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Abstract: 
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1. Introduction 

Physical quantities, for example cross sect-ions, calculated in QCD are independent 

of the particular scale~ used to renormalize the theory. However, this is true 

only f_or the infinite perturbati ve series. Any expansion truncated at some finite 

order (in practice at the second order) does depend on the renormalization sc~le_~. 

Then the question arises what scale should be used in these truncated series. This is 

a well-known problem, which cannot be solved in mathematical terms, since pertur-

bation theory at some finite order does not specify, which is the right scale to 

produce the best approximation to the complete series. Some years ago, Stevenson 

proposed the following solution to this dilemma: Since the true result is completely 

independent of the scale ~. the best approximation is the one which is least sensi-

tive to small changes in~ /1/. This leads to the requirement that for the best scale 

the nth order (in practice the second order) result ~n) for a cross section obeys 

dr:r( ... ) 
<( ,£.,.;-.~ 

= 0 
I I. I I 

This equation yields the optimal scale ~ = ~opt' which, if introduced in the nth 

order result, gives the optimized prediction for ~(n), That (1,1) is the best 

approximation to the true result, is of course impossible to prove. But Stevenson 

has tested his procedure with examples and found it successful. 

This principle of minimal sensitivity or scale optimization procedure has been 

applied recently with sensible results to massive lepton pair production /2/(Fl) 

and to processes involving photons in hard collisions /3/(Fl). So far it has not 

been applied to e+e- annihilation cross sections, although second order results are 

available for several of these cross sections. In this paper we want to fill this 
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gap and wish to see, whether optimzed perturbation theory yields reasonable results. 

We use our recently calculated 0( «
8

2 ) cross sections for the prod~ction of 2 and 

3 jets as a function of the resolution cut y /4/, to obtain the perturbative 2- and 

3-jet multiplicities up to 0( ot
8

2 ) by dividing by <Jtot whose expansion up to 

0{ 0(
8

2 ) has been known for some time_/5/. We apply the optimization procedure to 

the three physical quantities o;ot• o;-jet(y)/ O'tot and 03'-jet(y)/ O"tot• 

withy values ranging between 0.01 and 0.05. ~-jet(y)/ CJtot is obtained from 

the rule that 2-, 3- and 4-jet multiplicity sum up to 1. In principle the predic-

tions for the jet multiplicities could_ be compared to experimental data and the 

value of the QCD scale 1\MS could be derived. However, these experimental jet 

multiplicities are ·not available yet. The JADE-collaboration at PETRA has published 

cluster multiplicities as a function of y /6/. The cluster multiplicities still con-

tain fragementation effects. We expect these fragementation corrections to be mode-

r~te. Therefore we feel free to compare our results with the cluster data, to see 

whether they are approximately consistent with our results. In particular it is of 

interest whether the 4-jet rate as a result of the optimization procedure is higher 

than the lowest order prediction based on the coupling 0(
5 

with scale q 2 • In /6/ 

it was found that the 4-jet cluster rate is much larger than the prediction based 

on lowest order perturbation theory including fragmentation effects. 

In section 2 we present the results of the perturbative expansion up to 0( 0(
8

2 ) 

for o;ot' 0""2_jet(y), "3-jet(y) and <:r4-jet{y) and collect the numerical 

second order coefficients of cr:2 . t(y), o-:
3 

. t(y) and Of.4 . t(y) for various 
-Je . -Je -Je 

y values in several tables. This is based on our earlier work /4/. Section 3 contains 

a short review of the optimization procedure. Here we derive the equations from 

which the optimized scale is determined. In section 4 we present our results and 

conclusions. 
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2. Cross Sections up to 0( «
8 

2 ) 

In this section we collect the information on the perturbative calculation of 

~at• ~~jet• ~-jet and C14-jet in the MS renormalization scheme and with 

~ 2 = q2 (q 2 is the total c.m. energy squared) as the scale in 0( 5 

The total inclusive e+e- annihilation cross section O"t.'ot up to 0(0Cs 2) has 

been calculated from the imaginary part of the vacuum polarization by several groups 

already some time ago. In the MS renormalization scheme the result is /5/ 

<T" tot = <:r, {-t + t C'F A( 'f._) + CF {.:. i-4 + e:3 -11~3 h 

+ { 4!>3 - '!:) 7;.) A. .. W)] 
(2.1) 

Here and also for the other cross sections we write the second order term as a sum 

2 4 Nf 
of the three colour factors CF , C~c and CFTR (CF ~ 3• Nc = 3, TR = :2 , Nf = number 

of fls.vours), ~. are the usual zeta functions. 

' 
~is 

for the production of five flavours. We have introduced 

the zero-order cross section 

A = C(s /.ur . In the 

MS scheme with scale q~ the second order term proportional to ~2 is small, the 

coefficient is equal to 5.66 for five flavo~rs. )L is typically of order 0.02 at 

the highest PETRA energies, so that the second order term is a very small correction. 

