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1., TIntroduction

Physical quantities, for example cross sections, calculated in QCD are indepeﬁdent

of the particular scale u used to renormalize the theory. However, this is true

only for the infinite perturbative series. Any expansion truncated at some finite
order {in practice at the second order) does depend on the renormslization scglg_u.
Then the question arises what scale should be used in these truncated series. This is
a well-known prpblem, which cannot be solved in mathemstical terms, since pertur—
bation theory at some finite order does not specify, which is the right scale to
produce the best approximation to the complete series. Some years ago, Stevenson
proposed the following soiution to this dilemma: Since the true result is completely
independent of the scale u, the best approximation is the one which is least sensi-
tive to small changes in p /1/. This leads to the requirement that for the best scale

the nth order (in practice the second crder) result Cr(n) for a cross section obeys

A o put B (1.1)

This equation yields the optimal scale p = p , which, if introduced in the nth

(n)

opt

order result, gives the optimized prediction for @& "/, That (1.1) is the best
approximation to the true result, is of course impossible to prove. But Stevenson

has tested his procedure with examples snd found it successful.

This principle of minimal sensitivity or scale optimization procedure has been

)

applied recently with sensible results to massive lepton pair production /2/(F]

and to processes involving photons in hard collisions /3/(F1)

. So far it has not
. + - i s :
been applied to e & annihilation cross sections, although second order results are

available for several of these cross sections. In this paper we want to fill this

e —
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gap and wish to see, whether optimzed perturbation theory yields reasonablé results.
We use our recently calculated 0O asz) cross sections for the production of 2 and

3 jets as a function of the resolution cut y /L/, to obtain the perturbative 2- and
3-jet multiplicities up to 0Of O&E?) by dividing by ot’;ot whose expansion up to

of dsz) has been known for some time /5/. We apply the optimization procedure te
the three physical quantitigs U{ot’ oz,_jet(y)/ Oy and o-j;—jet(y)/ e g
with y values ranging between 0.01 and 0.05. cdh—jeﬁ(y}/ Trot is obtained from
the rule thet 2-, 3- and b4-jet multiplicity sum up to 1. Im principle the predic-
tions for the jet multiplicities could be compared to experimental data and the
value of the QUD scale A}E could be derived, However, these experimental jet
multiplicities are not available yet. The JADE-collaboration at PETRA has published
cluster multiplicities as a functiom of ¥y /6/. The cluster multiplicities still con-
tain fragementation effecté. We expect these fragementation corrections to be mode-
rate. Therefore we feel free to compare our results with the cluster data, to see
whether they are approximately consistent with our results. In particular it is of
interest whether the 4-jet rate as a result of the optimization procedure is higher
than the lo.wesb order prediction based on the coupling ®_ with scale q2. In /6/
it was found that the b-jet cluster rate is much larger than the prediction based

on lowest order perturbation theory inecluding fragmentation effecks.

In section 2 we present the results of the perturbative expansion up te O( (XS?)
for O ., a’a_jet(y), U‘é_jet(y) and O.Ehjet(y) and collect the numerical

second order coefficients of O'é_ (y),. o-é—jet(y) and oTJ—,jet(y) for various

jet
y valueg in several tables. This is based on our earlier work /U/. Section 3 contains
a short review of the optimization procedure. Here we derive the equations from

which the optimized scale is determined. In section U we present ocur results and

conclusions.

