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1 Introduction

A calculation of the second order QCD corrections to the decays W — tb and Z° — tf is presented.
The calculation takes into account exactly the effects due to the finite mass of the top quark. This
should be of interest in view of the forseen accuracy of future experiments for I'zo [1], T'w [2] , to
which our corrections represent a sizeable contribution for the top ratio, 14 % to 30 % for top mass
between 25 Gev and 40 Gev for the Z° and from 10 % to 30 % for top masses between 25 Gev and 70
Gev in the W case.

The paper is divided in two main parts. In the first part we will concentrate on the Z° case.
We will compute its partial width coming from the channels Z° — tf and Z° — tig. Once we had
this partial width, we will compare it with the previous approximated result given in [4]. In the
second part we will follow the same steps as for the Z° case. For the W boson there exit the channels
W — tb(g), W — ts(g), W — td(g) but we will only calculate the first one because the magnitude
of the Kobayashi-Maskawa elements favor it , Vi — 0.999 , V,, = 0.045 and V4 = 0.010 see [3].
Nevertheless, the contributions from the other channel, involving "down” and "strange” gquarks could
be obtained straighforwardly from the one we will calculate.

2 Z° decay

At the tree level the Z° — tf width comes from the computation of the diagram showed in figure 1
giving the well known result :

_ Aem Mg, 3
NZ — tt) =% Z[(3 - B%)o® + 23%* 1
(2~ 1) = e 13— 870" 4 28% 1)
Where ae,, is the electromagnetic coupling constant, 5 = ,/1 -4 m?_ and m is the top quark

Mgz,

mass supposed tobe m < M—;Q The constants v, a are defined so that the Z%f ¢ vertex is zev“%,
Ay is the weak angle.

Next to leading terms in the perturbation expansion involve terms proportional to q, @, QuwQem
and ai, where a,,, a, and a,,, are respectively the weak, strong and electromagnetic coupling con-
stants. All these terms are represented in figure 2 by mean of their Feynman diagrams.

We have computed explicitly the QCD corrections, the diagrams of figures 2a and 2b that contain
gluon emision and gluon interchange, the corresponding QED ones can easily be obtained making
trivial changes in the expresion we will obtain; as will be indicated.

In the calculation of these corrections one has to deal with both ultraviolet and infrared divergences.
For the first ones we will use dimensional regularization and the ” On Shell” scheme for the renor-
malitation procedure. For this specific calculation we only need to renormalize the quark propagator
because the Z° propagator does not get corrections to this order.

Explicit expressions for the counter—terms can be found in the appendix. To regularize infrared diver-
gences we have given a fictitious mass (A) to the gluon. With this prescription the only Feynman rule
we have to modify is the one related with the gluon propagator. The new gluon propagator reads

—zg‘“’&l‘;
B2 )2

a -5 b = (2)
Using a gluon mass A one only regularizes soft gluon emision divergences, colinear ones are avoided
with the top quark mass.
Thus as a consequence in intermediate computations, like phase-space or Feynman integrals, the
limits A — 0 and m — 0 neither conmute nor they are finite. The criterium that must be used solving
all the integrals is to neglect always terms of the type A" with n > 0. Doing all the integrals and



collecting all their results one obtains the final expression for the QCD correction, which is :
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where C'p = % is the SU(3) color factor, v = 1 — gsin2 8, and a = 1. For the QED correction,

replace o, Cg by gaem. The function Liz{z) is the dilogarithm function and is defined in the appendix.
Our exact result must be compared with the approximate one given in ref [4]
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They use the same approximation that Schwinger did in QED [5]. Both expressions give the same
results when taking the limits 3 — 0 and 8 — 1.
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In figure 3 we have plotted both expressions (3) and (5), normalised to its value for 3 = 1 as functions
of the top mass m, supposing that «, is a constant. Both curves are very similar giving differences
always less than 9 % . It is important to notice that for top mass values between 30-40 Gev the
differences with the massless correction are very large, about 50 %. For the total width Z° — tfg the
difference between both results is always less than 1 %, so from now on we will only use the exact
expression we have calculated.

It is worth noting that this QCD corrections introduce a significant deviation of the width from the
leading order if m approaches 54729- It has been demostrated [6] that the QCD corrected cross section
coincides very well with the production cross section for ¢f resonances. One can thus be confident that
general characteristics of the mass dependence of the partial width are adequately described by eq (3)
or eq. (5).

