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A problem which has been around for a good fifty years and has now reached a 

virulent stage is the synthesis between General Relativity and Quantum Physics. 

I cannot offer the solution here but shall limit myself to a few remarks pin-

pointing the problem and su"ggesting a direction of approach. These remarks are 

mathematically low-brow and have no strings attached. 

The relativity theories developed by an increasing insistence on the principle 

of locality which has originated in the Faryday-Maxwell approach the Electrodyna-

mics replacing the notion of an action at distance between material bodies by the 

idea that all physical effects propagate from point to neighboring point in space. 

and time. In general relativity this is applied in its most stringent form: all 

laws of nature pertain only to infinitesimal neighborhoods of points in the 4-dimen-

sional space-time continuum. In special relativity we still have one remnant of 

global laws namely the rigid, a priori given metric structure. Closely related to 

the strict insistence on l_ocality is the principle of general covariance, saying 

that there can be no preferred (finite parametric) class of coordinate systems, 

and the laws must be formulated in an intrinsic, coordinate-independent way. In 

the classical domain these requirements are met by stipulating that the laws are 

differential equations for field quantities and that among these fields there is 

the metric field g which governs the metric {and causal) structure in the 

neighborhood of each point. 

In Quantum Theory on the formal level the fields become noncommuting objects 

and we need comrr,utation relations in addition to field equations to define the 

theory. Since commutativity of two observables is tied to their causal indepen-

deuce the usual formulation of quantum field theory needs global knowledge of 

the causal structure of space-time. This is available in special relativity and 

also if the metric field is treated as a classical background field ("quantum 

field theory in curved space-time") but not if the metric field itself undergoes 
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quantum fluctuations. Therefore my first remark will be concerned with the 

question as to whether and how a strictly local formulation of the quantum 

laws is possible. 

Mathematical terminology 

Before proceeding I should make clear the few mathematical terms I shall be 

using. 

a) An 11 algebra", denoted by tJt , shall mean an abstract, non commutative 

*-algebra over the complex field, i.e. we have within t1'/ the operations 

A + B, A · B, c a where A, B € tl ; c ( {j 

and the "involution" A-!J' A*. d/ is equipped with a topology. It is 

immaterial for the moment whether this is defined by a single norm or 

a system of seminorms. ?'! is called simple if it does not possess any 

closed, two-sided *-ideal. 

b) Positive. elements of rJZ are those of the form A* A .. A state c.i over tY 

is a normalized, positive, linear form, i.e. W(A) is a linear function 

from {}[ to the complex numbers with /.U(A*A)~ 0 and //wf "' 1. 1) 

o) Given a state tJ we have a canonical construction of a representation ;rl"ol 

of {}[ by operators acting on a Hilbert space 't The operator repre-

senting A G t}! is denoted by 'iT ltJ (A). The state can then be described by 

a vector .. JZ in~ so that 

l.i(AI. (Jl, ?i;_f4)..J1) 

1) If 0/ has a unit element 1 then K £..,~ equals tv ( 1). The definition of 

the __ .norm f{tJQ under more general situations need not concern us her€-. 
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This is the Gelfand-Naimark-Segal construction. We can then pass over from 

udml to the afiliated von Neumann algebra R (a weakly closed algebra 

of bounded Operators). R' denotes its commutant. The state is called primary 

and (J factorial if the center of R is trivial, i.e. Rf'l R' {A 1}. 

The special relativistic setting 

The conceptually most transparent way to describe the synthesis of special 

relativity and quantum physics is to say that a specific theory defines a 

correspondence between open space-time regions d and algebras IJtirfl 

rJ ---" rJ?(C) (1) 

One may interpret the set of selfadjoint elements of tJ? (cr) as the "ob_servables" 

which can be measured in a' or, perhaps better, the projectors in {{(Cf) as the 

possible events which can occur in if. It appears that for bounded regions ~ it 

is sufficiently general to take fJl (rf) to be a w*-algebra, i.e. isimorphic to 

a von Neumann algebra R(d) acting on a Hilbert space. 

In the setting of special relativistic theory the "net of algebras" Rlrfl 

should satisfy a few general requirements: 

I i) 

(i.i.) 

Additivity 

R( v Oi) VR(O.) 

' ' 
where the right hand side means the w*-algebra generated by the R(O.). 

' 
Causality 

a) R(o
1

) c R1 (0
2

) if 0 1 space-like to o
2

, 

b) R(0
1
)C R (0

2
) if o 1 is within the causal dePendence 

region of 0
2

. 
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(iii) Poincare invariance 

(iv) 

(v) 

The Poincare group acts on the net by automorphisms and 

0( R(O) " R(gO) 
g 

where g denotes an element of the Poincare group, 0( g the corresponding 

action on the algebraic elements and gO is the transformed region. 