2. Cross Sections up to O ds'*’)

In this section we collect the information on the perturbative calculation of
o-”c.ot’ OE 0'5

p? = q? (g2 is the total c.m. energy squared) as the scale in & i

;jet’ -jet and cﬂ—jet in the MS renormalization scheme and with
The total inclusive e e annihilation cross section o;:ot up to 0(“32) has

been calculated from the imaginary part of the vacuum polarization by several groups

already some time ago. In the MS renormalization scheme the result is /5/

e = {4 4 2GR + e[ 0+ (B

+ (4% -2L)7x | Xca*) }

{(2.1)

Here and also for the other cress sections we write the second order term as a sum
N
T

4 - _x
and CpTp (CF =3 ¥ =3, T, = , N, = number

c R 2 f

2
of the three ceclour factors CF s CFNC

of flsvours). Ei are the usual zeta functions. O; is the zerc-order cross secticn
= o / '

for the production of five flavours. We have introduced A ="5/2m | 1o the

M5 scheme with scale q° the second order term propertional to A is small, the

coefficient iz equal to 5.66 for five flavours. ). is typically of order (.02 at

_the highest PETRA energies, so that the second order term is a very small correction.

In our earlier work we have calculated the cross sections for the producticn
of 2, 3 and 4 Jets in e+e_ annihilation up o 0(52 /uf. These cross sections depend
on a re.solution parameter whick was chosen to be the scaled invariant mass
¥i. = (pi+Pj)2/q2‘ These resolution parameters are needed to define infrared finite

id

jet cross sections in perturbative QCD. In our definition two partons i and j were

L S AU RN SR U » ST DU . WSS POV SR, W, B RN WSRO, PR Wpryuetr, USRS ol F S L
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considered to be irresolvable if ‘yij £ y with some fixed chosen resolution para-
meter y, 3o, for example, if in the four-parton cross section all possible Y2 v '
the contribukion is considered to be h-jet. Similarly one defines 2- and 3-jet cross

sections. For more details we refer to ref. L. Unfortunately the theoretical pre-

dictions for the jet cross section are not unique. Of course, G’h—jet’ which has been

calculated in lowest order proportional to & 52, is given uniquely. But O

3-jet
and O since Q7 crﬁ—je‘t.’ depend how the 3-jet

o-jet’ 2-jet O%ot ~ T3 et
variables are defined in terms of the original four-parton variables. In our previous
work we studied two schemes, the KL and the KL' scheme, Here we shall make use only
of the results in the KL' scheme, where the higher order corrections to oé—jet
and o§~jet are more moderate and therefore lead to a more consistent resulf ir
cambined with experimental data on c;,ot' Tre XL' scheme is characterized by the
fact that in the configuration e+e7—->q(1}<_;(2)g(3)g{h) with gluon 3 considered soft
or eollinear with the quark the 3-jet variables are "yl3" = ¥y3y "y23" = Vo,V

and "y]g“ in this form

= - = . . 2 z, i "
Y153 where Yiik (p1+pJ+pk) /a?. The choice of Vo3

has bearing on the separation of 2 Jets from 3 jets and 4 jets /4%, 7/. Our numerical

resulls for 0’2

{¥), 0’3_jet(y) and O‘ﬂ_jet(y) are represented in the form

-Jet

Toojet (Do = 1 + G 22 25%)

+ (& (C;r Zéz) + A Zﬁ" + 7 Z;'"’) 3.2'(7;)

(2.2)

Og-je»t (?)/0; = CF Z:!) ALg%)

) S\ ot
t CF(Q': ZCG)*A{: ZNC“"L 7; Z,. ) 2'67) (2.3)

OZ— et ('ﬂ') or = C;: (C;: “ + A{; Z,Va,"f‘]R— %‘a)) )“L(?L)
J o

C(2.h)

(2) g 5

(i)

Complete formulas for 2 “are found in /4/. The higher order coeffi-

cients Zél), ZN(l) and %, "’ are tabulsted in table 1, 2, 3, b and 5 for y = 0.05,

0.0h, 0,03, 0.02 and 0.01 and were taken from our work /L/.

