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Abstract

A rigorous path integral treatment for the d-dimensional pseudosphere Ad_l,
a Riemannian manifold of constant negative curvature, is presented. The path in-
tegral formulation is based on a canonical approach using Weyl-ordering and the
Hamiltonian path integral defined on midpoints. The time-dependent and energy-
dependent Feynman kernels obtain different expressions in the even- and odd-dimen-
sional cases, respectively. The special case of the three-dimensional pseudosphere,
which is analytically equivalent to the Poincaré upper half plane, the Poincaré disc
and the hyperbolic strip, is discussed in detail including the energy spectram and the

normalised wave functions.
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I. Introduction

Ever since Feynman’s fundamental paper [13] there were attempts to calculate
path integrals explicitly. Unfortunately, there are essentially only two examples which
allow a direct solution: the harmonic oscillator (including, of course, the free particle
motion) and the rigid rotator. All other gquantum mechanical systems require more
sophisticated methods which have been invented only recently. The key to all known
sclutions is to find a symmetry, often "hidden”, which allows a coordinate transfor-
mation, which may be non-linear or has to be accompanied by a time transformation,
to bring the path integral into a manageable form, such that one of the fundamental
solutions can be applied’.

With this paper we continue our previous work [18.19}, where we have formulated
a canonical approach to calculate path integrals on curved manifolds. Let us consider
the generic case’, where the classical Lagrangian is given by

LM, ,
Lalg, §) = F9a64°¢" — Vig) (1)
with metric g.5 and line element ds? = gapdq®dg®. The quantum Hamiltonian

reads® (h = 1}):
1
H = —2—mALB +Vig) (2)

where A g is the Laplace-Beltrami operator

1
Arp = —=08,9°"/g 0, (3).
V9 Ve

{¢ = determinant of the metric tensor). In order to express H by position and
momnentum operators. one constructs the momenta

1( 8 ra)’ p o Olyg @)

9q° + 2 ¢ aq°

Pa =

i

which are hermitian with respect to the scalar product

(Fu, f2) = / f1F2/3 da. (5)

In terms of the momentum operators (4) the Weyl-ordered form of the Hamil-
tonian (2) reads

1 a a
H = ——(g""paps + 2Pag oy + pappg®) + V(g) + AV(g) (6)

with the well-defined quantum correction (of order k%)

1 1 a a
AV = S (9 TeTia = B) = g% Tals + 2(g™Th).a + 9% (7)

8m

1For recent reviews see [18,26].
2See |18" and references therein for further details.
3We only consider systems with such a simple structure. See [30] for a discussion of more complicated

systems.



(R = scalar curvature; g°® inverse of gq.5; I'f, = Christoffel symbols).

. . ) . . N

Using the Trotter formula e ¥ := ¢ *A47B) = s _limy_. (e AN g—1tB/N)
and the short-time approximation to the matrix element < ¢"|e~**|g' >, one obtains
the Hamiltonian path integral (¢ := (¢ + U™, e =T/N, T =1t" —t', d
== dimension of the Riemannian manifold):

X dptV) dp™)
YV . ' -3 1 (. (N-1) .
K(¢",q;T) = [g(q)g(q")] Nh_lflmjdq /dq /(2,r)d f(%)

N
X exp ZZ [ (g7 — gli—ihya Lgab(q Npld péj) ~ V(g - eAV(cj(j))] (8)
i=1 “m

and the Lagrangian path integral (the momentum integrations can be carried out):

Nd N-1

- " t ! H m T
K(q",¢T) = lo(a)g(¢"), "} Jim (5=) H qu‘” H\/g (g)

x exp{ [;ngab( Mg = g (gD — gD V(gT) ~ EAV(QU))] } (9)

Note that it is crucial that all cbordinate—dependent expressions have to be taken at
the midpoints g¢?'. This prescription follows in an unambigious way from the Weyl-
ordering rule (see e.g. [27] p.479,[30]). For the correct form of the normalisation

C = [g(q') g(¢")] % see e.g. 32].

In {18] we have calculated the path integral for the d-dimensional rotator, i.e. for
the quantum mechanical motion on the sphere §¢71. In addition, we have discussed
some path integral calculations, which have become important in recent years, 1.e.
the Coulomb problem (see [7,23,24,25,38]), the Morse potential (see [6]), the Langer
transformation in a semiclassical treatment in radial path integrals (see [15]) and
general space-time transformations in radial path integrals (see [36-38]). A further
application of the Weyl-ordering rule has been presented in [19], where we have ex-
plicitly calculated the path integrals for the Poincaré upper half plane and Liouville
quantum mechanics, respectively.

In this paper we present the path integral formulation for the psendosphere AdY,
Our work was motivated by the observation that the quantum motion on the pseudo-
sphere A?~1 is formally similar to the quantum motion on the sphere S~ - but, of
course, very different in its character. To our knowledge, no consistent and complete
path integral treatment for the pseudosphere exists up to now.

Recently, there have been two path integral treatments of the pseudosphere. The
first is a semiclassical calculation for A? and A® due to Gutzwiller [21]. He noticed in
the case of A® a "mysterious phase factor” ¢ = 1/2mR? in the Feynman kernel K(T')
which is due to the zero-momentum energy-shift: Eq = 1/2mR?. This shift did not
arise in the semiclassical calculation, but it appears very naturally in deriving K(T')
directly from the Schrédinger equation.

A second work on this subject is due to B6hm and Junker [4], who discuss path
integrals over compact and non-compact rotation groups. However, these authors
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missed the essential point leading to the guantum correction (7), and so they got a
wrong energy spectrum for A9™1: E’;(,d) ={1/2mR*)(p* +1/4) (p > 0, d =2,3, ...).

Our paper is organized as follows. In section II we shall discuss and calculate
the path integral for the d-dimensional pseudosphere. We shall show that the correct
energy spectrum reads:

5

-

1 d—2\?
ELd)i _m—'I:P2+( ) ]a (p>0,d=2,3,4,...). (10)

In section III and IV we shall discuss in some detail the even- and odd-dimensional
cases. On the one hand. it is possible in even dimensions to express the Feynman
kernel K (T} in closed form, yielding simple expressions for d = 2.4 and finite sums
for d = 6.8..... On the other hand. one can express in all dimensions the Green’s
function G(E) by associated Legendre functions of the second kind.

In section V we shall discuss the pseudosphere A%. A? is of special interest, be-
cause it is analytically equivalent to three further Riemanmnian spaces: 1) the Poincaré
upper half plane U, 2) the Poincaré disc D and 3) the hyperbolic strip §. These spaces
play an important role in the Polyakov approach to string theory (see [10,11.17,31,35])
and in the theory of quantum chaos (see [1,21,39,41]). In string perturbation theory
one considers open or closed Riemannian surfaces of genus g. The order of the pertur-
bation expansion corresponds to g. For a closed Riemannian surface one has e.g. for
g = 1 the torus and for ¢ = 2 the double doughnut. By the uniformisation theorem
of Klein,Fricke and Koebe (see e.g. [3]) these surfaces are conformally equivalent to
compact domains (polygons) with 4¢ edges and vertices in these Riemannian spaces -
(e.g. for ¢ = 2 an octagon in D, say). Furthermore, these compact domains are
fundamental domains of dicrete subgroups of PSL(2,R). The action of the group
elements are for e.g. z € D:

o XD (e - B =1) (1)
a* + bz’
which are isometries in D. Under the action of the generators of the group the
polygons tessalate I, say. These features have been extensively studied by Poincaré
34] and Fricke and Klein [9]. A more recent discussionise.g. due to Fenn [8]. All these
spaces have constant negative curvature. This hyperbolic structure is responsible for
the fact that classical and quantum motion in the polygons is chaotic.

In our path integral treatment we shall show that the Feynman kernels K(T') on
A? and U can be transformed into each other. Further, having the path integral for
A? it is quite simple to express it in terms of the variables on the Poincaré disc D.
‘This enables us to write down the path integral solution for the disc. We shall briefly
mention the path integral formulation for the strip S, but a detailed treatment for §
will be given in a forthcoming paper.

Section VI sumimarizes our results.

