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ABSTRACT. A puturbatiYe nnonne.lisation proc~dun: is propos~ whl~h appliu to ma!'siY<: field theoriu on a space

time lattke and is andogoas to the BPHZ finite pu>l pnscription for continuum Feynnum intevah. The :r"nonn.a.lizcd 

pertu:rbation th.,oty i• shown to b" un.iv.,nal, i.e. under very natural assumptions the continuum limit exists and is 

independent or the det.Us o{ the lauic:e action. 

1. Introduction 

In perturbation theory of a local quantum field theory thne exist well-known renormalization procedures 

which removt" ultraviolet divergencies. The BPHZ finite part prescription makes subtractions directly in the 

integrand of each Fqnman integral in momentum space (1]. Divergencit"S of every subdiagram are subtracted by 

application of a Taylor operator in the external momenta of the subdiagram, which in position space is a local 

operation. The renormalized Feynman integral is defined in such a way that the ultraviolet (UV) divergence 

degrees of all subdiagrams are negative. There exist a power counting theorem due to Hahn and Zimmermann 

[2], which states the convergence of integrals having this propcnty. 

Unfortunately, these methods assume a rational structure of the Feynman intt>grands and benet' do not 

apply to diagrams with a lattice cutoff. In this case, instead of being rational, the integrand is periodic with 

the Brillouin zone. Removing divergencies by subtraction of Taylor polynomials is very unnatural in a lattice 

description, and in fact such a procedure does not work, due to violation of periodicity. In a recent paper [3], we 

have proposed a lattice version of the power counting theorem of Hahn and Zimmermann by generalizing the 

well-known notion of a UV-divergence degree. Having such a theorem at our disposal, we are able to construct 

a generalization of the BPHZ finite part prescription whic-h applies to diagrams with a lattice cutoff. Due to 

power counting conditions, the combinatorics of subtractions are given by the forest formula of Zimmermann 

[1]. As will be seen, the important modification consists in replacing Taylor operators by appropriate lattice 

subtraction operators. This class contains as a special ease Taylor polynomials in "lattice momentan (sin (qa)/a 

etc.), but is•in fact much more general. Lattice diagrams renormalized in such a way are convergent when the 

cutoff is removed. The limit itself is universal, i.e. it does not depend on the lattice action chosen, and it is 

given by continuum Feynman integrals which are renorrnalized by the continuum BPRZ prescription. 

To avoid infrared singularities, we have assumed that all fields are n1assive. At first we introduce in Section 

2 a couple of notations concerning Feynman di!lgrams and integrals on the lattice. In Section 3 the in1portant 

notion of a lattice subtraction operator is introduced, and its most important properties are given. The lattict' 

version of the BPHZ renorma1ization is defined in Section 4. It is shown that subtractions, if appropriately 

chosen, can be written as counterterm contributions to the lattice action. General conditions are stah•d which 

guarantee power counting renormalizability of a lattice field theory. In Section 5 the convergence proof of the 

renormalization scheme is given, using Zimmermann's method of"complete forests". For simplicity, all formulas 

are written for scalar fields only. In Section 6, the modifications necessary to include fields carrying intt"rnal 

symmetries are briefly described. 

Throughout this paper, Wt' will usc the notations of [3]. These are listed for completentss in Appendix A, 

and there are also given some general exan1ples of subtraction operators. The Appendices B and C contain 

some lemmas used in the text. 

2. Feynman diagrams and integrals 

2.1. Topology of Feynman diagfanls 

n Address dter Septemba 1987; Mu Planck lnstitut fth Phyoik und Astrophysik, D-8000 Miichen 40, Munich, Fed.llcp.Germany 

}h•nurrnalization of Ftyuman inl<'gra\~ on the lattice 

\\'e define topologi('a) notions of Ft>ynman diagrams and l"f"_rnman integrals. ln part. our notations are 

those of Zimll)etmann [1] and Nakanishi [5]. 

A (Feynman) diagram or (Feynman) graph f is a structure 

r = ( Cr , Er , Br , ¢r , 1/'r ) 

having the following properties: £r, f.r, Br art mutually disjoint ~ets. 

Lr={L,, .. ,LpcrJ} 

E:r = {Et. .. ,E,...crJ} 

Br = {Bt, .. ,BM(rj} 

internal lint's of r 
t'.XtNna\ lint'S off 

verticts of r 

¢rand 1/'r are the incidencE" rdations off, i.t. they are mappings of tht form 

¢r Lr ..... Br x Br 

¢r(L) = (AL, BL), 

v•r Cr ..... Br 

t/'r(E) = AE. 

(2-1) 

AL is called the outgoing end point and BL the ingoing end point of L E Lr. Both AL and BL are called 

endpoints of L. If AL = BL, then L is called a loop lint'. If A E Br and there exists an E E Cr such that 

rj•r(E) =A, then A is called an external vertex of r. Otherwist>, A is called an internal-vertex of r. 

1. 

Lt>t 1 and r be diagrams. 1 is called a subdiagram (or subg~:aph) off (Fig. 1), if 

£.., <,;; Cr 

B.., <;:: Br 

¢, = ¢r/ C., 

(i.e.,¢.., is the restriction of ¢r onto L.1 . Especially, ¢..,(L1 ) <; 8 1 x 8 1 ). 

2. Every E E fr satisfying V•r(E) E 6 1 is in [ 1 , and 

ti•..,(E) ~·r(E). 

The set of these lines is denoted by f;(f1. 

3. Every E E Lr \ Ln which has exactly one cndpoin~ BE in 8 1 undt>r ¢r, is in£..,, and 

~·..,(£) =- BE· 

Tht> set of these E is denoted by £~(fr 

4. The remaining external lines in £.., (i.e. thost' which art> not in t:;(;1 or r;'(f
1
) art' obtaint>d in the obvious 

way by cutting in two the lines L E Lr \ £.., which ha\'e both end points in 8 1 . Evt>ry such line is called a loop 

line off relative to 1· Furthermore, we set f~'(fj = £.., \ (e;f'fJ U f;(h)· 
If evt"ry BE 8 1 is endpoint of at least one linr in L1 , then 1 is called the subdiagram spanned by £1 

(This is the definition of a subgraph in the sense of Zimmermann [1)). 

A diagram r is said to be connected, if for all pairs of vrrtkcs 8 1, 8 2 E Br, 8 1 t B 2 there is a st>t of lines 

{L 1 , ... ,L~} <; £~ 

such that 8 1 is an endpoint of L1 , Bl an .-ndpoint of L,, and for all i =: I, .. , c ·- I the lines L; and Li+l have 

ont' endpoint in common. A subset £ <,;; Lr of lines is called a conn<•cled set of line~, if the subdiagram off 

spanned by£ is connt'dt>d. Twoconnectt"d snbgraph~ 1t>h are said to bt <ii~joint, if they have neitlwr vt>rtict>s 
nor iuteruallincs in common. A graph is discontwct.-d, if it is not conm•ded. 
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A graph f i~ railed lPI (onO?-partidf" irrf"dnrihlf"), if Lr i 0. and tht>rt· t•xi~ts no line' L {- Lr sudt that tlw 
diagram spanned by Cr \ {L} is disconnf"d.;od. 

Let r be a Feynman diagram and "fa connected subdiagra!ll of f. The reduced diagrant 

l'h = ( Crh , Erh, Brh, t/Jrh, 1/>rh ) 

is defined as follows (Fig.2): 

Lrh = Cr \ C1 

Erh = Er-

Brh Br \ B"f u fB}. 

1i I{_ Br is railed a reduced vertex. Foe evo:-ry L E Crh, .Pr(L) = (AL, BL) 

{ 

(AL, BL) 
(AL,Ji) 

t/Jrj..-(L) = (1i,BL) 

(li,ii) 

and for ('Very E E Erh, V•r(E) =Be 

~rh(E) ::= { ~E 

if AL,BL rt B"f 
if AL r/. 13..,, 8L E B.., 
if A1, E !3--,-, Br. (/_ l3--,
ifAL,8LEB--,-

if BE f/ lt, 
ifBEEl\ 

By induction, a rl:'duro:-d graph can be defino:-d for mutually disjoint, conn('rt.M subdiagrams 11· . , I< of f. To 
every /i tho:-ro:- cotrl:'sponds exactly 011o:- ro:-du<""ed vo:-rtex 1i; in f/-n···1c· 

Let B (:Brand C ~Cr. Then tho:- line number D(8, C) of C with resped .to 8 is defined as tht' sum of 
the number of lines in C, ha,·ing B as its outgoing endpoint, and tho:- numbo:-r of lino:-s in £, having B a.s ingoing 
o:-ndpoint. Especially, loop linl:'s are <'-Ounted twice. 

Let B~o B2 E Br, B1 ;;f; B2- £ ~ £r- is e.aJied a path between B1 and B2, if Cis conneded, D(81, £) = 
D(B2,£) = 1 and D(B,£) E {0,2} for all other BE Br. C ~ £r is called a loop in f ifC is connected and 
D(B, C) E {0, 2} for all BE Br. 

Let r be a .:;on_m-cted diagram. A tree in f is a maximal so:-t T <;;; Cr oflint>s containing no loop. 7• = £r\ T 
is c.alled the cbord set ofT in f. T• has m(r) =- P(f)- M(f)+ I lines, where P{f) is tho:- number of internal 
lines off and Af{r) is the number of vertico:-s of f. m{r} is called the number of loops in f i5]. It is 
independent of the tree chosen. 7• contains all loop lines. 

Lenuna 2.1 [5). A tree Tin r has thl:' following properties: 

a. D(B, 7) f 9 for o:-ach BE Br 
b. T is conneetf'd. 
e. For any 81, 82 E Br, B1 i 82, therl:' is a unique path P <;;; T bP!wf't'n B1 a11d /J~. 
d. Thl:' number of/ines inTis M(f)- 1. 

2.2. Momentum distributions 

Having do:-fined tho:- topolog)' of Feynman diagrams, we will now discuss ntomo:-ntum distributions and the 
stru<"tn1e of Feynman integrals on an infinite spart"-time lattiro:-. First of all we define in<""ido:-n<""e numbo:-rs. 