Actually the calculations in /4/ were done only for y = 0.0%, 0.04 and 0.02.
Therefore the values in table 3 had to be obtained by interpolation. The values

for the zc(l), ZN(l) and ZT(]‘) (i = 2, 3, 4} fulfil the relations

ZC(:g) . ZG(:s) . zc(h) - %, ZN(2} N ZN(3) + ZN(h} - % - 11 g, ane
(2) (3}

+ 7 + 7 (b) 14;3 SNl , i.e. the contributions of 2, 3 and 4 jets

ZT T T 2

sum up to the higher order correction term in O'th.

We observe from tables 1-4 that the A2 correction term for oz—jet is negative
and fTor o?ﬁ—jet is positive. Both increase in absolute value with decreasing y.

Then there exists a small y for which O'é reaches the unitarity limit zero and

-jet
O-B'—jet reaches the uniterity limit G‘;Ot, respectively, the actual value depends
for fixed y on the value of l . Therefore it is clear that we can apply the per-

turbative results only dewn to some finite y value which is near 0.02, The coeffi-

cient of G’hfjet is rather small compared to the coefficients in o;—'et and

Lo and it increases only moderately with decreasing y. Gl: is Qetermined

3-jet
(h), the contributions of ZN(h) and ZT(h)

-jet
approximately by ZC are small. Therefore
in an abelean thecory the y dependence of o‘{l—jet remains unchanged as compared to

. a .. .
QCD, whereas the behaviour of the 'A. coefficients 1in o;—jet and o::}ijet are
completely different. In the abelean theory the cocefficient in %—jet is positive
_(ZN(E) = () and increases with decreasing y, whereas the coefficient in o-é-jet is

negative and decreases with decreasing y.
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3. Review of the Optimization Procedure
The protebype problem to explein Stevenson's optimization procedure /1/ is the total

annihilation cross section O't'Ot(qE) at total c.m. energy g = ¥g? in QCD with mass—
less quarks. We write this cross section in terms of R = U’Eot(q"’)/ c‘é where 0";
is the zero-order annihilation cross section. In QCD perturbation theory R has the

following expansion in P

R =4 + AR (3.1)

AR =_9L(r; +Q;L+f§l”+----) (3.2}

where A is A(u"’}, i.e. the coupling in some rerormalization scheme is renormalized
at scale u. The expansion coelficients Ty (i =2, ...) depend on p and g and are

also renormalization scheme (RS) dependent. r, = < C_ is a constant. The u depen-

1

dence of A, satisfies the well-known differential equation (9 = 9/3»&-/0‘!’)

N feas

w

94 = - 502,2’(4+b1l+bzl"+.....) {3.3)

in which b and b, are scheme independent while the by b3 ete. are not. Thz ron-

stants bD and b, are

t

41 FA * 2 .
b = //C - 3_7; {3.4)

=T

1
b, = (—3—?&"-— 132%7; - 2@7;)/26, (3.5)

T S P o —

Since we intend to consider sll possible schemes by varying p it is not useful to
present results in terms of the coupling l . Instead we introduce the scale A ,

the theory's one free physical parameter by

LY

A(pt) = = . ,, (3.6)
b, '&"}{T} + & &v&v%_ :

/\ will be held fixed when varying over all possible schemes., Eq. (3.6) is a solution

of (3.3) up to terms O( A, 3) with the usual boundary conditions. The definition of/\

through (3.6) is RS-dependent, since A and the right-hand side is RS dependent

o3 b3 ete. However, /\ 's in different RS8's can be reiated exactly by a

one-loop calculation as shown by Celmaster and Gonsalves /8/.

through b

Since the expansion of £} R has been calculated only up to terms o( A2) 5/ we

consider the optimization only for

AR, = r + Xt (3.7)

and require the p optimization condition on ARE to be satisfied exactly

%AR'L//«,:/LM =0 (3.8

This gives a transcendental equation for the optimum u, denoted by‘uopt- The value

of Mopt depends on q, A and the scheme originally used to calculate T The value

of R2 at uopt for a given g% and /\ is scheme independent.

r, has been calculated for the MS renormelization scheme at the scale q.z. The
explicit value was given in the last section in (2.1 ). Let us denote it by ;2.