The appendices contain further details and some important but tedious calcula-
tions. It will be about Legendre functions (appendix A), the proof of an important
path integral equivalence (appendix B), and the appendices C and D will contain
the detailed proofs for deriving the Schrodinger equation from the short-time kernels
corresponding to the different path integral representations for Al

3



I1. The Path Integral on the d-Dimensional Pseudosphere

We are considering the Schrédinger equation:

3—¢ —— Kl (1)

mR
in d-dimensional pseudospherical polar coordinates (see [40}):
zy = Rcoshr

r, = Rsinhrcosfy

r3; = Rsinh7sinfy_, cos 4.3

(2)

rq-1 = Rsinh7sinfg_;...sinf; cos b

zg = RsinhTsinfy_,...sinf;sin b,
where 0 < 7 < o, 0< 8, <7m{r=2,...,d—-2),0 <6, <2m. The metric in m-space
reads as (Ggp) = diag(—1,1,...,1) (a,b = 1,...,d) such that x = —R* = —zi +

ngz 22 with R fixed." (We will often also use §4_1 = 7 and 6; = ¢). The metric
in pseudospherical polar coordinates reads: (gap) = diag(1, sinh® 7 sinh® 7 sin’ 84,

..,sinh* 7 ...sin’ @), (a,b = 1,...,d — 1). K(zd) is the Legendre operator in the
space A41:

o* ) 1 % 8
o = thr— — 3)cot 6.
Ky 52 +(d - 2)co TBT] St [303_2 + (d — 3)cot 84 2 30,5 +
1 o* a 1 8?
i + cot @ + ; 3
sinh® 7...sin* 8, | 862 o 302] sinh® 7 ...sin” §; O¢* (3)

The Hamiltonian reads: ]

2
The solutions of the eigenvalue problem (see [2])
Hy = Ey (5)

are the zonal spherical harmonics H ; ,) #( 1) with the spectrum (1.10) (u is a unit vector

on A%"?: u=z/R). The Hr(f,)‘“(u) can be written as

Hy (u) = Zpa(r) - 51577() (6)

where the S(d l)(ﬂ) are the usual orthonormal spherical harmonics for the Sd-2.
sphere and Q denotes a (d-1)-dimensional unit vector on §%~%. The Z,(7) read

T(ip + 1 + %52) —a  3zd_
Zpa(r) = ep Tp) 2 )(smh ‘r)g‘?i’PiP‘*‘_% l(cosh'r) (7)
1A(d~1} hag constant negative Gaussian curvature, K = ~{d — 1){d - 2)/2R?.

4



p>0.1€Ng, p=1,2,....,M, M =(2l+d-3)(I+d—4)1/(I{(d - 3)!), d=4,5, ...;
for d = 2,3 see (48) and (49)]. The Z,; are orthonormal

/ Zpa(T)Zy ,l(‘r)sinh"[”2 rdr = 6(p—p') (8)
0
and form a complete set

/ Zpi(TVZ, (7' )dp = (sinh T sinh'r')g:?iﬂ‘r -7 (9)
0

(for details see appendix A). Therefore the H ;i)‘p are orthonormal and form a complete

set on A7,

In order to comstruct the path integral on A?~! we start with the momentum
operators which are given by (see (1.4)):

WI(B i-2 *
Pr=7\or cornT
1 o v—1
; - — : tgv 10
Peé, z(aev—r 5 CcO ) ( )
19
p¢h13¢>’ )

and are hermitian with respect to the scalar product

oo d-2 = 2n
(f,g) = / sinh?™% 7 dr H f sin¥~1' 4, dﬁvf d¢ f* g. (11)
0 pn Jo 0

Rewriting the Hamiltonian (4) with the help of (1.6) and (1.7) yields®

1 1 1
H . 2. 2 2] AV({8}) (12
{01 pe)) = o [P e oo s P AV (12
with ) )
1
AV{{8}) = ——1(d - 2)* - - — . 13
({6}) 8mR? l( ) sinh?® 7 sinhz'r...sinzﬁz] (13)

({-} denotes a collection of variables). We thus infer that the Hamiltonian path
integral on the pseudosphere reads (see {1.8)):

E'9{"}.{6'}:T)

(1) (N}
:Cﬁh—l»noo/{dam}"'/{‘wm_”}f({z?)ed-}l f%ﬁ—%

N d—1
x exp iz[Zpgi’(efﬁ’~—99—”)_em{e‘”,ew-”},{pﬁf’}) . (19)

j=1 tv=1

'1n H no ordering ambiguity arises, because of the special form of g, for the pseudosphere.
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C is the normalisation (see (1.8)):

d—2 -1
_ 2
C = (sinh’r'sinh‘r")n—:i [ H sin” ™! @/, sin” ! 0:,'] (15)

v=1

and H denotes the effective classical Hamiltonian on the lattice

() pli-11y g (Dyy — L ()72 1 ()Y 2
H({67,6 bire'h) = 2m R? {[pT e sinh 7(9) sinh 7(3-1) med”’] T
; 1 r(J)TZ} sorpli) pli=1)
-+ - - , ——ip 7P+ AV({87. 677 ) (16)
sinhT(J)sinhT(J_”...sinag”sinﬁgf' ne

with AV given by:

AV({QU),HU—U})
RN PR ! !
8mR? sinh 7(7) sinh 7(=1) sinh 7(3) sinh 703-1) || sin B(zj) sin H(Zjﬁl) '

(17)

Here some remarks are in order. As mentioned already in the introduction, the
consistent lattice definition of the path integral requires to take all coordinates {f} at

the midpoints o = %(95{” Lgn ). However, in our case it is legitimate to make the

replacement sin’ 87 - sin6\? sin 6Y Y ete. ("product form”). This follows from the
fact that the relevant terms of O(e) arising from the above replacement are exactly
cancelling each other. A general discussion of path integrals based on the "product
form”-definition will be given elsewhere.

The momentum integrations in (14) are of Gaussian form and we get the following
Lagrangian path integral on the pseudosphere:

t.'r

E@({6"},{6}:T) = f{Do}(t)exp ,; fiﬁca({ﬂ,é})~AV({9})]dt (18)

tl
where the classical Lagrangian and the integration measure are given by:?

Lci({8,6}) = 1’5_32[1'2 4 sinh? 183, + --- + (sinh® 7 ...sin® 6,)¢%],  (19)

d—1
R? NS= N1 ) , ]
{D6}t) — ("'; : ) I] sinh?~? r{ParPant?. (20)
m’ee
j=1

Here d29) denotes the (d-2)-dimensional surface element on the unit sphere S d-1;

d-2
d? = [[(sin6 )k ds}?. (21)
k=1

1With the "product form” to be used on the lattice.
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It is worthwhile to notice that the normalisation C together with the determinant
expressions (see (1.9)) have been exactly cancelled, and that the path integral (18)
has the standard canonical measure (20), which can be directly derived by a trans-
formation from Minkowskian to pseudospherical polar coordinates.

In appendix C we show that from the short-time kernel of equation (18) the
Schrodinger equation (1) can be deduced, so that the path integral (18) is indeed the
correct path integral on A", Some details concerning the equivalence of our lattice
formulation to the midpoint-procedure can be found in appendix B. We emphasize
that this equivalence is a special feature of the pseudosphere (and, of course, the
sphere, too, see [18}).

The path integral (18) with the Lagrangian given by (19) is too complicated for
explicit calculations. We therefore try to replace (19) by the following expression:’

. - . m .

Lcf{8.6}) — Lcul({8,6}) := S R~ Ve({6}) (22)

where V. has to be determined and v denotes the d-dimensional unit vector on the
A4l sphere. With u? = —1 (A%~! is a space of constant negative curvature!):

(u(” — u(z))z = —2(1 - coshl(]’z)). (23)

We note that {('2) is nothing but the hyperbolic distance between the points {#*}}
and {#2)} measured in units of R. Using the addition theorem

cosh 1M = cosh 7V cosh 7¢) — sinh 7V sinh ()

d-3 d-2 d—2 |
e (cos 9;1_)2 cos 9;2_)2 + Z cos 8{1) cos 642 H sin 0 sin 2 + H sin 8 sin Gﬁf))

m=1 n=m-+1 n=1

(24)

we can show (see appendix B) that the following identity holds:?

exp {ieﬁgl({ﬂ(j)},{ﬁ(j'”)} =exp {——i?-Rz(l — cosh [(371)) iGVc({g(j)})} :
(25)
Here
Lal{89}, {689}

R .. . _ o 3
T; 2 [(T(J) — 7N | sinh () sinh‘r("“])(ﬂfﬁ_)z - 0'(1’_2]})2 + ...
€

.o+ (sinh 7P _sin 877V ) (¢ — ¢U"’)2] (26)

denotes the "classical Lagrangian” (19} on the lattice and

1 1 1
V.({8}) = -1+ + : 27
(163) 8mR? [ sinh® 7 sinh’ 7. . .sin? 02] 27)

1 This replacement is motivated by the fact that an anslogous trick has been successfully employed
in the case of the sphere 591 [18].