Let r be a Feynman diagram and L E .Cr-, ¢r(L) = (81, Bz). B1 f B2· Then, for every BE Br, we defiue 
incidence numbers by 

(B, Lj o -1 

I B, Lj = +l 
[B LJ o 0 ifB i B1,Bz. 

If B 1 = B~, then L is a loop line, and we st't 

[B L I 0 0 for all BE Br. 

\l··ll••r"".li~ati<oll r,f f'q·nman iHI•·gral.' <•ll tlw latti<"~ 

Fur t wn· <"Xkrnal lin< };" • ft. l'f (H) II' 81. W• 'o-1 

IJ /, " if H / B1 

IJ, L , I '" I. 

Thf' dtoirf' hetwef"n +I and -I is arbitrary. lfr is a subdiagram of 1', we definl' induced incidence nurnhers 
of 1 h~-

'11 L ], =- [ JJ L] if 1. f_ c, l, r;(L I) r_:(t
1

, 

: 8 L j..,. ::-+I or - l if/, ( <(f;. 
Again, the choir<" b{"tWt"f'll l and ·-t I is arbitrary. 

A ntonu~nhun distribution in I' is a map 

M Cr J Er 

L 

so that 

L [B L j h =- 0 
LFLrU-fr 

n• 
I,' 

forallBEBr (2-2) 

This mf'ans monwnhun ronst'rvation at each wrtE-JL /L flows from th(' outgoing endpoint B ([B: L: = -1) to 
til(' ingoing endpoint B' of[, (IB': L]-='" +I). The momo:-nta of loop hnes art' not restricted by (2-2). 

Ll't f bC" a comwctt'd diagram. Tl1en the only relations bi:'!Wt't'n the incidenr!· numbers arc 

L B L! 0 for all L ~ Cr. (2-3) 

RE/3r 

For evny exto:-rnal line E f-: f r ~rt 

q~:: ;=. 1£ L i 11 E: 
B~t<r 

(thf' sum routains Pxactly one elemeut). q~-: ar<:- rall<:-d eJrternal Jnonlenta of r. The_v art flowing into the 
diagram. If (2-2) is summrJ over all vertices 8 >: Br. Wf' get ronsrn·ation vf the o\"erallmomt'ntum 

L qE " 0. 
f:c.tr 

(2-4) 

We shall a,-,~unlf' all qE. E c·= fr. an· given momenta, such that (2-4) is satisfied. Then (2-2) is a systo:-m of 
equations for thf' line 1nomenta h, L E Cr: 

)~ t B L ·, h .; 2.::: :[ B E Ji q£ 
L~r- ' Ec£r 

0 for all B r: 6r. (2-5) 

(2-5) i~ soh·able. tho· matriX 
Ar=([B L}:BE:l3r.Li:£r) 

ha\"ing rani.•Ar::: M(f)- I, and b«auso:- of (2-4). 

In what follows let r hf' a IPI diagram. 'We shall define a partition of lin" mouwnta into internal and 
o:-xto:-rnal momenta. At first, we choose a basis of thf' exlf'rnalmomf'nta. Fix Eo!':, fr. Tht'n df'fine 

q ::= qr "' ( qE E E f r, E t E,J ). 

qE. is given by momentum consen·ation. for 1'\"o:'n' L E Cr wr write IL = A·L- qL, dt'fino:-d as follows. 

I. \\'f' choose an arbitrary lrf'e Tin f. For L" . . , Lm ~ T'. m being the numbo:-r of loops in L we dt'fine 

IL, = ~·;, i.e., q1., = 0, i = L. , m 



Rf'norma!izati(Jn of Ft-ynman intt·graL~ on 1\Jt-latlin· 

and stt 
k = kr = (ht, .. ,km)• 

Remember that m is independent of the choice of a tree. (k,, ... , km) is called a h~~-Sis oflhe internal momenta 
of r for the following reason: 

The endpoints of any L E 7• can bt> conneeted by a unique path PL in 7. PL U {L} is a loop in f (if Lis 
a loop line, then PL = 0, and the loop is {L}). For every L E 7 the internal line momenta kL are defined· 
as the unique s'llution of 

and are of the form 

L [B ' Llk, = 0 foraliBEBr 
LE£r 

J.•L = kL(k)::: ~)(.'L)i ki, (CL)j E Z for all L E Cr. 
j:l 

(2-6) 

This is the general homogeneous solution of (2-5) in a form dt>pendent on a chosen trt'e. We remark in passing 
that this shows that the lint> momenta art natural in the sense of [3]. 

2. External line momenta 9L = qL{q), L E "', are now dt>fined as the unir,JUt' solution of 

L [ B ' L I'' + L [[ B ' E II q,(q) = 0 {o,.JI B E Br. 
LET EEC~ 

In summary, 
h(k,q):::: /.:L{k) + qL(q) for all L E Cr. 

We now define an (unrenormali~ed) Feynman integral of r by 

!
•I• 

~ 4 4 ~ 

.1r(q;p,a) = d k1· ··d km Ir(k,q;p,a) 
->t}ti 

where m is the number of loops in r. The unrenotmalized Feynman integrand fr is 

fr(k,q;p,a) = II ~'•IFd·;",•l· n c;d,,;",.1. 

I 
BE8r LE£r 

For every L E Cr the propagators are of the form 

t 
whert> n(L) EN and 

PL{h;J.I,a) , 
JL(iL; Jl, a)= nn(L)[eL ·(h; a)+ JJiJ] 

j=l J 

PL(lL;Jt,o) = L:ptil(Jl) Vc;1(1L;a). 
(i) 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

(2-12) 

The (£-dependent) sum is finite, p!il are polynomials in the masses Jl and \'!i) E c:,.,, m; E Z, periodic in h 
with the Brillouin zont' (HZ) [-1t/o, 11/o]4. The function dasses c~, art' dt>fined in [3] (S('t' Appendix A). In 
most app~cations tht> sum contains one term only. Jo'urthermore, 

' 
~tL > o 

eLi E c~, 
I 

eLj(h;a) = ~ 1/Lj(ha) 

1/t,j(ILa f:- 0) > 0 ifh E [-~t/a, 1rja)4
, 

1/Lj is (2~t/a)-periodic in ev('ry component of h, 
lim eLj(IL;a) =If. 
·~' 
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(2-13) 

Henmmalization of .F(·ynman intf'grah on thr· Iattin· 

Tliis nwans tliat .:iL bdong:> to the dass F of futwtion~ whit"h is defined in ;3j. Esptcially, the propagators have 

only ont pole. in th<" BZ. }'or ev .. ry vertex BE Br thl." funt"tions Vs E C' are of the form (2-12) in variables 
{lL}B, whit"h are the momenta of tht linf's L E Cr U fr ha,·ing Bas ont of ils endpoints. For.uniqueness, we 
consider ifs to be a function of the momenta flowing iltlo the vf'rtex B. Furtht>rmore, we always assunie V8 to 
bt> periodic with tht> BZ, in all momentum variables. As disrussed above, all line momenta lL are written as 

h(.l•,q)::::: .l·d~·) + qL(q) for all L E Cr. (2-8) 

Th~ intl'grand fr belongs to the function dass :F. 

Next, Wt' define inttrnal and extt>rnal momenta of a 1PI subgraph..,. of r. For every external line E E t:1 
il't q1 hi' a momentum flowing into the diagram, and such that 

L •1 = o. 
EE£, 

Fixing Eo., E £.,,we gt't a basis of the external momenta of1 

q"' = (q1IEE£,,E;iE~ry). 

\Ve define a momentum distribution in tht> diagram 1: 

such that 

LIB 
LE£, 

where now the line momenta tl 

are partitioned as follows: 

M, c, u£., 
L 

E 

Ll, II+ L liB 
EE£, 

R' 

11 _'forLEC., 

q1 forEE£., 

E].,j q1(q"~) 0 foraiiBEB7 , 

tlW\ q"~J = kl (~·, l + qlfq' l 

(2-14) 

(2-15) 

(2-16) 

l. For a tree "J in f, "J n C., is not nt>c.t>ssarily a trl'l' in ; . But it can always be completed to such a tree "f.,. 
The l'hord set T,• =- £ 1 \71 in; contains m(1) lines, where m(;) is the numbt>r of loops in 1'· For tbesl' lines 
L; we dt>fin<' 

il. = ~-7- 1"" 1, ... , m(1), 

and we st>t 
p ::.: {~·;, .... k;,[))) 

as a basis of the internal monwnta of)· Note tl1at for t'Very i == 1, ... , m(')) there is a S(i) E {1, ... , m(f)} 
such that 

~·7 '""= ks(i\• (2-17) 

and {S(i)ji = 1, ... ,m(1)} contains nt{1') ('lemenls. For evt'r)' L E 7., we dt>fine kl as th(' solution of 

L I B ' L], •; c 0 for all BE l31 , (2-18) 
LE C., 

so that 
£·I = !·l(P) for all L E c,. (2-19) 

By (2-17),{2-18),(2-19), tht' Sl't 

u {ki.(k' II L E c, } 

is natural in the sense of [3], whtrl' l11e union is ovc•r all IPI subgraphs ') of I' (I' indmlt·d). 
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2. q;,(q~ ), L E 71 , are define-d as th<> unique soluti1•ll of 

LIB L]-dl + L liB EJ1 Iq~(q~) =- 0 foraiiBEB1 • 

LE7, EEl", 

Having definf'd intf'rnal and external momenta k'"~, q1, of;, Wt' will later need their relation to k,q. Set 
kr:::: k, qr :::: q and If = lL for L E Cr. We delint> P(~·r) b.v (2-17) and q1 (kr,qr) by idf'ntifying evt>ry 
qJ:, E E [l, with t-he- momentum ±l£ of the line L E Cr U Cr whic-h corresponds to E by considering 'Y as a 
subdiagram of f. Tl1e sign is determined by the condition that q~ always Rows jnto the subdiagram "Y· It will 
be wnvenient to rt>present this map by a linear substitution operator Sr [1]: 

Sr k' P(kr) (independent of q!) 

q""~(~·r,qr). 
(2-20) 

q' 

Nott> that the kr-dependence of q'~" is only by th"' explicit kr-dependen..-e of q};(ki' ,qr) of extf'mal lines of "Y· 
Furthermore, kl is independent of the external momenta q of f. From (2-5) and (2-15) it follows that 

li(k'Y(kr),q1 (kr,qr)) =: t£(kr,qr) for all L E £,. (2-21) 

