(7) 1%,~ 

""" ~ /~ 
<~v -;) 'Jj (;r) fo/;,z. 

= 0 (4.15) 

Such a condition is certainly quite suggestive, but not well 
understood. In a theory with free adjustable parameters it seems 
not particularly difficult to choose parameters such that (4.15) 
holds for some~· In a fundamental theory without adjustable 
parameters, however, the condition (4.15) (or its generalization 
for .4'-t+o) would be a remarkable property. 

5. An anomalous renormalization group equation for the 
cosmological ''constant". 

The simplest solution of having both ~and V simultaneously 
vanishing for some value ~ would be that they are proportional 
to each other: 

~v 

/~ =Av ( 5 .1) 

In this case the renormalization group equation for V would be 
entirely determined by the anOmalous dimension A. The 
dimensionless quantity A may depend on the dimensionless coupling 
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constants of the theory. This is what happens in a pure ~4 

theory8 ) 

V "' ±A. (_!1 A.y.>) <j~'-
~v 1 ~;<;;;~ ~~~,?;'1'-/'r' = h/'-yT =-~T ¥ T 

""-.;;;;,~. r· = - ~ v ( 5. 2) 

In analogy, suppose for a moment that one could write the 
effective potential of a fundamental theory with only one running 
coupling constant g as 

A A 

V= l(x.JV = g~(),fff'!)V ( 5. 3) 

A 
with V independent of;"· The only fundamental mass scale of such 
a theory is the scale of anomalous dilatation symmetry breaking 

generated by the running of g. Therefore the quantity V should be 
a quartic polynomial in the various (perhaps infinitely many) 

scalar fields of this theory. 9 ) In this case dilatation symmetry 

breaking would be entirely described by the anomalous dimension 

of V: 

2¥ ~A ~A -"" )' 7 = /' r v = -z~;c ~ v = -2~! v 
A 

=- ¥v = AV 
( 5. 4) 

8) The one loop approximation to the scalar potential in the 
dilatation symmetric sta~ard model has been discussed recently 
by Buchmtiller and Dragon • Their method implicitely assumes an 
extension of the standard model to infinite!~ short distances. 
The results coincide with our formalism for ~ =1r For fr• c.'7.1"""; 
however, Buchmtiller and Dragon use a regular~zation and Y 
renormalization which differs from ours. It gives different 
results for different coordi~72e parametrizations of Minkowski 
space and leads to a term g lng, whose meaning and consistency 
is not immediately appearent. 

9) There is an appropriate generalization for ferrnions or other 
bosonic fields. Condensates of such fields can again be expressed 
in terms of scalar operators. 
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on the other hand, scale ratios like~ij( would only depend on the 
~ 

properties of V and be independent_ of the scale of dilatation 

symmetry breaking. 

Of course, the assumption (5.3) is very strong and we do not 

expect it to hold except for very simple theories. Nevertheless, 

the property that scale ratios like ~/A are independent of 

dilatation anomalies should always be a very good approximation 
if the scale m characteristic for anomalous dilatation symmetry 

breaking is much smaller than f and~. Consider now a relative 

minimum of V with respect to all fields except X (JV/ili=O) and 

denote the corresponding value of the effective potential by 
Vc(;t).Instead of (5.3) we only will assume 

)'~ =AVo ( 5. 5) 

Such a behaviour would be suggested if v0 <x> is the only relevant 

quantity with dimension of mass. We may call (5.5) the 

renormalization group .equation for the cosmological "constant". 

More generally, if A is a function of X, it only can depend on 

the ratio miX where m is the physical scale generated by the 

dilatation anomaly. (Remember that~ and v 0 , and therefore A, 
are physical quantities which must be independent under a 

simultaneous change of~ and g~).) It will be sufficient for 
our purpose if A(rn/Xl appr.oaches a constant APO in the limit 

where m/X goes to zero. 

A renormalization group equation of the type (5.5) has important 

consequences. Consider the case where A can be approximated by a 

constant. For an asmptotically free theory A should be positiv. 

Using (3.4) and (4.2) one obtains 

,.,... )A ¥-Vo = ~(y X 15.6) 

For A<4 the anomaly ~=AV 0 vanishes for ;r0=0. In this case all 

scales disappear for the static solution ,t0=,; 0=0 and dilatation 

symmetry becomes restored for such a solution. Foi A>4 the tra~e 

anomaly only vanishes for ir ~ 011. There is no finite static ;K 0 
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fulfilling {3.7) and we expect thatz moves asymptotically to 
infinity. We will discuss the corresponding cosmology in the next 
section. The intermediate case A=4 corresponds to the discussion 
in I, section 3 with the important difference that now~~ 

v 
instead of? is kept constant. For all cases the renormalization 
group equation (7.20) is inconsistent with (3.7) for finite 
nonvanishingXo unless a 0=o. 