?We use the symbol = (following DeWitt [5]) to denote "equivalence as far as use in the path integral
1s concerned”.



From (13) and (27) we obtain the important relation:

(d-1)(d-3)
Vet AV = Pl (28)

With (22) and (28) the path integral (18) can be rewritten as

KD({6"},{0'};T) = /Du(t)exp {«;/:” [%RW _ ‘82(;2_ w}dt}. (29)

Equation (29) is our final expression for the path integral on the pseudosphere
A?71, Tts lattice definition is given by

mR? ) :

2mie

EW({8"},{0'};T) = e T E-0/6mR figy (

N—oc

N-1
X / H du'? exp{ im B Z [1 — cosh 10 1)]} (30)
i=1

=1

(dul?) = sinh? "2 (0 dr(i1dQ?). The path integral (29) is, of course, equivalent to
the path integral (18), but (29) is much simpler. In appendlx D it is shown that from
its short-time kernel the Schrédinger equation (1) can be derived.

In order to evaluate the path integral (30) we need an expansion for e #coshi

We have (Re(z) > 0, Re(d) > 1):

| s—d T + 422
f—zcoshl: 1("511111” / ! (1P ’ 2 )
V7 . | TG

where P# denotes the associated Legendre function of the first kind (see appendix A)
and K, a modified Bessel function. Equation (31) can be derived from the integral
representation ([20] p.804, Re(z) > 0, Re(u) < 1)

2 3—-d

P, 7T (cosh)Kip(z)dp  (31)

o 2
] eV (gt — 1) PR (y)dy = 4] — = Ko (2) (32)
1 . 2

me

and the completeness relation (see also equations (9) and (A.11))

TP =+ 3 o (Lype i
f01 g | -2 _1(y)dp =8z — v). (33)

Next we have to expand (31) into the spherical harmonics on A1, This is done with
the help of the relation [2]:

T(ip + -‘1"2;2— 2

sinh [(1:2) 23 -
( U

;d
P.*. (coshl(]’z))
P~z

d)= (d
Z A (O HD (). (34)



Inserting (34) into {31) yields (Re(z) > 0, d = 2,3,...):

d—2
2,2 2 E "
o 2 (2) T [ kot S LGB, 69

P

4

For the functions H ;‘2 ., We have the orthogonality relation (see equation (8))

ﬁ du B, () B (w) = 60— P10 (36)

Therefore we get for the jth term {j = 1,...,N) in the path integral (30)!

d—1 1
2\ T - 2\ 1
(mR ) 2 —smR? )1 —cosh 199710y _ (Zmﬂ )2 —i(mB /o)

2mie i€

* ) m R (dj (d) -
[ Ko () X E ke 0TS 0007 (3T)

i€ .
IEANTGA

Using {37) and the orthogonality relation (36) the integrations in (30} can be easily
carried out with the result

K'D({0"}, {0} T) = " wmm (4 D" 3)f dpup(T) S B HT (u") (38)

¢ Ly

with

2\ 3 2 B2y 1Y
pp{T} := lm (Zm:R exp (m.R ) Kip m' ) . (39)
Nooo i€ i€ i€

To perform the limi¢ we use the asymptotic expansion of the K, -Bessel function ([20]
p-963):

VL S (g - oo, Jarg(e)| < (40)

and get:

p,(T) = exp ( sz“;p ) . (41)

We thus infer that the Feynman kernel for the d-dimensional pseudosphere
A1 reads [we set KD (r;T) = K(4({6"},{6'};T), because the Feynman kernel at
fixed time 7T is only a function of the hyperbolic distance 1" = r]

- —(t mn L)— d)=
KOT) = [ ap 3 e mammt - SR ) H (u1) ()

Lp
T(ip+ %32) |°

8-d 2
== —(iT/2mR?)[p*+ E2L) 43
T(ip) Pip_%(coshr)e i 1.(43)

1 35— o
=2~—(27rsinhr)“f§/ dp|

™ 0

!For a direct use of equation (35) we first have to perform a Feynman-Wick rotation (¢ — —ie).

9



We immediately read off the normalised wave functions

- T(ip + 1 + &2) soa 34
(d) _ ofd~1) P =), . sod 250
Hp i #( u) = Y () Tp) (sinh ) ?i‘k% (cosh 7) (44)

and the energy spectrum

1 (d —~ 2)?
(d) . 2 a2 0 45
Ep 2mR2[p+ 4 (p>0) (45)
with largest lower bound
d - 2)*
R (46)

These results coincide, of course, with the one obtained from the operator approach,
see e.g. [2].

It is a very interesting feature that E((]d) increases with increasing dimension.
Gutzwiller |21} noted this for E[(]“ = 1/2mR? in a semiclassical path integral calcula-
tion. In reference [4] this increasing lower bound does not appear. There the largest
lower bound is constant for all d reading Eéd) = 1/8mR?. However, in our calculation
this energy shift arises very naturally. Notice that it is indispensible in the derivation
of the Schédinger equation from the short-time kernel of the path integral (30).

By a Fourier transformation we obtain the energy-dependent Feynman ker-
nel G(E) (Green’s function):

o 1
G (r; E) :f dp B B W), (47)
o 1 , [pz + (d_‘jz) :| - E gﬂ: p'u 1 P u

2mR

G(E) has a cut in the complex E-plane with branch point at the value (46) - in
agreement with the continuous spectrum (45).

We close this section by explicitly stating the normalised wave functions and
the energy spectrum for dimensions d = 2,3,4 (for d = 2 - see e.g. (20] p.1008:

P? ,(cosht) = 4/2/msinh7 coshvr; for d = 4 see section III}):
2

1 ipT p2
HL?)(T) = 1,":?..7;61’ ; El(,Z) = o (p € R) (48)
(3) psinh7p _ . 11 ilg ‘
H,((1,¢) =4 oz I'(ip+1 + 2)”Pz.}w%(czcxsh T)e

1 1
(3) — 24z
E; =3 R2(p +4), (p>0,leZ)J

b
g 2A+1(I+p)TEp-0 . ; [dcospr ] _, ind
0, — T E 8)et
Hppu(r6:9) = \/am (I —p)! D(ip + 1) sinb’ d(cosh )t Py (cosb)e

o p—

(50)

(4) _ - - _
Ep - Rg(p +1), (p >0, 1 € No, = —1...,0,...,1). )

10



III. The Feynman Kernel in Even Dimensions

In even dimensions it is possible to express equation (I1.43) in closed form, yield-
ing simple expressions for d = 2,4 and finite sums for d = 6,8,.... We start with:

1 _
KD, T = 2—(27r sinh'r)LIi
m

= T(ip+ 42
% d _._2_
fu p’ T(ip)

2 i-d

P (coshr)e_(iT/szz)fp2+ = 2]. (1)

: 1
P 2

We first rewrite the Legendre functions in terms of Gegenbauer functions. With (see
28 p.200):

22T {a + 1) Mv+ a+ 5) vo—a—g

(sinhr)”®P "% (coshr) =
2

and using some properties of the I'-function we get for d even:

- 42 4 d—2
K(d)(r;T) - i(~1) F(—z‘)e—(i:r/smnz)(d—zf

[
z

2n

o d—2 .
xf dppCl,:d_T,(coshr)e‘('lemR:’)Pz. (3)
0

We can now reduce the d-dimensional problem to the case d = 2, This is done with
the help of the following property of the Gegenbauer functions:

21-k [ d* cos pr }

ip(k) | d(coshr )k (4)

Cfpfk(coshr) =

This relation can be deduced from ([20] pp.1030):

INCY I LN €
Cx(z) = ZkP(().n)Lk) d:k( ) (5)

and limy_o I'(A)C)}(coshr) = 2 coshvr. Inserting (4) into (3) we obtain

"

