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Abstract 

We discuss cosmologies where the Planck length is not a fundamen
tal con~tant but rather evolves with time. The dynamics which 
should be responsible for today's tiny value of this length scale 
are governed by the effective potential of a Brans-Dicke type 
theory. Qualitative properties of this potential depend on the 
short distance behaviour of the unifying fundamental theory. We 
discuss criteria for the asymptotic behaviour of realistic 
cosmologies and show that the role of a possible cosmological 
constant is quite different from the case of standard cosmology. 
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1. Introduction 

In our present understanding of fundamental laws of nature we 
observe mass scales of two different orders of magnitude. On the 
one side there are the mass scales characteristic for the stan
dard SU(3)xSU(2)xU(l) model which we may identify with the QCD 

scale~QCD and theW-boson mass Mw· But we also know that much 
higher mass scales appear in our world: The Planck mass MP, 

characteristic for gravity, is 17 orders of magnitude bigger than 
Mw· The observed baryon asymmetry in the universe together with 
th.e observed stability of the proton suggests a scale Mx cha

racteristic for baryon number violation which should not be too 

much below MP. Also the smallness of neutrino masses (if they are 
not zero) could be explained by a high scale characteristic for 
lepton number (or B-L) violation. The approach to this problem 
adopted most frequently takes MP as a fundamental (intrinsic) 
mass scale of the theory. The question then arises why other 
scales like Mw are so much smaller than MP. In the gravitational 
sector one needs to solve the cosmological constant problem, i.e. 
to explain why today's value of the Hubble parameter H0 is much 

smaller than Mw2/Mp (or even MP). 

In this paper we investigate the alternative approach where Mp is 
not a fundamental mass parameter but rather a property of today's 
state of the world, typically given by a vacuum expectation value 
(vev) of some scalar field. Its present value may then be a con
sequence of the evolution of the universe, a hypothesis proposed 
long ago by Dirac11 . Such a theory may have some other fundamen
tal mass scale m which we suppose to be much smaller than MP. As 
a typical example m could be given byAQCD or Mw• but it could 
even be much smaller. Alternatively the theory may have no 
intrinsic mass scale. In the latter case dilatation (scale) 
symmetry can only be broken spontaneously. For both alternatives 
MP is given by the present value of a scalar field X which is 
much bigger than m and therefore not directly related to an 
intrinsic scale. Typical "initial" conditions for cosmology do 
not require anymore that all scales are of order Mp. The scales 
for initial conditions would rather be given by m or even be 
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completely random. A central question in this scenario is the 

following: How doesx evolve with time so that its present value 

is MP? 

The most popular proposal in this direction is the model of Brans 

and Dicke 2 l. (See also the description in re£.3). This model 

assumes a massless scalar ;r which has no self interactions or 

interactions with other fields except for the graviton. 

The Einstein-Hilbert term in the action (MP2 /16~)R is replaced by 

jR and a kinetic term for;( is supplemented. In the light of 

modern particle theory and its unification with gravity, however, 

there seems to be no good reason why X should not be 

interacting. In general, we expect some potential, V( f;_.;(), where ft 
denotes the degrees of freedom of the low energy model like the 

Higgs doublet. It is not surprising that the combined cosmology 

for gravity and z will crucially depend on the form of this 

potential. The purpose of this paper is a study of cosmologies 

with field dependent Newton's constant in presence of a potential 

v. 

From the point of view of the low energy standard 

SU(3)xSU(2)xU(l) model the field ;r plays the role of a physical 

cutoff scale. For energies beyond this scale physics is expected 

to change dramatically. For example, a much higher symmetry may 

become visible. Actually, the standard model very probably needs 

some physical cutoff as an implication of the triviality of~~

theory (which very likely applies to the weak Higgs sector and 

also to the Abelian U(l) theory) . 11 In absence of any 

experimental results indicating new (intermediate) scales, it 

seems not unnatural to identify X with this physical cutoff. What 

we have in mind is a model with a variable cutoff length 1. For 

example, in the lattice regularization of the standard model this 

would mean that 

of freedom. For 

the lattice distance 1 becomes a dynamical degree 
-1 

most purposes the field X""l may be thought of 

1) For a thorough discussion of triviality and its implications 
see ref.4 
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as a background field. Its evolution must be such that 1 becomes 
-1 

much smaller than M w· 

What are the dynamics of the cutoff length 1 resulting from its 

interaction with the standard model degrees of freedom ~i? First 

we expect nonrenormalizable interactions of the type l 2f 6 or 
2 (oTA'l 2 · h ~ · d bl · l rr Wlt f the Hlggs au et andy fermlons. They correspond 

to the "finite volume effects" for the lattice or the baryon 

number violating four fermion interactions in grand unified 

models. More general, such interactions are proportional lP, P>O, 

and vanish for 1~0. Next there can be logarithmic contributions 

like ~ 4 ln(l¥l from the running of dimensionless coupling 

constants. Finally, the symmetry also allows a mass type term 
-2~2 -P 

1 ~ for the Higgs doublet. Terms proportional 1 are 

dangerous. They blow up for small 1 and tend to make any small 

value (lfl<<l impossible. Such terms must be absent for a 

realistic model (or at least their cOefficient must be very 

small). To a good approximation V(ft,ll should be finite or at 

most logarithmically divergent for 1~0. 

We are interested in a model where for small enough l (so that lp 

corrections are negligible) the observed SU(3)xSU(2)xU(l) model 

becomes a renormalizable theory without any mass like terms ~1-P. 
In contrast to the usual renormalization procedure where 1 is 

only a technical device, this becomes in our context a strong 

physical assumption on the relative decoupling of the short 

distance degrees of freedom. It is closely related to the exist

ence of a gauge hierarchy. We will adopt this assumption through

out most of this paper. We also note another difference from 

usual renormalization, namely that the renormalized dimensionless 

couplings at some fixed low energy scale may now depend on 1. 