The d"'finition of internal and external momenta can he gent>ralized to an arbitrary subdiagrarn T of 1' (Jt 
ofT e-t<:.). In thf' formulation above, we- have only to substitute "}" ___, T, f-----."}", and we get lin('ar functions 

/l(kr, qr) :::: ki(k') + qL(qr) :::: ll(P, q1 ) for all L E £., 

v = (kr, ... ,k:;.t•J) 

q• = ( qE IE E C,., E-# Eo, ) , 

whe-re m( r) is the number of loops in T and Eo.- E [,. is a fiud ntf'rnal lin"' of T. ~·', q' are fun<:tions of k 1, q..,. 
via 51 : 

s, k' 

q' 

k'(P) 

q'(k\ql), 
(2-22) 

where again k1 -dependen<:e ofqr via 51 is only by e-xplicit k,_-dt>pend('nce ofqE(k1 ,q1 ) ofextf'rnal lint'S ofr. 
Applied to a function [in kr, qr 

s.,fr.~•T,qT;a) j(J.•r(k1 ), q•(k-,' q,_); a). {2-23) 

W"' will need a de-finition of internal and external momeuta for arbitrary sequences of orderl.'d lPl subdiagrams. 
It is important to determine internal momenta of a subdiagram 1 alwa,·s in the- same way, inde-pendent of oth"'r 
diagrams in the sequence, i.e., always the same chord st't T,_' to de--fine k1 = (kJ, . .. , k;:h)) has to bf' chos('n. 
This must bf' done in such a way that (2-22) is always satisfied. For arbitrary lPI subgraphs 1', T off, T being 
a subgraph of-y, we choose 

T; o; 71' nCr, (2-24) 

i.e. alllillf's in the chord st>t ofT are- also in the chord set of")". This cau always be- achif'vt>d. Le-t P be thf' 
number of lines iu a connertf'd graph rand c.,, = {L1 , ... , Lp}. For evf'ry connl'dl.'d subdiagram -y of r we-
define 7:,' -;;- C-,. as follows: Li E 7

1
' if and only if C1 \ { L1, ... , Lf _1 } contains a loop C such that C 2 {L;}. In 

Appendix B it is shown that 7
1
' is ind<"ed a chord set in 1· (i.<'., 7"'1 :::: £ 1 \ T.: is a tr"'"' in 1 ). Apparently, (2-24) 

is a dired consequence of this construction. Also, an arbitrary chord sf't Ti off can bt> achieved by this way. 
For, ifmis the numberofloopsiu rand T-l = {N~. ... ,N,.}, set L; ::::·N;, fori= l, ... ,m. 

If 1 is a subgraph of ll and p a subgraph of f, 

S,. (s.,j(kr;q,.;a)) J(k'(k'), q' (k", q"); a), 

or in shorthand Potation 5,. · 51 s,. 

ll•·IO<Jtlnah~ali<!ll "f F•-1"11111/JH inlq;rals on tlw lattirf" 

For a !PI ~ubdia!;Htlll 1 of r Wl' ddint> a h'l'lllllall intq!,rand /., b\ 

~~(k1 ,q1 ;/l,U) o::: II Vn({I;Jn;l'•o)· II 3.£(1~;/-l,a). (2-25) 
B(B, LEC., 

{ll}n rt>prf'Sf'nls tht> momt>nla qE, BE [ 1 and ±ll, L 10 C, flowing into the vertex B. We always have 

5rFn({ll}n;JI,rt) ,__- f'n({lL}B;/t,a), (2-26) 

and the line momenta ar(' giwn hy (2-16). 

L"'t -y h"' a JPI suhdiagram and -y1 , ••• ,")", mutually disjoint, conne-ded subdiagrams of)". We define the 
Feynman integrand f'l of th"' reduced graph 'r:::: -yj;·l · · ·)', hy 

f"i(k\q"Y;Jt,a) = IT VB({ll}BiJt,a)· II LiL(I~:/J,o), (2-27) 
BEB-., LEC,-

where for th"' rt'duced Vf'rticf's 8; on(' Sf'ts 

VB, -=- 1 E c• for all i = l, ... ,c. 

The internal and extf'rnal momf'nta of)' are give-n by (2-J6). 

2.3. Divergence degrees 

We now proceed to define UV-divergence degrees for Feynman integrals on thf' lattice. Let -y be a !PI 
subdiagram of f. Then thf' UV-divergen<:e degref' of; is given by 

where 

"-'h)= L "-'(LiL)+ L "-'(VB)+4m(-r). 
LEC, BEB, 

.u(3.L} degr/L iidlLiJ.l,a), 

w(ifB) == degr- f'B({h}B;p,<t), 
{hls 

(2-28) 

(2-29) . 

(2-30) 

and mh) is th"' uumhn of loops in;. Thf' laUice degrees degr-;;- are d"'fiued in [3j (s"'e Appendix A) and 
musl bf' distinguished from tl1"' usual UV-degree~ df'gru of rl}, which are- dtfined for rational functions only. In 
(2-30), tlt"'y ar"' detl.'rmiu"'d with r('Spf'ct to allmomf'nta ('lit"' ring lh"' verttx B. If tht functions do not \·anish 
in the limit a~ 0, the l'\'-d"'grees on th(' !attic(' coin<:ide with tht' corresponding d('gtt'es. defined for rational 
fundioos, of the a -----. 0-limits of th"' functions. If th(' continuum limit of f'B ,·anish('s and VB E Cm,· thf'n 
w{f's) = mo [3]. 

Similarly, for a tt'dUc('d diagram :Y = 1'/1'1 ···),, Wt' !"('\ 

.u(')) =: L w(iiL) + L ... ·(f-B) + 4m('}). {2-31) 
LEC'i" Br-8;· 

whe-re m{')) is tht> number ofloops in)', and .u(.iL),...,(PB) an df'fiof'd a~ above. For a r('dUef'd V('rle-x BE By 
Wf' have .u(fra) ~ 0 beeaus"' of f'_s"" 1. Furthf'rnJOt(' 

m('f) + L mh;) = m(;) 
i;:l 

«~(1') + L w(;;) "" w(; ). 
i=l 

Finally, wt '"'peat tht> df'finition of a forest [1]. Le-t f b"' a lPI diagram. A f-fort>sl U is a Sf't of lPI 
subdiagrams off which do not overlap, i.e., for any 1J.i2 E U either 11 is a subdi.agram of 12 or 1'2 is a 
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subdiagram of 'YI or 'Yt and 12 are disjoint. In the last case, II and 12 have neither lines nor vertices in 
common. The simplest forest is given by U = 0. 

Let U be a r -forest and 'Y E U. 'Y is called maximal in U, if there is nQ -r' E U such that 'Y is a su bgraph 
oft'. 1 is caJled minimal in U, if there exists not' E U such that t' is a subdiagram of 'Y· Maxima] elements 
of a forest a disjoint and minima] elements of a forest are also disjoint. 

For any 1PI subdiagram 1 of r the set of 1PI subdiagrams 

U(-y) :::;; {'Y' E U I -r' is a subdiagram of-rand-y' #- 'Y} 

is af-forest as well as a -r-forest. We define 

"f(U) = 'Y/'YI · · ·t<> 

where It, ... , -r~ are the maximal elements of U(-y). 

3. Subhaction operators. 

Renormalization of Feynma.n integrals in momentum space can be described by a well-defined procedure of 
subtractions applied to Feynman integrands. We now define the structure of such subtractions and state their 
most important properties. 

In the following, let F E :F be a function of the momentum variables (t1 , ••. , th), ( Vt, ... , v1 ), (q1, ... , q,) 
and of the lattice spacing a. (t) are the parameters of an affine subspace of the loop momenta, (v) are the 
complementary loop momenta, and (q) represents the external momenta. 

Definition 3.1. Lt't bE No= {0, 1, 2, ... } and lett; be defined by 

- • 1 • (a 8 ) 
(t:F)(t,v,q;a)= L 1 L: Pn,;, .. ;"(qt, .. ,q,;a) """i)--:-···a.F(t,v,q;a) 

n=O ll. i, ... ,in=O q,, q,n t=O 

(3-1) 

for every function F which is C 00 in q, where ?,.,;, ... ;
0 

E C~ are totally symmetric in i,, ... , i,., {2"Kfa)-puiodic 
in every q1. ... , q, and lim,~o P,.,;, ... ;n (ql> ... , q,; a)=q;, · · ·q;n. If for every such F 

[(1 - t:)F](t, v, ..\q; JI., a)= oph+l) as..\ _. 0, (3-2) 

t: is callt'"d a subtraction operator of order b. 

If the function F is periodic, then so is t: F. In the limit a -> 0, 1: reproduces the Taylor operator t: of 
order !J. Note that degrq-Pn,i,-··iJq;a) =nand degr!P,.,;, ... ;Jq;a)= 0. t:F can also be written as 

• ' 1 ( a•· a'· ) ~6 (n) ·a -. ···-. F , t F = 'C' 'C' -. ,-., P;, ... ;,(q,, ... ,q., ) a" aq'• _ q ~ ~ 11 . · • • t,. q
1 

' v-O 
""'0 i 1, .. ,i,ENo 

(3-3) 

where P/,~.J.;, E C~ is periodic in qt, ... q, and lim .. ~oP/,~.J.,,(qh···•q,;a)::::: q~' ···q:•. The inner sum in (3-3) 
is constrained by L;j"' 1 ij = n. 

In the following, let F E :F be of the form 

) 
V(t,v,q;JI-,a) 

F(t,v,q;JJ.,a = C(t )' , v,q;p.,a 

V E c<, C::::: fl.[e;(l;;a) + pfl, 11l > 0, 
i=l (3-4) 

' . 
I; = 2: b;k to.._ + 2: C;j ij -i 

k=! jool 

Ld;kq.._, 
k=l for alii= l, ... ,n. 

(bil!···,bH)#-0 or (c; 1 , ••• ,c;h)f--O 
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A lattice Feynman integrand f1 belongs to :F. We have assumed all propagators to be massive, hence 
a subtraction ·operator r:r·y) applies to / 1 . The t"ondition (3-2) means that by application of a subtradion 
operator UV-divergencies are in fact subtracted. It restrids the functions Pn,;, ... ;

0 
and their derivatives at 

q = 0. As will be shown in Appt'"ndix A, Taylor polynomials in "lattice momenta" satisfy the constraints, i.e. 
they are special examples of subtraction operators. Adually, Definition 3.1 is much more general. 

