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Fondation Les Treilles, Tourtour {Var), France, March 25, 1987

A problem which has been arcund for a good fifty years and has now reached a
virulent stage is the synthesis between General Reiativity and Quantum Physics.

I cennot offer the solution here but shall limit myself to a few remarks pin-

pointing the problem and suggesting a direction of approach. These remarks are

mathematically low-brow and have no strings attached.

The relativity theories developed by an increasing insistence on the principle
of locality which has originated in the %aryday-Maxwell approach the Electrodyna-
mics replacing the netion of an action at distance between material bodies Dy the
idea that all physical effects propagate from point tc neighboring point in space.
and time. In general relativity this is applied in its most siringent form: all
laws of nature pertain only to infinitesimal neighborhoocds of points in the L-dimen-—
sional space—time continuum. In special relativity we still have one remnant of
global laws namely the rigid, a priori given metric structure. Closzsely related to
the strict insistence on locality is the principle of general covariance, saying
that there can be no preferred (finite parametric) class of coordinate systems,
and the laws must be formulated in an intrinsic, coordinate-independent way. In
the classical domain these requirements are met by stipulating that the laws are
differential equations for field quantities and that among these fie}ds there is
the metric field g which governs the metrie {and causel} structure in the

neighbhorhood of each point.

In Quantum Theory on the formal level the fields become noncommuting objects
and we need commutation relations in addition to field equations to define the
theory. Since commutativity of two observables is tied to their causal indepen-—
dence the usual formulaticn of gquantum field theory needs global knowledge of
the causal structure of space—time., This is available in special relativity and
alsc if the metrie field is treated as a classical background field (“quantum

field theory in curved space-time") but not if the metric field itself undergoes



quantum fluetuations. Therefore my first remark will be concerned with the
question as to whether and how o strictly local formulaticn of the gquantum

laws is possible.

Mathematical terminglogy

Before proceeding I should make clear the few mathematical terms I shall be
using.

a) An "algebra", denoted by 67 , shall mean an abstract, non commutative

*—glgebra over the complex field, i.e. we have within l:? the operations
A+B,A’B,cawhereA,Béd;ch

- * . . - -

and the "involution™ A-¥ A . 6’7 is equipped with a topology. It 1s
immaterial for the moment whether this is defined by & single norm or
& system of seminorms. ﬁ is called simple if it dees nob possess any

closed, two-sided *-idesl.

b) Positive elements of ﬁZ are those of the form A * A. A state & over &
is a normalized, positive, linear form, i.e. @/(A) is a linear function

* ) ,
from 02 to the complex numbers with & (A A) 2 O and fod = 1, N

¢) Given a state & we have a canonical construction of & representation T
of &’[ by operators acting on a Hilbert space ﬁ/‘, . The cperator repre-
senting A € a is denoted by ‘W, (A). The state can then be deseribed by

a vector ‘_‘(Z in % so thet

wh) = (R, m@l)

1 i ﬂf has & unit element 1 then f&f equals & (1), The definition of

'therfrilorm [’[ﬂl}ﬂ under more genersal situstions need not concern us here.

This is the Gelfand-Naimark-Segal construction. We can then pass over from
'Ti'“,(m) to the afiliated von Neumann algebra R {a weakly closed algebra
of bounded operators). R' denotes its commutant. The state is called primary

and 4} factorial if the center of R is trivial, i.e. R™ R’ = {;‘ 1} .

The speecial relstivistic setting

The conceptually most transparent wey to describe the synthesis of special
relativity and quantum physics is to say that & specific theory defines a

correspondence between open space—time regions O and algebras &

O — ). (1

One may interpret the set of selfadjoint elements of W {3 .as the "ohservables"
which can be measured in (¢ or, perhaps better, the projectors in q’r{d) as the
possible events which can occur in 0. It appears that for bounded regions O it
ig sufficlently general to take ﬂz (0) to ve a N*—algebra, i.e. isimorphic to

a von Neumann algebra R{(U) acting on a Hilbert space.

In the setting of special relativistic theory the "net of algebras” R (0}

should satisfy a few general requirements:
(i) Additivity
R_( v Oi) = é/R(Oi)
*
where the right hand side means the W —algebra generated by the R(Oi)'
(i1} Causality

a) R(O1)C R'(0,) irf o, space-like to 0y

o)
b) R(OT)( R ([)2) if o is within the causal dependence

region of 02 .



