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ABSTRACT. A periurbative r lization dure is proposed which applies Lo massive field theories on a space-

time Iattice and is analogons to the BPHZ finite part prescription for continuum Feynman intcgrals. The renormalized
periurbation theoty is thown fo be universal, i.c. under very natural assumptions the continuum limit exists and is
independent of the details of the lattice aclion.

1. Iniroduction

In periurbation theoty of a local guantum field theory here exist well-known renormalization procedures
which remove ultraviolet divergencies. The BPHZ finite part prescription makes subtractions directly in the
integrand of each Feynman integral in momentum space [1]. Divergencies of every subdiagram are subtracted by
application of-a Taylor operator in the external momenta of the subdiagram, which in position space is a local
operation. The renormalized Feynman integral is defined in such a way that the ultraviolet {UV) divergence
degrees of all subdiagrams aze negative. There exist a power counting theorem due to Haha and Zimmermann
[2], which states the convergence of integrals having this property.

Unfortunately, these methods assume a rational structure of the Feynman integrands and hence do not
apply to diagrams with a lattice cutoff. In this case, instead of being rational, the integrand is periodic with
the Brillouin zone. Removing divergencies by subtraction of Taylor polynoinials is very unnatural in a lattice
description, and in fact such a procedure does not work, due to violation of periodicity. In a recent paper [3], we
have proposed a lattice version of the power counting theorem of Hahn and Zimmermann by generalizing the
well-known notion of a UV-divergence degree. Having such a theorem at our disposal, we are able to consirnet
a generalization of the BPHZ finite part prescription which applies to diagrams with a laitice cutoff. Due to
power counting conditions, the combinatorics of subtractions are given by the forest formula of Zimmermann
[1]. As will be seen, the important modification consists in replacing Taylor operators by appropriate latiice
subtraction operators. This class contains as a special case Taylor polynomials in "latiice momenta” (sin (ga}/e
etc.), but is'in fact much mote general. Lattice diagrams renormalized in such a way are convergent when the
cutoff is removed. The limit itself is universal, i.e. it does not depend on the lattice action chosen, and it is
given by continnum Feynman integrals which are renormalized by the continuum BPHZ prescription.

To avoid infrared singularities, we have assumed that all fields are massive. At first we introduce in Section
2 a couple of notations concerning Feynman diagrams and integrals on the lattice. In Section 3 the important
notion of a lattice subtraction operator is intreduced, and its most important properties are given. The lattice
version of the BPHZ renormalization is defined in Section 4. It is shown thal subiractions, if appropriately
chosen, can be writien as counterierm contributions to the laitice action. General conditions are stated which
guarantee power counting renormalizability of a Jaitice field theory. In Section 5 the convergence proof of the
renormalization scheme is given, nsing Zimmermann's method of “camplete forests”. For simplicity, all formulas
aze written for scalar fields only. In Section 6, the modifications necessary to include fields carrying internal
synunetries are briefly described.

Throughout this paper, we will use the notations of [3]. These are lisled for completeness in Appendix A,
and there are also given some general examples of subtraction operators, The Appendices B and C contain
some lemmas used in the text.

2. Feynman diagrams and integrals

2.1, Topology of Feynman diagrams

2 Adddress after September 1987: Max Planck Institut fiir Physik wnd Astrophysik, D-8000 Miichen 40, Munich, Fed.llcp. Germany
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Renormalization of Feynman integrals on the latfice
We define topological notions of Feynman diagrams and Feynman integrals. In part. our notations are
ihose of Zimmermann [1] and Nakanishi {5].

A (Feynman) diagram or {Feynman) graph [ is a structure
T={Zr, &, Br, ¢r, ¥r) S
having the following properties: Lr. p, Br are mutually disjoint sets,
Lp={Ly,. .. Loy} internal lines of T
& = {E....Exmy} external lines of T
Br = {Bu,..., Bagr)} vertices of T
¢ and #ip are the incidence relations of T, i.e. they are mappings of the form

¢r : Ly — Brx Br
#r{L) = (A5, Br),
¥r @ &r — Br
Yr(E) = Ap.
Ay, is called the cutgoing end point and By the ingoing end point of L € Cr. Both Ay and By are called

endpoints of L. I Az = By, then L is calied a loop line. If A € Br and there exists an E € £p such that
wr{E) = A, then A is called an external veriex of I'. Otherwise, A4 is called an internal vertex of I'.

Let v and T be diagrams. v is called a subdiagram [or subgraph) of T (Fig. 1}, if

1,
£y C Lr
B, ¢ Bp
¢ = $r/L,

{i.e., ¢, is the restriction of ér onto £,. Especially, ¢, (L) C I8, x B, ).
2. Every E € £r satisfying vp(F) € B, isin £,, and

¥ {E) = ¢r(E).

The set of these lines is denoted by E;t’,'.).

3. Every £ € £r \ L,, which has exacily one endpoint Bg in B, under ép, is in &,, and
(£} = Be.
The set of these F is denoted by Ei?l{)'
4. The remaining external lines in £, (i.e. those which are not in E;(’I'.} or E;‘(’I‘.)] are obtained in the obvious
way by cutting in two the lines L € L£r\ £, which have both end points in B,. Every such line is called a loop

- . X foop _, int
line of I relative to v. Furthermore, we set f‘r(f') =&\ (E-',?rj 9] E;;’lf\))

If every B € B, is endpoint of at least one line in £, then 7 is called the subdiagram spanned by £,
{This is the definition of a subgraph in the sense of Zimmermann [1]}.

A diagram T is said 10 be connected, if for all pairs of vertices By, F; € Br, B; # B there is a set of lines
{Ly,... L} C £Lr

such that B, is an endpoint of Ly, By an endpoint of L., and foralli = 1,...,¢ ~ 1 the lines L; and Lj4, have
one endpoint in common. A subset £ C Lp of lines is called a connected sel of lines, if the subdiagram of T'
spanned hy £ is connected. Two connecled subgraphs 1, v2 are said Lo be disjoint, if they have neither vertices
sor interpal lines in conmnmon. A graph is disconnecied, if it is nol connected.
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Herormalization of Feynman integrals on the lattice
A graph 1 is called IPI (one-particie trreducible), if £y 7 9. and there exists no ine L ¢ £y sucl that the
diagram spanned by Lr \ {£} is disconnected.

Let T be a Feynman diagram and v a connected subdiagrams of I'. The reduced diagram

Pfy = (Lrpys Eopes Bryy s Oryy ¥ )
is defined as follows (Fig.2):
Lryy = Lr\ L,
&ryy = &
B"h’ = Bp \ B., ] {ﬁ}
B ¢ Bris called a reduced vertex. For every L € Lryq, #r{L) = (A, BL)

(Ap, Bi} ifAz,BL¢B,
(Ag, B) ifAy ¢ B, B €8,
(B, B} ifd; € B,,B. ¢ B,
(B, B} if A, By, € B,

drp L) =

and for every E € £rp,, vr(£) = Be

W _[Be iBren,
vri(E) = {'B' if Bg € B,
By induction, a reduced graph can be defined for mutually disjoint. connected subdiagrams 11,...,7. of . Fo
every y; there cotresponds exactly one reduced vertex B; in Ffy -« -9,

Let B € Br and £ C Lr. Then the line number D{B, £) of £ with respect to B is defined as the sum of
the number of lines in £, having B as ils oulgoing endpoint, and the number of Jines in £, having B as ingoing
endpoint. Especially, loop lines are counted twice.

Let By, By € B, By # Ba. L C L is called a path belween B; and B;, if £ is connecled, D(B;, L) =
D{B;, £} = 1 and D{B,£) € {0,2} for all other B € Br. ¢ C Lr is called a loop in ' if ¢ is connected and
D{B,C) € {0,2} for all B € Bp.

Let T bé a connected diagram. A treein T isa maximal sel 7 C Lp of lines containing no loop. 7* = Lr\T
is called the chord set of 7 in I'. T* has m{T) = P(T}— M(T}+ 1 lines, where P{F) is the number of internal

lines of T' and M{T} is the number of vertices of I'. m{T} is called the numher of loops in T i5]. It is
independent of the tree chosen. T* contains all loop lines.