Then r., at the scale p? is related to ;2 by

2

T E T S S B S S Y [ R P U S T -




Z
=
b ="r + b ,ﬁm(fi’-?&) n (3.9)
and we have the following equation for 4 R, at scale p? in terms of r, and ;2
2y a2 A '
AR, = r, (2 + boéﬂ({,‘-;:)l) + LA (3.10)

This form for A R, serves for determining uépt. Indeed from

(A ( A+ BALE)N) +5A) =0 G
pesport

and
DA = - b A* (’f + b, 7L) (3.12)
vhich is the truncation of (3.3} io two-locp terms, we obtain

(51 + 2(4 + b.,lopf) b,&(%s%))r; +z(4+&,2~3pt)€=0(3.}3)

lo,at = (bo,&v(/_/“‘_q‘;) + bfﬂﬁv(aa{;-))—" (3.14)

From {3.13) with [(3.14) 1.1{2’1}1;/'112 is caleulated numerically for a fixed A . The

corresponding optimal A R2 is

(A(R,,) = 1 hopt + r},opt A";pt (3.15)

opt
Toopt follows from (3.13)
r 34 A . {3.16)
Zopt
* 2 (4+ by Aapt)

s e B e R Pl

—_ 9 —_
50 that
' A + b, Apt /2
AR = KA c
( z)oﬂ- 7 “ropt 7 + 6, ;i-opt' (3.17)

Eq. (3:17)} is the result for the optimal R, which can be calculated as soon &s opt

is known from (3.1k) and (3.13).

The opt:mlzatilon of o.é—jet/ c{ot and o-g—jet/ c‘t—ot is performed in an ana-

logous way. We start from

— — 2 )
OE-J'd—/g-; = 1 + Vg A@)+ N, AG*) (3.18)

where ;SW and ;KL are given in section 2. They are the expansion ccefficients of
the 2-jet cross section with scale q? in the MS scheme. From this we calculate the

expansicn terms for O-éﬁjet/ o—;ot by dividing (3.18) by R in (3..1). Then
. = r 2
OZ-Ja-/g;t*/ff-(Gw—'ﬂ)l(‘”

+ (P~ (Bw=-nr) - ) X6

50 ’F.hat Gé—jet/ Ciot 1 has a similiar expansion as £} R2. Therefore the

equation for determining uﬁf}'pt_"/q_2 is the same as (3.13) if we substitute T, ;SW -r,
and T, % = r{rg, - T} - r,. The optimized value vor o-gﬁjet/ O - | follows
from {3.17) with the replacement r - ;SW -

The expansion of OPBIujet/ o, starts with a term 0(A. ). In the MS-Scheme and

with scale q? we have

o:’a-je.:b/o-; = §sw G Sk 2.2’(77«) (3.20)

(3.19)‘
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and

o'-"‘f‘*/o}at = '§sw 3'(‘71)"‘ ( g;u -5 gsw ) A'L(‘fz)

(3.21)

Then ”;pt/qz for the 3-jet multiplicity follows from (3.13) if r . » .;SW and

Toow S T TySg and the optimized 3-jet multiplicity is caleulated from {3.17}

o (;sw
)V Oy, = 1 in ol A).

with r, replaced by ESW' We have s - r,l) as it should be because

(0% et ¥ Ponjet

In our earlier work /4/ we found that r__ contains the term ECFboln3y. This

KL

term porpobional to 1n3y has a rather large numerical coefficient and is in leading
order of lny egual to (- b, 1oy ;SW)' This term can easily be absorbed into A (g®)

by changing the scale of A into yq? since up to 0(A2) we have

A(q?) = l(??”)(/f + 5‘,5»3 3‘1(37’-)) (3.22)