Stability (ttpositive of the energy") 

This is usually formulated by demanding that there should exist a 

rrvacuum state11 t;) 
0 

which is Poincare invariant and primary for every 

R( 0.). In the GNS-representation of the net, constructed from this state 

we have an implementation of the Poincare group by unitary operators. 

The generators of the translation subgroup are called the energy-momentum 

operators p_ • The requirement that the vacuum state is the state of lowest 

. " 
energy is then expressed by the "spectral condition11

: the simultaneous 

spectrum of the operators P~ must be confined to the forward cone. 

Nuclearity 

This property is crucial for the existence of states corresponding to 

stable particles and the formulation of a collision theory for particles 

within this setting. It demands roughly that the set of states which have 

bounded energy and which deviate strongly from the vacuum only in a fini-

tely extended volume at _a given time is essentially finite dimensional. 

A precise formulation is given in /1/, a weaker form is the "compactness 

criterion11 of' /2/. 

The main message: It can be shown that a local net o~ algebras, i.e. a corres-

poncence (1) satisfying the general requirements (i)- (v) defines a complete 
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theory including physical interpretation. In other words, once such a corres-

pondence is given one can work out what types of particles, what charge quantum 

numbers occur, what the collision cross sections are etc. /3/, /4/, /5/, 

General covariance and strict locality. 

If we want to incorporate ideas from general relativity with minimal change we 

can continue to base the theory locally on a 4-dimensional manifold and retain 

the formulation of the quantum theory in terms of a local net (1). But all the 

properties have to be modified since the manifold and in particular its metric 

structure cannot be given a priori. Rather, in analogy 

to manifold theory, the description has to be given in terms of a system of 

charts which are combined to an atlas with the help of transition precriptions. 

Here a single chart consists of an open reg:ionO ( R4, a net of algebras a (0) 

!'or 0 <. 'Q and a representation 7i of these algebras by operators on a Hilbert 

space !J(. The net should separate the points in~. i.e. for sufficiently small 

neighborhoods of two distinct points the algebras should be disjoint (apart from 

multiples of the identity if the algebras have a unit element). Transition between 
~ 

"adjoining11 charts ~ " { {~ 
1 

t7., 
1 

7;4 ) 
,-, "' ) f J -:- ( (~ 1 ~, ~ is described and 

by a transition operator u
21

, a unitary operator mapping the representation space 

~1 of li
1 

on 7(
2 

such that it provides ·an identification of a subnet of /.-,
1 

in 

,, ~ r .-..1/1 :;. 
a region cr (. {)with a subnet of 2 in {;.,. (. (/~ by 

~ ~ ~ ~ 

JJ 1i </ t'J,c)) /{,,-• = 
-'1/[_z I 't 4 I ~ (t'~ !Y.', t)) {n (}"c tf'', 0 (2) • • 

where y?
21 

is an ordinary transition function i.e. 
..,<I I 

a diffeomorphism from t'~ 

to C:l • The transition operator determines the transition function due to the 

separation property of the nets. Thus an atlas of such charts with transition 

operators satisfying the apropriate compatibility conditions will define a manifold 

together with a net of operator algebras acting ~n a single H~lbert space. Jt will 
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define a "theory" but such a definition cannot, in general, be regarded as a 

local formulation because the transition operators between two local. charts are 

I
~ n 

not, in general, fixed by the identification of the common parts of 1, I 2 

but may include global information. This is related to the problem mentioned 

in the introduction that commutativity relates the causal independence. 

Suppose ve have tva charts and an identification of the subnets in (f'' 
' and [,"(1) 

' ' 

This is essentially procided by giving the ordinary transition function sP 21 

because the remaining ambiguity is only an "inner symmetry" of 

i.e. an automorphism of C7{~;) transforming each subalgebra 
' 

the subnet in ~~ 

~ (0) into it-

self for (}c tr;1
• If there are no inner symmetries then 't' 21 fixeS. the identi­

fication completely otherwise we have to add more information. But anyway this 

will be strictly local information. Now let u21 be a transition operator which 

gives this prescribed identification between n ... (~ u:;''))and ~~ (C!-{ (tJ;_'''Jby ( 2). 