Lemma 2.1 [5]. A tree T in I has the following properties:

a. D(B,T) # @ for cach B € By

b. T is connecled.

¢. Forany B,.B; € Br. By # B;, there is a unique path P C T between B, and B,.
d. The number of lines in T is M(I'} ~ 1.

2.2. Momentum distributions

Having defined the topology of Feynman diagrams, we will now discuss momenium distributions and the
structure of Feynmvan integrals on an infinite space-time lattice. First of all we define incidence numbers.

Let T e a Feynman diagram and L € Cp, ¢ (L) = ( By, Ba), B, £ By. Then, for every Ii € Br, we define
incidence numbers by

18, : L} —1
I By : L] +1
[B:L]l=20 if B+# By, B;.

If B, = B, then L is a loop line, and we set

[B:L]=0 for all B € Br.

Renommalization of Fevaman integeals on the fattice
For cvery external Iine &0 & op(E) - 10 By, owe el
'BiL o0 HBAB
iBy L= ol et -1
The choice beiween +1 and — 1 is arbitrary. If 7 is a suhdiagram of I, we define induced incidence numbers
of 7 by i
‘B L), =B L) LE LouETE UEH,
P8 Ll mabor -1 ifLe £
Again, the choire between -1 and 41 is arbitrary.

A momentum distribution in I' is 2 map

M : Lraé — R?

L =4,
so that
'B: Ll =0 for all B € By (2-2)
LELTUEr
This means momentum conservation at each veriex. Ir flows from tlhe owigeoing endpoint B ({B: L = —1) to

the ingoing endpoint B’ of L ([B' : L} = +1). The momenta of loop lines are not zestricted hy (2-2).
Let T be a connected diagrain. Then the only relations hetween the incidence nuwmbers are

>.iB:tl=0 forall L€ Ly {2-3)
ReBr .

For every external line £ ¢ £ set
ar=Ilg Y. {B E.

i
Be By

{the sum contains exactly one element}. qg are called external momenta of I'. They are flowing into the
diagram. If (2-2) is summed over all vertices B« Br. we get conservation of the overall momentum

Z gg = 0. (2-4}

Ectyr

We shall assume all 9g. £ = &, are given momenta, such that {2-4) is satisfied. Then {2-2} is a system of
equations for the line momenta Iy, L ¢ £p:

NiB:Lily s Y i[B:Ejige =0 forall B Br. (2-3)
Letr Eckr

(2-5) is solvable, the matrix
Ar=(iB: L}:BeBr. Le£Lr)

having rankAr = M(T) - 1, and because of (2-4}.

In what follows let T he a 1P1 diagram. We shall define a partition of line momenta into internal and
external momenta. At first, we choose a basis of the external momenta. Fix Fy € £r. Then define

q:qr:(qg_EEFr,E;‘ Ey ).

gE, is given by momentum conservation. For every L € Lp we write [y = kg —~ q;, defined as follows.

1. We choose an arbitrary tree 7 in I'. For Ly,..., L € T°. m being the number of loops in I', we define
Iy, = ki, ie, g, =0, i=1l....m

4 ) .



Renormalization of Feynman integeals on the latlice

and set
k=gl = (Bay. .o kem).

Remember that m is independent of the choice of a tree. (ky,...,
of T {ot the following reason:

k) is called a basis of the internal momenta

The endpoints of any L € T* can be connected by s unique path Py in 7. PrU{L} isaloopin F {if Lis
& loop line, then Py = 0, and the loop is {L}). For every L € 7 the internal line momenta k;, are defined
as the unigue solution of
: S {B:Liky =0 forallBeBr
LéLr

and are of the form

ko= kp(k) =Y (€L 4, (Ca); €2 forall L Lp. (2-6)
i=1

This is the general homogenecus solution of (2-5) in a form dependent on a chosen Lree. We remark in passing
that this shows that the line momenta are natural in the sense of [3].

2. External line momenta gz = ¢r{g), L € 7, are now defined as the unigue solution of
Y[B:Lla+ > IiB:FEligsle) = 0 foralt BeBe. (2-7)

LeT Ectr

In summary,
Ik, q) = kplk} + qolq)

We now define an {nnrenormalized) Feynman integral of I' by

forall L € Lp. {2-8)

xfa

Frtwma) = [ dbbsdhn Tl 0) (2-9)

-xfa

where m is the number of loops in T. The unrenormalized Feynman integrand fr is

\ - - -
Ir(k.gipa) = J] Vat{l}sima)- F] Belizimal (2-10)

. BeBp Lele

. For every L € Lp the propagators are of the form

‘ = Po(is; 4, a)
Ap{lyip,0) = —f—————— 2-11
L( I M } n“(L)[EL;“ln“) +"L;] ( )
where n(L) € N and
Prfluip ey =3 POw) Vlinia). (2-12)

(i)

The (L-dependent} sum is finite, PUY are polynomials in the masses u and Wiy € €, m; € Z, periodic in 1y,
with the Bn]loum zone (BZ) [-n/a, m/a]'. The function classes 7, are defined in |3] (se¢ Appendix A). In
most applpcnhons the sum contains one term only. Futthermore,

ph; >0
. 1
en; €G3 erillnia) = 5 muyllne) (2-13)

nillea 20} > 0 ifi, € [-xfa, =/fal¥,
nL; 15 (27 /a)-periodic in every component of {),,

lTBQ;’UM") =1

Renormalization of Feynman integrals on the Jattice

This nicans that & belongs to the class F of functions which is defined in {3]. Especially, the propagators have
only one po]e. in the BZ. For every vettex B € Bp the functions Vg € C° are of the form (2- 12) in variables
{1} g, which are the momenta of the lines L & Lr U £ having B as one of ils endpoints. For. umqueness we
consider Vg to be a function of the momenta flowing into the veriex B, Furthermore, we always assumie Vg to
be periodic with the BZ, in all momentum variables. As discussed above, all line momenta [ are written as

ek, g} = kodk) + g1(q) forall L€ Ly (2-8)

The integrand Ir belongs to the function class ¥,

Next, we define internal and external momenta of a 1Pl subgraph + of I'. For every external line E € £,
let g5 be a momentum flowing into the diagram, and such that

Y=o (2-14)

E€L,
Fixing Ep, € £,, we get a basis of the external momenta of ¥
= (¢} |E€E.E# Bo,).
We define a momentumn distributton in the diagram 1:

M, : L,UE — R?
L — 1} forlect,
E — qf forEcE,

such that
SUB:zhiy+ Y 1B ELjeile") =0 foral BB, (2-15)
Led, E¢£,

where now the line momenta !}
(k7. ¢") = kp (k") + 91 (a") {2-16)

are partitioned as follows:

1. Fora tree T in I', 7N L, is not necessarily a tree in 5. Bul i{ can always be completed 10 such a tree 7,.
The chord set T' = £, \ 7, in 4 contains m{+} Jines, where m(7) is the number of loops in v. For these lines
L; we define

‘1. = k7. r=1,...,my),

and we set
LY . .Y al
kT o= ("1""'Amh))

as a basis of the internal momenta of 4. Note that for every i = 1,...,m(7} there is a (i) € {1,..., m{I)}

such that
ko= ks (2-17)
and {S(i)ji = 1,...,m(7)} contains n{y) elements. For every L € T, we define k] as the solution of
SHB: Lk =6 forall Ben, (2-18)
Let,
so that
ki = k}{k7) forall L € £,. (2-19)

By (2-17),(2-18),{2-19), the set

Uy rec, }

T

is natural iw the sense of [3], where the union is over all 1Pl subgraphs 3 of P (I’ included).