Besides being linear with respect to scalar multiplication and addition in :F, a subtraction operator has the 
following important properties. 

Lemma 3.1. Let 1: be a subtraction opeiator of order b and F E :F ofthe form (3-4). Then 

1. degri/: F :=:; degr1i: F +b. 

2. degrlt; F :=:; degr!F. 

If for all i = l, ... ,n: (ci\, ... ,c;h) = 0 =} (d;J. ... ,d;,) = 0, then 

3. degr~q t; F :=:; degrrq F. 

4. degrl(t-T;)F::;: degrrq F- (li + 1). 

(3-5) 

(3-6) 

(3-7) 

(3-8) 

PROOF: To get some experience with lattice degrees, we will do the proof in detaiL Especially, we remind 
the reader of the properties of a UV-degree as stated in [3], Lemma 2.2 (see Appendix A). We will also use 
multi-index notation. Let F E :F be of the form (3-4). Note that for arbitrary V(t, t•, q; p,a) E C' 

degr! VjF0 :=:; degr7V, 

degr! \' IFo = degrif Vlq=o _:::: degrrq V. 
(3-9) 

1. Write t: F E :F as 

(i; F)(t, v, q; IJ., a)= V'(t, v, q; p, a) 
1'1(1 ••••• -1 ' 

V'(t,v,q;p,a) = 1 z= ~, ~- P,, ;,(qt, ... ,q,;a)V;, ... ;,(t,v;!J,a), 
,,, ,•.=O 11 ,,r 

where the sum is constraint by L;j, 1 ij :=:; b, and P;, ... ;,(q;a) E C! for n = Lj, 1 ii, lim,.~oP;, .. ;,(q;a) 

q~' · · · q~·, and v;, ... ;. E c<. Becaust' of degrrq C' = degr,C' it is sufficient to show 

In fact, 

degrrq V' ::; degr1V' +b. 

degr1~ V'(t, v, q; jt, a)= ma:x degrj[P;, ... ;, (q; a)· V;, ... ;, (t, t•; Jl, a)] 
q ···-··· q 

$ b + /!~~i~ degrz{P;, .. ;, (q; a) · V;, ... ;, (t, 1•; JI., a)] 

=I!+ degr!V'(t,t•,q;Jl,a). 

2. Set l =(It, .. ,1,) EN(,. Then 

-- 8' -- &' --
degr-,[Bql F(l, 10, q; Jl, a)]q=o _s degrl&lfF(t, r, q; Jl, a):=:; degr-,F(t, 1•, q; Jl-, a), 

hence 

( a' ) -degr-,Pn,i, . ;Jq; a) f)i P(t, 1', q; 1-1, a) S degr-,F(t, 1•, q; Jl-, a). 
q q=O 

3. All propagators which depend on q are also depe-ndent on I. Hence 

- ["' l degtrq {}TF(I,r,q;p,a) ::C. 
q q=O 

-- a' 
degr;qB;jiF(I, t•.q;/1,a):::; (ft;f;qP- 111. 

I 0 
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C'on~l'qul""nlly, for IIi = n 

( ,,, ) 
dt>gr! P,,;, . ;n(q; a) ~~ F(t. ~·. q; /-1, u) 

q ( '} ?--'" 
n __,_ d~gr;qF- Ill=- J,·gr;qF. 

4. (l - i:)F can be written as 

V6 (t. t',q;/•,«1 __ 
!(1- t:)F](t. v,q;JJ-,a)-= C(l, 1,,q:;/~-:--;fc{l-, 1", 0;/t, a)~ 41 ' 

where V~ E C'. Using (3-3) and V6 E C<X). we get F,(t, r, ..\q; Jl-, a) .:::: opHt) as ..\ -·· 0. hence 

degr-,l·j; :__:_ degrrq V~ - (0 + I). 

By assumption, 
d"'gr-,C(t, t', q: Jl a) = degr;qC(I. ,., q;,,, a). 

Consequently, 

degr-,(1 - i:)F = d~?grrF~(I. t•, q; IJ.-, a)- dt'gr.,(('{l, 1". q; ll· a)· C(t, t•, 0: ll· a)~+ 1 ) 

::;: degrr.,Jh(t, t•,q;Jt, a)- (li + 1) - degrrq{C(I, 1•, q: J1, a). C(l, 1·, 0; 11, a)h 1) 

= d{'grrq{l- t:JF- (li +1) 

s_ ~8lrqF- (6 + 1), 

whet<:' we have used Lemma 3.1.3. 

4. Renorma1ization. 

(3-10) 

(3-Jla) 

(3-llb) 

(3-12) 

D 

Wr- now prol""eed to give a renormalization prescription for lattil""t F<"ynman integrals with massivt propa
gators. Let 

f = ( Cr , Er , Bt , ¢r, t/lr ) 

be a lPI diagram having m loops. and :h·(q; 11, a) the corresponding Feynman intt>gral (2-9). The renormalized 
Ftynman integral off is defined b.r 

j •l• 
'Rr(q;!-l,a) = d 4kt · ·d4 km Rr(-k,q;J~,a), 

-~I" 
{4-1) 

where 

flr(k,q;ll,a)= Sr L IT(-i~h!s.,.). fr-(U) {4-21 
UEW-.-EU 

is given as follows: 

a. 57 are the substitution operators defined in (2-20),(2-22). 

b. W is tht set of all f-fort"Sts. 

r. ir(F) is the unsubtracted Ft>ynman integrand 

ir(k, q; 1-t, a) 

with the following substitutions depending on a forest U; For every lint> L E Cr (vertex BE Br) there is at 
most one 1' E U such that L E £ 7 (BE 8 7 ), but L (/_ £.,., (B rf. B.,.,) for all;' E U(1). If such a 1 E U exists, 
liL (V_e) is written in Variables q1, P as in {2-16). Otherwise, 3.L (V8 ) is writtt'n in dependence on k, q as in 
{~~- . 

11 

.c.,_~_,.~,..~~--~--:-~-""--"'--..,_ 

ll•·rh•ttwdrnlll'•ll ,,r h-YI\ltlall inlq.;ral~ on 1h<·lattirf" 

d_ J."<,r ,.\·o-n -1. 1:h 1 _ /,;; · 1 j~ « ~ul>tr<wl ion upo·r,I<Jr "r <>rrl<-r ,», -J) in r·xt. rnal mouu nta q 1 of 1 h(i) is 
con~traint>d h~· 

b(l-} ~ .... ·(-:~. { 4-31 

whnt' w(1) i~ thr UV-divergence degrct> of·y, and for <'V<·rv 1"-forf'sl t: 

<1(1) w(-j(U)i ; LN·r,). (4-1) ,., 
whnt• "'I, ... ,~~ are th maximal elements of lf{-r). The.<-.e conditions art> automatically satisfied if 6(1') = w{i) 
for all') 1:: U. lfb(1) < 0, we St't "f~h) = 0. 

r. In the product 

II{ phls 1 -.,. • 7 

,eU 

lht· fad or art> ordtred as follows: If 1·1 •1l f' U, 1'1 subdiagram of 1"l, then ( ~i~,(,-,) S.,.,) is ordered to the right 
hand side of (- ~!..,,) s..,, ). If 1 1 ;n are disjoint, thl'" or<ler is irrelevant. 

More 1'-xplicitly, Rr can ht written a.'> 

- '-.. Rr-(k.q;/1,a)::: L Rr(A·.q:Jt,a). 
F~ W 

where flV is dt>firll'd through the following recursion. For minimall r: F, st>t 

;::;_fl -
H

1 
(P,q1 ;1-1.a) ~ 11 (.P.q1 ;Jt,a). 

and for every 1· E U IJ {f}, II, ... , 1e being tht maximal ekments of F(1 ). 

-F < -U R {k' ,_ ) -I- {h' q' I ' II ( -,~(~,j)-R (<·~· .,.,, I .,. .q ,/-l,a ~ ~(U) , o~•.a · L 1 - 1 , 1 , ,q ,/-l,a. 
i=l 

Then R~ is given by 
-rr ::::..U 
Rr = Rr 

R-u - -:-.It (q=R'' r ~- r r 

iffrt_U 

iff E U. 

'We now sta~e our main rt>sult. 

Renormalization Theorem. The continuum limit 

lim kr(q;p,a) 
·-' 

of the renonnaJized Feynmart integral R.r(q;~,a) exists and is given b_v 

j
oo 

. - 4 4 hm Rr(q;jJ.-,a) = d k1 · · ·d km Rr(k.q,JI), 
~~o -oo 

11·here 
Rr(~·,q.l-l) =lim Rr(k,q;!-l,a). ·-' 

{4-51 

(4-6} 

{H) 

Remember that we havt assumtd all tlte propagators to be massive. Tht theortm states that if 
limo-oi'r(k,q;JI,a) '$; 0, Rr is equal to thr BPHZ-renorn1aliztd c.ontinuum limit of fr [1] (with a differtnt 
choke of internal momenta). Iflim0 _ 0 fr(k,q;JI,a) =: 0, also Rr(k,q,/-l) =: 0. This means that latti~l' Feynman 
integrals, which have at least one vertex function with vanishing a ---. O~limit. do not l""Ontribute to the continuu!ll 
limit after renonnalization. These wrte-x functions result from contributions to the lattice action which vanish 

12 
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in th~ (naiw) a -·• 0-limit. Such term~ do not t:ontribnl<- to the continuum limit iu every order of pertnrl,ation 

theory. In this sense, rt'normalized perllnhation theory is universal. 