Nevertheless, for A>4, the cosmon condition (3.12) is fulfilled 
asymptotically for _t....:, Oo" • For large enough J:. the cosmological 
constant v 0 becomes arbitrarily small. Any nonvanishing positive 
a 0 may be absorbed by a redefinition of m and we take a 0=1. The 
scale m may then be identified with the characteristic scale 
generated by anomalous dilatation symmetry breaking. In a funda­
mental theory it is the only intrinsic scale and sets the units 
for all other operators with dimension of mass. In units where 
today's value oft is X

0
=1.7.1018 GeV the scale m is bounded by 

today's observed value for the Hubble parameter 

H -33 v 
o == Z ~. · 40 e 

.t z.. ~ ..(.. 
Vo 6 311• 11• - ( 3 · to-3 .,V) ~. 

8~ IW 

( V.)~ {I~~) .f (L~-";i>) (5.7) ,.,.,_= J, .. ;(0 6(1.7-) ~. ·40 

For A>4 the bound on m is bigger than 3h
0
l/Z, 10-3ev and it 

approaches this value for A~4. 

One may ask if it is reasonable that today's value of v 0 is in 
the range.., 10-46 Gev4 or smaller although individual 
contributions from QCD and weak symmetry breaking could have a 
characteristic size of ( 10-2 - 108 ) Gev4 . Let us first .discuss .... ~ 
this question for the contributions to the dilatation anomaly~. 
First of all we note that "individual contributions" from 
different sectors of the theory are not really well defined. Weak 
interactions and QCD are not independent. (For example, quark 
masses arise from weak symmetry breaking and play a role in QCD.) 
As a consequence ~ (and v 0 ) is. not simply an addition of a pure 
weak and a pure QCD piece. If we nevertheless decide on some 
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definition for the individual contributions to~, they will 

typically reflect how the effective potential changes if one 
varies a certain degree of freedom while keeping the others 
fixed. This is connected to the physics determining scale ratios. 

Scale ratios like AQCD;Qrtypically depend on dimensionless 
couplings and are unrelated to the fate of dilatation symmetry. v,.. 
Individual contributions to~ may therefore be large (for 
example ...,;4 ) even for a theory where dilatation symmetry has no 

arro~aly at all. The total dilatation anomaly ~ is related to 
different physics, namely the connection between the ~-
all. scale of vev's and the intrinsic scale m. It can be much 
smaller than the individual contributions. These must simply 
cancel if the theory either has no anomaly, or if the anomaly 
vanishes in the vacuum as a result of the dynamics of the X 
-field (~(;{0 )=0), or if~ vanishes asymptotically for m/A-"0. 
In the latter case the existence of two different scales m and;r 
(characterizing intrinsic and spontaneous breaking of dilatation 

_symmetry) is crucial. 

The minimum value v 0 of the effective potential is a quantity 
connected with a scale ratio, namelyR;x2 • A priori it is 
therefore not necessarily related to the fate of the overall 
scale and could be of the order of its individual contributions 
even if~ is much smaller~ For theories which establish a 
connection between v 0 and 8-/'• however, the situation is tv 

different. For ~ = AV 0 ( 5. 5) the physics responsible for a small~ 
also leads to a small value v 0 , independent of the size of its 
individual contributions. A potential v 0 of the form (5.6) would 
then be natural even if individual contributions to V0 are of the 
order~ 4 or even larger. We note in particular that no small 
dimensionless coupling appears in (5.6). The smallness of today's 
value of v 0 directly obtains fiom the small ratio miX· We still 
have to ask in this case if a value of)' much larger than m is 
natural. Already the most naive consideration for a theory with 
only one mass scale m (and without very small dimensionless 
quantities) would suggest that the possible values for an 
asymptotic solution for X should correspond to x.~ m, ;r =o or x.~co. 
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We will see in the next section that it is the latter case which 
is realized for v 0 of the type (5.6). The smallness of today's 
value of miX obtains then naturally as a result of the age of the 
universe. 