Then instead of (3.19) we get for the 2-jet multiplicity:

et/ ~1 = (Tay=13) X(37")
+ (Eq_ - G(aw -r) -r +('§Wmn)6°&3) At s

The . same term with opposite sign appears in the 0(A.2) term _SKL of the 3-jet
cross section, where it can be gbsorbed into A as well. If we do this we have

instead of (3.21):
G:a—je,t-/o-m = S, A(y92)

—_ — — 2 .
+(SKL — 1 Ssw * Ssw Ao'&‘?) A Cy9*) (3.24)

- 11 -

The formula (3.7) for O’Eot/ o, - R, the excess of the total annihilation cross
se’ctit;n over the lowest order point cross sectien (with r2—)~;2) and the formulas
(3.23} and (3.2h) for the two- and three-jet multiplicities respectively are the
formulas on which our optimization procedure as described in detail above for R is

pased. The results of the optimization will be described in the next seetion.

F S S Sy S rr = [T T Y o PR b ot
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L. Results and Conclusions

In this section we present the results of the coptimization of c’;ot’ C’E—jet/ (=
and c;—jet/ S, Then G-I:—jet/ O7ot is calculated from
Tyejes | = 7 = Oz / ~ Cayet/

-jet = 2-1et & (b1

J Cu;t J Ogor J CI;ot )

All four quantities are compared to experimental data. The totsal annihilation cross
section <7;ot has been measured by the PETRA and PEP experiments. The CELLO colla-
boration at PETRA has made a fit to all these data /9/. In the fitting procedure

they took the correlations between measurements into account and determined the
electroweak mixing angie sin? e;‘q and the strong coupling constant CKS(QQ) using

the second order formula (2.1). The fit to the combined data yielded lxs((Bh GeV}?)
= 0.145 * 0.020 /9/'F2). From this value of & we infer O /e, = 1.0Lg * 0.007,

which we take as the experimental value of @ . at q? = (34 GeV)? in our compa-

tot

rison.

The results for O

n—jet/ c’éot {n =2, 3, 4} are compared with the n-cluster

event rates measured by the JADE collaboration at PETRA /6/. These cluster event
rates for up to 5 clusters were obtained as a funchion of invariant mass cut ¥
between y = 0.015 and y = 0.08 for q? = (34 GeV)?. Unfortunately these n-cluster
multiplicities are not equal to the n-jet multiplieities as calculated from QCD
perturbation theory. Due to fragmentation effects of quarks ané gluons into hadrons
not g1l events with n clusters with a fixed y cut originate from a perturbative
n-jet pfoduction with the same y cut. The fragmentation produces fluctustions which
might for example cause a primary 2-jet procéss to be classified as a 3-cluster
event. To unfold these effects from the measured cluster event rates one must do

calculations with fragmentation models on top of the pertufbative QCD predictions

_13_

which have nol been done yet. In an earlier study of 3-jet production &t y = 0,0h it
was found that these corrections are fairly small for the invariant mass method /10/.
For h-jet production and for 2- and 3-jet producticn at small y's we must expect
lgrger cerrections /6/. As loﬁg as these corrections are not known we shall not draw
any conclusion concerning A s from & comparison of optimized n-jet rates wit'h ~t‘.he
empirical n-cluster rates from JADE. But the comparison with the cluster rates will
help us to see more clearly the change of the jet multiplicities due to optimization

es compared to the non-optimized values.

In Fig. 1 we show the 2- and 3-jet multiplicities as a function of A i for

/ o-trot and Og—jet/ o—{:ot

obtained from (2.1), (2.2) and (2.3) with A ((3h GeV)2) due to {3.8) and compared

y = 0.04 calculated directly from the expansion of (,;—jet
to the 2- and 3-cluster multiplicities of /6/. Of course, the 2-jet multiplicity
decreases and the 3-jet multiplicity increases as a function of A .| The thearetical
curves cross the empirical bands for 2- ana 3-cluster rates at two different /\ 's,
0.18 GeV and 0.14 GeV, which need not disturb us, since the cluster rates have
corrections if compared to QCD jet rates. For later comparison we note that the