The theorem states that the combinatorics of reuonnalization of diagrams with a lattict> cutoff are given 

by Zimmermann's forest fonnula [1], with Taylor subtractions replan~d by subtraction operators. The thf"orem 

becomes wrong if we would use Taylor operators, since the periodicity of the Feynman integrand, an important 

ronvergenre condition [3], would be violated. The continuum limit of a renormalized diagram exists and is 

given by the universal limit resulting from the (l - 0-limit in the integrand. However, it could happen that 

oversubtractions are necessary, and the higher the loop order, the hight"r tht" subtraction df"gt<>('S. To state 

conditions which exdudt this possibility, we sliall write divergence degrees in depen<ltm""" on tenus in the lattice 

action. Consider au action of t.he form 

S{A) =So( A) + S;,t{A), 

So( A)= a~ L A.;(na) &ij1(n,a)A1(na) 
,EZ' 

S;,t{A) = tl
4 L Z:9j i.J(A.na), 

nE z• i 

(4-8) 

(4-9) 

(4-10) 

where Li are polynomials in the !attire spacing a, the basic fields .4 at na and neighboring !attire sites, and 

they are liomogeneous in A. Let 

'Y "" ( £1 ,[1' Bl I ¢-y I '1/•,) 

be an arbitrary connected Feynman diagram of a field theory described by S. To every line L E £ 1 of -y there 

corresponds a pair of basic fields A;, Ak. We call L an ik-type line, having i-typt" and ~·-type legs. For ev<"ry A; 

we define a UV -dimension d; by 

4 + w(liL) s; d; + dk (4-lla) 

(in four dimensions), i.e. fori :co k 
1 -

d; 2 Z [ w(.6.L) + 4 ]. (4-llb) 

The number of loops in 1 is given by 

m(l)o==l+ Lt-2:1. (4-12) 

LEC, BE/3, 

Hence 
w('r):::4+ L(w(3.L)+4)+ Ltw{Vs)-4) (4-13) 

LEC., BUl, 

After some elem('nta.ry manipulations, using {4-11), we get (cp. [6]) 

••{l) ~ W(J), 

W('y);;;4+ Ltw(B)-4)-L~h(J)dk, (4-14) 
BE8, k 

where 
w(B) = L n.~o(B)dk + w{f's). (4-15) 

• 
nk(B) is the nlimber of k-type legs entering the vertex B or synonymously is the power of ~·-type fields A.~o in 

the action term ronesponding to the vertex B. w(B) can bt delf."mined directly from this pari of the artion. 

ek (1) is the number of external ~·-type lines of -y. 

Frotll these expressions, it is directly seen that the constraints (4-3) and (4-4) ate satisfied if we rhoose 

<'ih)=4+ 'L:(li(B)-4)-l:el<(l)dh with<'i(B);::w{B). (4-16) 

BEB, 

Consequently, a field theory on tl1e lattice is renormalizable by power counting if for every vertex B the UV

divergence degree of B satisfies w( B) :'S:. 4 (Reuormalizable by power counting means that with increasing 

number of loops the order Of subtractions nf'eded does not increase). In pa'rticular, we can statt thf" following 

13 

B<·l•••rlnalizali<>n of l'r·rn11•an int•·gral~ <ill th<· l~ttli•··· 

Tlw<H"<"lll. Lt·l llw cuupling <"OIL~IaJ!b .lh in (-·t IU) /,· diJJWihinuJ,.,~ Tah the !imit a , fl of ('J -8) ftltd f/enotl' 

1/w resulli!Jg conlillullm acti011 by S,.(A). 1[ fur f"ver.~· ..-.·r/1·.¥ II of S,(..t) tlw cOJitinuum fJV-din•rgence degree 

w,.(H) [4] salislif"s w,.(ll) :: 4. then thP laltiCI· 1/wor}" i.~ renormalizal>ll'. audits cvnti111mm limit is givf"11 f,y tl<e 

fidd tllf'ory wltic/1 is descri/,ed by the action S,(A). and is rcuormalizf'd h_y the BPHZ Jinite· part prescription. 

As au example, consider the srala.r <1> 1-theory with an additional <1>
1'-inltraction: 

S(<l>) = a4 L [ <l>(na)( -:S -1 !J 2 )<l>(na) -1- g<l> 4 (na) ·I ,\a24>6(na) ]. 

,EZ' 

The propagator in this example i~ given by 

where 

1 
.ii(k) :.0: k2":~~2· 

k, = ~sin ~·;a , i = 1 .... , 4 
" 2 

' 
,, 0 I:i>;J'. 

i=l 

(4-17) 

(4-18) 

The only Green functions to b"" renormalized are the two- and four-point functions. In fad, any vertex B 

satisfies w( B) = 4, and (4-14) shows that tl1e diverg~Cnce degrees of six-point and higher functions are smaller 

than zero. Th"" four-point Gnen func.tion has divergence d""gree ,.; = 0. Hence subtraction of a constant is 

sufficient to absorb its overall divergence. Tht" two-point function is quadratically divergent, and to renormalize 

it, we should choose as a subtraction operator ii a Taylor operator of order two in the lattice momenta ij. If ij 

would be periodic, this is an always allowed choice (a~ shown in Appendix A). However, (j is anti-periodic with 

tht" BZ, barring at the first sighl iJ to be a proper subtraction operator. Actually, the model (4-17) is invariant 

under inversion q--. -q. This mta.ns, the first and mixed serond derivatives to external momenta.of diagrams 

vanish at zero monwnta. The "effective" subtraction optrator is given by 

. [ "' l p = 1 +! L'il arf _' 
~ 2 i=l ' q-D 

which is periodic. The rt"normalization theorem states that the a- 0-limit oft he renorma\ized model of (4-17) 

exists and is described by the action 

5,.(<1>) = I d4.:t[ <l>(.:t)(-~ -t- /J2)<l>(.:t) + g<1>4(.:t) ]. 

and renormalized by th"" BPHZ finite part pr""scription. The limit is independent of the coupling A. 

If at any onltr the overall subtractions of diagrallls could be written as connterterm.s in the lattice action, 

then they subtract in higher ord""rs divergtnd .. s of corresponding su bdiagrams. However. for a !at lice cutoff, the 

situation is a bit more involved. To apply t:~,) to a diagram-y, wt have to choose a basis of the external momenta 

of 1'· By momentum conservation, one line is omitted, but which line is arbitrary. A similar arbitrariness holds for 

the coefficient functions P,,;,- .. ;~ in 1:~ 1 ). The dilferencts are always of ord('J O(a). and by the renormalization 

theorem, they do not have any influenrt- on tht> continuum limit. Note that in the continutun thoc problem does 

not orr-ur, subtractious being Taylor polynomials an{l hence independ~Cnt of a basis. 

To get a counterterm in the ar-tion, we have to respect Bose and Fermi symm""tries tmder exchange of 

equal-type external lines. This can be achieved as follows. First of all, we have to choose the same subtraction 

operator for all diagrams -y, which differ by an txcbange of equal-typ~C ex;ternal lines only. This subtraction 

operator must be ehosen to bt" symmehir, i.~C. if it is written in a form {3-4), I lien for an)' permutation ,.. of 

equal-type lines 
(!!) • ) - p(n) ( . ) 

P;_(>l" ;•(NJ(Q,.(tJ, ... ,q,.(f-."),<1 - ;, ... ;__. Q1, .... qN,a, 

for all i 1 , ••• , iN, where N + I is the number of external lin('S of i Finally, we have to take the arithmetic 

mean over all possible bases, or at least over tl10se bases omitting an external line of the same type. Then the 

countt>rlerm which results by integration over all loop momenta has the sam~ permutation symmetries as the 

14 
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unsubtraded 1· Summation over all diagrams, which diffo:'r by an exfhango:' of t>qual-typt> t>xterna1lint>s, yit>lds a 
cm.mterterm having the desired Bose or Fermi symmetries, and it can bl.' written as a f.ontribution to the aftion. 

Furthermore, if the functions 

P}~_\,.(qt, ... ,qN;a) 

are chosen to be symmetric and polynomials in lattice momenta (see Appendix A), the counterterms are always 
local, i.e., they are of the form 

df •II :::: a4 L P(A, na), 
nEZ• 

where P6(A, na) is a homogeneous polynomial in the fields A at na and neighboring lattice sites. 

5. Convergence proof. 

To prove the renormalization theorem, we will show that {4-i) satiSfies all criteria of the power co~nting 
theorem of {3). The subtracted integrand (4-2) can be written as 

where 

V(k,q;~J,a) 
Rr(k,q;~,a) 

B 1 (k, q;p., a) B2 (k;JJ, a}' 

n(.L) 

Bt(k,q;p,a) = n n (eLi(ha) + Pij), 
LECr j:l 

n(L) 

B2(k;p,a)= IJ IJ IT (eLj(kla)+Pij)nj(L.-rl, 
1" LEC~ j=l 

(5-1) 

(5-2) 

all masses PLi are nonvanishing, nj(L, 7) E No = {0, 1, 2, ... }, and the outer product is over alii PI subdiagrams 
i of r. Furthermore, 

IL(k,q) = kL(k) +qL(q) 

kf = kl(k) 
(5-3) 

and V E cc, i.e., Rr belongs to 7'" (see Appendix A). By definition ofthe subtraction operators and of S-,, Rr 
is periodic in the loop momenta k1,.-., km. 

Let l be the set ofalllL, L E lr, and of all kl for lPI subdiagrams 7 off and L E £ 1 . By construction of 
kl, the set Cis natural in the sense of [3]. All what remains to be shown is that the power counting conditions 
of [3] are satisfied. Let 

t,, ... ' t~o 
(5-4) 

VJ> ... , Vm-k 

be an arbitrary basis of£, i.e. ti, ... , t11; Vt. •.. , Vm-k E £, and the Jacobian satisfies det(8(t, v)/b(k)) # 0. By 
fixing v1 , ••• , Vm-11, ont> defines a Zimmermann subspace H, i.e. a class of affine subspaces of the space of loop 
momenta (kt, ... , km)· k = k(t, v, q) and k7 = kT(t, v, q) for <"Very IPI subdiagram -y off are linear functions. 
(t) = (t1, ... , t11) is called tht parametd~ation of H. The sE't of all such Zimmermann subspaces H, for all bast>s 
(5-4), is denoted by 1t. We will show that for every H E 1t, paramt>trized by (t) = (it, ... , t,,) with respect to 
a basis (5-4) of£ 

4h+degr;.Rr(k(t,v,q),~;ll,a) < 0. (>-5) 

Then all the conditions are met for the power counting theorem to apply to tht> renormalized Ji"eynman integral 
(4-1). This concludes the proof of tht renormalization tht>ort>m. 