[



Renormalization of Feynman imegeals on the lattice
2. qplg" ), L € Ty, are defined as the unique solution of

YIB:Lhal+ Y. [IB:EL|¢ile") = 0 forall Be B,
LeT, Eet,

Having defined internal and external momenta &7, g7, of 4, we will later need their relation io k.q. Set
' =k ¢' = q and if = for L € Cr. We define k7{4T) by {2-17) and g7 (kT ¢") by identifying every
a3 £ € &, with the momentum +IT of the line L € Lp U £p which corresponds o B by considering v as a
subdiagram of . The sign is determined by ihe condition that g5 always flows o the subdiagram 7. It will
be convenient to represent this map by a linear substitution operator Sy [1):

Sp ot kY — AR {independent of g1)

(2-20)
7 — g (k. ¢")

Note that the &U-dependence of g” is only by the explicit ¥-dependence of 95 (AT, ¢T} of external lines of v.
Furthermore, k7 is independent of the external momenta g of I, Froin (2-5} and (2-15) it follows that

DTRD), ¢ (T d N = 5", 4T) forallLe £,. (2-21)

The definition of internal and external momenta can be generalized to an arbitrary subdiagram  of 7 (pt
of 7 ete.}. In the formulation above, we have only to substitute ¥ — 7, I' — 4, and we get lLinear funclions

L7, q7) = RE(R" ) + g7(q™) = UL (A7, 47)

. K= (KL R)
¢ = {ep | E€E,FE# Bo ).

forall L € £,

where m{7) is the nuimber of loops in 7 and Eo, € £, is a fixed external line of 7. k7, ¢" are functions of &7, g
via S,:
S 0 ko= R(RT)
7 = ¢, ),
where again k7-dependence of 47 via 5, is only by explicit ¥¥-dependence of gp(h™.q7) of external lines of 7.

Applied to a function fin &7, ¢

(2-22)

S fh a0} = FET(K7),q7(K7.q7);a). (2-23)

We will need a definition of internal and external momenta for arbitrary sequences of ordered }PE subdiagrams.
It is important to determine internal momenta of a subdiagram + always in the same way, independent of other
diagrams in the sequence, i.e., always the same chord set 7.* o define k" = (k] ... .,k:‘h}) has to be chosen.
This must be done in such a way that (2-22) is always satisfied. For arbitrary 1P] subgraphs v, 7 of T, r being
& subgraph of v, we choose

7} ¢ T L, (2-24)

i.e. all lines in the chord set of = are also in ihe chord set of +v. This can always be achieved. Let P be the
number of lines in a connected graph I and £p = {L1,...,Lp}. For every connecled subdiagram v of T we
define 7! C £, as follows: L; € 7)) if and only if £,\{L,..., L;_1} contains a loop C such that € 2 {L;}. In
Appendix B it is shown that T is indeed a chord set in y {i.e., 7, = £, T} is a trev in v). Apparenily, {2-24)
is a direct consequence of this construction. Also, an arbittary chord set 7 of T can he achieved by this way.
For, if m is the number of loops in F and Tf = {Ny,..., Ny}, set L; =N, fori=1,...,m.

If v is a subgraph of it and p a subgraph of T,
Su (5,70 24710)) = JUT(R4), 070, N a),

or in shorthand notation S, - 5, = §,.

Renonnislization of Fevnman integrals an the lattice

For a 1Pl subdiagram 4 of I' we define a Feynman integrand f1 by
Likgipma) = I Vatl}amer 1] Bollyiwa) (2-25)

BB, Lec,

{7} 8 represents the momenta g, E € &, and £I}, L « £, flowing into the vertex B. We always have
SrVai{l}eima) = Va({iL}aima), {2-26)

and the line momenta are given by (2-16}.

Lel 1 be a 1P] subdiagzam and 71, ..., ¥ wutually disjoint, connected subdiagrams of y. We define the
Feynman integrand Iy of the reduced graph ¥ = v/v1--- 7. by

B ,gvipae) = [ Vel leiwa) [] A007:ma), {2-27)
BeE; Lets

where for the reduced vertices B; one sels

ffE = 1ect foralli=1,...,c

The internal and external momenta of 7 are given by (2-16).
2.3. Divergence degrees

We now proceed lo define UV-divergence degrees for Feynman integrals on the lattice. Let v be a 1PI
subdiagram of ', Then the UV-divergence degree of 4 is given by

wir)= 3 w(Ar)+ Y w(P) +4m(y), : (2-28)

Lec, BeB,

where R o
wldg) = degry Aplipim,a), {2-29) "
w{Vp) = degr~ Ta({le}oin,a), (2-30)

and m{7y) is the pumber of loops in 4. The lattice degrees H;- are defined in [3] (see Appendix A} and
must be distinguished from the usual UV-degrees degr, of 1}, which are defined for rational functions only. In
{2-30), they are determined with respect to all niomenta entering the vertex B. If the functions do not vanish
in the limit @ — 0, the U'V-degrees on the lattice coincide with the corresponding degtrees, defined for rational
functions, of the @ — O-limits of the functions. If the continuum limit of ¥5 vanishes and ¥p Cmg ther

w(Vg) = myp [3].

Similarly, for a reduced diagram ¥ = y/71 - - 7¢, Wwe sel

wiFI S 3 wildi)+ Y. wiTp) + 4m(F). [2-31)

Lecq Be B

whete m{Y} is the number of loops in 7, and W{EL),W(?B) are defined as above. For a reduced vertex B € By
we have u;('r’g} = 0 because of PE = 1. Farthenmore

c

m{¥) + th,-) = m(y)

3

@7} + _wln) = wh)-

i=1

Finally, we repeat the definition of & forest [1]. Let T be a 1PI diagram. A T-forest I is a set of 1PI
subdiagrams of I' which do not overlap, i.e., for any 31,72 € & either 4, is a sebdiagram of 3 o 73 is a

3 .
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subdiagram of 4, ot v and 7; ate disjoini. In the last case, 7; and 3 have neither lines nor vertices in
commeon. The stmplest forest is given by U = @.

Let T be a I-forest and v € U, - is called maximal in U, if there is no v € U such that v is a subgraph
of ¥'. 7 is called minimal in U, if there exists no v/ € U such that +' is a subdiagram of v. Maximal elements
of a forest a disjoint and minimal elements of a forest are also disjoini.

For any 1PI subdiagram v of [' the sei of 1PI subdiagrams
Uly) = {¥ € U]|v"is a subdiagram of v and v" # 7}
is a I'-forest as well as a y-forest. We define
FHU)=v/m1 7

where 11,...,7. are the maximal etements of U ().

3. Subtraction operators.

Renormalization of Feynman integrals in momentum space can be described by a well-defined procedure of
subtractions applied to Feynman integrands. We now define the strucinre of such subtractions and state their
most important properties.

In the following, let F' € F be a function of the momentum variables (11,...,8), {v,..., 51}, (q1,...,q:)
and of the latlice spacing a. (t) are the parameters of an affine subspace of the loop momenta, (v) are the
complementaty loop momenta, and {q) represents the external momenta.

Definition 3.1. Let § € No = {0,1,2,...} and Jet E-: be defined by
Py, Z P 3 o 9 Fit,v,q; 31
(it vqa Z 2y rainia (@L< s Tai EoRRr I UL L o (3-1)

for every function F which is C° in q, where Pn;,. .5, € C are totally symmetric iniy,...,i,, {27 /a)-periodic
inevery qi,...,4,, and img.o Pn iy, (91000, 0e38) =64, <+ - g;,. If for every such F

i(E— T2V FY(, 0, Agi @) = O(AHY) s X — 0, (3-2)
f: is called a subtraction operator of order §.

If the function F is periodic, then so is T:F. In the limit @ — 0, ?&’ reproduces the Taylor operator t: of
order §. Note that degr-F, ;,..;,(gia) = n and degrpFPu,..i. (g a)= 0. f;F can also be written as

I i s
L S e IR PR AN] A (3-3)
q . fg) oo g 7 T d¢it  Bgy ,:u’

where P,(,n), € C¢ is periodic in qy, .. .q, and lima_p P,‘ A (an - ane) = q’;‘ - -qi'. The inner sute in (3-3)

is constrained by 3°1., 4 = n.
In the following, lel ¥ £ F be of the form

Vit v, g0, 0)

F(t,v,4;p,0) = Eloara)

Vvee , C= H_[e,-(f,—;a} + uf], pl 0,
ic1 ) [3-4)

! h F
I = Zb(lz v+ E:Cij LN Zf‘!ik G
k=1 i=1 P

[Bivy. .y bia) Z0 o (ei1,...,caa) £0

foralli=1,...,n

9
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A lattice Feynman integeand 1) belongs to F. We have assumed all propagators to be massive, hence
a subtraction operaior T:,(") applies to T.,.. The condition (3-2) means that by application of a subtraction
operator UV-divergencies are in fact subtracted. It restricis the functions P, ,,..;, and their derivatives at
g = 0. As will be shown in Appendix A, Taylor polynomials in "latiice momenta” satisly the constrainis, i.e.
they are special examples of subtraction operators. Actually, Definition 3.1 is much more general.