4-2
14 : /m ¢Pre=(T/2mBP* g
27 dcoshr oo

d-2
_ PR ramptyaa | L d T (imR /2T (6)
2mi T 27 dcoshr ’

which yields the recursion formula

1 iT d
{(d+2)¢,.. - ‘z—m—f(d—l) (d}( .
K {(r;T) 5. ¢ TR dcosh'rK (r;T)
mR? 7 ir d
= S g @) (7
(mT) (sinhr)e : L TnT) )
(z = i";—{}zrz ). For the first three cases we explicitly obtain
R? AN 2
K@y I (imR?/27)r 8
(1) (21riT ¢ ®

11



T e(imR2/2T)r2f2—f'ﬁ-5 (9)

sinh r

b
et
)
3
I
N
13
M|
~—

sinh® r

il
x{lﬁm[l—rcothr}}. (10)

These are the Feynman kernels of the "hyperbolic circle”, the A3-pseudosphere (see
Gutzwiller [21]) and the A®-pseudosphere, respectively. It is remarkable that the
. kernel for d = 2 is identical to the free particle kernel in R, if the euclidean distance
is replaced by the hyperbolic distance R -r. This is quite different from the euclidean
circle where the Feynman kernel can be expressed in terms of a Jacobi 6;-function,

2 3 2 .
K(G)(T; T) — (mR ) 2 T e(imR2/2T)f‘2—-;_‘g:.

which is an infinite sum over free particle kernels.

We can also calculate the Fourier transform of K{®(T), the Green’s function

G E). We get:

GY(rE) = i/ KD(r:T)e'TE 4T
0
imRE[ 14 Tope mR?r? 1 (d - 2)?
- - -1 _ — 4 E- 2|\ TdT
27 { 2w dcoshr} /; T exp{ 2 T * {E 8mR? ] }

_1 1d N /21
= mR? [2mR2E —(d 2)2/4] 4 [_ E‘r;dcoshr] o

x Ky (ir/2mBPE ~ (d = 2)2/4)

d-2

2 <
mR \‘ 1 d :| 2 e“’.’"' ,’szZE__ (‘1_42)2

\/szin (d—42)2 2w dcoshr
R? : =
m et d-3
- F]
BT (271' sinhr) Ql- omER?— =20 W%(COShT)* (11)

The last equation is proved in appendix A. Further we have used the integral ([20]
p-340):

fooo my_le—%_7zdzz =2 (g) 3 K,,(Z\/ﬁ_')’) (12)

and Ki%(z) = /% e *. The first three cases read:

2 .
2F
P2
G4 E) = _ﬂ_e—ir\ﬂmRzE-l (14)
27 sinhr _
- mR? V2mR!E -4 icothr _,. smETEd
G(G)(T;E) T arr sinh?® 7 ‘ e, (15)

12



IV. The Feynman Kernel in Odd Dimensions

Unfortunately, there is no explicit expression for the Legendre functions PY in
terms of elementary functions when p is an integer. However, we can express the
Green’s function G(E) in a simple way in terms of Legendre functions of the second
kind. Using the property (A.5) of the Legendre functions we get for d odd:

’ I(ip+{d - 2)/2) |*
I'(zp)

Inserting into the Feynman kernel yields with P™(2) = (22 — 1)™/2d™P,(z)/d=™

-3

'P = (cosh'r) (—»1) 7 ptanh'n’p'P 7 (cosh'r) (1)

1 3-d
K(d)(r T) = (27r smhr)T

/ dp ' %P + (( ) )/2) P-Pz ((‘OSh ?")8 2T/2mR2)[p2+§4;:L2]
ip 2
! ; 2 2 a-2)2
~ ar ptanh rer = (COShr) —(iT/2mR*)[p +(__TL]dp
2 \ 27 51nh7"
! L d . : 2 2, {d-2)2
T o [ 27 d cos} ] / ptanh TFP'P,,},__((‘OShT)e (:T/2mR%)ip +LTL]dp
T mdcoshr o

(2)

We now perform a Fourler transformation

G E) = z/ e TE KN p, T)dT
0

1d I
= — { — ] / dpptanh mpP;,_1(coshr)
0

2m dcoshr
X fde emiT{zmlnz{pz"" d_‘iz 2]_E}
0

Rz 1d Y tanh
R [t Py, (coshr) (3)
T 27 dcoshr 0 — 2mR?F — (d—42) ] P~ 3
mR2{ 1d T
= T o z 4
™ ( 27 dcosh'r] Qi 2mER2—(—“—“43-L—§(COShT) (4)
where we have used the integral (|20} p.819):
tant
/; %T?—Pw_%(coshy)d:ﬂ = Q, i(coshy). (5)
Differentiating Q,, %52 times and using Q™(z) = (22 — 1)% g de( 2) we get for the
Green’s function on the d-dimesional pseudosphere:
d-—-3
R? —1 T d-s
¢ E)= = : hr). 6
(r; B) b 27 sinhr Q“/szRLE:Tzﬁ_%(cos ) (6)

A comparison of equation (6) with equation (IIL.11) shows that the representation (6)
1s generally true - up to a phase factor - irrespective whether the dimension is even

or odd.
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V. The Pseudosphere A*

The pseudosphere A? has some special properties which makes it the most in-
teresting one among all the others.) A? is analytically equivalent to three further
Riemannian spaces:

1) The Poincaré disc D := {z = z; 4+ iz2 = re*®|r < 1,¢ € [0,27]}
2) the Poincaré upper half plane U := {( =z +iy/z € R,y > 0} and
3) the hyperbolic strip §:= {n =X +i¥Y|X e R, Y € (-7, T}}.

272

The study of compact domains in these spaces is of great interest in string theories
and quantum chaos (as alreday mentioned in the introduction).

1) The Poincaré disc

Let us consider the stereographic projection of A® onto the (z1,z;)-plane with

projection center y = (0,0, —1} (yo = coshr, y; = sinhrsin¢, y; = sinh T cos ¢):
2=y +izy = re'® = vt :tanhz(sinq5+icos¢). (1)

1+ Yo 2

The boundary » = 1 of the disc D correspondé to the points at infinity of the hy-
perboloid (i.e. the pseudosphere A?). The pseudosphere itself is represented by the
interior of the disc. The classical Lagrangian and Hamiltonian are, respectively:
7"2+r2<;52 _(1#7,2)2(2

1 2
o e g (i) )

Lo = 2m

and the quantum Hamiltonian reads (see equations (I1.3,4)):

(17‘2)2(32 186 1 62)

Bz \on Tror " 1i5g

The geodesic distance d between two points z and z' is given by

2|z — 22
(1= 2201 — |2']*)
The metric reads gqp = [2/(1 — r?)]*diag(1, 7?).

coshd(z,z') =1+

(4)

Let us construct the path integral on D. Following our prescription outlined in
the introduction, we get

1 4r

T, = 8,(ln g) = ~+ ——
Ty = Oy(ln /5) = 0

1/ 1 2 (5)
Pr= g 5:+§;+1_T2)

10
P = ;8_1;25

L Throughout this section we put ® = 1, i.e. we consider the pseudosphere A? with Gaussian

curvature K = —1,

14



and the quantum correction AV reads:

(1—r%)2} 3 1 N 3, (6)
4r2 ~ 16m  32mr?  32m

AV(r) = 8—17?—’; {1 4+t

Therefore we get for the path integral on D (see (1.9)):
KD(?“",T",QII)",QS';T)

1 N1 1 2r.
160" 3 m Y
[(1 — pi2 )2(1 — pi2 )2] NI'E*I}"’ (27”:6) =1 /0‘ ") /‘; (’b(J)

S 4rg) 2im (r(j) — 7(-1))° + Tep(b) — dG-1)°
L e[ 0

This path integral looks rather complicated, but nevertheless it can be explicitly
computed as will be shown in a forthcoming publication. Here we go back to the
solution derived in section II. From equations (I1.42) and (I1.49) we obtain

/4

K(3)(7‘”77",¢”,¢', - Z f dpexp [ ZTP +1 :I
pSlIlhTf'PIF( +l)‘2 il( @’ <p)»P- . (COShTr)lp_i+‘p(COShT”). (8)
™ i IR

Using for the Legendre functions the representation ([20]p.1010, \:;i < 1)

B
1

u 1 z—1\" z4+1 v L z—1 -
P = e () () eRCwv-mt-wIg @

and introducing, following Helgason [22],

T,Z)%+ip7_il|[‘(“| + 3 +ip)