A fundamental theory leading to the evolution equation (5.5) can 
therefore predict a very small value for both J;' and V 

0 
(as 

observed today) as a dynamical result of the evolution of the 
universe. The cosmon conditions (3.7), (3.8), (3.12), (4.5), 

(4.15) must be fulfilled today within a very good approximation! 
This places a restriction on the allowed values of the 
dimensionless couplings of the effective low energy theory. This 
condition, v0 <H~M~, is equivalent to the usual fine tuning 
condition for the cosmological constant. In our case, however, it 
does not obtain as a result of a special choice of fundamental 
coupling constants but rather as a consequence of the short 
distance behaviour of the theory leading to (5.5). For any ground 
state consistent with (5.5) the dimensionless couplings must 
adjust to give a tiny value v 0 today. (For the example of a 
higher dimensional theory the shape of internal space must adjust 
correspondingly.) If the most general terms in~Vx(4.8) would be 

present this only would restrict the allowed value of the 
unobservable coupli.,ng :F(. If we discard d.Vx. according to the 
spirit described in the introduction of I, the model becomes much 
more predictive. For a short distance behaviour (5.5) and4Vx=O 
the perturbative approximation for the effective potential of the 
Higgs doublet leads to a prediciton for both the Higgs boson mass 
and the top quark mass (in case of three generations). Indeed, 
since for the vacuumW/~=0 and ~V!dx_•o holds, the dilatation 
anomaly for the weak Higgs doublet is given by Vo* -1/~~ (5.2). 
This should be at most of the order of the QCD contribution~A~. 
TheJS -function for the quartic scalar coupling must therefore be 
very small. The positive contributions toj&~ arising from the 
gauge interactions must cancel the negative contributions from 
the Yukawa coupling of the top quark. If the one loop 
approximation for the effective scalar potential10l is valid one 
obtains a top quark mass•SO GeV. For this value of mt the mass 
of the physical Higgs boson is.unusually small, below 1 GeV. 
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6. Cosmology with time variation of the cosmological "constant" 

In this section we study the cosmology with a potential v0 ~J = 
=(m/~)A~4 . The discussion is analogous to the model of I, section 
3 (which is recovered for A=4).lO) However, here we assume that 
f,x_ instead of X is time independent. We will use the Weyl scaled 
field equations (I, 4.18) with f =0. The potential reads 

W.(<>) = (7; )A H.,_~(-*") ! 6.1 I 

We neglect for a moment incoherent 
The field equation for~ is 

fluctuations <f=p=q~=q~=O). 

<> <> + 3HH 1'1 = c ~(-A~) 

c = A ( ,.,.,_ )A :t. 
trt3+2-w) 7=1 H 

For H(tJ=yt-1 this has a particular solution 

r:;-U:J - <>(to) .,.. ZH .e..,_ :i... 
A to 

provided 

~--1 = ~ c.C -,{-A<>~J) 
The remaining field equations in (I, 4.18) are fulfilled for 

1 = ~(3 +-ZA>) 
A"-

... y 

( 6. 21 

( 6. 3 I 

( 6. 4 I 

( 6. 5 I 

Let us now include relativistic (n=4) or nonrelativistic (n=3) 
matter (still keeping q~~oJ. It is easy to see th~t for Y>2/n all 
matter effects become asymptotically negligible sincef decreases 

.t-nY. One would end with a universe containing essentially only 
coherent motions of thee( field coupled to gravity. Asymptotic 

10) This holds for n=4. For n=3 the approximation'q~=O is not 
equivalent to q•=o in I, section 3· 
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cosmology is given by (6.3) and (6.5). For Y<2/n, however, the 

asymptotic solutions look different. One now finds 

"'! = 
2. ;n. 

f' : f'o t,; t ->­

y.-1(,'-
6Mt.. =- .!!::.. ..._ .. (-t-"';:Y) 

I 6. 6) 

(6.7) 

(6.S) 

Depending on Y we therefore have the following possibilities for 

the asymptotic behaviour: for Y>2/3 the universe is() -dominated 

Cf can be neglected). For l/2<Y<2/3 the universe is~ dominated 

during the period wher. matter is dominantly relativistic. When 

matter becomes nonrelativistic the universe turns to the usual 

behaviour a..,.. t 213 . Finally, for Y<l/2 both the radiation 

dominated and the matter dominated period have the standard 
expansion laws a~'~~ t 112 and a"-' t 213 respectively. 