Besides being linear with respect to scalar multiplication and addition in F, a subtraction operator has the
fellowing important properties.

" Lemma 3.1, Let ?: be a subtraction operator of order & and F € F of the form (3-4). Then

L degt Ty F < degrpB} F + 6. - {3-5)

2. degrif P < degrF. (3-6)
Hfor all i =1,..., 2 {e;1,...,¢in) = 0= (di1,...,d;,} = &, then

3. @G itr < HE,}}G P, (3-1)

4. H;ET(I—?;)FEEGFf(éJrI). (3-8)

Proor: To get some experience with lattice degrees, we will do the proof in detail. Especially, we remind -
the reader of the properties of a UV-degree as stated in [3], Lemma 2.2 (see Appendix A). We will also use
multi-index notation. Let F' € F be of the form (3-4), Note that for arbitrary V (¢, », q;zr,a) € C°

degrr V| _o < degrV,
N - 3-¢
degry V.o = degr- Vip=o < dengV. (39)

L. White I3 F € F as

4 .
TR v gima) = it t)

Ct,vpa) !
& 1
Vit gpa)s Y o= P (@) Vs {8 v, a),
. ~ it--d,!
f1yeerie =0
where the sum is constraint by 3°}_, i < 6, and Py i {ga) € €5 forn = Y‘;:lij, limg_.q Pi,..i,(g;a) =
qi‘ o-gie, and Vi,..i, € C°. Because of degrh = degr—C it is sufficient to show

EG Vi< (E.ETV' + 8.

In fact,
degry V{1, v, 0 i a) = max degrpniPy,q, (g5 0) Vi, (8, v 1, 2)]

<8 + maxdegrdPi,..q, (g a) Vi, (1 v; 4, 0)]

=46 + dege ¥ /(L v, g1, 0).
2. Set I =(h,...,I,}) € Nj. Then

at
degr»[—F(i v gi gt @)g=o0 < degry 5 — Fit, v, q; pya) < degreF (1, v, q; g, a),

hence

il I
degry- P iy, (q,ﬂ)( Flte,qin,0a )) < degroF{t, v, ¢; pt, a).
¢=0

3. All propagalots which depend on g are also dependent on {. Hence

— [#& o
degr;[ T F(t v, q p, a] < dlegrr- F‘(i vogipea) < degrrq.‘"— 14.

t:,-a.l

10
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Consequenidy, for {Ij = n

J— at - —
degrﬁ Py iyinigia) (:?q_’ Fi1, v.q;p:u))q-" s degraF - = de-gr!—qF.

4. (1 = £3)F can be written as

Vel v g, a)

1- TPt o, e} = . 3-40
It o (v gimsa) Cll, v, q5p,0) O, v, 05 p, a2 { }
where V5 € C*. Using (3-3} and ¥5 € O, we get Velt, v, dgi g, a) = O(A*+ 1) as A -- D, hence
degryls = degraV —{&+ 1) {3-J1n)
By assumption, .
degrrCit, v, g p,a) = degrl’}('(t. T, g 4, a). {3-11b)
Consequently,
Egﬁ;f‘(l — T:)F = degr Vel v, g a) — degep (Cl1, v gy @) C{t, v, 03 )
< degrg Vaft, g pna) — (6 + 1) - degr (ClL v, gip o) (8 v, O pr, @)1
e - 3-12
:dcgra{i—f:)F—(§+l) (8-12)
< TP - (51 1),
where we have used Leninia 3.5.3.
]

4. Renormalization,

We now proceed to give a renormalization prescription for lattice Feynman integrals with massive propa-
gators. Let
L= (Lr, &, Br . ér, ¥r)

be a §PI diagram having m loops, and _'?r(q; , @) the corresponding Feynman integral {2-9). The renormalized
Feynman integral of I' is defined by

_ x/a N
Rerigi i, a) :f iy - dle Rylk, i p,a), {4-1)
—xfa
where R
Rr(k, gy, e) = Sp Z H(_r:('l)‘g’) - Ir(in) {4-2)
TeW yell

is given as follows:
a. 5, are the substitution operators defined in {2-20),(2-22).
b. W is the set of all T-forests.

c. Ip(¥7) is the unsublracted Feynman integrand

Irth,qi )

with the [ollowing substitutions depending on a forest I/: For every line L € L (vertex B € Br) there is at
most one v € I such that L e £, (B € B,}, but L ¢ L. (B ¢ By} forall+' € U(7). Wsuch a ¢ € U exists,
Ayg (Vg) is writien in variables g7, 47 as in {2-16); Otherwise, AL {g} is written in dependence on k,q as in
(2-8). '

11
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) -4 IR . . .
do For every 4, g L 0s A subtraction operator of order #i57 i external momenta g8 of 4. 8y} is

"
cansteained by

Slr} o wlah (4-3)

where w{y) is the UV-divergence degree of v, and for every -forest {7
Bly) o wlF(0)) & 3 s, (4-4)
il

where 31, ..., 7. are the maximal elements of U{y). These conditions are antomatically satisfied if §(y} = w{v)
forall v € 7. H () < 0, we set 137 = g

e. I the product

[Tc-ims,)

rels

the factor are ordered as follows: I 4,33 € 7, 1y sebdiagram of v, then (Ji:f,"")sh} is ordered to the right
hand side of (— 72118, ], H 1,72 are disjoint, the ordet is irrelevant.

Mare explicitly, ﬁr can be writien as

f?r-(k,q; ua) = Z ﬁ}-’(ﬂ-.q:p,a]A {4-5)
W

whetre ﬁ’}f is defined through the following recursion. For minimal ¥ € 17, set

=0 -
R AW, qne)= LK .q" 1, 0),

and for every v € V U{T}, 7,,..., 7 being the maximal elements of U'(1).

Py . ) < s U
CRTAPUPRIES ST ATRORES | § St - A AP
izt

Then ﬁi’f is given by

- =l
RL=F freu
r r e ¢ (4-6)
L ifre v
We now slale our main result.
Renormalization Theorem. The continuum limil
tim Rr{g; 1, )
of the renornalised Feynman integral ﬁp(q;y,a] exisis and is given by
— o
tim Rrlgimal = [ dh - odthn Rrlbaw) (4-1)

where R
Rel{k,q.p) = ]in:)Rr-(k‘q:.u!a)-

Remember that we lave assumed all the propagators to he massive. The theorem states that if
timga o Ip(k, g pr.a) # 0, Rr is equal to the BPHZ-renormalized continuum limit of Ir [1] {with a different
choice of internal momenta). If im, o Trth, g #,a) = 0, also Rp(k, g, ) = 0. This means that }attice Feymnan
integrals, which have at least one vertex function with vanishing @ — 0-limit. do not contribute to the continnumn
limit after renormalization. These vertex functions result from contributions to the latiice action which vanish

12
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in the {naive) @ — 0-limit. Such terms do not contribute 1o the continzum limit in every arder of pertnrbation
theory. In this sense, renormalized perturbation theory is universal.