/\ values to fit the cluster rates are around 0.15% GeV. The corresponding 4-jet
rate, i.e. calculated from (2.%) with AJfq?) = C‘S(qa)/et“ q? = (3b cev)?, i.e.

for non-optimized & g can be seen in Fig., 2 as & function of AL Up to /\ = 0.2 GeV
the b4-jet multiplicity is small, approximately 1%, and is roughly a factor 4 smaller
than the measured L-cluster rate at the same energy and the same y. This means that
the 4-cluster rate is larger as one expects from lowest order QCD with & s evgluated
at scale q°. Since we do not expect that the fragmentation corrections for 4 clusters
are so large, as Lo cause s change of a factor of H compared to the b-jet rate,

we conclude that the M-jet rate comes out too small in lowest order QCD and scale q2

in & o This agrees with the conclusion of /6/. In /6/ the cluster rates were
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celculated from a model based on perturbation theory up to Of 0(5?) and the hadroni-

sation of 2-, 3- and b-jet built in. The scale of & , ¥as equal to q®.. & 5 Was

determined in such a way that the 2- and 3-cluster rate was in agreement with the

data.

Since the higher order coefficients in O"2 and 0'3 (see (2.2) and

-jet -jet

{2.3) together with tables 1-5) are large we expect apprecisble changes in our

predictions by changing the scale of o{s. As was menticned in the last section

the analytical calculations of the higher order terms of suggest to

2-Jet,
absorb large terms ~s1lny into the coupling constant s This brings us to the
scale yq? instead of q?. The results for jebt mutlpicities based on o(s(ng] are

shown in Fig. 3 for y = 0.04. Comparing these predictions with the results in Fig. 1}

we notice some change. Now O

2-jet,/ O,y Gecreases and 03 ! @,y increases

—-jet
stronger with increasing A . They fit the experimental 2- and 3-cluster rates

ror A= 0.1cev. O ./ o (see FPig. 2) changes roughly by a factor of 2,
) L-jet tot

since O(S is now evaluated at a much smaller scale. It is still smaller than the
experimental d-cluster rate for the AA's of interest, Results for y = 0.05 are

- exhibited in Fig, 4. The curves fit the experimental 2-and 3-cluster rates also for
A & 0,1 GeV and the b-jet rate is still smaller than the h-cluster rate. We also

show o'tot/ g, as & function of /A together with the experimental data from the

CELLO analysis /9/. o‘tot is calculated with o(s(q") from (2.1). The CELLO data

0.2h
0.3

similar results, except that the A values obteined from fitting 2- end 3-jets to

require A =02kt GeV. The same calculations for y = 0.03 and 0.02 give
the corresponding cluster rates are different which indicates either a breakdown
of perturbation theory or different fragmentation corrections than for y = 0.05 and

y = 0.0k, For y = 0.01 the higher order corrections are so large that 0'2 be-

-jet
comes unphysical for A 2, 0.08 GeV. One should note that the 2- and 3-jet rates
are much more suitable to determine A since the variation with A is much larger

than in the case of o'tot and the k-jet rate,

LA EPVIPRE. V. I S S S " S S S . S WG W S ——" " SO S S S e SRS PO T
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The results with optimization are shown in Fig. 5, 6 and 7. In Fig., 5 the opti-
mized curve for U-{:ot/ oy, is very similar to the non-optimized result in Fig. b.