It is instructive to interprete these asymptotic solutions in 

terms of a cosmological "constant" .il which varies with time. 
There are two contributions of the U field to the energy momentum 

tensor: One comes from the potential W(~) and the other from the 

kinetic term~62 . The definition of the cosmological constant, 
energy density and pressure is ambiguous. One possibility would 

be to identify A=w, f6"= A;= ( 6+4cvJG2 . This has the disadvantage 
that in presence of both the G' field and matter (radiation) the 

ratio b~tween p and p would be different for the two components 
of the energy momentum tensor. We therefore adopt the definiti­
on3J 

P.-: ('; -1) ~"' 16.9J 

with n=4 or 3 for the radiation dominated or matter dominated 

period, respectively. This determines which part of the kinetic 

term is counted in the cosmological Constant 

A = W - ( :! - ~ j( 3 + Z'c>) G-" (6.10) 

r 
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9.,. : 
• 2. 

~ ( 3 +-2-,.,) () ,.. I 6.11) 

The en~rgy momentum tensor is 

T.., = }. +- 9.- .,. f 

T,i : ( ). - P<> - p ) ~~i 
(6.12) 

We can express the time derivative of A. in terms of it , H and G--

A.=- 6'..? AG-
..,1'1 

.,. -n{f. _, )(3+-Z<.J)ir-•( H- ~t ) I 6.13 J 

This cosmology is of the general type discussed in ref.3. 11 l For 

the asymptotic behaviour one has Ar/nM=H if Y<2/n. Then A 
decreases faster than t- 2 and becomes negligible. In the language 

of ref.3 we have a f dominated universe but the energy density 

contains now an additional contribution pc compared to standard 
cosmology. The energy of coherentG-motion 9capproaches 3W (2W) 

for n=4(3). Its relative contribution to the energy density is 
(see (6.8)). 

,9.­

f"'"Sk 
'""Y = 2 (6.14) 

Taking A=4 one recovers (I, 3.9,ii). For Y>2/n the asymptotic 

behaviour isA6"-/nM=2H/nY and the ratio A.lfG" aproaches (n/2)Y-l. 
For A=4, n=4 this corresponds to the solution (I, 3.9, i). 

Comparing these cosmologies with the criteria formulated in I, 

section 5, we find that the second condition (I, 5.2) is violated 

for Y>2/3. Helium synthesis and the background radiation would be 
unacceptably altered for Y>l/2. We therefore concentrate on the 

case Y<l/2 which has the standard asymptotic evolution law 

H=(2/n)t-1 ,f"" t- 2 , lp =canst. A realistic overall cosmological 

evolution with asymptotically vanishing cosmological "constant" 

emerges provided 

A > -/'""8....,.( -3 +-Z<>---,/ 

11) For other attempts to obtain a vanishing cosmological 
constant as a result of dynamics see ref.11. 

(6.15) 
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It may be surprising that realistic cosmologies are obtained even 

for A smaller than four (~must be negativ in this case). 

Although the potential v
0 

increases ""Z 4-A (compare ( 5. 6) the 

field J. is nevertheless driven to infinity! Due to the coupling 

to gravity the driving force for X is proportional 4V
0
/,t - i'; 

instead of the standard behaviour depending only on the 

derivative of v 0 • For 0<A<4 the dilatation symmetric solution at 

~=0 is unstable. Instead of approaching the minimum of v 0 the 

fieldX moves upwards in this potential. However, v 0 increases 
4 - 2 slower than;t . As a result the ratio Rtr goes to zero and 

spacetime approaches Minkowski space asymptotically. Indeed, 

there is no difference between A greater or smaller than four in 

the Weyl scaled version. For all positive A the potential W(<) 

decreases~ exp(-~A/M} and the cosmon condition ~ =W=O is 
~..­

asymptotically fulfilled for G"'....,. Of/IJ. 

For Y<l/2 the main difference between the cosmology discussed in 

this section and the standard hot big bang evolution is the 

contribution of the coherent motion of the¢ field to the total 

energy density according to (6.14). This influences the time 

scale during nucleosynthesis. Applying criterion v) of I, 

section 5, this implies an upper bound on Y 

y" o. 4 {6.16) 

This can be fulfilled even for small values of A, provided 4) is 

near the critical value(Vc=-3/2. We have no independent informa­

tion on 4'J and a small value for W- tJ c may not be unnatural. We 

·recall that forCV=4'c the fieldS ceases to be a propagating degree 

of freedom. Also for~=Qc dilatation symmetry becomes a local 

instead of a global symmetry. The theory therefore has particular 

properties for t..J.., .Qc and a value v nearcOc must not be a "fine 

tuning" of parameters. 