The theorem states that the combinatorics of renornalization of diagrams with a lattice cutoft are given
by Zimmermann’s forest formula [1], with Taylor subtractions replaced by subtraction operators. The theorem
becomes wrong if we would use Taylor operators, since the periodicity of the Feynman inlegrand, an important
convergence condition [3], would be violated, The continuum limit of a renormalized diagram exists and is
given by the universal limit resulting from the a — 0-limit in the integrand. However, it condd happen thal
oversubiractions are necessary, and the higher ihe Yoop ordes, the higher the subtraction degrees. To state
conditions which exclude this possibility, we shall write divergence degrees in dependence on terms in the lattice
aclion. Consider an action of the form

S(AY = SalA) + SinelA), {4-8)
SoA) = a* 3 adna) A5 (n,a) A,{na) {4-9)
ne2t
Semld) =a* 3 ¥ g5 Ly{A.na), {4-10)
neZt j

where L; ate polynomials in the laltice spacing a, the basic fields 4 al ne and neighboring lattice sites, and
they are homogeneous in A. Let
Fo= Ly &y, By iy, %)

be an athitrary connected Feynman diagram of a field theory described by §. To every line L € £, of ¥ there
corresponds a pair of basic fields A;, 4y. We call L an ik-type line, having i-type and k-type legs. For every A;
we define a UV-dimension 4; by

4+ w{Bg) < & + dy {4-11a)
(in four dimensions), i.e. for i =k
1 -
di = 3 [w{Ao) + 4] {4-11b)
The number of loops in 4 is given by
mha)=t+ 3 1- 31 (4-12)
Lec, BesB,
Hence - N
winy =4+ 3 wBa) + 0+ 3 (w(Va)-4) (4-13)
LEC, BeH,

After some elementary manipulations, using (4-11), we get {cp. [6])

wiv) € B(1),

Tly) =4+ 3 (@(B) ~4) = > elr)ds. {4-14)
BER, 3
wherte ~
w(B) = ¥ nu(B)di + w(Fg). (4-15)
k

ny(B) is the number of k-type legs entering the vertex B or synonymously is the power of k-type fields Ay in
the action term corresponding to the verlex B. w(B) can be detemined directly from this pari of the aclion.
ex(7) is the number of external k-type lines of .

From these expressions, it is ditectly seen that the conslraints (4-3} and (4-4) are satisfied il we choose
§lv) =4+ Y (8(B)—4) -~ Y exlr)de with 6(B) > w(B). (4-16)
BeB, k

Consequently, a field theory on the laktice is renormalizable by power counting if for every vertex B the UV-
divergence degree of B satisfies w{B} < 4 (Renormalizable by power counting means that with increasing
number of loops the order of subtractions needed does not increase). In pa'rt'icular,_we can state the following
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Theorenn. Let the coupling constanls gy in (4 10} be dimensionfess. Take the nita - 0 of {4-8) and depote
the resulting continenm actien by S.(A). ¥ for every verlex I3 of S.{(A} the continvuin UV-divergence degree
w (1) [4] satisfies w (B) 7 4, then the lattice theory is renormalizable, and its continuem lmit is given by the
field theory which is describied by the action S { A}, and is revormalized by the BPHZ finite part prescription.

As an example, consider the scalar #*-theory with an additional $*-interaction:

5(®) = a* Z [ B(na}(-T1+4 ¢2)(ra) + ¥ (ne) 4 Aa?$"(na}]. {4-17)

neZt

The propagator in this example is given by

{4-18)

whete
- 2 kia - L -~
P T N (I

The only Green funciions to be renormalized are the two- and four-point functions. In fact, any vertex B
satisfies w{B) = 4, and {4-14) shows that the divergence degrees of six-point and higher functions are smaller
than zero, The four-point Green function has divergence degree w = 0. Hence subtraction of a constant is
sulficient Lo absorb its overall divergence. The two-point function is quadratically divergent, and to renormalize
it, we shouid choose as a subtraction operalor f: a Taylor operator of order two in the lattice momenta 7. If 7
would be periodic, this is an always allowed choice {as shown in Appendix A). However, § is antli-periodic with
the BZ, barring at the first sight ?f to be a proper subtraction operator. Actually, the model [4-17) is invariant
under inversion ¢ — —g. This means, the first and mixed second derivatives to external momenta of diagrams
vanish at zera momenta, The “effective” subtraction operator is given by

=1+ li‘““ s
¢ = P @ o5 q:D'

which is periodic. The renotmalization theorem states that the @ — 0-lmit of the renormalized model of (4-17)
exisis and is described by the action

5:@) = [l #)Tor )80e) + 994 (x)),

and renormalized by the BPHZ finile part prescription. The limit is independent of the coupling A.

If at any order the overall subtractions of diagrams could be written as counterterms in the lattice action,
then they subtract in higher orders divergencies of corresponding subdiagrams. However. for a lattice cutoff, the
situation is a bit more involved. To apply f:,“) to & diagram v, we have to choose a basis of the external momenta
of . By momentum conservation, oue line is omitted, but which line is arbitrary. A similar arbitrariness holds for
the coeflicient functions Pz, .;, in ?;f”. The differences ate always of order (}{a), and by the renormalization
theorem, they do not have any influence on the continvum limit. Note that in the continuum the problem does
not oceur, subtractions being Taylor polynomials and henee independent of a basis.

To get a counterterm in the action, we have to respect Bose and Fermi symmetries under exchange of
equal-type external lines. This can be achieved as follows. First of all, we have to choose the same subtraction
operator for alt diagrams 1, which differ by an exchange of equal-type external lines only. This subtraction
operalor must be chosen to be symmetric, i.e. if it is written in a form {3-4), then for any permutation r of
equal-type lines

(n})

[ TTRR TV

(@riy - o astaia) = PO dan - amsa),

for all iy,... iy, where N + I is the number of external lines of 5 Finally, we have to take the arithmetic
mean over all possible bases, or at least over those bases omitiing an external line of the same type. Then the
counlerterm which results by integration over all loop momenta has the same permutation symmetries as the
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unsubiracted 7. Summalion over all diagrams, which differ by an exchange of equal-type external lines, yields a
counterterm having the desired Bose ot Fermi symmetries, and it can be written as a contribution Lo the action.
Furthermore, if the functions
P o ania)

are chosen to be symmetric and polynomials in lattice momenta (see Appendix A), the counterterms are always
local, i.e., they are of the form

AF. gy =a* Z P{4,na),
w2t

where P;(A,na) is a homogeneous polynomial in the fields A at na and neighboring lattice sites,

6. Convergence proof,

“Fo prove the renormalization theorem, we will show that (4—1) satisfies all criteria of the power countmg
theorem of {3]. The subtracted integrand (4-2) can be written as

= Vik. g; p,a)
Belk,qip,0) = =—— 220 -
rlb @) = g ) Balkia) 1
where
L)
Bifk,ima)= [ TJ (ezittza)+ud;),
Lecy j=1 (5L2)
e nitE7)
By(kspa) =] I1 T (essthia) + w3, )",
¥ I.EL, =1

all masses pr; are nonvanishing, n;(L,v) € No = {0,1, 2, ...}, and the outer product is over all 1PI subdiagrams
v of I'. Furthermore,
(k. q) = ky(k) + qu(a) (5-3)
k[ = ki (k)
and ¥ € ¢*, i.e., Ry belongs to F (see Appendix A). By definition of the subtraction operators and of Sy, Rr
is periodic in the foop momenta ky, ..., ky.

Let £ be the set of all Ig, L € L, and of all k] for 1Pl subdiagrams y of T and L ¢ £,. By construction of
k7, the set £ is natural in the sense of [3]. All what remains to be shown is that the power counting conditions
of [3] are satisfied. Let

..t
1 h (5_4)
L PEREPR L P Y

be an arbitrary basis of £,i.e. #1,...,ta; #1,+ .., ¥m—n € L, and the Jacobian satisfies det(8(2, v}/8(k)} # 0. By
fixing #1,.. ., ¥m-a, one defines a Zimmermann subspace H, i.e. a class of affine subspaces of the space of loop
momenta (k1,...,kn). & = k(1,v ¢) and &7 = k7(2, v, ¢) for every 1PI subdiagram v of I' are linear functions.
{t) = {t1,...,15) is called the parametrization of H. The set of al such Zimmermann subspaces H, for all bases
(5~4), is denoted by H. We will show that for every H ¢ M, parametrized by {¢) = {1,,.. i) with respeci to

a basis (5-4} of £ .
4h + degr?ﬁr(k(t‘ v, q). g p, ) < 0. {5-5)

‘Then all the conditions are met for the power counting theorer 1o apply to the renormalized Feynman integral
{4-1}. This concludes the proof of the renormalization theorem.

The general idea of proof can be found in {}| and uses the method of so-called complete forests. What
is different here is the form of the integrand, a new kind of subtraction and the definition of a UV- divergence
degree. However, as will be seen helow, (5-5) is based on general properties of the divergence degrees [3}, and
of the subtraction operators (Lemma 3.1). This allows us to nse the ideas of {1] (cp. [4]). Especially, the
combinatorical part of the proof can be taken over literally. At first, we have to repeat the definition of a
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complete forest. A FP-forest {7 € W is called complele on H, parametrized by {th,if T e/, and if for any y € U:
all lines of ¥({7) are constant on H relative to v, i.e.

k7 (t, v, q) is independeni of f for every L & Lggy ,  or
all lines of (7} are variable on H relative to 7, i.e.

kZ(!,v; ¢) is dependent on ¢ for every L € Lxwy-

F{I7} is said to be constant or variable on H, tespectively. The forest formula {4-2) can now be written in a

form dependent on a given Zimmermann subspace H.