{iii) Poincaré invariance
The Poincaré group acts on the net by sutcmorphisms end

C(g R(0} = R(g0)

where g denotes an element of the Poincaré group, Q‘g the corresponding

sction on the algebraic elements and g0 is the transformed region.
{(iv) Stability ("positive of the energy"}

This is usually form&lated by demanding that there should exist a

"yacuum state" ﬁ}o which is Poincaré invariant and primsry for everj
R(0). In the GNS-vrepresentation of the net, constructed from this state

we have an implementation of the Poincaré group by unitary operators.

The generators of the translation subgroup are called the energy-momentum
operators Pu. The requirement that the vacuum state is the state of Jowest
energy is then expressed by the "spectral condition": the simultanecus

spectrum of the operators Pu must be confined to the forward cone.
{v) Nuclearity

This property is crueial for the existence of states corresponding to
stable particles and the formulation of a collision theory for particles
within this setting. It demands roughly that the set of states which have
bounded energy and which deviate strongly from the vacuum only in a fini-
tely extended volume at & given time is essentially finite dimensional.

A precise formulation is givem in /1/, & weaker form is the "compactness

eriterion" of /2/.

The main message: It can be shown that a local net of algebras, i.e. a corres-

poncence (1) satisfying the general requirements {i) - {v) defines a complete

theory including physical interpretation. In other words, once such a corres—
pondence is given one can werk out what types of particles, what charge quantum

numbers cccur, what the collision cross sections are ete. /3/, /4/, /5/.

Ceneral covariance and strict locality.

If we want to incorporate ideas from generel relativity with minimal change we

can continue to base the theory locally on a 4-dimensional manifold and retain

the formulation of the gquantum theory in terms of a local net (1). But all the

properties have to be modified since the manifold and in particular its metric

structure cannot be given a priori. Rather, in analogy

to manifold theory, the description has to be given in terms pf a system of

charts which are combined to an atlas with the help of transition precriptions.

Here a single chart consists‘of an open regions [4 Rh, a net of algebras a (0)

for 0 ¢ 0 and a representation W of these algebras by operators on a Hilbert

space'jy’. The net should separate the points inda, i.e. for sufficiently small

neighborhoods of two distinet points the algebras should be disjoint (apart from

multiplies of the identity if’Phe algebras have a unit element). Transition between
: ~

"adjoining" charts r: = {6‘:’ L?,, , A ) and f’: ¥ (Ce . [7,, B ’;;) is described

by a transition operator U 1> 8 unitary operator mapping the representation space

2
, of ﬁ-? on 7{2 such that it provides an identification of a subnet of / , in

pei] -,

~
a region (xf% {jwith a subnet of f12 in Cé ¢ O vy
A 2

U, Tl 4, = H%0) fr T dP el @

where 9921 is an ordinary transition function i.e. a diffeomorphism from (?j?,

to ‘?:’ . The transition operator determine;_the transition function due to the
separation property of the nets. Thus an atlas of such charts with transition
operators satisfying the apropriate compatibility conditioms will define a manifold

together with a net of operator algebras acting gn a single Hilbert space. It will



define s "theory” but such a definition cennot, in general, be regarded as a

local formulation because the transition operators between two local charts are

)

~
not, in general, fixed by the identification of the common parts of { 1 { 2

but may: include global information, This is related to the problem mentioned

in the introduction that commutativity relates the causal independence.

Suppose we have two charts and an identification of the subnets in ﬂe","}’ and [;':‘)
This is essentially procided by giving the ordinary transition function 9’721
because the remaining ambiguity is only an "inner symmetry"™ of the subnet in [’l:'
i,e. an automorphism of 6?(0‘:’) transforming each subalgebra d: (0} into it-

self for 6?“ c’ﬂ‘. If there are no inner symmetries then ¥ _ . fixes the identi-

i 21

fication completely otherwise we have to add more information. But anyway this
will be sirictly local information. Now let U2,| be a transition operator which
gives this prescribed identification between 71;/62 (0:!') and ',r,: (a{[czm)by (2).
Then if V is any unitary operator in the commutant of ';T,(Q{f:'}) the transition

operator

gives the same idenification. The choice of V will determine, however, the causal

Fal

relations between observables in '61, 02 outside the identified parts and, if we

have & chain of charts, this ambiguity will affect the causal structure at large.