As an example of a physical cutoff length l one may consider 

higher dimensional theories. Here the degree of freedom l is 

identified with some characteristic length scale of the internal 

space. Our assumption implies a relative decoupling of the low 

energy degrees of freedom from the short distance degrees of 

freedom which are connected with the dynamics of the internal 
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space. In this sense the low energy world should "lose its 
memory" about the scale of the internal space (up to possible 
logarithmic corrections). One should note that 1 is not 
necessarily simply the volume degree of freedom of the internal 
space. The decoupling of the low energy degrees of freedom may 
obtain as a consequence of an internal space changing also its 
shape as 1 varies. Rough properties of the low energy world like 
gauge symmetries and quantum numbers of chiral fermions do not 
depend on detailed properties of the internal space but follow 
from isometries and index considerations 51 . The dimensionless 
couplings, however, will depend on the shape. This may contribute 
to the dependence of these couplings on l. 

In a more general context we may consider some fundamental theory 
which is a system of infinitely many degrees of freedom (as, for 
example, strings). It may nevertheless be possible to describe 
the physics of our world by much less properly chosen degrees of 
freedom, in a way that all other additional degrees of freedom 
only describe small corrections, negligible for most purposes. 
This is related to the concept of universality classes in 
statistical mechanics. Universality classes are usually charac
terized by symmetries and a few other basic properties. We know -
even if we don't understand why - that our world belongs to a 
universality class characterized by the symmetry 
gen

4
xSU(3)xSU(2)xU{l) in a phase where SU(3) is confined and 

SU(2)xU(l) is spontaneously broken to U{l)em" (Here gen4 denotes 
general-coordinate and Lorentz transformationsin four dimen
sions.) As a consequence of the symmetries, such a universality 
class should have a description in terms of four dimensional 
space time with a finite number of fields which include the gauge 
bosons and the Higgs doublet. In addition the fermionic content 
of this universality class must be specified - the quantum 
numbers of chiral fermions. The interactions among these fields 
should be renormalizable in the limit where the other 11 irrele
vant" degrees of freedom can be neglected. 

If we study the dynamical evolution of possible states the 
"ground state" associated with a certain universality class may 
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be viewed as a fixed point in the space of states which is 
approached asymptotically by many trajectories. (As an example 
from statistical mechanics the ground state could correspond to 
the thermodynamic equilibrium state at the critical temperature 
of a second order phase transition.) For a description of the 
approach to the ground state, however, one also needs to consider 
the "irrelevant" degrees of freedom which only decouple in the 
asymptotic ground state. (For the statistical analogue this would 
be the transition from non-equilibrium to equilibrium.) The 
decoupling of degrees of freedom in a general field theory is 
most easily described by some mass scale (1-l) growing huge 
compared to the mass scales characteristic for the ground state 
<AQCD' Mwl· This rises the mass of the irrelevant degrees of 
freedom compared to the modes of the standard model. In this 
sense our study of the evolution of l is a study on how the 
irrelevant degrees of freedom decouple dynamically during the 
approach to the ground state characteristic for the 
gen

4
xSU(3)xSU(2)xU(l) universality class. 

Actually, there are two ways how degrees of freedom can decouple 
for 1~0. For most irrelevant modes the mass will grow~l-l This 
results in local nonrenormalizable interactions between the modes 
of the standard model. As a second possibility the mass of such a 
particle may be zero or remain small for 1~0, whereas its 
couplings to the modes of the standard model vanish for 1~0. This 
happens if no renormalizable couplings are permitted by the 
symmetry. In particular, this is the case for the graviton which 
decouples for MP~~. Massless modes cannot be eliminated in 
favour of local nonrenormalizable interactions between the 
standard model modes. They must often be kept for the description 
of low energy phenomena. Despite their small coupling strength 
they can play a role for physics at very long distances. 

In our approach the length l itself is one of the irrelevant 
degrees of freedom. It is not clear a priori if it belongs to the 
first category {with mass Nl- 1 ) or to the second one. Since 1 is 
a scalar and a singlet under SU(3)xSU{2)xU{l), only one renorma
lizable coupling with the modes of the standard model is allowed 
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by the symmetry, namely the coupling with the Higgs doublet of 

the form 1- 2~2 . This coupling (unless it is tiny) is in 

contradiction with the existence of our world being described by 

the gen4xsU(3)xSU(2)xU(l) universality class and should therefore 

be discarded. If the mode 1 has mass -1-l it will only play a 

role during very early cosmology, for example in higher dimen

sional models of inflation6 l. In contrast, if this mode remains 

light it possibly can also influence late cosmology and may be 

related to the fate of the cosmological constant. In this paper 

we investigate this latter scenario. 

As we have already mentioned the very assumption of our world 

being described by a gen4xSU(3)xSU(2)xU(1) universality class 

implies that the product lMw must be very small. There are in 

principle two possibilities for the asymptotic behaviour: either 

lMw~O or lMw approaches a very small constant. In both cases the 

small value lMw implies the existence of a gauge hierarchy! In a 

sense, the gauge hierarchy problem is now turned upside down: We 

do not start from a short distance theory and try to explain the 

occurence of small mass scales. We rather start from the observed 

standard model with scales~CD and Mw and try to describe how the 

other degrees of freedom of a more fundamental theory decouple as 

a result of dynamics. one may wonder if the assumption of a 

gen4xsU(3)xSU(2)xU(l) universality class also implies a solution 

to the cosmological constant problem since for 1~0 gravity should 

decouple and the ground state should be flat Minkowski space. 

There is unfortunately no such automatic solution of the cosmolo

gical constant problem. Since MPNl-l the curvature scalar R will 

indeed be proportional 1 2m4 with m some suitable scale of the low 

energy model. It vanishes for 1~0 as it should. But a value m~ 

gives a value for R more than 50 orders of magnitude bigger than 

observed. Additional physics is therefore needed for an 

understanding of the smallness of the cosmological constant. We 

will study this question in detail. 

To summarize this discussion we hope that we have convinced the 

reader that the potential V(~; ,1) can never be derived from the 

standard model alone. Its properties reflect the way how our 
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observed world emerges from some more fundamental theory. our 

study therefore needs a guess how the decoupling of the irrele

vant degrees of freedom might be realized. This situation has an 

important consequence for our understanding of cosmology: The 

potential V(~·,l) can crucially influence even late cosmology, 

but it cannot be determined from covariance arguments plus 

standard model physics alone. Additional unknown physics is 

needed and we should not be too surprised if the way how the 

standard model arises from a fundamental theory leads to observa

ble deviations from the standard hot big bang cosmology even at a 

late stage of its evolution! 