Lemzia 5.1 [1]. Let I' be a 1Pl diagram and H € H. Then

Rp(k,q;p,a) = E Xo(k,qin, ), (5-6)
vews

where W¥ s the set of all I'-foresis which are ccm‘apfete on H. Xy is recuzsively determined by

/‘Y‘U(ks Qi By a) = (1 - Tlf(r)) ?r{kr' qr\;’u' a) r ! (5-7)
Er=k gF=g
where for minimal vy € U
?,Ur",q";p, e} = f-,(k".q7=;#:¢) (5-8a)
and for any othery € I/
ok g% a) = Fun(k™,q% 0} S [] Pl P (67, 07 1, 0). (5-8b)

i=]1

Y14 .-y Ye are the maximal elements of U(4). f('r) is defined by

PN B T LALUN T Y. Th 3] ~
= { B ity g B (5-9)

B(U') is the set of all ¥ € U, which have F(I7) variable on H and in addition arc a maximal element of U7 (r} for
some 1T € U having T(U) conslant on H.

All functions Y XU,RP ate in F. The H-dependent form (5-6) of Rr allows an estimation of degth
by induction through s complete forest. As will be seen, every single term in the sum (5-6) already satisfies
the desited bound on the UV-degree. The proof of Lemma 5.1 can be found in {1]. What is different here are
the structure of the funclions and the definition of internal and external momenta of subdiagrams, However,
this does not have any influence onto the validity of Lemma 5.1 which is mainly a combinatorical statement.
Of importance is that the internal momenta of subdiagrans are determined always in the same way. This is
guaranieed by (2-24}.

For every U7 € WH and every v € I7 we set

My(a) = 43 m(F(1)), (5-10)

where € U(y) U {y}, F({) variable on H, and where m(¥(U}} is the number of toops in F(I/). My{T') sums
up the number of independent parameters of H, i.e., My (T') > 4h. This is proved in Appendix C. We now state
the important
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Lemma 5.2. Let H € M with parametrization (1) = (t1,...,1n), UV a T-forest which is complete on H, and
Ry, 177 as in Lemma 5.1. Then for every y € U:

1. degr?)‘}‘,[k"’(t,n. q), 9", a) < —My(y) for F(U) constant, (5-11)
equality holding only if My (v) = 0.

2. degtmir(k"(t,v,q),q’;p, a) < §(¥) — Muy(vy) for F(U) variable. (5-12}

From 1. and 2. we get
degr;-Rr(k(t,v,q),q; poa) < —4h -1, 15-13)

Note that the dependence of k7 on the external moments ¢ does only occur through the parametrization
of a Zimmermann subspace H. Differentiations and UV-degrees with respect to g7 refer only 1o the explicit g7~
dependence. Statement (5-13) is the desired power counting condition. Beeause H is an arbitrary subspace in
H, all conditicns of the power counting theorem of [3] are satisfied. Hence, from Lemma 5.2 the renormalization
theorem follows. o

ProoF: By induction through the forest . We will permanently use the degree properties of Lemma 2.2
of (3] without explicit reference. f:hj is a subtraction operator to which Lemma 3.1 applies. Note that the
numerator V(t, v, q; g, a) of a function V/C € F satisfies dengV < degr!—;;V, and if V is independent of ¢, then

dege;V < 0. If % is minimal, then 7{U) = and ¥, = f.,., hence

degrf}';.,(k"(t,u,q),q";p, a) <0 i F{U} is constant,
degr> ¥y (¥ (2, v,9), 473 1, 0) S w(y) — 4m(y) < 8{v) - Mu(y) i F(U) is variable.

Now we assume that the inequalities 1. and 2. hold for all maximal elements ; € U(y), i = 1,.. ., ¢, for some
non-minimal ¥ € U. Then ¥, is given in (5-8b). 5, means a linear substitution

EY s kT (ET)
q,‘Ti — q',-' (k'f’q'?).
1. Let F(U) = v/71- - -7 be constant on H. Then

a.
degroly .y, (k(t,v,q),4" p1,0) <0

b. ¥;(Ukconstant. Then f('y,-) = —f:,h‘). According to the hypothesis of induction
degr; ¥y (k™ (t, v, 9), 75 11, 2) < ~Muy(m)
{equality holding only if My (%) = 0). Hence
Jegrp(—TEMN) T, (R7(t, v, 9}, ¢" #,0) € —My (%} by Lemma 3.1.2

FST?ST { ‘fi.(T'])?Ta (k-“ {t,v.9),9% 0} =
= Jegr Sy (— TNV R (8, v, g).g"i s 0) < —My(w) (= holding only if Mu(w} = 0).

For, ¢" depends via S, only on those 7 which are constant on H relative to v, i.e., g™ is independent of .
c¢. 7{U) variabel. Then f(-n) =1- f:,h‘), and according to the hypothesis of induction

degr -z, Pro(k™ (1,2, 9), 4™ 0) < 8lm) — Muix)

-~ = H

Yy, is of the form

4
Vb7, 0750 0) = Ly gpy a7, 075 )8y, THE9 0, (674755, 0),
j=t
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All lines of %, (U} = i /%1 - -+ 7ia are variable on H relative to ¥;, and the denominator of
2
S LB )W (675,070, s, 0)
i=l .

does not depend on %, k" = kY (k™) being independent of ¢% via §,,. Hence Lemma 3.1.4 applies to ¥y
Tegrp (1 — PN, (k0,00 g7 10 8) < - Mu() — 1.
Ag.ain, in ¢ only those Y occur which are constani on H, hence
Fege 5, (1 - FEWIVE, (A (4,0, ¢} 97 ma) < —Mop(w) - 1,

In summary
degr;¥, (k7(t,2,9),9"; ,a) S ~My(1} (= holding only if M () = 0),

where we have used

My(v) =3 My(x) (F(U) constant).

i=1

2. Let 3(U) be variable on H. Foralli=1,...,e: f(‘n) = —?-:!7‘).
a.
gt Iy, (K7 (6 7,0), 07 10 @) < W(F(T)) - 4m(F(T))
by definition of w(F(U/)} and m(¥(V}}.
b. F:({/) constant.

dégi-¥o, (741, v,9).4%; 1, 0) < —Mp (%) (= only if My{v) =10},
degr?(—f.f}""'])177,.(15'“(1, v, gl ¢ 1,0} < —~Mg (%) by Lemma 3.1.2,
degrt?—‘(—ff_(""}}?‘“(k'“(t, v, ) g7 4, a) < 8(7;) — My(vi). by Lemma 3.1.1.

The denominator does not depend on g7, and linear 5, can only decrease the degree with respect to (t,47}:
degr o Sy (LY (R (v, 20" 111 8) < B(m) — My()-
c. F;({F} variable.

a?gf‘a;'l?.,‘(k“(t, v, q), " pa) < 6{5) — Me(yw) (induction hypothesis),
degr‘ﬁ(—f:_(T'))?,,(kT‘(t, 2,q), g™ 1, 8) = &%) — Mu(y) (Lemma 3.1.3),
using the same arguments as for l.c,
degrizs Sy (L3 (M7 (4 v 0), 475 0 6) € 6(%) — My (w)-
In smmmary

deghims Vo (K7t v,0), 475 1, @) < W(TU)) + 3 6m) - Mu (),
i=1
where we have used My {y) = 4m(F(U}) -+ 3i2; Mu{v:). According to the condition (4-4) this implies
degro- Vo (k7 (2, v g). 975 1, 0) 2 8(9) - Mu{a).
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E‘o prove the last statement of the lemma, we must distinguish between (U} variable and F(U] conslant. If
P{U} is constant on H, then

degr¥ro(hT(t,v,q), ¢ ) < —My(T) - 1< —4h— 1,
hence, using Lemma 3.1.2
degry Xv (k(t, v, o}, gi s, 0) < degrpl1 — BT (7 (8, 2, 0), 9% st 0) < —4h - 1.
I T(I) is variable on H,
degr = Ye(k7(t, v, g, ¢ 1 @) < 6(T) — Mp(F) < 8(0) — 4.
Using Lemma 3.1.4 and the same argument as for i.c, we get 3
degey Ko (k(t, v, 9, 45 1, 0) < degrp(t — PN FLlRT (L 0. 0), 0% pra) < —4h — 1.