In our earlier work we have calculated the cross sections for the production 

of 2, 3 and 4 jets in e+e- ~nnihilation up to ~ 
5

2 /4/. These cross sections depend 

on a resolution parameter which was chosen to be the scaied invariant mass 

yij = (pi+pj) 2 /q 2 • These resolution parameters are needed to define infrared finite 

jet cross sections in perturbative QCD. In our definition two partons i and j were 

t ~----"-.~~--""---- __ ..___...___:__~, ~-~-~~~-"~~~~~~-~-~-~-~-~-~-~~~~--""'- -" --~·~~~__]". _ ____,- --"' -- ---'----._r------f"'_ 
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considered to be irresolvable if yij ~ y with some fixed chosen resolution para­

meter y. So, for example, if in the four-parton cross section all possible yij ~ y 

the contribution is considered to be 4-jet. Similarly one defines 2- and 3-jet cross 

sections. For more details we refer to ref. 4. Unfortunately the theoretical pre-

dictions for the jet cross section are not unique. Of course, ~4-jet' which has been 

calculated in lowest order proportional to 0< s 2 ' is given uniquely. But C1'
3
_jet 

and o-;-jet' since o-;-jet "' cr;ot - CTJ-jet - ~-jet' depend how the 3-jet 

variables are defined in terms of the original four-parton variables. In our previous 

work we studied two schemes, the KI, and the KL' scheme. Here we shall make use only 

of the results in the KL' scheme, where the higher order corrections to ~2 . t 
~· 

and ~3 . t are more moderate and therefore lead to a more consistent result if 
~· 

combined with experimental data on ~ot' The KL 1 scheme .is characterized by the 

fact that in the configuration e+e-~q(1}Q(2)g(3)g(4) with gluon 3 considered soft 

or collinear 'Ni th the quark the 3- jet variables are "y 
13

" = Y 1}4, "y 23" = Y 24 -y 
13 

and "y12" y 123 , where yijk"' (pi+pj+pk) 2 /q 2
• The choice of "y23" in this form 

has bearing on the separation of 2 jets from 3 jets and 4 jets /4, 7/. Our numerical 

results for 0"':
2 

. t(y), 0'
3 

. t(y) and 0'(4 . t(y) are represented in the form 
-Je -Je -Je 

02-Jet- ( "3) / o; = 1 -1- c, z;-~-> :tc'l'-> 

-1- c1' ( Cr: z::_~> + Nc z:;' + 7R z:•') A. ... ('f'-) 
(2.21 

03-j<-t ('?J>/ a;, C1: Z/!' .A.(?'-) 

+ ~ ( Cp zt' -t- ~ z:•> -t- r; 'Zra') A.'-("f') 
(2.31 

- 5 -

04-;~-~: c 'lt >I <r. G,: ( c1' Ze(H' + ~ Zwo.' -1- 7R Z:') ).:'(-, .. ) 
(2.41 

Complete formulas for z
1
( 2 ) and z

1 
( 3) are found in /4/. The higher order coeffi-

. ( i I ( i I ( il · 4 ClentS; ZC , ZN and ZT are tabulated 1n table 1, 2, 3, and 5 for y "' 0.05, 

0.04, 0.03, 0.02 and 0.01 and were taken from our work /4/. 

Actually the calculations in /4/ were done only for y = 0.05, 0.04 and 0.02. 

Therefore the values in table 3 had to be obtained by interpolation. The values 

for the ZC(i), ZN(i) and ZT(i) (i = 2, 3, 4) fulfil the relations 

Z (21 + Z (31 + Z (41 =-). Z (21 + Z (31 + Z (41 = 123- 11,.. and 
C G C 8' N N N 8 73 

ZT( 2 ) + ZT( 3) + ZT( 4 ) = 4~3 - ~1 , i.e. the contributions of 2, 3 and 4 jets 

sum up to the higher order correction term in ~ot' 

We observe from tables 1-4 that the /l2 correction term for ~2 . t is negative 
~· 

and for cr:
3 

. t is positive. Both increaSe in absolute value with decreasing y. 
~· 

Then there exists a small y for which CT:
2 

. t reaches the unitarity limit zero and 
~· 

C7J-jet reaches the unitarity limit ~ot' respectively, the actual value depends 

for fixed y on the value of JL , Therefore it is clear that we can apply the per-

turbative results only down to some finite y value which is near O.Q2. The coeffi-

cient of ~4 . t is rather small compared to the coefficients in ~2 . t and 
-Je -Je 

et;-jet and it increases only moderately with decreasing y, CT4-jet is determined 

approximately by ZC( 4 ), the contributions of ZN( 4 ) and ZT(
4

) are small. Therefore 

in an abelean theory the y dependence of ~4 . t remains unchanged as compared to 
·Je 

QCD, whereas the behaviour of the 'A.. 2 coefficients in cr::2 . t and t:r::
3 

. t are 
-Je -Je 

completely different. In the abelean theory the coefficient in cr;-jet is positive 