In /6/ K. Fredenhagen and I have suggested one way to construct the theory
-
from local information. It turns out that if instead of f': (0; "?J 2’) one
ol A
prescribes /\ - /f) L?} w) where {/ is a state on [‘7 (0) with certain correlation
properties then the identification of the substructres of /\4) /]2 in the overlap
regions given by a transition function 921 suffices to determine the transition

operator U,, uniquely {the representation spaces are given by the GNS-construction).

21

It is, how.ever, alsc possible to work with the charts r‘ . But then the topplogy
with which the algebras 6’7 are equipped will play an important rle. While it is
still reasonablie to assume that “F {ff’? ) contains bounded operators (since

we would like to have projectors) it may be unreasonable to assume that the von
Nel;mann algebra resulting from the weak closure of ¥ (ﬁ) will econtain the
same information. In fact, if in the full theory there exists mo strict ca{xsa'l
disjointness between d&ifferent regions (& situation which should be expected if
the classical gravitation theory is "quantized" so that the metric field has
quantum fluctuations) then it may happen that the commutant of E@’va) is
trivial and hence the transitien operator UZI is uniquely determined by the iden-‘

tification in the overlap region. In this case the weak closure of 'Fp/ﬁ) will

be the algebra of all bounded operators, independent of ¢ and will carry no in-

formation.

The purpose of the previous discussion was to show that it is possible to
generate a quantum theory based on a li-dimensional manifold from striclty local
information i.e. to incorporate the principles of strict locality and general
covariance, Nothing has been said so far about the other structural principles:
what‘guarantees that causality and metric structure at large builds up, what are
the stability and nuclearity requirements? I cannot say much on these questions
but shall mention one attempt we made in /6/ to get some feeling for the nature

of %4l ) in the small.

Starting with the tensor algebra over the scalar C* —functions on G on which
the action of local diffeomcrphisms is naturally defined{and vhich corresponds
kinematically to a theory with a scalar quantum field)we assumed that the allowed
physical states have scaling limits under semigroups of diffeomorphisms 5:_ i)

- -
contracting O to a point x as )} —0 and such that d/}’/ = id. Starting from a
Ard



state & the scaling limit at a point X gives a nei of operator algebras labeled

by regions in the tangent space of x ard it gives a distingnished state ﬂ}o on

this net. This tangent space theory has some remarkable properties. First, it is
independent of the choice of the contracting semigroup of diffecmorphisms. Secondly,
it (including A)o) is independent of the choice of the starting state &/ as long
as &} varies within one primary folium 1). Third, if the dependence of the scaling
1imit on the contraction point is smooth then fJO is invariant under translations
in tangent space. Thus one can define energy-momentum operators in the tangent
space theory. ﬁdo has to be invariant under some subgroup of the linear trans—
formations in tangent space, otherwise the starting state (or rather folium) de-
fines a flat connection in 6. One interesting possibility is that this stability
subgroup is isomorpbic to the Lorentz group. In this case the folium defines a
{pseudo)-Riemannien structure with a Levi-Civita connection on G-and +the tangent
space Gheories are Poiﬁcaré—invariant, massless theories (with respect to the
metric obtained by the scaling iimit at the respective point). The properties

(i) - (v¥) can then be formulated and imposed on the tangent space theories. This
structure is relevant and also useful for the description of a quantum field

theory on a Riemann space {gravitational background field). It leads for instance
in & simple way to the Hawking temperature of a black hole. Whether the scaling
assumption remains ressonable if quantum fluctuations of the gravitational field
are considered is not clear. If so then the tangent space states 4J0 must have a
higher symmetry, perhaps under all SLR(%4) and the breaking of this symmetry to

the Lorentz group must be obtained as a cooperative effect analogous to the breaking

of rotational symmetry by spontanecus magnetization.

1)

& and (' are in the same folium if &' can be described by a density
matrix in the GNS-representation of the original tensor algebra obtained

from & .

v
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Many ébvious questions I must leave unanswered. On the positive side my
remarks dc show that a synthesis between quantum physics and general relativity
within a rather conservative conceptual frame does not meet with umsurmountable
obstacles. The challenge is to construct a tractable model incorporating the

features menticned.
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