This is %o be expected since the higher order coefficient in )

ot is small so that

the optimized scal;e is near the criginal scale. The scale comes out as uf’pt/q2 =0.3509
for A = 0.11 GeV. For the other A's uépt is roughly the same., Furthermore in

Fig. 5 we see the optimized curves for the 2-, 3- and b-jet multiplicities with

y = 0.05, where the 4-jet multiplicity is calculated from (4.1}, Since ovlhjet is
aveilable only in lowest order it cannot be optimized. We see that the theoretical
curves fit the experimental cluster multiplicities for A\ = 0.08 CeVwhich is somewhat

smaller then the A in Fig. 4., We also observe that q;_ is new even larger

jet
than with ds(yq‘*) in Fig. 4. It almost fits the b-cluster rate for A = 0.08 CeV.
The lower bound on the experimental qot/ C; crosses the optimized curve appro-
ximately at the same A value. The values for uopt for 2- and 3-jet rates are
collected in Table 6, always fof A = 0,1 GeV. The results for y = 0.04 are in
Fig. 5. The conclusions are similar as for y = £.05. The A value which fits the

cluster rates is a little smaller than for y = 0,05. 0",4 is increased compared

-jet

to the result in Fig. 4. In Fig. 2 we have the comparison of O with y = 0.0k

h-jet
for the three cases {i} coupling CKs(qE), (ii) coupling Cis(yqa) and {(iii) opti-
mized coupling. In case (iii) the b-jet rate is the largest. The values for Hopt
are again in Table 6. Finally in Fig. T the results for y = 0.03 are shown. Here

?2— and 3-jet rates cannot be fitted to the corresponding cluster rates with the

same /\ and the b-cluster rate is still larger than the L-jet multiplicity. Whether

this can be improved after correcting the cluster rates dus to fragmentation will

te seen in the future.

The opbimization scales Ky for 2- and 3-jet multiplicities for y = 0,05 to 0.01

pt
are all collected in Table 6, They are not equal for 2- and 3-jet.cross sections,
since they have appreciable different higher order corrections. Therefore they differ

more for y = 0.0) than for y = 0.05. Fer y = 0.02 and y = 0.01 the optimization

T o [ LR S —



scale Hopt is approximately equal to yq®. Therefore the optimization does not
change the 2—, 3- and L-jet rates as comapred to the prediction with coupling

C!s{yq’). The values of the optimization scale u_ . forq®= (3k GeV)? and y = 0.04

pt
is equal to 2.28 GeV for the 2-jet multiplicity and equal to 2,90 GeV for the
3-jet multiplicity. These values are still much larger than the confinement scale

where perturbstion theory definitely breaks down.

By comparing the resulbs in Fig. 1 with those in Fig. 3 and Fig. 6 we get an
overview about the effect of changing C*S(qa) into st(yqz) and into C‘s(u;pt).
Whereas in Fig. 1 the 2- and 3-jet rates are equal for A= 0.28 gev they cross in
Fig. 3 for A= 0.16 GeVandin Fig. 6 for A= 0.13 GeV. Sothe dependence on the
scale changes appreciably through the optimization as compared to simple pertur-
bation theory with coupling CKS(qQ). In a first approximation the curves in Fig. 6
are similar to those in Fig. 3. Therefore a first step would be to use the scale yq?
instead of q? (FB). This improves already the h-jet rate to a large extent. This
procedure could also easily be incorporated into models based on perturbation theory
up to O(CKSQ) augmented with hadronization of quarks and gluons. Of course, it
would slsoc be no problem to introduce one of the optimized scales from Table 6, i.e.
either the 2-jet or the 3-jet scale uopt into these models with the effect that then

the h-cluster rate might be described even better.

We emphasize that the lLi-jet rate has not been optimized. This is not possible
sinee it has been calculated only in lowest order. Bub we have cptimized the scales
of the 2-jet and the 3-jet multiplicity and have determined the L-jet multiplicity
from (4.1) According to (3.17) the procedure of optimization has the effect that
in our case the 2- and 3-jet rate is replaced by an infinite series with coefficients

given by powers of b, which is the second coefficient of the /3 -function. By

caleulating Gi—jet/ Opop LFOM (4.1) we derive it from a similar series with the
only difference, that the coupling ;Lopt'is not determined from the higher order
calculation of crh—jet’ which is not available, but instead from higher order