In section 2 we give the action for the coupled system of a low 

energy degree of freedom~ (which is the scalar doublet), the 
-1 

physical cutoff scale X =l and gravLty. We derLve the coupled 

system of field equations in presence of matter or radiation. We 

concentrate on the special case of a Roberson-Walker metric with 

k=O. In section 3 we discuss as a first most simple example for a 

nonvanishing potential the asymptotic solutions of the Brans

Dicke theory with cosmological constant. This corresponds to a 
~ av N 

potential V( ~ ,l) =V 
0 

for ?Jff ( 91., l) =0. In contrast to the unaccept-

able exponential behaviour of the scale factor a(t) for standard 

cosmology with cosmological constant, we find now a power law ex

pansion for a(t) even for v 0 >0! The Hubble parameter decreases 

like '7 t -l. This demonstrates the possible drastic differences 

between cosmologies with fixed MP or with Mp"" X in case of a 

nonvanishing potential. A nonzero v 0 is much less harmful if the 

Planck mass is given by a dynamical degree of freedom. 

In section 4 we develop an important alternative language for the 

description of our models which is related to Weyl scaling. This 

version is formulated in terms of ratios like ~IX, <9~~x2 ), R;x~ 

The Planck mass appears now as a constant. In this version the 

short distance degree of freedom with properly normalized kinetic 

term is ~~lnX· Also the effective potential is modified. It has 

a typical exponential dependence onQ. The description of cosmo

logy is closer to a standard gravity theory in this language. The 
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new physics associated with the dynamical Planck mass appears now 

in the specific form of the effective potential. Of course, the 

Weyl scaled formulation is strictly equivalent to the formulation 
of section 2. In section 5 we formulate criteria for a realistic 
overall behaviour of cosmology based on the observed properties 

of late cosmology and on the successful description of 

nucleosynthesis and background radiation by the standard hot big 

bang model. We discuss the solutions of section 3 with respect to 

these criteria. More general potentials and the corresponding 

cosmologies are discussed in a subsequent paper71 with emphasis 

on the fate of dilatation symmetry. 81 

2. Variable short distance scale 

As a convenient formalism for the discussion of this paper we 

will use the effective action for the coupled system of the Higgs 

doublet¢, the short distance lenght 1 and the graviton g~, 
These fields may be considered as background fields. The 

effective action is thought to be obtained in the usual way by 

integrating the quantum fluctuations in presence of sources and 

performing a Legendre transformation. (Of course, for the gravity 

sector this assumes the existence of a consistent quantum theory 

of gravity.) We neither know the fundamental theory nor are we 

able to solve a complex quantum theory. Both would be necessary 

to compute the effective action. For our discussion we mainly use 

the symmetry properties of the effective action, scale arguments 

and a few qualitative assumptions on the l dependence of the 

effective potential. This will be sufficient to establish the 

asymptotic behaviour of cosmology. The cosmological equations are 

obtained as the classical field equations obtained from a vari

ation of the effective action. Our treatment can easily be 

generalized to include other degrees of freedom of the standard 

model as for example the effective ~-model for QCD at small 

momentum. Alternatively, one can imagine that the QCD degrees of 

freedom are integrated out and their -effects included in the 

effective action. We will adopt the latter approach in order to 

keep the discussion simple. 
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We write the effective action in the form 

5 

s· 
~ 

= 

so+ s 11 

fcl'x t" { [' R - L;-u; [) L )"' L 

-~q;t;/·¢ + vc¢~en 
By our assumption we should obtain a standard renormalizable 

SU(3)xSU(2)xU(l) field theory including the weak doublet for 

I 2.1 I 

1 << ~-l. In this limits should become the corresponding 

effective action for ~ on flat space with s 0 containing the 

standard kinetic term and the effective potential V. In particu

lar, v should remain finite (or diverge at most logarithmically 

for 1~). It can therefore not contain terms Nl-P, P>O. Gravity 

is a nonrenormalizable interaction, and its coupling, Newton's 
11 constant", should vanish for 1~0. We normalize 1 so that the 

coefficient of the curvature scalar in s 0 {which is the inverse 

of Newtons "constant" divided by 1611") is 1-2 . We want to consider 

the physical cutoff length 1 as a dynamical degree of freedom and 

there should be a kinetic term for 1. The most general term not 

involving more than two derivatives would be f(l,¢J~t~~L. Ne

glecting the dependence on~ the only possible function not in

volving mass scales is f-vl- 4 . (If 1 is interpreted as an internal 

lenght scale of a higher dimensional theory, kinetic terms 

""' 1 - 47!~""./ are indeed obtained from dimensional reduction of 

invariants with dimensionless couplings.) In order to ensure 

stability of Minkowski space for 1~0 we require 

w >-2 
:<.-

I 2. 2 I 

(This condition will become more apparent later.) The effective 

potential V may in general depend on l and we will discuss 

various possibilities later. V is the only piece in s 0 which 

could contain mass scales. According to our assumptions V either 

contains no mass scale at all or its mass scales are much smaller 

than the Planck mass. In general, the effective action will only 

be approximated by s 0 and we collect all other pieces in SM. SM 

contains all higher derivative terms (including non-local terms) 
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in the effective action as well as <¢ dependent) deviations of 
~ -4 f(l,rl from 4~1 . We also note that for cosmology the effective 

action has to be evaluated on a background with nonvanishing 

entropy, for example in thermo-dynamical equilibrium at 

temperature T. We formally include all such effects either in V 

or in SM. Both V and SM may therefore in general depend on other 

(time dependent) functions characterizing the state of the uni-

verse, like temperature T, energy density~, pressure 

classical expectation values of other fields. 

we may bring s 0 into a more standard form by using 

X. = t -I 

For the doublet field¢ we write 

.... 
cpix) = '""'f( id(xlf) tpix) 

~ 

p or 

12. 3) 

12.4) 

with/f(x) the (real) modulus of¢. We will neglect the degrees of 

freedom .t(x). The effective action s 0 for :X and f reads 

s· = J tl'x f• [ ;/ R - 9-c.> 3-- ;r :;r" X 

-)v<??J"'.j +V(rj,z)~ 

The field equations are 

~.u 

'('; /' 

" X; /' 

~ 

~"-

I ;>V 
.,. :Z o?f 

I JV 
+ Kc.:> Oi( 

:t R ir 

= 
-'f 
1 

+ ~ Rx 

.J.._ 
= zx'" (t; 