Henee in both cases
degraRr(k(t, v, 9), gi 0 < ~2h — 1,

and Lemna 5.2 is completely proved.

6. Generalizations,

Until now, we have discussed Feynman integrals for scalar fields only. This we have done for simplicity.
There is no esseniial change if we include fields carrying internal symmetries like Lorentz, colour, spinor in-
dices etc. The diagrammatic notations introduced in Section 2 are supplemented by the notion of an index
distribution.

Definition 6.1. Let I' be a Feynman diagram as given in (2-1). Ap index distribution is a collection of two
maps Ay, A,, defined by

L 25 AL % A2 farallLe sy (1)
E 244, for all B ¢ £r.

All A’s are finite sets.

The index sets A are carrying the symmetry labels. Note that to every internal line there correspond two
indices, one for each end of the line. In calculations, these indices are summed over. Propagators and vertex
functions are now dependent on momenta and indices. A Feynman integral has the form

- xfa R
Trlwaterina) = 5 [ i dh Telk g, oz, oBlLr)ima), (6-2)
T R
(b, g, 0te)aficryima) = ] Pollleds fardsima)- [ Bulli,anBrima),  (5-3)
BeBr LeLy
where
a(ér)=(ag| Ecép), ag € Ag for all E € &r, (6-4)
aB(Lr) = ({er.Be) | LELr), ap €AL, AL €Al forall L€ £r.
Propagators are of the form
N Pullyip,a)a
Bultnion Buipa) = - rillzihalens, (6-5)

Hj:ll[eLj“f:;a) + #},j],
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where oy « A}, 3, € A, and for every pair (ay,/81) the numerator is of a forn {2-12). Vertex functions Vg
are also of & form (2-12), and {a;}p represents the indices of Lhe line ends at the vertex B. Similarly, the
iniegrand of a subdiagram v of I' is given by

Lkm a%al6,), B4, )ima) = ] Vel{llindallmima) [[ Bl 00 Bima),  (6-6)
Beas, Lek,

where
O{(&r]z{a} IEEET)
of{Ly) = ((er.BL) | LEL,).

An “induced index" af for E ¢ £, is equal to the index of the line ending of L € Lp ox L € &, which
corresponds ta E by the imbedding of v as a subdiagram of T' {see Section 2). For L € L£,, a] = az. Analogous
statements can be made about reduced diagrams.

(6-7)

Internal momenta are defined as before. However, divergence degrees are modified to be independenl of
symmetry labeis. For every 1PI subdiagram v of I, w(7) is defined as in {2-28). However, w(A) and w(Vg})
are now given by

A1) = degry, Ap(ln, &, Briu,a), 6-8
O e ey O Al Brin) v
wiVg) = max degr,~ Va({lL}e;meal (6-9)
{arle {iz}g
The same holds for reduced diagrams, N
Finally, the forest formula is changed to
. */a N .
Rrjgalfrhpa)= -y, f d'ky - d"he Rrlk. g, o(Er), aB(Lr)i p, a), (6-10})
::’é:f —xfa
where - - -
Re(k, g, olfr) aB(Lr)ipa) = 50 Y J[ =187, - In(v, (6-11)
Uewelr

and the only restriclions to the subtraction degrees §(v) are given by {4-3) and {4-4). The convergence proof
of (6-10} is identical to the above, Lhe only modifications being that divergence degrees are now determined by
(6-8) and {§-9). Finally, all comments we have made in Section 4 remain essentially unchanged.

A further generalization is to choose a subtraction point § different from zero. But all statements and
calculations above are insensitive to such a choice. This is because the choice of normalization has no influence
on the convergence propetties of the Feynman integrals. A change of normalization conditions can be described
by the addition of finile counterterms to the action which do not destroy renormalizability.

Conclusions.

We have shown that the BPHZ renormalization proceduze can be generalized in such a way that it applies to
momentwin-space Feynman integrals with a lattice cutoff. The generalization is that the counterterms, instead
of being polynomials, are functions which are periodic with the Brillovir sone. They result from the wide class
of lattice subtraction operators. This class includes as a special case polynomials in lattice momenta. In this
case, after appropriate symmetrization in external momenta {as described in Section 4), they can be written
as local counterterm contributions to the lattice action. Note that this symmetrization is necessaty due to
dependence of the counterterms on a chosen basis of external momenta,

The continuum limit of a massive lattice field theory which is renormalized in this way exists and is given
by the field theory which is described by the (naive) a — 0-limit of the lattice action, and whicl is renormalized
by the BPHZ finite part prescription. This means that perturbation theory is universal, i.e., the conlinnum
limit does not depend on Lhe lattice action chosen. Also, the usual power counting renormalizability conditions
of a field theory can be maintained, the only modification being that for all vertices of the theory the lattice
UV-divergence degrees have to be less than o equal o four (in four-dimensional space-time). Especially, if all
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couplings are dimensionless, a lattice field theory is renormalizable if and only if its {formal) contimmum Jimit
is renormalizable (by power counting). Also, the choice of zero momentium as a subiraction point in the BPHZ
procedure is of no importance, Any other choice is possible and corresponds to a change of the normalization
conditions, which can be desribed by the addition of finite counterterms to the lattice action.

‘There are some general tesirictions on the structure of Feynman integrals in momentum.space imposed
by the renormalization procedure. In particular, the integrands have to be periodic with the Brillonin zone,

a property which is reflected by the fact that the counterterms must also be periodic. In the formulation of °

the lattice power counting theorem [3} and the renormalization procedure for latiice Feynman diagrams, we
have always assumed that the propagators have exactly one pole in the Brillouin sone, i.e. the denominator of
every propagator takes its minimnm at vanishing momentum only. Especially, lattice fermions with propagators
having poles on the boundary of the Brillonin zone are excluded, whereas th renormalization procedure works .g.
{for Wilson fermions. Furthermore, we have always assumed the numerator and denominator of the integrand
to be C*. This condition can be weakened in that the propagators should have this property at least in a
small neighbourhood of zere momentum, and globally they should be differentiable to such a degree that all
differentiations necessary 1o subtract divergencies can be done without problems. ’

So far, we have discussed massive field theoties in order to avoid infrared singulatities. This allowed us
to concentrate on the problems specific to the latéice as a UV-cutoff. If massless fields occur, we have to take
into account possible infrared singularities very carefully, However, they are not specific to the lattice and are
expected Lo be tractable by the methods which were developed for continuum Feynman integrals many years
ago [6,7,8,9]. We will discuss this problem in a forthcoming paper and shall see that one only has to supplement
the ultraviolet power counting conditions by infrazed power counting conditions.
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Appendix A. Examples of subtraction operators.

We give some general examples for ?: to be a subtraction operator. At first, we repeat the definition of
the function classes Cp, etc, of [3]. For m € Z, Gy is the class of functions V of the form V(u;a) = F{ue)/a™,
where F ¢ ¢, H in addition lim,_,o Viu; a) exists, we get the class C,. € (C°) is the set of functions which
are finite sums of functions in some Cp, (C5). For V(u, w;a) = F(ua, wa)fa™ € Cmm, 7 = m — degroV is the
largest non-negative integer such that

. 8% F{u, w)

e =0 for [b] < 74,

w=0

where [B} is the length of the multi-index b, i.e., the sum of its components. 'V = 32, ¥ € €, Vi € Cny, and
m; 7 My for i 5 k, then degr-V = max; degr;Vi-

F is the set of all functions of the form F = P/C, where P € C° and the denominater ¢ € C° is a finile
product

n
€ = [l 0) + s3],
isl
I; are linear functions in momentum variables, and e; are functions as defined in (2-13). Note that

2 il !; depends on
degro(es(li;a) + ui) :_{ 0 otl;erwli)se,

and this is equal to degr, (I7 + #) (see [1]). The UV-degree of F with respect to u is defined by

degroF = degeoV — degroC = degrpV - 20,
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where ny is the number of I; depending on u. For F, Fy, F; € F, degr; satisfies

degeo{Fy + Fz)} < max(degroFi, degroFz)
degro(Fy - Fa) < degtoFy + degrFy

<

R, —
- < ~F
degr. y F < degipF — e

o

-degr;;a F < degro F

we

These are the "degtee-properties” of (3], Lemma 2.2.