The general idt>a of proof can be found in [1] a·nd uSt""s tl1t> mt>thod of so-called complete fort>sts. What 
is different h!."re is the form of the integrand, a new kind of subtraction and the definition of a UV-divergence 
dt>gree. However, as will bt> seen below, (5-5) is hasl.'d on generaJ properties of the divergeme degrees [3], and 
of tht> subtraction operators {Lemma 3.1). This aJiows us to u~e I he idt>as of {1] (cp .. [4]). Especially, the 
combinatorical part of the proof can be takt>n over literally. At first, Wt> have to repeat the definition of a 
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comph•te forest. A f-forest U E W is called wmplt>te on lf. parametrized by (I), if r E U, and if for any 1 E U: 
all lines of1(U) are constant on H relative to")', i.e. 

kl(t, 1', q) is independent oft for every L E l'i(U) o• 
all lines of 'f(U) are variable on H relative to"), i.e. 

kl(t,v;q) is dependent on t for every L E l'Y(U)· 

'f(Uj is said to be constant or variable on H, respectively. The forest formula (4-2) can now be written in a 
form dependent on a given Zimmermann subspace H. 

Lenuna 5.1 [1]. Let f be a lPl diagram and HE 1t. Th<"n 

Rr(k,q;p,a) = L: iu(k,q;p,a), 
UEWJ' 

whl.'re w: is thl.' set of all f-foresls which are co~1plete- on H .• Y:u is recursively dt>iermined by 

- . _ -:-j{r) - r r. I Xu(k,q,p,a)- (1-tr )Yr(k ,q ,p,a) ,~,r=o~:,,r:,' 

where for minimal; E U 

Y.,.(k""",q"~";p,a) = i 1(k.,,q1, ;p,a) 

and for any other 7 E U 

Y,.(P,q1;p,a) f'i(UJ(P,q7 ;p,a) · S-, Jifh;)Y·..,,(kl',q..,';p,a). 
i:l 

it. .. , 1'c are the maximal deml.'nts ofU(-r). 1{-.,) is ddined by 

- {1-f~h) 
/h)= -t.!hl 

if7EB(U) 

if-y ~ B(U). 

(5-6) 

(5-7) 

(5-8a) 

(5-Sb) 

(5-9) 

B{U) is the set of all1 E U, wlticlt lta1'f' :Y( U) variable on H and in addition are a maximal dement of U( r) for 
soml.' r E lT ha.vingT(U) wnstant on H. 

All functions }\.,Xu,Rr are in :F. Tht> H-dependt>nt form (5-6) of Rr- allows an estimation ofdegr,Rr 
by induction through a complete forest. As will be seen, nery single term in the sum (5-6) alrtady satisfies 
thl.' dtsired bound on the UV-degret>. The proof of Lemma 5.1 can bt found in [I]. What is difFerent herE' are 
the strufture of the fumtions and the definition of internal and external momt>nta of subdiagrams. However, 
this does not havl.' any influence onto the validity of Lemma 5.1 which is mainly a fombinatorifal stateml.'nt. 
Of importancl.' is that tht> internal momenta of subdiagrams are dl.'terminl.'d always in thl.' saml.' way. This is 
guarantetd by (2-24). 

For t>very F E W:' and evt>ry 1· E U Wt> set 

Mu(1) = 4 L:m(T(U)), (5-10) 

wherl.' T E U(1) U {-y}, T(U) variable on JI, and where m(T(F)) is tht> numb!."r ofloops in T{U). Mu{f) sums 
up the number ofindt>pendent paraml.'ttrs of H, i.t>., MF(fl 2: 4h. This is proved in Apptndix C. We now state 
the important 
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Lemma 5.2. Lt't HE 1t witll parametrization (1) = (th···,lh), U af-forest which is complete on H, and 

Rr, }\. as in Lemma 5.1. Then for every "'( E U; 

1. degrtf,.(P(t,v,q),q7;p.,a):::;: -Muh) for ;y(U) constant, 

equality holding only if Mu{i) = 0. 

2. degrr;;Y7 (P(t,v,q),q7;p,a):::;: .S(-y)- Mu(t) for 'f(U) variable. 

From I. and 2. we get 
degr1Rr(k(t, v, q), q;p, a)$ -4h- 1. 

(5-11) 

(H2) 

15-13) 

Note that the dependence of P on the external momenta q does only occur through the parametrization 

of a Zimmermann subspace H. Differentiations and UV-degrees with respect to ql refer only to the explicit q7-

dependence. Statement (5-13) is the desired power counting condition. Beeause His an arbitrary subspace in 

1i, all conditions of the power counting theorem of [3] are satisfied. Hence, from Lemma 5.2 the renormalization 

theorem follows. 

PROOF: By induction through the forest U. We will permanently use the degree properties of Lemma 2.2 

of [3] without explicit reference. t.:hJ is a subtraction operator to which Lemma 3.1 applies. Note that the 

numerator V(t, v, q; p:,a) of a function VfC E :F satisfies degrif V :::; degr~ V, and if Vis independent oft, then 

degr;Y $0. If-y is minimal, then 'f(U) = 1 and 1'7 = f,., hence 

degr197(P(t, v, q),q1 ;p, a)_$. 0 if 'f(ll) is constant, 

degrtq;f.,.(P(t,v,q),q7;p:,a) ::;w('Y)- 4m(-y):::; .5(1)- Mu(-r) if'f(U) is variable. 

Now we assume that the inequalities 1. and 2. hold for all maximal elements "Yi E U(1'), i = 1, ... , c, for some 

non-minimal -y E U. Then Y1 is given in (5-8b). s.,. means a linear substitution 

p;--> ,P'(P) 

q"1; _, q1'(k7 ,q7). 

1. Let "'f(lT) = 'Yh1 · ··-re be constant on H. Then 

a. 
degrtf-rh> .. 1.(P(t,v,q),q1 ;p,a) $0 

b. 'f;(U).constant. Then j(-y;) = -t;,b•l. According to the hypothesis of induction 

degl191 ,(P'(t,v,q),q7 •;tt,a):::;: -Mu(ii) 

(equality holding only if Mu(i;) = 0). He11ce 

degrr( -f~,b,J)'f,., (P•(t, v, q), q 7'; p, a)_$. -Mu (/;) by Lemma 3.1.2 

degr1S7( -i~.(7,J)f.,., (P' (t, v, q), q1'•; p., a) = 

= degrt{S1 ( -i~,(-r,Jyf,.,](P(t, t•, q), q7 ; p, a) $ -Muhi) (= holding only if Mu('Yi) = 0). 

For, ql· depends via 51 only on those P which are constant on H relative to"(, i.e., q7• is independent oft. 

c. 'f;(l!) variabel. Then j('y;) = 1- i~.(·h), and according to the hypothesis of induction 

degr1q:_;;-,Y7, (P•(t, v, q), q1 ';-p., a) :::;: <'i('Y;)- Mu("'t;) 

f 7, is of the form 

' Y (k' q-r . ., a)=f I (k' q-r • ., n)S ITI-fb(,.,,J)f' (k7•> ql•i·u. a). 7, > >r> 7, 7>1 '1od > • ,,..., 1• ~'1 loj I lr'> 

j=l 
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Alllin<'s of'};(lf) = 1;/"'(n ···'};<!are Variable on H relative to'};, and the denomi11ator of 

' S ITI-Ph,;l)f' .(k7, ql••·" a) 
7. ,.,, -r., ' ,,_, 

j"'l 

does not depend on q7•, kl•i = kl'i (kl•) being independent of q7 • via 57 ,. Hence Lemma 3.1.4 applies to 97,: 

degr1 (1 - t;;(-r;J)f7,(P•(t, t•,q),q7•; p, a) $ -Mu(ii)- 1. 

Again, in q'" only those P oc.cur which are constant on H, hence 

degrt57(1 - t;,(-r,J)f,., (P•(t, t•, q), q~'; p, a) 5: -Mu("'(;) - 1. 

In summary 

degrfi'..,(P(t, v,q),q 7 ;Jt,a)::; -Mub) (=holding only if Mu(-y) = 0), 

when• we have used 

Mu(-y) = L Mu(-r;) ('Y(ll) constant). 
i=:l 

2. Let'f(U) be variable on H. For all i = l, ... ,c; fhi) = -t;f-r;J. 

a. 

degrtq;flh• .. 1~(P(t,v,q),q7 ;p,a) $ "-'('f(U))- 4m(;y(U)) 

by definition ofw('f(U)) and m('f{lf)). 

b. ;y,.(U) constant. 

degrtf'7.(k1 '(t, v, q),q7';p,a):::; -Mu(-yi) (=only if Mu(lr;) = 0), 

degr1 (-t;,b•l)"f.,.,(P•(t,v,q),q7•;p,a) $ -Mu("Y;) by Lemma 3.1.2, 

degri;>J -t;~-r;l)f7,(P•(t, v, q), q7 • ;p, a)$ .5("'t;)- Mu(ii). by Lemma 3.1.1. 

The denominator does not depend on q"~'·, and linear 51 can only decrease the degree with respect to (t,q7): 

degrif"S1 (-t;,b;J)Y.,.,(P•(t,v,q),q"~'•;p,a):::; 6(1.)- Mu('Y;). 

c. "'f;(U) variable. 

degre;>,Y7,(P•(t,v,q),q7 ';p.,a):::; 6(1,)- Mu(-rd (induction hypothesis), 

degr1q:;-, ( -i;,h,J)f1 ,(P'(t, v, q), q7 ';J.', a)_$. .5(1;)- Muh;) (Lemma 3.1.3), 

using the same arguments as for l.c, 

degrr;;S7( -i~,(1,J)f'7,(P•(t, t•, q),ql•;p., a) :::; 6(1;) - Mu('Y;). 

In summary 

degrr;; 97(P(t, v,q), q1
; p., a) :::; w(;;y(U)) + L 6(-y;) - Mu("Y), 

io:J 

where we have USI;'d Mt~("Y) = 4m('?(ll)) + L:~=l M11(1ri). According to thl;' condition (4~4) this implies 

d<'gr;;; f 7 (.P (t, t•, q), q1
; Jl, a) S .5(1') - Mu("'t). 
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To prove tile last statement of the lemma, wt" must distinguish bt'twt>t>n f(U) variable and f'(l!) constant. If 
f(U) is constant on H, then 

degr;Yr(kr(t, v, q), qr; p., a) ::; -Mu(f) - 1 :; -4h- 1 , 

hence, using Lemma 3.1.2 

degrrXu(k(t, v, q), q; J.t, a)::; degr;(l - t;<I'))fr(k~'(t, 1•, q), q~'; J.t, a) :S -4h- I. 