DL 1 ip) Fi(z +ip, Il + 3 +ip [+ 507, (10)
A2

(I)p‘l(r) =(1-

we can express equation (7} with the help of (1) and (10) in terms of the variables of
the Poincaré disc D

R—D( r ’aﬁ” ¢)’T)

+1 4 tanh‘!r " - ' i o
/ dp Z exp[ sz / ]p p‘I’pJ(r )& (7 e He™—¢) - (11)

2m 2
l=—

Thus the wave functions and the energy spectrum on the Poincaré disc are
given by

ptanh np

il
’;?t(f'yﬁb} = - $,.1(r)e'®
(12)

1 1
ED: _ 2 el
P 2m (p +4m>

(p > 0, | £ Z) satisfying the orthogonality relation

/dr/ A bR 0 @) 60 (. 8) = bt~ 7). (13)

15



2) The Poincaré upper half plane

The Poincaré disc D can be mapped onto the Poincaré upper half plane U by
the transformation:
—tz 41 —( 4+

(=z41y= , z= il (14)

The classical Lagrangian and Hamiltonian read, respectively:

1,
(&2 +9%). Ho = —v* (o + 1)) (15)

Lo =
“ y? 2m

o] 3

The metric is gqp = {1/y*)éar. The Laplace-Beltrami operator or quantum Hamil-

tonian reads ) ,
1 0 8

- - — . 16

B 2m Y (3;{' Byz) (16)

In a previous paper we have presented a complete path integral treatment on U [19],
including its connection to Liouville quantum mechanics. So we state just the result
for the path integral on U:’

oL Dz(t)Dy(t im (Y1 L
T e e L]
tf

i N N ! dz-(J)dy(J)
Nflm (271’26 _/ f [yU)

. N
« exp [EZ (J)_z(J 1)y2 +(y(”~y(’ 1)) }
2e o y(J)y(J 1)
! ‘TL.H—“ Vo ' ty ik(z'—2")
= =/ dk dppsmhﬂ'pe vy Kip(1kly') Kip(|kly ) e . (A7)

The wave functions and the energy spectrum on U read:

sinh7p ;.
bha(@,y) = 5 e i Kip(kly) (= € R,y > 0) |
(18
v 1 1
By =5 Pt

(p >0, k€ R\ {0}) satisfying the orthogonality relation

j aj (2,9) %Y o(2,9) = 6(k — K)b(p — ). (19)

! Application of the Weyl-correspondence yields AV = ;1-3;. But using the "product rule” !7(2_,-) -

¥(;)¥;—1) in the lattice formulation of the path integral cancels AV, such that equation (17) is
obtained. From its short-time kernel the correct Schrodinger equation can be deduced; see [19] for
details.
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The spectral representations (8) and (17) can be transformed into each other. In
order to achieve this we use the integral ({20] p.732):

oe w2 a® + b 4+ ¢
= e P o T 0
/0 K, (az)K,(bz)cos cz dz W s p— P_iy ( 20 ) ) (20)

equation (II.33) for the case d = 3 and the addition theorem for the associated
Legendre functions: ([20], p.1014)

= r [+1) )
(zz2' — V2% —1/2'? — 1cos ¢) = Z( 1) 1oL v-}-l—%—l)fp( 2)PL(z).  (21)

I=-00

This enables us to derive the identity:

1 o0 oo . E + /4 N i k(e
e d.k/ dppsinhmpe™ T th Kly') B ([k]y") e )
. o
1 = [ 2. 1/4 |
D f d""‘*"p{‘” %}P““hﬁplf%ﬂp—z);z

x =P, | (coshT)PLy  (coshT"), (22)

where use has been made of the identity

ynz +y'2+(a:"mm')2 s |C”_C'|2 14 zizn_ztlz
2y'y" 2Im(¢" )Im(¢") (1= 12"2)(1 = [="]?)

= coshd(z",2') = coshr"” cosh 7’ — sinh 7" sinh 7' cos{@" — ¢'). (23)

3) The hyperbolic strip
With the help of the transformation
n =X +1Y = —In(—-:() (= 2artanhz) (24)

we can transform the Poincaré upper half plane (the Poincaré disc) onto the hyperbolic
strip S. The classical Lagrangian and Hamiltonian read:

m X? + VK cos?Y

Lo = ———F, Her = 25
U= TSy cl o (P% + Py ), (25)

respectively. The quantum Hamiltonian reads:

cos?Y 8% H?
H= - . 26
om (ax2+31f2) (26)
The metric is gop = (1/ cos? Y )84p. Therefore we get the quantum correction AV:
1
AV = —, (27)
4m

and the effective Lagrangian to be used in the path integral defined on midpoints
reads _ )
mX?+7Y? 1

2 cos?Y am’
In a forthcoming paper we shall give a detailed path integral treatment on S, yielding
the wave functic 1s and the energy-spectrum

s psinhmp : i . ikX
XY= VeosY P, (sinY
pok( ) [47!'(55.11112 7p + cosh? wk)} o8 ‘k‘i(sm e

1 1
ES =
P oom (P + 4)

(pe R, k¢ R)

Less = (28)

(29)
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VI. Summary

In this paper we have presented a complete path integral treatment on the pseu-
dosphere A?~!. The correct treatment of this Riemannian space is based on the
Weyl-ordering rule for the quantum Hamiltonian which yields the well-defined quan-
tum correction

1

1 1
8mRZ (d

sinh® 7 sinh® 7 ...sin” ¢,

AV({8}) =

_0)2__

(1)

to be used in the (Hamiltonian- or Lagrangian-) path integral. A crucial point in using
the Weyl-ordering rule is that it leads in an unambiguous way to the prescription that
all coordinate-dependent expressions in the path integrals have to be taken at the
midpoints. However, in our path integral formulation, we use a product form instead
of the midpoints, because it simplifies our formulas considerably. Having the correct
path integral on the pseudosphere, it turns out, however, that it is too complicated
for explicit calculations. We can use, however, an identity in the path integral to cast
it in a much simpler form, yielding the (constant!) quantum correction

V. + AV =

The resulting path integral can be exactly calculated yielding the spectral repesenta-
tion of the Feynman kernel K (7). From K (T) we have obtained the normalised wave
functions and the energy spectrum:

2
g . ! p’ -+ d_z) (p>0,d=2,34,...). (3)
P 2mR? 2 ' , Y

=

showing a characteristic dependence on the dimension d.

We have discussed in some detail the even and odd dimensional cases. In even
dimensions the Feynman kernel could be expressed in closed form, yielding simple
expressions for d = 2,4 and finite sums for d = 6,8,.. .

d—2
R? . 2 z 1 d TP -
K@ .y = f 2 ~(T/8mR*)(d-2)" | | — (imR* [2T)r? 4
() 27'riTe 27w dcoshr c (4)

This, of course, is quite similar to the d-dimensional rotator, where in even dimensions
the Feynman kernel can be expressed in terms of a #3-function and its derivatives.

To establish the connection of the exact expression (4) with the semiclassical
approximation to the path integral, we reinsert & to obtain

K“KmTﬁ:(mﬂz)%iVBG%q%%(S—Rﬂi;EKT)}W1+Omﬂ.(m

2mihT ImR?

Here S denotes the “classical action” § = mR?r? /2T and D{? the van Vleck-Pauli-
Morette determinant which in our case is explicitly given by (r/sinhr)?"%. Notice
again the additional time dependent phase factor which is due to the quantum cor-
rection (2). We have thus derived Gutzwillex’s "mysterious phase factor” [21].
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The Green’s function G(E) can be expressed in terins of an associated Legendre
function of the second kind in all dimensions:

4-3
R2 ez".'r 2 a—3
¢ E) = = = h 6
(; ) vam™ \ 2mwsinhr Qi,/ngR:_ﬁaiﬁ_%(cos ) (8)

("Yd =1, d - odd, Fd = ?:, d- CVCII).

The hyperboloid A? is of special interest, because it is analytically equivalent to
three further Riemannian spaces, the Poincaré disc D, the Poincaré upper half plane
U and the hyperbolic strip 5. The path integral solution on I can be found, once the
solution for A? is known. One has only to perform a transformation of the variables

7,6 of A* to r,¢ of D. The path integral solution on U has been presented in an .

earlier paper [19]. We have shown that the Feynman kernels on A and U can be
transformed into each other. In all these cases the energy spectrum reads:

1 1
E, = Py . 7
= (P 41), >0 @
We have thus added further examples to the short list of exactly solvable path in-

tegrals. The examples demonstrate once more the consistency as well as the universal
utility and feasibility of our general method developed in [18].