For higher order corrections, potentially divergent, one might hope that they sum up to modify the
leading term only by a factor

similar to the result in QED.
In figure 4 we have plotted I'(Z — tt) (including the QCD and QED corrections) versus the top mass,
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showing the different contributions, e.g., the leading and next to leading terms.
To ilustrate the different contributions we will separate them in the folowing way

T = To(1 + 8T,,(0) + 6T, (my) + 8T, (0) + 6T, (m:)) (7)

For m, = 35 GeV, sin® 8, = 0.22, a, = 0.14 we get

T = 0.1413 GeV

I'o = 0.1089 GeV

FQCD = I‘o(éI‘a_(O) + 6I’a,(mi)) = 0.0318 GeV

Toep = rg(éra!m(o) + 8T, (m)) = 0.0005 GeV

with

6T .(0) = 0.1293
6T (my) = 0.1630 @)
6T, (0) = 0.0024
6T, (me) = 0.0027

Thus the QCD corrections represent a sizeable contribution of the order of 22.5 % while the QED
ones are of the order of 0.4 %.
In abhsolute numbers these QCD and QED corrections represent a difference of 33 Mev with respect
to the leading term , a correction probably accesible for future experiments.

3 W+ decay

To calculate the QCD corrections to the process Wt — tb(g),we have neglected the bottom mass, but
we have remained it different from zero for the leading term (m, = 4.5 Gev). The leading term for
this partial width comes from the diagram of fig. 7 and it is found to be

TW . 1B) = SemMw \/(MW2 - mi — m})? — dmim} (2 - mi { g (mi & mi)”

&sin 8, Mw? Mw? My*

) (9)

Where My, m; and m, are, respectively, the masses of the W boson, the top and the bottom quark.
QCD corrections to the leading order involve the diagrams represented in figure 8. Almost all the
comments we have made for the Z° case are valid for the W™ one except that now the fictitious gluon
mass regularizes, besides the soft gluon emission divergences, the colinear divergences that appear due
to the assumption of a massless bottom. We would like to make some emphasis in one of the terms
that appear in the amplitud for the diagrams 8.b, which is ( following the notation of the appendix),

m? (25 + m%)A?

2—__ [ ——
ITh= =0 =GR o) (55— m2)

(10)
Even though this term is proportional to A? st not be neglected because it gives the contribution
g prop g g

Oema, CrMw 43— 62
F)\ = - .2 ﬁ
167 sin” &, 2

(11)
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with 3% = W_’ contribution that is clearly different from zero. For the entire calculation we

have followed the same procedure as in the Z° case.
The final result for the QCD correction to this process is

o aemasC‘FMW
167 sin® 6,

(3% 4)(1 - %)% — (9 — 58%)8% log B° — (1 — B){4 + 63% — 55%)log (1 - B°)+



3 .
+ (3= BB + 4Lix(1 - B7) + 2log 8 log (1 - %)) (12)
It is very easy to check that the limit m - 0 or 8 — 1 gives the well known massless QCD
correction.

cXe'mh/-[\’v Qg

im I’ = 13
B—1 Qcn 4sin 0, « (13)

In figure 9 we have represented this QCD correction normalized to its value for m = 0 versus m.
For values of m between 30 and 55 GeV the QCD corrections are very large, about 48 % of difference
with respect to the massless case.

In figure 10 we have plotted the leading term with m;, = 4.5 Gev, the QCD correction and their sum
versus the top mass for a constant value of o, = 0.15.

For top mass values around 45 Gev we find the largest corrections, being of the order of 16 % which
" means a correction of 75 Mev for the width, that might be greater than the experimental errors [2].
We will ilustrate this corrections expresing the width in the following way

T' = To(1 + 8T, (0) + 6L, (me)) (14)

As an exarmple for m; = 45 Gev, a, = 0.15 , = 1—},8 , sin® 8, = 0.22, one obtains

r = 0.481 @GeV
I'g = 0406 GeV
Tgep = To(él,(0) + 8L, (m)) = 0.075 GeV
with
&y, (0) = 0.080
§To(m) = 0.104 (15)

4 Conclusions

We have studied those decays of the weak bosons which involve the top quark, if kinematically posible,
and have calculated the QCD corrections for these decays. For the Z° case we have also calculated
the QED ones. We have shown that for both bosons and for top mass values around 35 Gev these
corrections are rather large and might be accesible for future experiments.

In the Z° case previous approximated QCD corrections have been compared with our exact ones.

Acknowledgments

We want to acknowledge professor F.J. Yndurain for useful comments and sugestions.
This work was in part supported by CAICyT (Spain). A.L. wants to thank the agreement between
the FRG and Spain for finantial support.