I ~ ;r 
¥4)'1 

+ f'~' -~-Vet" + T'":, ) 
!'" ur /' 

I 2. 5) 

12.6) 

12.7) 

12.8) 

T" -/'-

~f 

Tl'" 
Here we 

~H 

T 
I'" 
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- 'fQ ;r;rZ/j-1'"" .,_ g<.J X;/' I(" 

~-- z 1 x" );!'" - z < x"'J/ r ir' 
...... ""f"" z"" ..v 

- 1'; f 1'; <J !'"' +- <f,l' <f; -.> 

define 

= Z ~-~ .5S'"' 
'if &j/'" 

lf~' = H ·li a5H 
•<'I' 

c; ")'_ = t rv,_ :; 5/-1 
&;r 

12.9) 

12.10) 

12.11) 

These quantities contain in particular the effects of incoherent 

excitations (entropy). They fulfil the identity 

T~l-11'" +l 1"-:t ~~/<~?'=0 
; , X; '1 '" -v 1'; Cf 

12.12) 

-M We may call T ~ the energy momentum tensor of matter and note 
~ ~ 

that it is covariantly conserved only if the fields rp ,i( are 

static or their associated q are zero. Contraction of (2.8) gives 

the useful identities (with TM= T~l 

R = -z~·{f11.- w-z,P,.,tf/-E"':r.;pZ/ -61;r'")/J'} 12.13) 

""H ........ '""p ~ 
((,+lkJXx<>/r=T .-¥-v-z.'?;r'P; -Xo;r 12.14) 

For e..;-}-3/2 the kinetic term for .x2 vanishes and ;r ceases to be 

an independent degree of freedom - it would then be determined as 

a function of (f 
( 2 .14). We note 

by the vanishing of the right hand side of 
. 0 L that for V lndependent of ;r the source term for ;r_ 

""'q """1-1 v 
is the trace of the energy momentum tensor T /.., +- T r t- V~r· 

Let us now consider an isotropic and homogenous universe with the 

usual Robertson Walker scale factor a(t): 
N N ~· 0 ~ N(') ( ) r; ~ = 4 'J ;l = - C<. ( t) ih J '(' = 'P c ' ;r = ;r t 
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T., = f 'it"" , T-J -p if•i / f"~9"ft}, 11:= <((t-) I 2.15 I 

Motivated by the success of inflationary cosmology we will 

further assume tha"t a- 2 can be neglected compared to H2 = (g./~0 2 

up to the present time (k=O universe). In addition we suppose 

(for late cosmology)that ~~ is dominated by incoherent matter 

fluctuations with 

~ ( ,.,_ ) ~ p- 3-,f 5' (2.161 

and n=3 (n=4) for the matter dominated (radiation dominated) 

period. We introduce 

"¥' ~ i( " 

1"' = 3. tfx 
Z4> 

This leads to the field equations 

ii" I 

= 6"1' 
. " ~ 

( V+- If"+- cv :1::.. - {,Hy +- f ) ,.. 
~+-""HP =-zfr<f'-z~t'l~ 
~ ""• 1 CJV 

Cf' +- 3H if +- :z; off = 
~'I' 

9 

- ~ • I [ v ~"' <lV } -y/.,. _3H'f' - 6+i4> '1-V+Cif-,.)p-up -zrvd~"' = 

3. Brans-Dicke-theory with cosmological constant 

(2.171 

'l'f 
(2.181 

As a first simple example for cosmological solutions we consider 

the case where the potential V is independent of;(. In addition 

we as~ume that~ is settled at a corr.esponding minimum of V so 
that ip=o. The value of the potential at its minimum, v

0
, plays 

the role of a cosmological constant. We also take q:t = CJ"= 0 and 

the energy momentum tensor for matter is therefore conserved. For 
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a radiation dominated (n=4) or matter dominated (n=3) period the 

field equations read 

II~ = v. 
b"f' 

. 
~ 

f +-
~ 

"'Hf 

~ 

+-.£_ 
bf' 

~ 0 

t-
4/ 

6 

. ~ 
:!L 
"!'" 

H~ 
"!' 

-y/ + 3H~ = 6 + '1-<.J { ¥- Vo t- ( If. -""'-) j } 

For v 0=0 these are the field equations of the 

Brans-Dicke-theory2 • 3 ] 

I 3.1 I 

I 3. 2 I 

I 3. 3 I 

Here we are interested in solutions which approach asymptotically 

for large t the evolution 

~ 

H = -Jr' I 
Cl-=Cl-ctf 

Conservation of the energy momentum tensor (3.2) immediately 

implies 

N 

f = 
-~; 

p. t 

I 3. 4 I 

I 3. 51 

~ 

For positive (negative) 1J the scale factor a(t) expands (shrinks) 

andy decreases (increases) whereas forf=o both a anctfare 

constant. For negativef the universe is asymptotically9 domina

ted (V0 can be neglected) whereasj>O leads to a v 0 dominated 

universe (for v 0:t-Ol. For solutions with j=o the ratio of matter 

density and cosmological constant ~;v0 goes to a constant. 

N 

The evolution of 1f depends critically on n, "J and the sign of v 0 . 

For n=4 orf=o (V0 dominated universe) eq.(3.3) has the solution 

(for j'~>t:. Y3l 

4-3'7 
'1f/ = Yo +- "'A t +-

,( 

(h3j}( 
- . v. t~ 

One finds the following asymptotic behaviour for n=4 

I 3. 6 I 



,t;_ 1fl f)= 
f.-.oa 
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v.,{" 
(4+-3jH3 +-w) 

f.~ 7 ) - t I \f. > 0 

(J'j:l'V} t" A f/to fw j=- V, 1 ~ > 0 

A-3j' 
"/!, { fc~ i< -J o~ f»' i <.~I Vo = 0 

1/:1 ~ >Y, fo..- i = L Vo = o 

)/;; fo~- -f>LV..=o 
I 3. 7 I 

For negative v
0 

andj ~ -1/3 there is no asymptotic solution of 

the form (3.4) since ~is by definition positive. For the matter 

dominated case n=3 one finds similarly 

Vot~ 
(I <-3jX3 +--">) 

/Vo+i£• )t'
(-;..- 'lA>) 

fo,.. j >o 1 V. > o 

fer i = 0 I v¢ > - ~Po 

a- '!flit)= 
t-..oo 

j'.t<-3f 
iZ-3f)lt.-r,..,) 

~ £....~2. 
fo'-(<..0 "'"t- 7<-g/ \0=0 

p .. k i/t., 

"7/i 

r ~ z. Tov7=31\I,=O 

for i > ?;; v" = o 

There is no H=;t- 1 asymptotic behaviour for positivef and 

negative v0 . 