calculations of O

o-jet B T

3-jet’ We expect that this way we should come near

to the result of what an optimization of Cjikjet would give. Another way,to
JusLify thal we get a better result for c’1~jet than in lowest order,is to say
the following. The optimization has guite generally the effect that higher order

contributions are reduced by changing the coupling constant. p . gives the scale

op
where this happens in Lhe most reascnable way. If the scale determined in (T%fjet

reduces the higher order terms in O,

h-jet by the same amount as 1n

3-Jet
0’97J”t and cy%—jet we can approximately neglect the higher order terms 1“'01A—jet'

and O
—d

But then we must evaluate U’h—jet at a scale as determined in 0—'2—jet and gf}}-jet'

In cenclusion we state that the optimization of secale yields different predic-
tiops for 2- and 3-jet multiplicities as a function of the mass cut y as compared
to simple perturbation theory with scale q2. This will give a different /\ im paras
meter than the usual perturbation prediction with scale g if a comparison with
experimental jet multiplicities becomes available. The h-jet multipliecity determined
from the faet that the sum of all jet rates is equal to one comes cut much larger
than from lowest order perturbation theory in N.s(qE) and A s determined from

3 jets.
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Table Captions:

) ZC(1) ZM(l) ZT(l)
Table 1: O{A2) coefficients for 2-, 3- and b-jet cross sections as defined .
in (2.2), {2.3) and (2.4) for y = 0.05. ' i==2 34,71 - 102,13 30.03
Table 2: Same as Table 1 for y = 0.0k, _ -3 Ch1.uh 103 9k - 30.98
Table 3: Same as Table 1 for y = 0.03.
;o= k 6.36 0.34 0.26
- Table &: Same as Table 1 for y = 0,02.
Table 5: Same as Table ' for y = 0.01. Table 1
Teble 6: Optimization scales Bopt for 2- and 3-jet cross sections for
¥ = 0.05, 0.0h, 0.03, 0.02 and 0,01,
(i) (i) © g (i)
ZC ZN T
Fi =2 53.96 - 131.61 36.87
i=3 - £6.60 133.15 - Lo.ob
i=k 12.26 0.62 0.48
Tahle 2
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Y L = .

(i) (i) (i)
% Zy Zp
88.9 - 175.0 51.5
- 112.2 175.8 - 53.2
22.9 1.2 1.0
Table 3
(i) (1) (i)
% Iy Ly
161.05 - 253.81 75.85
- 217.23 253,21 - T8.47
55 .80 2.75 1.93
Table 4

Table &

-1 -
B 2 ) (3 Z;m
377.39 - bat.17 129,39
- 538.2% Loy.22 - 13k .02
= 160.49 §.10 4,83
Table 5
2
uopt/m2 Mopt /¥’
2-jet 3-jet
.06 0.08250 0.1121
ot 0.1121 0.181L
.03 0.1866 0.3730
.02 0.3618 1.25h
.01 1.706 17.59
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Figure Captions:

Fig.

Fig,

iy,

Fig.

Fig.

Fig.

Fig.

ry

Jet multiplicities as a function of A for y = 0.04 with scale g%

compared to cluster multiplicities of /6/.

h-jet fraction as a function of A for y = 0.04 for the three cases:

scale q°, scale yq® and optimized scale.
Same gs ¥ig. 1 with secale yq@.

Jet multiplicities as a function of A for ¥ = 0.05 with scale yq°
and Oj;otlo‘o as @ function of A with scale q? compared to cluster
multiplicities of /6/ and G'fwt data from /9/.

Jet multiplicities for y = 0.05 and e-tot/o; as a funetion of A
with optimized scale compared to cluster multiplicities from /6/

and crtot. data frem /9/.

Jet multiplicities for y = 0.04 as a function of /A compared to
cluster data from /6/.

Same as Fig. 6 for y = 0.03.

jet multiplicities
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