Taking things together we have found a realistic cosmology where 

Newton's constant decreases with time. It vanishes asymptotically 

asz goes to infinity. In this sense the weakness of 

gravitational interactions is not intrinsic but rather a 
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consequence of the evolution of the universe. Nevertheless the 

ratio9)/X should reach a (small) Constant value asymptotically. 

This ratio is supposed to be an intrinsic property of the theory. 

In this respect the model ressembles standard cosmology rather 

than Dirac~s hypothesis. Could there be observable consequences 

of this scenario? Let us first estimate the mass of a "cosmon" 

excitation (J'- ~ with c;; the coherent background field with 

cosmological evolution (6.3): 

" 1 J"'w 
101rr = '1-/3-t-w) ~ ( <>=<>o) 

= A'" \,/( 0.) {6.17) 
'f-l>+<A>) H~ 

Expressing W(~) in terms of today's Hubble parameter H0 one 

finds that today's cosmon mass is given by H0 independent of all 

other parameters of the model 

~ ~ 2. 
.., G" = "i: H" {6.18) 

we find a new "universal" force with a range given by the size of 

our observable universe! 

For all purposes except cosmology this cosmon is massless. The 

cosmon coupling to matter (take a nucleus, for example) is of 

gravitational strenght (~-11M2 ). It depends 2J on the expectation 

value of the anomaly~in a nucleus. 12 ) In addition there are 

possible contributions from spatial gradients of fields in a 

nucleus. We will not attempt in .this paper to estimate the cosmon 

charge QH for the model considered in this section. We only note 

that as long as QN is proportional to the mass of the nucleus, ~~ 

one would simply have an additional long range attractive force 

adding to gravity. Its only consequence would be a difference 

12) The formulae in re£.2 correspond to4J=l/B, h free. They are 
related to this version (IJfree, h=ll by a rescaling ofi(, 
resulting in the identification 4(3+2~) = (1+12h)/h. Derivatives 
and metric in ref.2 correspond to I, section 2, not to the Weyl 
scaled version of I, section 4, which we use in this section. 

·-
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between the value of Newton's constant observed in our solar 
system (or galaxy} and the one relevant for nucleosynthesis. The 
first counts both contributions form the cosmon and the graviton 
and is therefore larger than the purely gravitational constant 
GN=M - 2 • As a result the Planck mass M could be somewhat higher p p . 
than commonly estimated. The effect on nucleosynthesis goes in 
the 'opposite direction than the effect from .Hs·(6.14) and the 
bound (6.16) could increase. Deviations from QN-~ are expected21 
to be proportional to baryon number in leading order. They may 
give rise to a baryon number dependence of the combined graviton 
plus cosmon force, which does not depend on distance for the 
model of this section. Experiment tells that such a baryon number 
dependent contribution must be sma11. 12l 

The cosmon coupling to matter could also have effects on 
cosmology by inducing a nonvanishing value q~ in the field 
equations (I, 4.18). This may be particularly important for the 
matter dominated epoch. Since in our model if' does not vanish we 
would predict a deviation from energy momentum conservation 
according to(I, 4.18). This would lead for n=3 to an asymptotic 
behaviour H=-,t-1 , "f¥2/3 as discussed in ref.3. One also should 
estimate possible dissipative effects from the decay of the 
coherent~ motion. They could modify the contribution of p~ to 
the total energy density and therefore alter (6.16). At first 
sight, however, such effects seem to be very small. 

In any Case we should not forget that our model (characterized by 
(6.1) andf=const) is at best an approximation. It is conceavable 
that the ratio ;1~ undergoes a very slow change even for the 
asymptotic behaviour, resulting in a tiny value of~ for the 
discussion of I, section 5. Even for r=const and a potential v 0 
fulfilling (5.5) we expect the anomalous dimension A to depend on 
the renormalized coupling constants of the theory. This may 
induce a weak X dependence of A - typically A=A0+A1 ln~/m. For A 
depending on ~ one obtains 

.-
W.(-6)- w~(- ~I At<SJ~r>) (6.19) 

iff" 
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It is well conceavable that the C) dependence of A leads to 
, -2 cosmologies where both P6 and~ decrease faster than t so that 

all effects formq become asymptotically negligible (at least for 
q~=O). As an example, consider a potential which can be 
approximated for r; >-~by 

\-.41<>)# oW ( ~>:/ x2£ .-,{-A ( G"~<f) lrL J 
This leads to an asymptotic solution H=(2/n)t- 1 ,y .... t- 2 with _,_ 

( 
2.. A -/: ) lr<. -t>(t) = H ;r .-.. 'f - <> 

I 6.20 l 

F'- = g{3r~>(~ --t) ":!.... (6.21) 
{1.,.£) .. A.. w 

• 2 ' Bothb and W (and therefore f 6 andA) decrease asymptotically 
like t - 2 ( lnt) ~!:t, and become negligible for c >0. 