I 3. 8 I 

Finally, possible solutions must fulfil ( 3.1). Depending on t0 and 

v
0

, we find the following types of solutions: 

il 
r 

\{,)'0 1 VO>-~ 1 ""t-=3or~ 

~ 

i~c..><-{-, ) \fo of<>ffliHt>.tec/ ) '¥' ~ t <-

ii) \_0 /' 0 I - -t .C:::: 4J 6 - i 1 ~ '= 'f-

~ 

"1=0 J .ft..= v. 
3(4+"41) 
3+~ 

")V~t" 
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iii) 'fo > 0 1 -1..C.. 4) b - t 1 -?-r = ~ 

o..-~<.o -J...c...e..;..:::-4 ~=3: 
v j ~ I 

'1.- 0 'V¢ +-S'o - - ~ 
"1 = 1 '1-Vo +- f'c - "3 +- 2AI 

v; aJ-'hltm~ I - :t <: Q < - -"f 1 

J -p~t"' 
iv) 

l?"l-=3 

CIV Ve, ::::. 0 J 0 > - % 1 ~ = 3 

~- Z{,fn.;) o d . -k« ~I/ t<--37 "'! - 341 T ~ I s- - -~•'rrl-1&< I T ~ 

vi V.=O _3_<:t.J .-.,='t 
I <0 I 

~ I -'1-"7 = <:; 1 '¥' = 3 ?o I 3. 9 I 

There is a solution similar to v) for v
0

=0, n=3,W>-3/2 with 

f=2/3 provided the asymptotic behaviour of)P is not the 

logarithmic behaviour of ( 3. 8) but rather )t' goes to a constant 

"tt'eo = j.?c.. No solutions of the type ( 3.-4) exist for n=4, v 0 <0 or 

for n=3, v
0 

negative andt.J)-1 or v
0 

positive and -3/2<41(.-4/3 or 

W=-1. 

In order to derive these solutions, we have assumed that~ is 

time independent. We show in the appendix that more general 

cosmologies with 

;p ~ tz 
J z tft I 3. 10 I 

can be mapped by field rescalings and corresponding rescalings of tV 

and v onto cosmologies where 9'is asymptotically constant. (This 

is not possible for :1 =;J and we will discuss this case in detail 

in ref.7). Using this freedom, our assumptions for the above 

Brans-Dicke solutions consist in the ;( independence of v 0 in the 

appropriately scaled version. 

4. Weyl scaling 

Before discussing these solutions (and other more realistic 

scenarios) let us note that there is another useful picture of 

our coupled system where Newtons constant is kept fixed. We may 
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introduce an arbitrary mass scale M and scale all fields by 

appropriate powers of ~/M: 

9r 
_, ~ 

= ..,. :!;"'"" 

~II, = ..,-1'- j ~ 
~ 

R. = 'I<T->..{ R.- 6(h·z,>);""/- 6(Ac.;)/'(#...._,)i/ J 
H 'Z<T= 
X 

Choosing M proportional to todays observed Planck mass MP .. 
11~ - Hp 

/6,. 

I 4.1) 

I 4. 2) 

one obtains the standard form for the gravitational interactions 

with fixed Newton's constant: 

$ 0 = - f d~x ~ 1\, { H'- R - (6 + 'kJ )H" X.->- 'X/' :l;j< 

_H' 
;c~ 

,~< ~ H~ 1. 
-f; 9';1' + X~'- V J 

Similarly we rescale the scalar doublet 9' 
'f ,. i_ M 

X 
~ 

= V'f 

~ 

I 4. 3) 

I 4. 4) 

(Note thatq' is now the ratio between f and~ times M and the 
expectation value of the Higgs doublet is therefore measured in 

units of the Planck mass normalized to today's value.) The 

kinetic term of A involves derivatives of ln;t and we define 

6 ... M .e.. ( Z/H l = - H k ( CH) I 4. 5) 

In this picture, the actions reads 

s• =- (A~.u/• { H'-R- {6+!«.J)6j "'<>;;- '- "' !f. 67 !>;,.. -If- .I // 
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- <r:/'q;/ - z -t1 <P;/' <>; ,« +- w} 14:6) 

W = ~(-'1-;; )V = 
H'~-
-p v I 4. 7) 

Fort.V >-3/2 and neglecting terms "'<f/M this is the standard action 

for gravity coupled to two scalar fields <p and 6' with potential 

W~f',6'). (The factor 6+4M can be absorbed by a trivial rescaling 

·of G'.) 

At this point it may seem that our discussion will not lead to 

anything new. However, the possible new physics is hidden in the 

specific form of the scalar potential W. We choose a definition 

of M so that today' s value of tS' is zero. The ratio r.p!M should be 

small today. The potential W is today equal to V. Assume now that 
the cutoff lenght 1 was larger in the past than today. In this 

case ~ was negative and W was larger than V by a factor 

(lpast/ltoday)
4

. Similarly, if V has a minimum for a given value 
of fP we find from ( 4. 4) that <p was in the past much larger than 

¥ = 'f today . If at some moment X was of the order f, our 
rescaled version leads to ~of the order of MP for this time. 
Cosmologies with 1 decreasing from ,-1 to M- 1 correspond in the 

rescaled version to an expectation value of ~ decreasing from M 

tof! It may be instructive to see how given terms in V appear in 
W: 

?l.(p"" 

~"·r 

£. 

-'> .{ tp !'-

--".> /" _, (- ~ ) Cf .,_ 

__, t:. ~(- ~) 14.8) 

A cosmological constant today of the order ~~4 would appear to 

be of the order o:tM4 for J_=tFand similarly a mass term today ft2.~ti2 
2 ~ I appears of the order M for ,X =r· 



- 19 -

If we come back to the example of the last section with V 

depending only on r and assume that f has settled at ~ = 0 we 

find 

!!':{ = 0 
'"f' 
i!lw' - - trVo ~c- '!£ J T.i- f:1 .. , M 

(4.9) 

For positive (negative) v0 there is a driving force which tends 

to increase (decrease)'$'. The mass matrix (with f ~:r~ = /'l- ) is 
(up to normalization of rS') 

J. J'>v 
, "'1''-' = hep(-?#{)j< 

z. 