Appendix A: The Associated Legendre Functions P# and Q*

The functions P# and Q" are linearly independent solutions of the differential
equation
d*u(z) du(z)
— 2z

_ 2
(12" dz

+[u(v+1)—-1vzz

and are defined by means of the hypergeometric function 3 Fj:

1 24 1\ *? .
Pr) = 5 (z—l) 2P (v v+ 11— s 352 (2)

e“ﬂr(v + M + 1)\/7?(22 _ l)p/2z—v—p—l
27H1T (v + 3/2)

Q4(z) =

x oFy (M2, ey 3 4. (3)
They are called associated Legendre functions (or spherical functions) of the first and
second kind, respectively.!. They are uniquely defined in the intervalls |1 —z} < 2 and
1z| = 1, respectively. They can be extended to the entire z-plane where a cut along
the real axis from —oo to +1 has to be made.

The so-called conical functions P* have the special property

L L
3tep

P, (5 =PEL_ () @)

1, -
—1+idp

'We use PL(z), QU(z) for z € C\ [-1,1] and P{(z), QU (z) for # € (—1,1) for the Legendre
functions of the first and second kind, respectively.
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which is due to the general property P¥ =P . Hu=mecZ

TFv+m-+1)

P = Rt 1)

, " (2). (5)

The functions P*, vip form & complete set, that means a function g can be expanded
2
(see [28] p.202):

o= [ 0P W (6)
with
#lp) = PETPG iR - g ip) / gy P, Wy (7)
Also: -
or)= [ FPL 0 ®)
with

f)= 2 [ peinhapT(3 - s DG —u = in) D) Py ) @)

w

These properties follow from the orthogonality relation (p,p' € R™,p € R)

- dy =46 10
1 == | TP WP, )y = b ) (10)
and, vice versa, from the completeness relation
SR S0l P (2)P*, .. (y)dp = &(z — y) (11)
o | Tap) | et TS

These two relations are well know as generalised Mehler transformations.

The proof of the orthogonality relation is relatively easy. We use the general
integral theorem (see [28] p.191):

2 2

/:, {(v —o)v+o+1)+ pl _—; }Wﬁ(z)wﬁ(z)dz

b

= (VI [ul (2 wh(z) - wh(x)wit()] + (u - pewti(x) we()} | . (12)

a

where w* denotes any of the associated legendre functions. Let us set p = p, v =
ip——%,a: —z'p'——%,a,:l—{-«fandb: ¢. Then we get:

< pr RO 1(z)dz
14¢ e
Vi—Z :
= p'+p1 P 1 "“‘p“ 1 »Pl-i‘-.u 1 13
(p,_p)(p+p,)[ Py () =P (PTG
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With the expansion for z — 1

25
{2 14
(z) =~ PR (14)
we find at z =1+ eand g # 0,1,2,3 in the limit ¢ — O:
1-22 1+pu i m 1+p
e PP () =P ()P e
) (e )
= —— | - - +0(e) =0(e) — 0. (15
p?—p? \e 01— u)D{—p) T(1—p)T(—4) () = O(e) (13)

At z = 1 we have the expansion (120} p.1011):

v T{— _ 1
PH(z 22 T(w+3) 2¥ + ! (v 2)z_""1 (z — o). (16)

S ATA v 2P ey p)

Inserting into equation {13} yields:

V1=22
1

PL ()PE,_u(2) = Pl 4 (2)PL) 2(z)]

(P —p)p' +p) L =i P oL
1 { (2" { D(ip)T(~ip') . T(ip)T(~ ') } he
2r | p? —p? |T(ip— 2 - w(~ip' + 1 — ) T(ip+ 3 - p)T(~ip' — 3~ #)
i(p+p') . . .y
BT [ RACINCH _ L(ip)T(ip') }Jrh_c}_ (17)
p? -p? |T(ip- 1 — p)l(ip' + 3 —p) Tip+3—pI(p — 3 —4)
The term (2/€)?~2") /(p — p') yields in the Limit ¢ — 0:
wp-p')
i L2/€) _ i cosl(p—p)In(@/€)] +dsinllp — P/ _ g .
0 p-p =0 p-p
(18)
So we can conclude
1 9 ip-p")
2r(p' — p)(p' + P) (?)
y T(ip)T(—ip') B P(zp)l“(—z'p')
T(ip— 3 — p)T(—ip' + L —p) T(ip+ 3 —pw)T(-p' — 3 — 1)
_ 1 T(p)? ,
P 6(p' —p) (19)
T 2{0(p+ 5 — )l )

and similarly for the term proportional to (2)'(10 +7) and the h.c. terms. The contri-
butions proportional to 8(p+p') actually are of the form (p+p’ V§(p~+p') and therefore
vanish. Thus the orthogonality relation is proved. For the completeness relation see

e.g. [2].

21



In section III we have used the relation (v = \/ZmRzE ~(%2)2, r > 0):

i 1 d "o RS n—% 1
J— e —ivr — » 3 0
v [ 2 dcoshr] i (277 sinhr) Qw_%(COShT) (20)

for n = g%g = 0,1,2,.... Equation (20) states that the function Q%, where p is
an half integer and A € C, can be expressed by combinations of hyperbolics and
an exponetial, i.e. by elementary functions. We want to prove equation (20} by

induction.
i) Let » = 0. With the help of ({12]p.150) Q;%(z) = _i2A]+1 V27 (2%~ 1)_%

Jz + (22 — 1)3]7* % we see immediately that equation (20) holds for n = 0.

ii) Let n € Ny such that equation (20) is true. We consider the right hand side of

n+ i .
(20) for n — n + 1. In order to reduce the upper index of Qij_zl by one unit we
2

combine the relations (22 — 1) 2 Q4(z) = (A — p +1)Q%, 1 (z)—(A+1)2Q5(2) and
A4+ D2Q4(2)+vVzE —1Q5 7 (2) = (A — u+ 1)@%, 1 (2) (]28],p.1005) to get

QiH(z) = mdQﬁ(z) L

z
dz \/7—-‘2_———1 ’;(Z) (21)
This gives
7 n+t 1
_c ’ n+
(271' sinh 'r’) in— 1 (coshr)
el nt3 . dQ:vi%l(coshr) 1 ) - h
fd - . 3 B a1 f - 21 |
(27rsinhr) Smar dcoshr (n—3)co rQw—E("OS '")}
(:’iﬂ d ei‘n’ ﬂ—% 1
(e )i Grasr) Q) 4 (coshr)
ei'"' " - n—1
po ) () eotir @ leoshn)
i n+%
1 € h n#_li L
_(n*E) m cot Tin_%(cos r)
1 d eiﬂ' ﬂ—% ol ir 1 d et |
T 2 - [ e —iur
[ 2TrdCOShT} (Zwsinhr) Qi”*%(COShT) 1/[ 2n dcosh?J ‘ ’
(22)

where we have used in the last step equation (20).



Appendix B: Proof of Equation (I1.25)
We shall derive the following identity

exp (1B (09}, {07 } 2 exp { - R (1 - cosh10°0) - iev. (6
M

LY, denotes the Lagrangian defined in equation (I1.25). We start with the kinetic
term (z¢7) — z{7=1))? expressed in the pseudosphencal polar coordinates (II.2) and

expand it in terms of Ar(? and AHS,J) (v = .,d — 1). In this procedure we
follow the reasoning of Pak/Sokmen [33]': If omne has an expression like Af(J) :

fg(ugj) .ufj)) - f;(u(lj‘” e u(dj_”), one gets for the expansion about the midpoint
td) .= (1/f2)(u(j) + U(J'Hl)):

G d G) P {J) 1 d )~ ) n () 5 (j)
3 3 il J 3 4
AR =) Au o) *a Y. Au@Au Ay EPMEPWE)
Ou al) Ousm Ouy Ouy’ [ iy

m=1 Um m,n,k=1
(2)

Here f(J) = :cgJ), (I =1,...,d), um = {ug =7, up = b (k = 1,...,d - 1)}

Calculating the various denvatwes and msertmg into equation ( ) yields [Ggap 1s the

metric tensor in z-space, gqp =diag(1,7%,r 2sink® 7,...,7% ... sin’ 6,) the metric tensor

for the pseudospherical polar coord.inates]:

) 8z'7
AZ (J) Z G"{ Z Au(J) ( 2'21})) ] 12 Z Gu l: Z Au(:) ( I(J)) :l
@il ald)

(3) Aw, (3) Ay () 3z’ |
X Aul’Aul Au ]+
l Z n k 3 (J)au(.?)a(]) &)

mn, k=1

2¢2 . N 1 ) N ) N
- iﬁgﬁts)ﬁm,{gm}) — Z1,1(,,:(,1)’_‘.—.(.1)’{@(J)}) — 11_23(,:(3),.;(3),{3(3)}) +
(3)

with

f, \(F F3) #0) {3(:)}) — 252

x [_ A% L [FDPRAZD 4 g 7D sinh?(”...siné(zj)PA?(;sU)] (4)
A(,—.(i),,—.(j), {g(i)})
= A2 DA% 4 ginh? f(j)Azr(j)AzéfiJ;)z + -« + [sinh 79 .. _sin g(zj)]zﬁzr(j)A2¢(j)
+ [F(j)]ZAZTU)AZO&j_)z + [F(j) siﬁhr(_f)]zAzf(J)A 05{23 + ..
coe 4 [ sinh 79 | sin 872 A2 (D AZg0)

+ [ sinh 7). sin 6712 4265 A2 19)
B(FW # {(§D}) = ~[FD12A%0) 4 [f) Sinhq‘;(j)]zA40‘(ﬁ22 + ...
o+ [P sinh 79 . sin 81244600, (6)

1 This method goes back to DeWitt [5], McLaughlin/Schulman [29] and Gervais/Jevicki {16]; we
prefer the formulation of reference [33] because it seems more explicit to us.
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In the next step we have to change the integration measure. We get

N —

N-1
H dz:(.ﬂ)_ dmfij) _ H dr gz deld H NIl

(0) (N)

1
4

N -
H dr( g+ dqb(j)

2

H (’) pli= 1)] 2 r511:1111"(-7) sinh'r(j—l)]d;_z...[sinﬂgj)sinﬂgj_])]% (7)

(¢, ¢'™) and ¢'9) denote the determinant of the metric tensor taken at j = 0, j =
N, j=1,...,N — 1, respectively). Furthermore we have:

_ 2..(5)
(D, G=11852 _ Aijd-1 (=1 A'r
e e I CEE - s)

(9)

) . - : d—2 A2:U)
'sinh 7 sinhT("'_l)]d—22 ~ sinh?~? #(9) (1 — T )

8  sinh?70)
v—1 Azﬂf,j)
) 2 éf,j)

[sin 67 sin 99271 ~ sin¥ 1 g (1 — ) (v=2,...d=2) (10)

8 sin

Combining equations (7) to (10) we get for the measure:

N-—1 N
Hd;c‘”_.. D= (g | ] ¢ ParD . gD | { [[VaPeC| ()
j=1 =1
with
1 A?r(D) A543 Az
Czé[(d" oz -2 st -23(3'} (12)
[7(3)] sinh® 77 sin? 4,

g', g" and g'» denote the determinant of the metric tensor taken at the points
J = 0, N and the midpoint values for 7 = 1,..., N, respectively. Therefore we get for
the jth (7 = 1,..., N) integrand in the path integral (I1.18) - (without AV):

\/ﬁexp {ie[ﬁc( (J) =(3) {9(])}) 7(9) {9(1)})}} (13)
where

V(#F#P, {g(j)})
:: %[A(F(j),fu)’{gu)}) " %B(fu)ﬁm,{gu)})] + Lo #9180, (14)
1€
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We want to transform the various A%u{?)-terms into potential-like terms. Fol-
lowing the general approach (see Feynman and Hibbs [14], McLauglin and Schulman
[29] or Pak and Sékmen [31]) we get the equivalence relations:

A%(i)ii, A=

im [r(J)]

A ., AUz :
4=2" m[F(D) sinh 7())2° ¢ () ...siné(zj)}z,

. . 2
4,_(7) - [
ol “3(m{fu>]z)

. 2 i 2
N ﬁ?)( e ) .oy Afgl)zs A :
77 \m[rl9) sinh 7)]2 ¢ m[F@ .. .sind2 ) )

1€

(15)
Inserting into {14) yields:
1}(;(3’)’ {g(j)})
1 d—1 d—2 2
= | At - e ' —
8m[F(7)] sinh® #(7)  ginh? #(3) sin? 92{22 sinh? #(9) .. _sin? GgJ)
d—2 d—3 1
+(d-1) ——= — : 5 T - _(.}
sinh” 770 ginh? 7(5) sin® Gd{Q sinh? #(9) .. sin? 923)
= ! { 1-+ ! + ! AR~ ! ] (16)
- 8m[FU}]? sinh® 7 sinh? 7(3) sin® 9&7._)2 “sinh? 7(5) . . . sin® 9gj)
which leads for [f(4)]? = R? to:
V(R {8 h=V.({87}). (17)

We emphasize that V. is the same whether or not Art) = 0.

In order to prove equation (1) we consider now on one hand

H \/g() exp zeZﬁN 9(’) 6311

=1

N
54 1 Vi i, 0}

=1

On the other hand we have with equations (3), (13) and (17):

= imR? .

H g(]) -exp 4 — Z(l — cosh l(JJ—]))
€

j=1 i=1

N

“(g'g "-%H Ve - exp {ie[CH (R, 7D, {59} + V.({FVY)] ). (19)
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Finally putting (18) and (19) together (the change from midpoints to postpoints
in V. does not matter, because it is of O(€?) in the action) we get

exp {ieLB ({87}, {66} } = exp {—iTmRz(l — cosh 9171 — ich({G(j)})}

(20)
and equation (1) is proved.

Appendix C: Derivation of the Schrédinger Equation from Equation (I1.18}

The derivation given below is similar to the d-dimensional rotator case which can
be found in [18].

We want to prove that from the short-time kernel

E(D({60},{09)¢)

mR? (d—1)/2
- ( 2rie )

X exp {?':ZER2 [('r(j‘H) - 'r(‘”)2 + sinh U ginh T(j)(t?((ijjz]) — 9;‘?2)2 -+
€

o4 (sinh 7D sin 67 (gF D) ¢,<J’>)2}

1€

e @2 - 1 e 1 1)
8mR? sinh 7(3+1) sinh 7(5) sinh 7G+1) |, sin ggj)

and the time-evolution equation

[\

D SR IR e S (L RO T G OB

the Schrodinger equation

_ 1,
5l T T amm @Y (

o

)

can be derived. For this purpose, a Taylor expansion has to be performed in (2)
yielding (6}, := 9‘(&3) and 87 := 3§CJ+1)-):

Oy ({8"};t
= mR? )% —cAV({8"}) T,[’ 9”}.”3 ‘Sad({eu} f) "B
N 2mie € ({ I 0‘+V:1 59" ( 6. — YV, 0)
6" t L H Hoalt
RIS

p>v
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We have used the abbreviations

o 4z \
Bo = [ du'decde oy o (2TE) T eavie
T \mR? .
By = f du' ¥4t ~ ¢" By
; 1 1€
B = du'd"™ iely, ~ 3" B B
? f woe ¢ U-i—sinhf‘z‘r”...sin26’2’'mRz 0

Bg, = fdu'é’i,eiec?f
1 d—v—1

= 9”30 3 2 smh2 ...sin? 6, . cot 6, R?'B (5)
Bgo, = / du'¢'6! "5
=¢"0, B0 + ;smh j"_ - ;nlz g ¢ ot =
Ba,e, = / au'0, 0,520 ~ 676" B,
- %Linhz f"_. V ;1112 g ot G i"— - s_ml 7N O mi;zz Bo
bez = f '} = 6, By lsi;ff—; - len)?c;tf: 7:;22 o

Here the equations are valid up to terms of O(e(4t1)/2) and

mR?

502 [(r' = 7"y + -« + (sinh ' sinh 7" . .. sin @} sin 05 )(@' — "%

(6)
denotes the "classical Lagrangian” on the lattice - see equation (I1.26). In order to
make the calculation manageable, we have taken the AV-term at the argument {6}
and have factored out this term in equation (4). This is legitimate, because changing
sin ! (@ is an integration variable) to sin#! in AV gives a correction of O(e), hence
of order €* in the short-time kernel and, therefore, can be omitted.