Jff(U) is variable on H, 

degr;;;:Yr(k~'(t,v,q),qr;Jt,a)::; 6(r)- Mu(r)::; 6(1')- 4h. 

Using Lemma 3.1.4 and the same argument as for l.c, Wt" get 

dt>gr;iu(k(t, t•, q), q; J.t, a} :; degr;(l - f~(r))Yr{kr(t, t•. q), q~'; Jt, a) :=; -4h- I. 

Hence in both cases 

degr;.Rr(k(t, v, q), q; IJ, a):=; -4h- 1, 

and Lemma 5.2 is completely proved. 

6. Genel"alizations. 

0 

Until now, we have discussed Feynman integrals for scalar fields only. This we have done for simplicity. 
There is no essential change if we include fields carrying internal symmt-tries like Lorentz, colour, spinor in
dices etc. The diagrammatic notations introduced in Sedion 2 are supplemented by the notion of an index 
distribution. 

Definition 6.1. Let f be a Feynman diagram as given in (2-1). An index distribution .is a collection of two 
maps At,Al, deil11ed by 

All A's are Jlnite sets. 

L ~ Al x Ai 

E ~AE 

for aJI L E .Cr 

for all E E fr. 
(6-1) 

The index sets A are carrying the symmetry labels. Note that to every internal line there correspond two 
indices, one for eaeh end of the line. In calculations, these indices are summt-d over. Propagators and vertex 
functions are now dependent on momenta and indices. A Feynman integral has tht" form 

where 

}r(q,a(Er);J.t,a) = !
•I• L d4k1 · .. £'km fr(k,q,o:(Er),a,B{.Cr);l-',a), 

~L.IlL -1</d 
"E-"r 

fr(k,q,o:(fr),at'(£r);J.t,a) = II VB({h}B,{aL}B;p,a)· fl LiL(h,aL,PL;J.!,a), 
BE8r 

a(Er) = ( <l'E IE E fr ), 

o:,B(£r) = ( (aL,t'L) I L E .Cr), 

LECr 

OlE E AE for all E E fr, 

ctL E A}.,ih E Ai for all L E Cr. 

Propagators are of the form 

PL(h;J.t,a)oL{h , 
LiL(h, aL,t'Li p., a)= O'.'(L)[eL ·{h; a)+ J.tijJ 

;=l J 
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(6-2) 

(6-3) 

(6-4) 

(6-5) 

Jl,.normalization of F<.'ynman int,.grals on the JattiC'e 

where CiL (-_ Al,PL f" Aj_, and for every pair (nr.,/h) tln.· numerator is of a form (2-12). Vertex functions VB 
an also of a form {2-12), and {aL}B represents the indiC'eS of th<.' lin<.' ends at lhe vertex B. Similarly, the 
integrand of a subdiagram -y off is given by 

where 

f1 (k'",q1',a(E1'),a,B(.C1 );J.t,a) "'- II f's{{ll}B,{al}s;J,t,a)· II LiL(ll,aL,Ih;~J,a), 
BE8, 

o:(£1') = ( u11 E EEl ) 

a,B(£1'):::: ( (aL,.BL) I L E ! 1 ). 

LEC, 

(6-6) 

(6-7) 

An "induced indt>x'' a 1 for E E [ 1 is equal to the index of the line ending of L E .Cr OJ L E Er, which 
corresponds toE by the imbedding of 1 as a subdiagram off (see Section 2). For L E £1', o:l ::::: O£. Analogous 
statements can be made about reduced diagrams. 

Internal momenta are defined as bdore. However, divergence degrees are modified to he independent of 
symmetry labels. For every 1PI subdiagram 1 off, w(-y) is defined as in (2-28). However, w(LiL) and w(VB) 
are now given by 

w(LiL) 

w(VB) 

max degr1 LiL(IL,aL,.BLiJt•a), 
<>LEA~ ,lhEA~ L 

max degr
1
-

1 
VB({IL}s;Jt,a). 

{oL}B IL B 

'fhe same holds for rt>duced diagrams. 

Finally, the forest formula is changed to 

whf"lt" 

!
•I• 

Rr(q,a(Er);J.t,a) = L: d4k1···d4km kr(k,q,a(Er),a,B(.Cr);p,a), 
"L•IiJL -~/a 
LE<r 

Rr(k,q,a(fr),a,B(.Cr);J.t,a) =- Sr L: II (-i~h'Js.,.) fr(U), 
VEW1EU 

(6-8) 

(6-9) 

(6-10) 

(6-11) 

and the only restrictions to the subtraction degrees li{r) are given by (4-3) and (4-4). The convergence proof 
of(6-10) is identi<."al to the above, the only modifications being that divergen<."e degrees are now determined by 
(6-8) and (6-9). Finally, all comments we have made in Sedion 4 remain essentially unchang('d. 

A further generalization is to choose a subtraction point q difft>rent from zero. But all statt"ments and 
calculations above art" ins('nsitive to such a choice. This is becaust" the choice of normalization has no influence 
on the ron vergence properties of the Feynman integrals. A change of nortnalizalion conditions can be described 
by the addition of fin it(' <."ounterterms to the a<.".tion which do not destroy renormalizability. 

Conclusions. 

Wt> have shown that the BPHZ renormalization procedure can bl:' generalized in such a way that it applies to 
momentum-spart" Feynman integrals with a lattice cutoff. The generalization is that the counterterms, instead 
of being polynomials, are functions which are periodic with the Brillouin zone. They result from the wide class 
of latlirt> subtraction operators. This class includes as a special case polynomials in lattice momenta. In this 
case, aftt"r appropriate symmetrization in external momenta (as described in Section 4), they can be written 
as local countertt>rm contributions to thl:' latti<."e action. Note that this symmetrization is necessary due to 
dl:'pendt>nce of the counterterms on a chosen basis of external momenta. 

The continuum limit of a massive !attire field theory whi<."h is renormalized in this way ('Xists and is given 
by the field theory whi<."h is described by tht" (naive) a~ 0-limit of the lattice action, and which is renormalized 
by the BPHZ finite part prescription. This means that perturbation theory is univt-rsal, i.e., the <."ontin).lum 
limit does not depend on tht> lattice action chosen. Also, thl:' usual power counting renormalizabilily conditions 
of a field theory can bt> maintained, tht" only modification being that for all vertic.es of the theory the Jatticl:' 
UV-divergt>nce degrees have to be less than or equal to four (in four-dimensional space-time). Especially, if all 
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couplings are dimensionless, a lattice field theory is tt'nonnalizable if and only if its (formal) continuum limit 

is renormalizable (by power counting). Also, the choice of zero momentum as a subtraction point in the BPHZ 

procedure is of no importance. Any other choice is possible and corresponds to a change of the normalization 

conditions, which can be desribed by the addition of finite counterterms to th(' lattice action. 

There are some general restrictions on the structure of Feynman integrals in momentum#space imposed 

by the renormalization procedure. In particulas, the integrands have to be periodic with the Brillouin zone, 

a property which is reflected by the fact that tht' counterterms must also be periodic. In thl' formulation of · 

the lattice power counting theorem [3} and the renormalization procedure for lattice Feynman diagrams, we 

hiwe always assumed that the propagators have exactly one pole in the Brillouin zone, i.e. the denominator of 

every propagator takes its minimum at vanishing momentum only. Especially, lattice ferruions with propagators 

having poles on the boundary of the Brillouin zone are excluded, whereas th renormalization procedure works e.g. 

for Wilson fermions. Furthermore, we have always assumed the numerator and denominator of the integrand 

to be coo. This condition can be weakened in that the propagators should have this property at least in a 
small neighbourhood of zero momentum, and globally they should be differentiable to such a degree that all 

differentiations necessary to subtract divergencies can be done without problems. 

So far, we have discussed massive field theories in order to avoid infrared singularities. This allowed us 

to concentrate on the problems specific to the lattice a.s a UV-cutoff. If massless fields occur, we have to take 

into account possible infrared singularities very carefully. However, they are not specific to the lattice and are 

expected to be hactable by the methods which were developed for continuum Feynman integrals many years 

ago [6,7,8,9]. We will discuss this problem in a forthcoming paper and shall see that one only has to supplement 

the ultraviolet Power counting conditions by infrared power counting conditions. 
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Appendix A. Examples of subtraction operators. 

We give some general examples for t: to be a subtraction operator. At first, we repeat the definition of 

the function dasses C.,.. etc. of [3]. FormE Z, C.,.. is the dass of functions V ofthe form V(u;a.) = F(ua)fa"", 

where F E C"". If in addition lim .. _._.o V(u; a) exists, we get the dass c:,.. C (c•) is the set of functions which 

are finite sum5 of functions in some C.,.. (C:,.). For V(u, w; a):::: F(ua, wa)fam E C.,.., 1'u = m- degr;;:V is the 

largest non-negative integer such that 

8~F(u.,w)l :::0 for!bj<T,., 
awb .. ,o 

where !bl is the length of the multi-index b, i.e., the sum of its components. ]f V = L:, V; E C, V, E Cm, and 

m.; i- mk fori. f: k, then degruV = max;degruV;. 

:F is the set of all functions of the form F = P/C, where P E C< and the denominator C E c< is a finite 

product 

c = Ili«(l;; a)+ .n. 
;"'' 

l; are linl'ar functions in momentum variables, and e; are func~ions as defined in (2-13). Note that 

degr;;(ei{l;;a) + pf) =. { ~ if l; depends on u 

otherwise, 

and this is equal to degru(lf + p}) (s('e {1]). The tTY-degree ofF with respect to u. is defined by 

degr;;:F = degr;;Y- degr;;:C = degr;;V- 2n.,, 
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where n., is the number of l; depending on u. For F, Ft, F1 E :F, degr;;: satisfies 

degr;(Ft + F2) ::S max(degr;;:-Ft,degr;;:-Fl) 

degr;;:-(Fl · F2) ::S de~r;;:Ft + degr;;-F2 

~a· ~ 
degr;;: au~ F ::S degr;;:F- lei 
~ 8' ~ 

degru au•• F _:::; degr;;:F 

Tht'Se are the "degree-properties" of {3], Lemma 2.2. 