L ~ = hip(- Zli>) E' /"_. +- 8 -r(- ~) \ID 
.l- CJ c:;-a.. H 11a. 1-1 a-

l. ~ = o.--n(- .ZE>) Cp ~Z- (4.10) 

<- ""'(H> ---r 1-t -,::;; 

For 6'=0, <f~<M2 ) one finds one eigenvalue about_.,u-2 and the other 

av0;M2 . Excitations above the cosmological background comprise 

the standard Higgs doublet <p plus an additional long range scalar 

field 6"'. For v 0=0 this is the massless Brans-Dicke scalar. For V a* 

11;CD the interaction mediated by excitations of (5" would have a 
typical range 

.J. 

i'G' = ( ~._)-"'"' (Z · to-"eV y-' "' 10 ~ (4.11) 

We will come back to this interaction in more detail in ref. 7. 

The field equations from (4.6), neglecting the f/M corrections to 

the kinetic terms, 2) are 

2) This approximation is valid for(~/M)<<~+3/2. For(U=-3/2 one 
may use the field equation from (4.3) to express X as a 
functional off before choosing an appropriately scaled field 'f· 
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m ,« J. <lW 
'i ;" +- "' ~ = 9" 

,« 
( 6 + If-tv ) 6) /' +- J. <>w .z.?i"iF= 910 

~- i. R<J/'" = z~• ( 
., 

T,-.-v +- -,; .. +- w 'Jr + ~ ) ~ }_,_,. ;;., 

r;:-- = (6+-w)( z~/ o;.,- <>;f0r <Jr) 

T<r 
r 

f' = z <Py <?.,·., - <'f; "7!' ~r 

(4.12) 

The quantities qf', qG"" and~ are defined similar as in (2.11) 

" -~ Js'"f " , -~ &s'1 <> L -~ SS
11 

Tr =Z~ S'}.- J 9 = ;[;} 6'f 1 'f = .t if ~ (4.13) 

and one has the relations 

-11 H'L "'"'H % ....... I = -.. T = v -r;_,., r .>:. /'~ " 
'l'f = w, <j 'f ( 4.14) 

o 3 ~X I 1-t pv 
Cf = WCf -r-m TriJ 

If we use again the standard form of the Robertson-Walker metric 

for a homogeneous and isotropic universe (g00 = 1, gij 

-a2(t)gij) the rescaled formulation of this section is related to 

section 2,3 by a coordinate transformation of the time variable 
~ 

(with t the time coordinate in sect. 2,3) 

,d ,,t = 
11 
X 

= 'Z<T ( 4.15) 

The spacelike comoving coordinates xi need not to. be rescaled and 

one has f0r the scale factor and the Hubble parameter 

Q = wa:... 
~ _,H 

= -z.r H 
-<. • 

+ v -w-
Similarly, one finds for the energy momentum tensor 

-s-f' = 'Z<T f ) 
.p = =--~"- p 

(4.16) 

(4.17) 
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With these scalings (and noting (z\,.., ~ ( z~);,-.• +- 1!-i(;,r;l;.o 
-z~r;'Z;f '},..,.-.~etc.) one may verify that the field equations (2.18) 
are equ~valent (up to ~/M corrections) to the rescaled version 

1-/~ - ~~ .. ( E .,. 5' ) 

£ "' w .. 'V + r~-~-~t-<.J)&-" 

E = -6H(E-W)- (p+"'-Hf') 

• • 9' • G" 
S'.,. ,.,Hf = -lq;q - Z<>1 

•• • 1 oW Cf +- 3 H <p +- -,; J> 'I' = q 9' 

•• .. I 
(6+1H.J)(G"+-3H6') + "i 

.;.w 
~ = 1" 

(4.18) 

Here E is the total energy of the scalar fields tp and G and E-W 

is the kinetic energy part. 

We can reexpress the equation for energy momentum conservation by 

the original q9', q .{ ( 2 .11): 

~ +- .,.H?- (m--'f.) ~ 9 = -z_ #<lf(- 3~>#11+-6-Cf:r) (4.19) 

For q~= q~=O we note for the radiation dominated epoch (n=4) that 

the energy momentum tensor for matter is conserved in both 

formulations, whereas for n=3 this is true only for(:; =0. In 

additio~ to the possibly unusual form of the potential W this is 

a second important difference in comparison to standard 

cosmology. This deviation from energy momentum conservation is 

related to the time dependence of particle masses which dominate 

in the matter dominated epoch. In fact, if the particle masses 

depend on~, m=m(~), there will be an additional contribution to f 
from the change in m 

lip = o""C G-{ X. ) 
0 "' ,...._ 

I 4. 20 l 

If for the unsealed version the particle masses would be indepen

dent of X and ~these masses wo~ld read after Weyl scaling 
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,.,.,. """- w- = ,.m ~kef(- 'h) (4.21) 

This explains the additional term on the left hand side of 

eq.(4.19). In a realistic theory particle masses will depend on~ 

and possibly also on;( so that we expect nonzero 1'1and 1~ 3 ) 

We finally indicate the Weyl scaling for additional scalars T, 

fermions y- a~d gauge fields 7: 
7: '2J -r 

34 ~ 
"¥' = .,., '¥" (4.22) 

=1.-~ 
It ~s easy to check (with (4.1) and (4.4)) that all (gauge+ 

gravity) covariant kinetic terms are transformed into themselves 

plus additional terms involving derivatives of~. Dimensionless 

couplings like the gauge couplings, Yukawa couplings and quartic 

scalar couplings remain unchanged under Weyl scaling, whereas 

couplings with dimension of mass are scaled with an appropriate 

power of w (compare (4.8) and (4.21)). 