Having reviewed general notions, we shall now state some general examples of subtraction operalors. Let
us introduce a special subset A of €5, M denotes the set of funciions P satisfying

Plge) €,
lim Plgiaj =g,
whete q is a real variable. If in addition P is a finite product of sin and cos functions and is (2x/a)-petiodic in

g, then P is called a "laitice momentum”. For instance, [sin (ga)/a] or [(2/a) sin (ga/2) cos{qa/2)] are lattice
momenta,

For § € Ng = {0,1,2,...} consider the following construction: For every j=1,...,sand i = (i,..., i) €
N§, @+ -« -+i, < 8let P;:(q; a) € M such that

H Pﬂ‘-(qj;a)"" is (27 /a)-periodic inq,..., ..

i=1

Set
§ iybetio=n

5= L : o a)E o .. & -
g E E 51[...5‘][EPjLi(Q'JuR) ] [BP‘P,—(ql;u}"‘ aP;Ii(q-i“)i']q:o' {A-1)

n=0 f,..,,ENg

This means that in application to a function F, which is C™ in g, derivatives are taken al ¢ = 0.

Lemma A.l. If forevery j =1,...,3 and every | < § there exists a constant 3, so that

a!
e Py ;a) = ct; A-2
(Bql Jﬁ(q ) g=0 ’ ( !
for all i, then for arbitrary function F which is O™ in g

n
[;“n (lff:)F] u:ﬂ for all » € N, [n] < &. (A-3)
9=

This means that 7 is a subtraclion operator of order 4.
Proor: For a fixed i € N§, iy + -~ + i, < 8, choose
Pi(g:a} = Py e} (A-4})

for every j = 1,..., 8. As a consequence of (A-2)

» [
I Pintrass 0 = T Pilrgjiafs + 0(a5+*). (A-5)
j=1 =t
and
o i ) ( ah e )
. b 0 F = o r3 F . A—S
(3P1|¢(q1: afv  BPqia)e T /sy \OPUgqua) 8P (gsa) S o, (A-e)
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Henee, using Taylor's formula and that o Mowegetfor A -0

& Ay deediy=ne x :
-~ i 1 . 8 L
1-8B)F=F- el PA-;a"(‘ -F)
Tl | e e TR e
+ O(A%Y

=03 1P ) F ) + O = gy,

=1
=)
As a corollary, we get
Lemma A.2. Let P € M., Then

[ ’
- 1 [ a 8
H=% Plgisa)-Plgise) 25— - oo A-T
I S ATl BP(%;G)L:H (a-7)

is a subtraction operalor of order &.

As an examiple, set P(q;a) = sin (ga}/a. P is a lattice momentum, and (A~T7) is a subtraction operator.
Note that P is a periodic function. If the function class F is restricted approprialely, then we are allowed to
use anti-periodic functions like (2/a) sin (ga/2) without violatling {A-3}. For instance, this can be done in the
$*-theory as shown in Section 4.

Appendix'B. Chord sets.

Lemma B.1. Let v be a connected Feynman diagram, P the number of lines in vand £y = {L,...,Lp}.
Define T C £, by
Lie T} — Ly\{Ly,...,L;_1} contains a loop € 2 {L;}.

forevery j=1,...,P. Then 7. is a chord set in ¥
Proor: We have to show that 7, = £;\ 7! is a tree in ¥, i.e., T, contains no loop, but T,U{L} is not a tree,
i.e., contains a loop, for every L € 7.

IfC C 7, is a loop in 7,, then there exists a k such that Iz € C C Lo\ {Ly,...,Lx_y}. But thisis in
conlradiction to Ly € 7,. Hence, 7, contains no loop. To prove the second condition, let

T =l Ly B} C Ly, B < ig < e i,

. EES . ‘,‘
We have to show that 7, U {L;,} contains a loop, forevery k= 1,...,m. L;, is a loop line, this is trivial,
Let B, Cy € 8B, be the endpoints of L;,. We show that thete is a path Py C 7, between By and (. Then
Prufly}isaloopin T, U{Ly}.

if & = m, then by construction :
Ly\{Ly, . L Y C T UL}

contains a loop Gy, such that L € €. Poy = € \ {L:..} € 7, is a path between B., and 'y, in 7). Assume
the assertion holds for k+1,..., m.
Ey MLy Biy o}

contains a loop Cy, and L;, € Gi. Cp \ {L;.}isa pathin L, N{Li,.. ., Ls;_1} between By and C%. Replacing
forevery Ly e O \{L,hj=k+1....,m, {£:,} by P;, the resulting set

Ly =Ce\{Li }\ (U;nzur{Lij}} U;‘n:lr+l e

is a connected set of lines in 7,. This set always contains a path Py between By and .
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Appendix C. Complete forests and the dimension of Zimmermann subspaces.

Let T be a 1PI Feynman diagram, H an arbitrary Zimmermann subspace, parametrized by {t) = (t;,...,ts}
{(and complementary parameters {v)}, defined by (5-4), and I/ a complete [-forest on H. For every y € [J

Myiv} =43 m(FU)), (5-10)

where the sum is over all 7 € U{y) U {+}, F(I/} variable on H, and m{7({/)} is the number of loops in #{/),
We prove that
My(l) - dh. (c-1)

Let 77 be a chord set in T. Every &z, L € 7¢, has a representation

13
kit »q) = 3 Cujty + Vifo,q) .

-1
where rank (Cry) = h. For every £ C T we define
rank, £ = rank(C'j) e,

i.c., the rank of ¢ resiticied to the rows | ¢ £, rank; L is the maximal nember of momenta ki, £ € € which
are linear independent with respect to &,

Lemma C.1. For every v € U/
My(y} = 4-rank, 7., . {C-2)

For ' this means My () > 4. rank, Ty = 4h.

Proor: By induction through the forest. For any £ C £y let #C be the number of lines in L. First, let v be
minimal in I7. H 4 is constant, then My (v} = 0. But all lines of T, are constant, i.e., rank, T =0 Hvyis
varnable,

My(v) = dm(y) =4-#7' > 4 rank, 7.

Next, let v € I/ and q;,...,+. be the maximal elements of U{v), so that () = v/y, ---7.. By construction
of chord sets in Section 2, T, CT'. Note that

Ly = Ly Moy Ty Ui T

The number of loops in (I} is given by
< < :
miF(U)) = mly) - 3 mlw) = #7 - Y 477
iz i=1
=# (7-1-. m (‘C‘fh:---*r, Uizt 7—1)) .
I §({F) is variable, then
My (v} = 4m(FU) + 3 My(n)
i1

T P Ly, Uy T )) +4 Z rank T

i=l

3%

Y

. .

4+ rank, (T" n (‘:7;‘1.---1, Ui 1))+ 4 Z rank, 7.
i=1

> 4-rank, T,
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where we have used that for A, B C T: rank, A+ rank, B > rank, (AU B). If 3(I/) is constant, then

Mu(y) = Y My(v:) 243 rank, 77,
i=1

i=1

a For LET 0Ly, k2 is constant, hence rank, (T,’ n .C,,h,....h) =0,
b Far LCT/NT,,
kp — k}:‘ + ql‘.
L & T,, hence g is of the form’
= Y due k= fulv.a)

EEC, 1y e

i.e., qf' is independent of 2. Furthermore,

k= Z crar kum(t, v, q).
MET:
5 f\\ ‘)
Consequently !
ki(t,v,q) = Z copm kar{t, v, q) + fr{v.q), |
e O AN

rank, T) = rank, (T-r.. U (T_; n I,‘)) . T

and

I
T semmary Fig.1. A diagram 7 as a subdiagram of T,

i=1

3 rank, T = rank, (T; (1 £ypyy o} + 3 rank (T U (T N T))
i=1
> rank, T.,'.
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