Ca{e"{0}) =

We shall only illustrate how to calculate the integral By in equation (5). All other
integrals containing powers of # (7') are of similar type because they are of Gaussian
form. For simplification we use the abbreviations (v = 1,...,d — 1):

E(6,)
=exp{—a(r'— ") + .-+ (sinh 7' sinh 7" .. .sind;_,_,sin 8,6, — 8.} (1)

and o = mR?/2ie.

‘We consider the integral

o0 ™ 2n
By = / dr’ sinh® ™2 7] .. / dé, sin 4, / d¢' E(6,)
0 0 0

o ) T o K . . ”
~ f dr'sinh® %+ ... / d#, sin 0'2E(92)f dg e o(sinh 7. sin 63)z7 (8)
0 0 -

o)
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where we have set z := ¢' ~ ¢" which varies from—o0 to +00, and ”~" denotes that
this is correct in the limit € - 0. The z-integration is of Gaussian form, and we get

2 1/2 : d—-2 ¢ ® in @'
B, ~ ( me) d , sinh® 70 a8, E,li-%E(ﬂz)
+/sinh 7' sink 7" 0 sin 8;
- ( 2wie ) 1/2 = & sinh? =% r' o i o sin® 6}
0

e — F)(

mR? Vsinhr sinh " Jo O 4/sin} sindy ()

o0 1 2 1 B ’ - i
B DT

2
8 sin” Y

— 00

where we have performed a Taylor expansion around &4 in the last step. The integral
is Gaussian again, the term linear in z vanishes’, and we get

2mie\ [ sinh?~2 7' - sin? 0!
By ~ ' . g S0 o
‘ (mRz) L dr sinh 7' sinh 7" ‘/0 3 sin 8, sin 8 (63)

1€ 1
1- . 1
% [ 8mR? sinh7'...siné} ( * sin® 8! ) }

2mie o sinh? ™2+’ w sin @'
= dr' e | by E(8
(mR2 ) /; 7 sinh ' sinh " _/0 44n g, sin 0] (64)

ee 2 o2
~ / dz (1 4 cot Gg cr— z__) e—-c«(sinh .. sin @) )z
2

— 0

1€ 2mie et sinh? "% 7' * sin’ @,
—— == de, e | de E(8
8m R? (mRz) _/0 ! (sinh 7’ sinh 7")? _/0 4 (sin 8, sin 6} )? (9)
1 1 o° H ! . e Z
x— 14+ dz —a(sinh v'... sin 8} )=z
sin? 0! ( sin? a") /.w ‘
omie \ 3/ sinh® % 7' sin® 8}
By ~ dr' . d#, E(@
! (mRz) /; 4 (sinh 7' sinh 7")3/2 / (s1n9’ sin 8} )3/2 (64)

|1 2€ 1 (4 N 1 (10)
8mR? sinh7'...sinéd) ' sin? 9” sin’ @ sin®* 8 / |

and so on up to the kth step:

2‘”1:6. o e sinhd_z ! " sink Gk
By = - dr’ ... | de +1 E(8
’ (mR2) jg T (sinh 7' sinh 7 )k/2 .[0 41 (5in 6, L snf ZE (Ok+1)
L€ 1 1 i
X 1 —_ . k — 1 2 11
{ 8mR? sinht'...sinfy, [( S sin” 6} g g ...sin’ 0'2'1 } ’ ( )

and finally after d-1 s 'ps

d-1
2mie\ * ' 1
By ~ 1 d—2)P - —— — - — 12
o (mR2 ) { * 8m R2 [( ) sinh? 7" sinh® 7" .. .sin? 8'2'] } (12)

1 The linear term will become important in the calculation of the other integrals, e.g. in By, , where
it generates the term proportional to cothé,.
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which gives in the required approximation the result quoted in (5). Note that in the
last step several minus signs appear, which are due to the hyperbolics of 7. As a
simple example, consider the case d = 3, then

1
_ 2nie \ 2 [ inh '
e (25 j

sinh 7"
1
(21‘1’26)2 ( 1 2] .z
1— e | e
mR? sinh?r"” /) 8
e 1
L e . 13
mRz) [ ‘ 8mR2 sinh® T") ] (13)

Substituting the expressions (5) in the Taylor expansion (4), one obtains in the limit
¢ — 0 the correct Schrodinger equation (3).

Appendix D: Derivation of the Schrodinger Equation from Equation (I1.29)

We have to consider the short-time kernel (see equation (I11.30)):

d—1
_ . -mRz T 2. _ WETTNy 2 _ _ .
E{d)(l(.h.? 1);6) — ( 2111.6) t‘j(mR /e 1—coshl'?? ) (te/BmR*)(d—1}d 3)‘ (1)

In order to derive the Schrodinger equation one has to perform a Taylor expansion
in the time evolution equation (C.2) once again, but now with the short-time kernel

(1), yielding

({0 }i)

8” _t
v({6"};t) + pr
d—1
mR*\ T i 2 81[)({8"} t
= {te/8mR*)(d—-1)(d—3) " _¢"B
(2‘”7:6) ¢ { e}tB +Z LY v 9)
.d—1
L 32¢ ¢" it ] ' ot
3 X o (Bo - B, —"LBaﬁﬂL@vBo)}- (2)
uy=1 ey
nzv

The abbreviations in (2) . ‘e the same as in (C.5) except for By which reads:

d- 2 da=1
2mie \ % mR? 2mie\ i€
By =2 5 ~ —1)(d-3)]|.
0 (mRz) e™ Ka ( e ) (m}i’z) exp [SmR"’(d 1)(d )]

(3)
We shall illustrate how to calculate the integrals By and B, in equation (2). All the
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others are calculated in a similar manner like B..

By = f du' e(mRZ/ie)(lwcoshl(""))
Ad—1

2 e 2 - t " d-2 T i
mR /iej Sinhd——2 TidT!e——(mR /ie)cosh v’ cosh r H / sin” ! 8:,d9’ / dqb'
0 iyl 0

- —"meRz sinh 7% sinh 7(?) [Z:::z cos 95::_1 cos 9(2) Hm sin 9(1) sin 6(2)+Hd ! sin 6(1) sin 9(2)]

X e

o 2me z uR?

=27 | ————— e i
mR2? sinh ="

1 2

where we have used in the last step the integral:

™ w 2w
/ 46!y ,sin?20;_,--- / d#é,, sin 6, f d¢’
0 0 0

(2 d-3 d—z . (2
o e—zz[COSG( cos & ) +E cose(l) cosG(z) H 51n9 ) sin Gglz)—l-Hﬂ:l sin t?f_ll)szmes1 )]
d—3

o ()7 siste) (5)

which we have calculated in [18]. To perform the integral in (4) we use ([20] p.721):

JRCER AN 2t gt VK, (V) (@

and the asymtotic expansion (I1.40) of the K, -Bessel functions to get:

d—2 d-1
2mie\ mR? 2mie \ 7 e (d—1)(d— _
By, =2 (mRz) e e Iid22 ( o ) o~ (mR2> esmﬂf( X 3)_ (()

This proves By. In order to calculate B, we consider

B — j dul(TH = T')e(mRZ/if)(l—(‘.Oshl("”))
T i

d-3
2mie \ % mR?\ | s-a
= 2w exp - sinh™z 7
mR? 1€

oo B R2 R2
xf dr'(r"—7") sinh"7 ' exp ( T coshr'cosh ! )I_d;g (m sinh 7' sinh 7' )
0 i€ 2 i€
d-2
2mie \ 2 -4 mR? (d—3)* -1
o~ inh & 7" -1
(mR2 ) o TP [ i€ "“8mRZ sinh? T”]
o0 _ R2
X f dr'(+" — ") sinh T 7’ exp [ i (" — T')z}
oo 21€
omie \ ? m R? i ' d—2 " _ mR2 2
o~ 5 exp dex |1+ cotht’' x)e “zie
mR 1€ oo ‘
i€ omie\ T d—2
= i\ coth7”, (8)
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where we have used the asymtotic expansion of the modified Bessel function 1n the
limit € - O (after having performed a Wick rotation) and neglected all terms which
are of higher order in e. With B, = 7" B¢ + B. equation (C.5d) for v = d — 1 is
proven. Substituting the expression By as well as the other expressions of (B.5) in
the Taylor expansion (2), one obtains the Schrédinger equation (II.1).
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