5. Conditions for realistic cosmologies 

Explicit solutions of the cosmological equations (4.18) or (2.18) 

depend on the form of W (V) and may in general be quite 

complicated. Rough asymptotic features are often more easily 

obtained and we will concentrate on "realistic" cosmologies 

fulfilling a few criteria for their asymptotic behaviour. The 

3) Even in the Weinberg-Salam model with standard cosmology there 
is a nonzero contributionq'~= o{., 9 /<p from the cp dependence of 
particle masses. If the universe is dominated by massive 
neutrinos ~ is of the order one whereas for a baryon dominated 
universe<='(..~ quark mass/nucleon mass. The presence of q?' leads to 
a J> dependent shift in 1 with F-~!lirp-• f . The correction to 
energy conservation is tiny today, Af""" f f/Cf"-. 
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first three criteria concern the overall behaviour. We formulate 

them in a language with Newtons constant held fixed. 

i) We want to describe an expanding universe and require the 

asymptotic behaviour (remember k=O by assumption) 

H = 7 r' J > 0 ( 5.1 I 

{Constraints on, may be derived from the deceleration parameter 

q 0 , or from the age of the universe, t 0=,/H0 .) 

ii) The observed luminous matter density is today of the order 

H2M2 {about one percent of the critical density). This should be 

no accident and we demand an asymptotic evolution 

y~ H~H'"~ 
t _.,_ 

< 5. 2 I 

iii) There should have been a transition when atoms formed and 

the photon gas decoupled. This happened when the temperature fell 

below a typical ionization energy of hydrogen which is proportio

na1Ae~7', T0~ 1o-10f. (We assume here that dimensionless 

couplings like the electromagnetic coupling constant e and 

Yukawa coupling h did not change much during the history of the 

universe.) If the universe was once very hot with T of the order 

of q> we conclude that f must decrease faster than Cf4 • The 

constraint for a powerlaw behaviour is 

f ~ t"-
) "'->-~ 

From (5.1) and (5.3) one obtains the relation 

H 
Pi 

- .L 

=(C~)"' 

( 5. 3 I 

(5.4) 

This tells us immediately that no cosmology can determine both H(~) 

and ~ simultaneously independent of time. If the theory has no 

small parameter at all, the constant C must be of the order one. 

A value of~ near -1/4 would give today's Hubble parameter near 
-33 

the observed value H0 ~ 2.10 eV. (If~ changes during the 
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evolution of the universe, for example at the transition between 

radiation and matter dominated period, one should use an 

appropriate mean value of~ to predict H0 as function of ~/M.) 

For a(, different from zero there is a time independent relation 

between the Hubble parameter and typical particle masses given 
-16 

by rp. On the other hand, todays observed value 'f/M "¥ 10 has no 

fundamental significance, but is rather due to the oldness of the 

universe. If in addition the ratio AQCD/r is time independent, 

all small dimensionless quantities appear only as a consequence 

of the age of the universe and an old hypothesis of Dirac!) would 

be realized. In contrast, for «.=0 the ratio fJIM must be a small 

quantity characteristic for the theory and is in principle 

calculable from its fundamental parameters. There is no time 

independent relation between H and particle masses. This is the 

case of standard cosmology. 

iv) There are several observations9 ] from which upper bounds on 

the time variation of Newtons constant are derived. 

{K{=/~It.f b 10--«/r ( 5. 5) 

Actually, the above limits apply in cosmologies where typical 

particle masses are time independent. Asswning that 1\QCD/If' is 

constant, all particle masses are proportional tof. They depend 

on time for ott-o. one therefore should replace 

/{ = it ( (lG ) I cp'G It, 
_ Z.c. Ho 
- ":! 

< 5. 6 I 

(A calculation in the picture with variable Newtons 11constant 11 

leads of course to the same result. For «~-1/4 one derives from 

(5.51 the bound J~ 2-5.) 

Other constraints are based on the successful explanation of 

helium abundance in standard cosmology and the related prediction 

of the temperature of the background radiation31. we asswne that 

the observed heliwn abundance by weight (near 24%) is produced 

cosmologically when the temperature dropped below·a typical 

nuclear dissociation temperature TN characteristic for 
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nucleosynthesis. The conditions that an appreciable amount of 

helium is produced cosmologically are best formulated in the 

picture where nuclear reaction rates are time independent. These 

reaction rates depend on two scales: The Fermi constant ¥- 2 sets 

the scale for weak interaction rates, the neutron lifetime and 

also for the electron mass me and the quark masses appearing in 

the neutron proton mass difference. On the other handAQCD 

determines nucleon masses, binding energies and strong 

interaction rates. We concentrate on a time independent ratio 

AQCD/~so that the only difference from the standard picture is 

the possible variation of the Planck mass compared to ~ for 
~f0. 4 ) 

In the picture with constant ~ one has to compare typical weak or 

strong nuclear reaction rates with the relative change of 

temperature with time. 

T = 
7 

.!. .£- = 
9- !' 

,., ~ ~ 

~J./=-jf-1 I 5. 7 l 

For standard cosmology (~=0) the temperature range relevant for 

nuclear synthesis (10 10 -10 9 °K) corresponds to time scales 

between 1 and 102 sec. If f 2GN varies with time, the time scale 

for nuc1eosynthesis is multiplied(for ~*0, and H2 of the order 
~ 2 I 
fiX ) by a factor 

( ~: .r~~ = X" 
M 

where GN and G0 are Newtons "constant" at the time of 

nucleosynthesis and today. 

The scale factor ;rN/M can be evaluated in either one of the 

pictures with constant¥ or constant Mp 

A./of 
M 

= q>., 
Cf'N 

= 
-< ~ -

I~ ) = ( ~N )11 
t/ol f. 

4) For f /;t ~ canst the standard· picture is valid and we can 
replace the scale If by rp. 

I 5. 8 l 

I 5. 9 l 
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(This assumes that¥ was constant before Weyl scaling. Again,~ 
stands for an appropriate mean value between nucleosynthesis and 

today if the time evolution of?'_ has changed during that period 
.-./ .... ........ -15 

and similar for;d_·> The ratio tN/t0 is of the order 10 . Even 

small values of ~I give huge changes in the time scale relevant 

for nucleosynthesis. 