Appendix

From the renormalized quark propagator in the ™ On Shell © scheme one obtains ,

k
//Iﬁ\i
P p-k p
a, N.Cp, _ m? A2
Zy =1+ 4—7:_('15 - log-;/? + 2logm + 4}
a, N.Cp,_ m?
Zpy =1+ T(iﬁ'rc - 3log 3 + 4) (16)
For the top quark , and
a, N.Cp A
y = 1 e —e - — =
2 * ar (7 — log v? 2)

for bottom quark. N, = 3 is the color number, Cp = % = 2 The constant 5. is defined to be

"}7‘: m—*log‘lﬂi“y( , (18)
D = 4 - ¢ is the number of dimensions in the dimensional regularization and +, is the Euler
constant.
The dilogarithm function Liz(z) is defined in the following way
. * log{l — =
LIZ(I) = = f m"E“%W)*dZ (19)
0

Many properties and useful formulae related with this function could be found in ref [7].
The explicit expression for the phase-space integral in the Z° case reads

Xem C“F

T |* dsad:
T6m My, sein? 20, |1 | deadss

dF(Z — I'L_g) =

8 2
| T 17 = 4[(v? + a®) — 2m? a®){(s — 2m®)ezea — mP (e + 3)} + L
s

m? m? 2 m? 4m? ¢ .
— 2s(v* 4 a®){(e2 + )2 (14 ) = S(1 4+ )b+ T (o - a?){s(cr+ ea) + = + =} (20)
8 E S & 5 C3 Cy
in terms of the invariant variables s; = (p1 + p2)? = (@ — k)%, 52 = (p2 + k)® = (Q — ;)7
s3 = (k4 p1)? = (Q - p2)* where the four vectors p1, p2, k and @ correspond to the top and the

antitop quark, the gluon and the Z° weak boson respectively, and ¢, = (s; — m?)~%.
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The limits of the integration variables are The limits of the integration variables are s; < s3 < sy

and (m + A)? < s5; < (/s — m)?, where
1

- '2?2[(52 - 85— /\2)(52 +m?) 7 K%(sz,s,)\z)(.ﬁg - mz)] ' (21)

i:AIE

K (z,y, z) is the kinematical function defined as K(z,y,z) = {2 —y — 2)? —4yz.

For the W case the Bremsstrahlung contribution comes from the following integral

aem(;F
167 sin? 8, Mw s

- om? 2s 4+ m?)

7= 0= |
3 (S-}-A *51)—(53—171)
+(23+m2) 83 (s + 27— 51)°

s5— mE s3—m?  2((s+ AT —s1) — (53— m?))(s3 - 'm2)}+

dT(WT — thg) = | T 12 dsidss

5 — 33 )\2
sa—m2  2(s+ A% s1) — (s3 —m?)

1+

1 83 —m? — N s—2m? (s — 1) — (83— m?
+_(1+ 23 - ( 1) ( 32 )) (22)
2 (s + A% ~sy) — (83 — m?) s $3—m
where now the four vectors pq, pa, k and @ correspond to the top, the antibottom quark, the gluon
and the W™ weak boson respectively.

The limits of the integration variables are s; < s3 < s3 and m? < s < (/s — A)?, where

1
5= m 4 A (s s = A)(s +mt) F K3(s1,8 A%)(s1 — m?)] (23)
1

References
1] G. Altarelli, CERN&6-02 Physics at Lep 1,1

(2] Barbiellini, Davier, Hagiwara, Martyn, Peccel, Schrempp, Schrempp, Yamada, Zeppen-
feld, CERNB86-02 Physics at Lep IT,25

[3] Particle Data Group, Physics Letter 1708 (1986)
[4] S.Giisken, J.H.Kiihn and P.M.Zerwas, Physics Letters 1558, (1986) 185

5] J. Schwinger Particle, Sources and Fields, Vol II, pag. 398. Addison- Wesley, New York,
1973.

6] S.Giisken, J.H.Kiihn and P.M.Zerwas, Nuclear Physics B262, (1985) 393

(7! R. Lewin Dilogarithms and associated functions. Mac Millan London (1958)
Figure captions
Figure 1: Diagram of 7% decay to leading order in the standard model.

Figure 2: Next to leading order in the Z° decay. 2a one QCI and QED loop diagrams,
2b Bremsstrahlung diagrams, 2¢ one loop weak diagrams.

Figure 3: Comparation between the exact and the approximate QCD correction to top

ratio for Z¢ decay.
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Figure 4: Leading and Next to Leading Order for top ratio in 2% decay.
Figure 5: Diagram of W+ decay to leading order in the standard model.

Figure 6 : Diagrams of the QCD correction to the top ratio of the Wt decay. 6a one loop
QCD, 6b Bremsstrahlung.

5T o, (m)+610, (0

Figure 7 : QCD correctionto Wt — tb normalized to its value for m; = 0, 26T (0)

Figure 8: Leading and Next to Leading Order for top ratio in W+ decay.
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