Having reviewed general notions, we shall now state som(' general examples of subtraction operators. Let 

us introduce a special subset M of c•. M denotes the set of functions P satisfying 

P(q;a)EC•, 

lim P(q;a) ~ q, 
·-' 

where q is a real variable. If in addition Pis a finite product of sin and cos functions and is (211'/a)-periodic in 

q, then P is called a "lattice momentum". For instance, [sin (qa)/a] or [(2/a) sin (qaf2) cos(qa/2)] are lattice 

momenta. 

For 6 E No :::: { O, 1, 2, ... } consider the following construction: For every j = l, ... , s and i = (it, . . , i,) E 

Nb, i, + · · + i, ::S 6 let Pjji(q; a) EM such that 

S.t 

II Pn;(qi;a)'' is (211' /a)-periodic in q1 , .•• , q,. 
i=l 

• '·+···+'·"" [ • l t:=E. ~ i,!.~·i,! ppil•<qi;a)'' 
n=O ,,, ... ,,,EN0 J=l 

[ 
•'· 8'· l 

8Ptji(qt;a)'• . . 8P,I;(q,;a)'• q=o. 

This means that in applica.tion to a fundion F, which is C00 in q, derivatives are taken at q :::: 0. 

Lemma A. I. If for every j = 1, ... , s and t:'Very l ::; 6 thne t:'Xists a constant C/j, so that 

( ~Pil;{q; a)) = C/i 
tJq q=oO 

for all i, then for arbitrar.v function F which is C 00 in q 

[ :: (1 - t:)Fl = 0 
q ?"'0 

for all n E N~, ]nj :::; 6. 

This means that t: is a subtradion operator of Order 6. 

PROOF: For a fixed i E N~, it + · · · + i, :::; 6, choose 

Pj(q;a) = Pili(q;a) 

for every j = 1, ... , s. As a consequence of (A -2) 

. 
II Pjj;(.\q;;a)'':::: II Pj(,\qj;a)i' + opHt). 
j=-1 j=l 

aod 

( "" a'· ) 
8Ptj;(q,; a)'• ... 8P,I;(q.;a)1• F q=o ( •'· •'· ) ... F 

8Pt(q1;a)1• 8P,(q,;a)1• q=o. 
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llcnn·. using Taylor's fornmla and that }'1 (/vi. w1· gd fur.\ -· 0 

-b /) i,+··:___~·=n __ I ... 'Il• p .\ ·'a;,-(--"-"--. ... ______!!_·--. F) (l-t-'q)F=F-2.: 2.::: i
1
! .. j,!'_ ;( qJ,) j i1Pt(q

1;a)'' 8P,(q,;a)'· q=-o n=O i,, ,>,ENo J=l 

+ 0(.\~+1) 

=D<!LIPj(.\qJ;aJI2]-4--'J + opHl) 
r=I 

As a corollary, we get 

Lemma A.2. Let P EM. 1'1Jen 

op."~~). 

• • [ & 8 l t; = 2.::: ~ L P(q;,;a) .. p(q;~;a) 8P(q;,;a) . . 8P(q;n;u) y=O n=O n. i,, ... ,in=O 

is a subtraction operalor of order{;. 

0 

{A-7) 

As an example, set P(q; a)= sin (qu)/a. Pis a latti..-e momentum. and (A-7) is a subtraction operator. 
Notf' that P is a periodic fun..-tion. If thf' fun..-tion dass :F is restricted appropriatdy, then we arf' allowed to 
use anti-pf'riodic functions like (2/a) sin (qu/2) without violating (A-3). For instanct>, this can be done in the 
.P4-theory as shown in Section 4. 

Appendix' B. Chord sets. 

Lemma B.I. Let -y bt' a ..-onnf'cted Feynma.n diagran1, P lllt' 11Umber of linf's in "f and l.r 
Drfinf' 7..,' ~ l--r by 

LjET1' <=:::::> L,\{Ll>···,L;-d..-ontainsaloopC2{Lj}. 

for t>Vt'l,Y j = I, ... , P. Then T.," is a chord St>t in "(. 

{£ 1 , .. ,Lp}. 

PROOF: We haVf' ·to show that 71 = £.., \ 7.,' is a hf'e in 1·, i.e., 71 ..-ontains no loop, but 71 U {L} is not a tree, 
i.e., <:ontains a lOop, for t'Very L E T.,'. 

If C ~ 7 1 is a loop in 7..,. then therf' exists a k such that L~o E C ~ C--r \ {£1, ... , L~r-l}- But this is in 
..-ontradiction to Lk E 71 . Hence, 71 ..-ontains no loop. To prove thf' seeond condition, let 

T7' = {L;-,,L;, ... ,L;~}~£..,, i1<i2<···<im. 

I \Ve have to shOw that T.., U {L;~} <:ontains a loop, for tvery k = 1, ... , m. lf L;. is a loop line, this is trivia]. 
Lt't n,._, C"' E 8 1 hf' tht> endpoints of L; •. We show that there is a path Pk ~ T.. hf'tween B~; and Ck. Then 
Pk U {L;,} is a loop in 71 U {L;,}. 

If k = m, then by wnstru..-tion 
£ 1 \ {Ll> ... , Lt..,-1}:: T~ u {L;~} 

<:ontains a loop Cm sul."h that L;., E C m. Pm = Cm \ { L;..,} ~ 7~ is a path bf'hVet'n B.., and ('"' in 71 . Assume 
the assertion holds for k + I, ... , m. 

C.., \{LJ, ... L;,_J} 

<:ontains a loop Cb and L;, E c •. c. \ {L;,} is a path in £ 1 \ {L 1 , ... , L;._ J} betwt'tn B• and CJ<. Replacing 
for t'very L;, E C• \ { L;,}, j =- !• + I .... , m, { L;,} by P;, the tf'sulting stt 

£,._ = C,._ \ ~L;,} \ (u~HdLt;}) U}=k+I Pj ~ 71 

is a conne..-ted st>t of lines in T..,. This set always mntains a path PA. betWt><;>n B,._ and n .. 
0 
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Ap}H'udix C. Conlpletf' forests and the dintension Qf Zintmermann subs )laces. 

Lf't f bf' a 1PJ Ff'ynman diagram, Han arbitrary Zimmerman!! subspoce, parametrized by {t) = (t 1 , ••• , l~t) 
(and o;-oulplf'lllentarJ' paramf'lers (1>)), defined by (5-4), and U a complt>le f-forest on H. For every 1' E U 

Mu(-y) =: 12:m(T(U)), (S-10) 

whf'tf' th{' sum is over all 7 f'; U(1') U {-y}, T(U) variablf' on H, and m(T(U)) is thf' numhf'r of loops in T(U). 
Wf' prow that 

Mu(f) 2 4h. (C-1) 

Let 7-!- bf' a chord set in r. Every kL, L E 7r, has a representation 

' kL(t,v,q)= LcLjlj + \1L(v,q), 
j=l 

where runi.•(GLJ) =h. For every£~ 7/ we ddine 

rank1 l = rank(CLj)Lu::, 

i.{'., th..- rank of(' reshided to tht' rows L E £. rank1 lis the maximal number of momenta kL, L E £which 
are linear indepf'ndf'nt with respect to t . 

Lemma C.I. fbr t'Vf'ty 1' E U 

Mu(-r) 2: 4-ranktT
1". {C-2) 

For r this means Mu (f) 2: 4 ·rank, 7-i- = 4h. 

PROOF: By induction through the forest. For any £ ~ Cr let #£ be tht' numbf'r of lines in C. First, let 7 bf' 
minimal in U. If 1 is ..-onstant, then Muh) = 0. But a]] Jines of 7

1
' are constant, i.e., rank, 7

1
' = 0. If 1' is 

variable, 

Muh) = 4m(1') = 4 · #T.,' 2:4 ·1'ank, 7 1". 

Next, let 'Y E {I and 1J. .. . ,"fc be the maximal elemt>nts of U('Y), so that 'f(U) = -r/1'1 · · ·1'c· By construdion 
of ..-hord sets in Sertion 2, 7--r', ~ T.,'. Notf' that 

£.., = £..,,..,, ... 1 , Ui=l 7-y, ur=t 71',. 

The numbt>r ofloops in 'f(l!) is given by 

m('f{U)) c m(-y)- I: mh;) c #T,' -I: #7,: 
i=l i=l 

= # (7; n (£ 1 h,--. ..,, uj'= 1 7..,,)). 

If 'f(U) is variabk then 

Muh) ~ 4m('f(ll)) + L Muh;) 
i:el 

:::: 4 · # (7; n (£111 , .. ..,, u~=- 1 71,)) + 4 L: ranJ.·1 7~·. 
i=l 

2:: 4·1'ankt (T.,' n(c..,h,-·--., V~=l 71 ,)) + 4L:rankt71', 

i=l 

2:: 4-rank/T,', 

" 
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where we have used that for A, 8 t;;, 'Tf.: 1'ank1 A+ rank1 B ::': Tank 1 (AU B). If ')(ll) is c-onslant, then 

Mu('r) = L Mu("r;);::: 4 L>ank1 T..,~-

'"'' i=l 

a. For L E T..,• n C-,j-,, .. 1 ., kL is constant, hence 'l'ank, (T.y• n .C1fl',···1J = 0. 
b. For LET.; n 7;,, 

kL=ki'+ql'· 

L ((; T.0 hence ql' is of the form 

ql' = L dLE k1 = fL(v,q), 
EEC.>I>t·· 

i.e., ql' is independent oft. Furthermore, 

Consequently 

and 

In summary 

kl' = L CLM kM(t,t•,q). 
MET;, 

-h(t,v,q) = :L; CLM kM(t, v, q) + /L(v,q), 
MET;, 

rank1 T1", = rank1 (T..,: u (T; n 77 .)). 

E ,-ank, T.,~ = rank1 (T; n Lrh•· . ..,.) + L,: 1'ank, (T.;, u (T.,• n T..,.)) 
i:l i=l 

2: 1'ank1 T;. 
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Fig. I. A diagram 7 as a sub diagram of r. 
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