The cosmologically produced He abundance and associated 

abundances of deuterium and He 3 depend very critically on the 

time scale of the evolution of the universe3) . If the time scale 

is moderately shortened the He abundance increases. For XN/M 

smaller than 10-1 to 10-2 it starts decreasing again and finally 

becomes tiny since there would not be enough time to produce 

helium before the temperature falls too low. For XN/M>1 the time 

of nucleosynthesis would be postponed and more neutrons could 

decay before. Already by an increase of the time scale by a 

factor 100 almost all neutrons would have decayed before He could 

be formed. Taking together the cosmologically observed abundances 

of He 4 , He 3 and d, possible deviations from the standard time 

scale must be small, typically in the range of the effect of one 

neutrino species more or less contributing to the density of the 

universe. Nucleosynthesis can be regarded as an extremely good 

test on the time evolution of , 2GN. Any cosmological explanation 

of nucleosynthesis gives stringent conditions: 

v) The time scale during nucleosynthesis should be modified by 

less than 10% compared to standard cosmology with three neutrino 

species. This leads to 

'i' 10 3. ro-
3 I 5.10 l 

The same condition holds for~. A value~~ -1/4 required for 

Dirac's small number hypothesis is clearly inconsistent with 

cosmological nucleosynthesis. Cosmological nucleosynthesis 

suggests that the ratio ,/M <fl~) should become almost constant 

asymptotically, with~,S=o between the time of nucleosynthesis 

and today. 
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'o'i I ':'hr: observed abundances of He 4 and He 3+d give information on 

"t::-.c LaLyon dcnsit)' at the time of nucleosynthesis. This can be 

u.-o.~.:,; t..u pleu.i..ct today' s bacKground temperature T
0 

of the photon 

gas. For T~ a-l during the radiation dominated period one finds 

the correct order· of magnitude for T
0

. For n=4 the law aT=const 

follows from the conservation of TM. One concludes that the right 

hand side of (4.19) must be very small during the radiation 

dominated period. We require (with indices N and C for 

nucleosynthesis and combination of atoms) 

-fD ,;', ~ 
Tc:.a.e-

,;', 40 I 5.11) 

Having established criteria for realistic cosmologies we can 

apply them to the solutions of section 3. It is convenient to 

translate these solutions to the picture with constant M . For 

f:j = j t-1 
and "f = -wt¥"one obtains ;B> -1) P 

H ~ '7r' 

'7 = t:f 
t ~ t tl-~-• 

x~ 

~ = 

tf1 
~ 

I 5.12) 

..,tL,.. 
,.,.~ 

We note that solutj.ons H ..... t'- 1 are transformed into H-vt- 1 ifi{ is 

N" -proportional tot ~>-1. Even a contracting universe in the 

unsealed version (j<O) will appear as expanding after Weyl 

scaling providedji>-;! For realistic cosmologies one should have )PAl 
t- 2 . From (4.17) and (5.12) one finds, withf"""t-a' 

9 
_ t- r:J 

15.13) 

For the generalized Brans-Dicke solutions of section 3 one has 

i='"'f· One finds S'<V t- 2 
for cases ii), iii), iv) and v) of 

eq.(3.9), whereas for case i) 9 decreases faster than t- 2 . It is 

interesting that even models with nonvanishing cosmological 
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constant (V 
0

::::0) lead to cosmologies with H"" t -l, ~"" t -Z, in sharp 

contrast to standard gravity where a nonvanishing cosmological 

constant implies an exponential behaviour for H and 5' . 

"' ..... :z A solution with f .... t reads after Weyl scaling 

'f ~ t"" 
.:-:I 

r:L:;::. ~ 

15.14) 

A-1-~ ~ 
Condition ( 5. 3) implies (for~ =0) thatf3 must be smaller than 1. 

This condition is violated for all solutions except those with 

v 0=0 andf>O (cases iv) and v)}. This is the standard Brans-Dicke 

theory. We could think about a solution starting with (3.9)v} in 

the radiation dominated period which makes a transition to the 

asymptotic solution (3.9)iv) once the temperature has decreased 

sufficiently to enter the matter dominated epoch. This would be 

consistent with the three conditions (5.1)-(5.3) for the overall 

behaviour of realistic cosmologies. DUring the radiation 

dominated period on has)3=o and energy momentum is conserved. 

Conditions v) and vi) are fulfilled. However, for the matter 
~ ~ 

dominated period the condition of (almost) vanishing;8 requiresi' 

to be very near 2/3. This is the asymptotic value for 4)...:,ot~. As is 

well known, the Brans-Dicke theory converges to standard 

cosmology in the limitt.J..:,Ol'. It is compatible with observation 

for 4.J ~ 500. 

For the Brans-Dicke type solution (3.9)ii) with v 0 >0, n=4 the 

coupled system of gravitation, scalar singletx and radiation 

would lead to realistic cosmology. The only problems come from 

the variation of the ratio ¥IX. ·It is not difficult to construct 
- v potentials wheref/;{ instead of p reaches asmptotically a constant 

value. Then a positive cosmological constant v 0 >0 is compatible 

with the power law behaviour of standard cosmology. We describe 

such a model, with adequate generalizations and an extension for 

the matter dominated epoch, in a subsequent paper7 1. There we 

discuss the fate of dilatation symmetry. We will see how this 

symmetry is intimately related to the behaviour of the theory 

under variation of a physical cutoff length 1. 
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Appendix 

The action (2.5) remains form invariant under the 
rescaling of fields (with arbitrary scale M and & 

- . 
:X=(~) z 
1/=(~/c; 
~ - ( ;x ) -2.6 -
;}-/'.., - 71 ~ /'" 

following 

>-1) 

(A.l) 

This corresponds to taking instead of 1 some power of 1 as basic 
short distance lenght scale. Expressing the action in the new 
fields j_ 1 cp 1 r~ leads to a rescalingc.;~z:;, V""''V according to 

( 3.,_.zz; )v"'_ 
3 .,_~ - A+ b (A.2) 

v =< ( ~ rH v (A. 3) 

If some cosmology leads to an asymptotic behaviour z-vtA cf"-' t ;(,. 
~ ~ I 

with ot.F/ one can choose a scaling with 

b = 
-"' ;!-:£ (A. 4) 

in order to obtain if' asymptotically constant. If :;_ -F jS we can 
always use this scaling, so that the asymptotic behaviour is 
either ~/'i(.~const or ~_,.canst. This defines 4J and V 
unambiguously except for r/;(~ canst. We note that the condition 
Q>-3/2 remains conserved under rescaling. 