7. Conclusions 

We have found realistic cosmologies for models where Newton's 
"constant" is a dynamical degree of freedom and can therefore 
evolve with time. The models we have considered are quite 
different from Brans-Dicke cosmology due to the existence of a 
nontrivial effective potential. It is crucial for realistic late 
cosmology that the ratio between the scales of weak and strong 
i_nteractions and the dynamical Planck mass, ~IX, approaches 
asymptotically a constant (or almost so). Not only the.Planck 
mass ("',l) but also the scales of weak and strong interactions (vip) 

should correspond to dynamical degrees of freedom. These scales 
may also change during the evolution of the universe. Two general 
types of cosmologies are possible in this context. Either A 
approaches asymptotically a constant value lD and similar for4'. 
Realistic late cosmology is then expected to be of the standard 
type. Or A goes asymptotically to infinity. Depending on the 
specific model the cosmology can be of the standard type, but 
interesting modifications, for example for the critical energy 
density of matter, the age of the universe, or the static 
behaviour of c'oupling constants, are also possible. 
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In our models the expectation value otz is identified with the 

scale of spontaneous breaking of dilatation symmetry. The Fermi 

scale f and the scale of strong interactions ~CD should 

asymptotically be proportional toir· They should therefore not 

correspond to intrinsic scales of the theory if cosmology is of 
the type where X still evolves today and goes asymptotically to 

infinity. In this case AQCD and ~ should also be a consequence of 
spontaneous dilatation symmetry breaking. This is realized if the 

renormalized dimensionless couplings of the scale invariant 

version of the standard model, when evaluated at the short 

distance scale :X, are either independent of;( or do only weakly 

depend onx . In the first case dilatation symmetry has no anomaly 

and the fundamental theory should be finite. (This could be the 

case for superstrings.) For the second possibility the running of 

the short distance couplings generates a dilatation anomaly. 
Scale transformations are not a quantum symmetry and the running 

of dimensionless couplings introduces an intrinsic scale m in the 

theory. If the dependence of the short distance couplings on;r is 

weak, the intrinsic scale m is much smaller than the spontaneous 

scale X . We discussed models where m is even much smaller than 

J\QCD and ip so that F ft is essentially unaffected by the existence 
of an intrinsic scale and dilatation symmetry is a good 

approximation for'the 'low energy standard model. There is 

actually no contradiction between the observed running of the 
strong coupling constant and the absence (or small role) of 

dilatation anomalies. The dilatation anomaly is connected to the 

running of the fundamental coupling constants of the short 
distance theory and not to the evolution of the effective low 

energy theory. We also have studied models where strong and/or 

weak interactions are characterized by an intrinsic scale mvAQCD 
or m..,f. The language of spontaneously broken dilatation symmetry 

is still adapted (m<<Xl and cosmology can be characterized by 

properties of the dilatation anomaly. In such models the 
~ 

asymptotic constant ratio ,IZ must obtain as a consequence of ;r 
approaching a constant;rD . 

In this paper we only describe late cosmology. Very early 

cosmology may be quite different from the asymptotic behaviour of 
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tp/J_. For example, ;r may initially have been of the same order as 

f. This would have important consequences for early cosmology 

since gravitational interactions would have had the same strenght 

as weak interactions! It is not clear for such scenarios if the 

temperature was ever high enough to restore SU(2)xU(l) symmetry. 

There was possibly no weak phase transition in early cosmology. 

(In the Weyl scaled formulation r decreases from a value ~Mp to 

today's scale in this case.) 

What about the physics associated with the vanishing of the 

cosmological constant? In general, a theory has two different 

systems of mass scales. First, there are intrinsic scales. These 

are generated by the running of fundamental dimensionless 

coupling constants and connected to the dilatation anomaly. More 

generally, if a model has intrinsic mass parameters (like a term 

/¢<fz.in the Higgs potential) we may formally include such 

explicit scale breaking effects in the anomaly. We denote the 

largest intrinsic physical mass scale by m. Second, we have 
11 sliding" scales. These correspond to expectation values Of 

scalar operators. Their value is determined dynamically and may 
evolve with time. We denote the heaviest sliding scale by M. 