Then if V is any unitary operator in the commutant of Tt,(ll.,(t!.,') the transition 

operator 

I 
0 21 u21 v 

gives the same idenification. The choice of V will determine, however, the causal 

~ ~ 

relations between observables in 0 1, 0
2 

outside the identified parts and, if we 

have a chain of charts, this ambiguity will affect the causal structure at large. 

In /6/ K. Fredenhagen and I have 

from local information. It turns out 

suggested one way to construct the 

that if instead of r::: ( &; t7J t') 

theory 

one 

prescribes 1\ • (ff, t~ t.J) where tJ is a state on t'7 (S") with certain correlation 
) 

properties then the identification of the substructres of J\~J J1J in the overlap 

regions given by a transition function sP 21 suffices to determine the transition 

operator u21 uniquely (the representation spaces are given by theGNS-construction). 
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. ,., 
It is, however, also possible to work with the charts , But then the topology 

with which the algebras ~ are equipped will play an important r6le. While· it is 

still reasonable to assume that '7i' {t"! ) contains bounded operators (since 

we would like to have projectors) it may be unreasonable to assume that the von 

Neumann algebra resulting from the weak closure of ·~(ar) will contain tbe 

same. information. In fact, if in the full theory there exists no strict causal 

disjointness between different regions (a situation which should be expected if 

the classical gravitation theory is "quantized11 so that the metric field has 

quantum fluctuations) then it may happen that the commutant of 7i {Cl ~)) is 1. of 1 lj 

trivial and hence the transition operator u21 is uniquely determined by the iden-

tification in the overlap region. In this case the weak closure of '7iPift'J) will 

be the algebra of all bounded operators, independent of 0 and will carry no in-

formation. 

The purpose of the previous discussion was to show that it is possible to 

generate a quantum theory based on a 4-dimensional manifold from striclty local 

information i.e. to incorporate the principles of strict locality and general 

covariance. Nothing has been said so far about the other structural principles: 

what guarantees that causality and metric structure at large builds _up, what are 

the stability and nuclearity requirements? I cannot say much on these questions 

but shall mention one attempt we made in /6/ to get some feeling for the nature 

of "' i t7 rt1 ) in the small. 

Starting with the tensor algebra over the scalar C~ -functions on B on which 

the action of local diffeomorphisms is naturally defined( and which corresponds 

kinematically to a theory with a scalar quantum field)we assumed that the allowed 

physical states have scaling limits under semigroups of diffeomorphisms J'- (A) • 
contracting 0 to a point x as l ....-,o and such that tfyj = id. Starting from a 

"' 
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state tv the scaling limit at a point x gives a net of operator algebras labeled 

by regions in the tangent space of X and it gives a distinguished state hl 
0 

on 

this net. This tangent space theory has some remarkable properties. First, it is_ 

independent of the choice of the contracting semigroup of diffeomorphisms. _Secondly, 

it· (including t..J 0 ) is independent of the choice of the starting state tJ as long 

"' tJ varies within one primary folium l) Third, if the dependence of the scaling 

limit on the contraction point is smooth then tJ 0 is invariant under translations 

in tangent space. Thus one can define energy-momentum operators in the tangent 

space theory. iV 
0 

has to be invariant under some subgro_u:p of' the linear trans­

formations in tangent space, otherwise the starting state (or rather folium) de-

A 
fines a flat connection in 0, One interesting possibility is that this stability 

subgroup is isomorphic to the Lorentz group. In this case the folium defines a 

(pseudo)-Riemannian structure with a Levi-Civita connection on I) and the tangent 

space theories are Poincare-invariant, massless theories (with respect to the 

metric obtained by the scaling limit at the respective point). The properties 

(i) - (v) can then be formulated and imposed on the tangent space theories. This 

structure is relevant and also useful for the description of a quantum field 

theory on a Riemann space (gravitational background field). It leads for instance 

in a simple way to the Hawking temperature of a black hole. Whether the scaling 

assumption remains reasonable if quantum fluctuations of ~he gravitational field 

are considered is not clear. If so then the tangent space states 1-~ 0 must have a 

higher symmetry, perhaps under all SLR(4) and the breaking of this symmetry to 

the Lorentz group must be.obtained as a cooperative effect analogous to the breaking 

of rotational symmetry by spontaneous magne~ization. 

1) tJ and tJ' are in the same folium if CJ 1 can be described by a density 

matrix in the GNS-representation of the original tensor algebra obtained 

from W • 

' 
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Many obvious questions I must leave unanswered. On the positive side my 

remarks do show that a· synthesis between quantum physics and general relativity 

within a rather conservative conceptual frame does not meet with unsurmountable 

obstacles. The challenge is to construct a tractable model incorporating the 

features mentioned. 
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