Typically, today's value of M should be in the vicinity of the 

Planck mass Mp. The two systems of mass scales can move against 

each other. This corresponds to the degree of freedom of a 
(pseudo)dilaton. We call this excitation a cosmon if its dynamics 

leads to a vanishing cosmological constant. Depending on the 

ratio m/M we distinguish four different scenarios for the 

cosmological constant: 

A) Dilatation symmetry has no anomalies. No intrinsic mass scale 

appears in the theory (m=o). There is a massless Goldstone boson 

~-ln~(unless its kinetic term vanishes). The vanishing of the 
cosmological constant is related to dilatation symmetry only 

through the specific form of the effective potential. This must 

possess a minimum for nonzero vev's of some scalars or, 

equivalently, a flat direction. New physics could only arise if 
the derivative couplings of the Goldstone boson w6uld lead to an 
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appreciable coupling to matter. This would also influence 
cosmology for the matter dominated epoch (q~~O). 

B) The intrinsic scale m is much smaller than the observed scales 
of weak and strong interactions. Integrating out all degrees of 
freedom of the standard model leads to an effective theory for 
gra~ity and the field ;r which is characterized by an effective 
potential v 0 sx>· If the intrinsic mass scale m arises only 
through the running of fundamental dimensionless coupling 
constants, the dilatation anomaly is given by the renormalization 
group equation for v 0 , ~ yJIWt" . We assume that this 
renormalization group equation is determined by a nonvanishing 
anomalous dimension A ~d\6".7 =AV 0 ). This implies a specific for~ 
of the potential for<S", W((j')..., exp(-AG'/M). As a consequence, the 
sliding scales (~,;) still move today compared to m and the ratio 
X/m goes asymptotically to infinity. This leads to cosmologies 
with a nontrivial time evolution of the cosmological constant 
which vanishes asymptotically. The kinetic energy of the¢ field 
can contribute a fraction Pc to the total energy density of the 
late universe. The cosmon U mediates a new long range force with 
at most gravitational strength. Its mass is today given by the 
Hubble parameter, m,f' H0 . 

Depending on the matter couplings of the cosmon this could lead 
to a composition dependence of the combined gravitational + 

cosmon force. If the cosmon contributes a substantial amount to 
the lon9 range force, this would inflUence the age of the 
universe. For the matter dominated epoch the energy momentum 
tensor of matter would not be conserved (q~*O) and the evolution 
law could be modified (H ... .,.t-l, 1"+2/3). Also, if f!z. approaches 
only asymptotically a constant value, the variation of this 
quantity today would lead to a time dependence of coupling 
constants. All these interesting possible effects require, 
however, a substantial coupling of the pseudodilatonO to matter. 

C) The intrinsic mass is identified with the scale of strong or 
weak interactions2], m ....,...,QCD or_ m"' f . In this case ;t should 
approach a static finite value (U~~). This requires that the 
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anomalous trace of the energy momentum tensor must vanish for 
some value ofG (~(G;)=O). The cosmological constant vanishes if, 
for~=G;, the trace of the energy momentum tensor is purely 
anomalOus (~(~)=~(bD)). The connection of this 
"cosmon-condition" with properties of the fundamental theory is 
not well understood. The mass of the cosrnon is mc- ...... m2 /M. Exchange 
of cosmons leads to an intermediate range force with 
gravitational strenght and typically a nontrivial composition 
dependence. Depending on m, this force could be observable. The 
cosmology for this scenario is not yet well studied. It is 
i~fluenced by the energy stored in the coherent motion of the 
cosmon. For late cosmology, this depends on the initial 
conditions after the last (QCD) phase transition and on the 
matter couplings of the cosmon (q~). Since the anomalous trace of 
the energy momentum tensor depends on condensates, and therefore 
also the value~ which determines the strength of gravity, the 
cosmology of phase transitions may be rather complicated. 

D) Finally we should mention the possibility that m~~- No 
observable long range or intermediate range effects survive. All 
particles except those of the standard model and the graviton 
have huge masses w~. Although our treatment of dilatation 
symmetry and its relation to the cosmological constant remains 
formally valid, it is questionable that it is helpful for an 
understanding of the cosmological constant problem. (One word of 
caution, however, applies to the last two scenarios: It is not 
completely excluded that intrinsic scales appearing in particle 
physics are much higher than the one characterizing cosmology.) 

It is even conceavable that features of two of our scenarios are 
realized simultaneously. This can happen if the effective low 
energy theory has an addition-al approximate dilatation type 
symmetry, corresponding to a rescaling of~ and gjL~ in the Weyl 
scaled version. (This requires 6 Vx=O ~> With respect to such a 
symmetry M plays the role of an "intrinsic" scale and the 
symmetry is broken explicitely in the gravitational sector. 
Nevertheless, there may be an additional pseudo Goldstone boson~ 
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with a small mass and nontrivial interactions with gravitational 

strength. Our formalism with h(~)*l can be applied to this 
situation. 

Although we know from observation that today's value of the 

cosmological constant must be tiny, we do not know which one of 

our scenarios applies. The unknown physics related to this 

question could well give rise to interesting obervable effects. 

Possible deviations from standard big bang cosmology for the late 

evolution of the universe could provide important hints about 

properties of the fundamental theory. 
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Appendix 

In order to account for possible dilatation anomalies in the 
gravitational sector we generalize the gravitational piece of the 
effective action 

( '1. • ~ 
5" = - !ol~x ~ A X R. 

(A. 1) 

with h a dimensions less function off and ;(' , depending on/' if 
·there is a dilatation anomaly in the gravitational sector 

.~ ~ ~ Uf,zi/'/'1•(,/'J) (A. 2) 

The action (1.1) and the field equations of I are recovered for 
h=1. This modification of the gravitational interactions changes 
the dilatation current 

J; = z{T"'{/1<-4>+64- +'3x~i >z~.z 

... i 1 ... 3!:' ~'5; ) i a. i J 
" )<p 

~ . ~~ "" z ~ ;f'rl {( "'-' + 6~ +- ti~ + 31-1 ~ ) 1·1()., " 

+ (A ... 3;;· ~~ > 'P "d., 'P r (A. 3 l 

The gravitational contribution to the dilatation anomaly is 

%= - z'- R ( x ;i + q> ;~ ) 
(A. 4) 

tJ_ ; 
6 

~ ,; " hen(-!!£.)#_ =-H';>J{ (f\+1-16 "'-"' --,0. o;_.) 
- --,- H 6 ~G " / 11 " 'l 

(A. 5) 

(One may 

piece to 

remove a .. total divergence from~ and add a 
h independent of~, h=h(i/Xl, one 

corresponding 
J

0
). For has J;, = .?(.=o • 
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The equation of motion for G' can be derived from the dilatation 

current (A. 3} in the weyl scaled version (assuming?f=O ,rcs;,.o). 
(g., +4Z4 + .fz.H ~ +2 <a'" )1>."'.,.+-6(~~H~) 6:"6)_.. 

J-1Z. I / qf> Ul) / '/ (A.6) 

- ~IV L "~ --~-H~R. 
Here we define W(G')=W( G"1 q&) and similar for h(G"). 

The modified gravitational equation from (A.l) is 

Rr - -1- R ~ ~ J.z._ { ( 2~x_._ lv~ - (l.{x._ ~ ff i/" 
D~- p ~ ~ ~ <l' ~ ... } 

+- 0<,/ X.v 'l.; .. - ~.:v ~r ~· + v ~r + T_,...., .,. T /'' (A. 7) 

From this we compute the curvature scalar in the Weyl scaled 

version 

0 I { ,.. L ,.. 

'' =- UH"._ ~-l<P;r'P; -(B<n·f<A.+ljff )1';/'Gi 

-I'-~ <y.S: .. .,. T"";} ~3 ~4 Gj /- ~ 3 a1'i1 ~,;;:"' 
Inserting into (A. G) gives (for 1 constant) 

.flcJr>;/ .,.~(.-J6j"6j/' =-~ +Z ):;.:~ w~t~./-T; -~ :J'(<>) 

fl. 6") = 5'41 ·1-4<.~ + 2 'fi;_ + -t.l./1 ~ + 3 H'" ~ ~ 
4.{6") = 4:1. ~ +6H ~~- t-(f'<>r~\J.C.4 t-311"!.5.. ;)'".£.~ 
" ()6' ill>~ H" ~ <1<S" "<S ~ 

(A. B) 

(A.9) 

(A.lO) 

(A.ll) 

We note that for -,h/t):)#:O Newtons's "constant" still varies in the 

Weyl scaled version if G"-1:0. Also i)"( G) has a contribution from the 

trace of the energy momentum tensor of matter T~. Such features 
could be removed using a different Weyl scaling and a new varia­

ble~·. In the new scaling, however, q~=O would correspond to 

nonvanishing ~ and the energy momentum tensor would no longer 
be conserved in the matter dominated period for ~'•o. 
Altho~gh we will not discuss this effect in detail in this paper 

it may have interesting consequences for cosmology in the matter 

dominated period. 
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