(ZN(
2

) = 0) and increases with decreasing y, whereas the coefficient in tr3-jet is 

negative and decreases with decreasing y. 
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>,, fkviPw or Lhe Optimization Procedure 

'l'he pt·ot-ot.ypc problem to explain Stevenson's optimization procedure /1/ is the total 

annihilation cross section Ot'ot(q 2 ) at total c.m. energy q::: {ci2 in QCD with mass­

less quarks. We write this cross section in terms of R = CTtot(q 2
)/ tr; where ~ 

is the zero-order annihilation cross section. In QCD perturbation theory R has the 

following expansion in ~ 

'R = 1 + L\"R. I 3.1 I 

4'R = ~ { r:; + r:<:\.. + '3 :t"+ --·) I 3.21 

where ~is )\(~ 2 ), i.e. the coupling in some renormalization scheme is renormalized 

at scale 1-l· The expansion coefficients ri (i = 2, ••• ) depend on l.l and q and are 

also renormalization scheme (RS) dependent. r 1 = ~ CF is a constant. The u depen­

dence of A, satisfies the well-known differential equation ( d: :::;, djd.e..,.~.t.) 

~it. =: - b. ;;j_L ( 1 + b
1 

').. + b.._ A_'-+-·-- -) I 3.31 

in which b 
0 

and b 1 are scheme independent while the b2 , b
3 

etc. are nOt. Th2 r.c.n-

stants b
0 

and b 1 are 

bo .. ~1 ~ -:r; I 3.4 I 

b1 = ( ;~ I('" - 2f Nc -r; - z c,71<) /~b. I 3. 51 

-~~~.~~--

~~--------~----~~~------~----------------
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Since we intend to consider all possible schemeS by varying ~ it is not useful to 

present results in. terms of the coupling Jl . Instead we introduce the scale 1\ , 
the theory's _one free physical parameter by 

4 

A.lj<-•) = b d ;,.."- + b ,t.,..L...E... 
0 """' ;;y;- 1 ll ~ 

( 3.61 

J\ will be held fixed when varying over all possible schemes. Eq. (3.6) is a solution 

of (3.3) up to terms O(Jl 3 ) with the usual boundary conditions. The definition of/\ 

through (3.6) is RS-dependent, since )Land the right-hand side is RS dependent 

through b
2

, b
3 

etc. However, 1\ 's in different RS's can be related exactly by a 

one-loop calculation as shown by Celmaster and Gonsalves /8/. 

Since the expansion of £l R has been calculated only up to terms o()L2
) /5/ we 

consider the optimization only for 

Ll?? = 
" 

r" A. + r:;. A. .t- 13.71 

and require the 11 optimization condition on 4R2 to be satisfied exactly 

I -o 'd 4 7?.L I/" "'!'-•!* -
13.81 

This gives a transcendental equation for the optimum 11, denoted by'uopt" The value 

of 11opt depends on q, )\ and the scheme originally used to calculate r 2 • The value 

of R2 at uopt for a given q 2 · and 1\ is scheme independent. 

r 
2 

has been calculated for the MS renormalization scheme a-t the scale q __ 2 • The 

explicit value was given in the last section in (2.1 ). Let us dehote it by r2 • 

Then r
2 

at the scale 11 2 is related to r2 by 

- -''----"'-- .r ---· ~---"'--·--
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r; "' r;, + 4 L({t) '1 (3.9 1 

and we have the following equation for ~ R2 at scale ~ 2 in terms of r 1 and r 2 

L1 'R.t_ = ('1 ( ;t + bo ,e.,_ (-'¥: ) ?!}) r J2 ;t L 

This form for A R2 serves for determining ~~pt Indeed from 

'a(r;(:t+ ~. £..{1ji) ::t~) 

and 

'O:t = bo A_L ( "( + b1 A) 

+ r;_ 71."-)/ = 0 

~c/¥ 

which is the truncation of (3.3) to two-loop terms, we obtain 

( 3.101 

( 3,11 I 

( 3.121 

( b1 +- .t(1t- b1 ':topt) bJw(::,i:))r:, -t-Z(-1+b,~)Y;_=0(3.13I 
with 

= (b.-e..ex~-) + b1k.tw(§>i
1 

( 3.141 ::topt 

From {3.13) with (3.11!) Jl~pt/q 2 is calculated numerically for a fixed /1 . The 

corresponding optimal ~ R2 is 

( L:. 7<..) Of>t r., /\.opt 
')._'-

+- '2. opt opt ( 3. 15 I 

r 2opt follows from (3.13) 

rz.,e b. r:; ( 3.161 

= 
2- (4+ b1/t•rt) 

------~-- ---,_- ~-- -"--,-~,_-

so that 

(A 'R.,) O)'t' = 

- 9 -

4 + b1 A.,pt- /.z. 
f1 Ao}'t' 1 + b1 Aapt" 

------..-----,. 

( J, 17 I 

Eq. { 3; 17) is the result for the optimal R2 which can be calculated as soon as ~opt 

is known from ( 3.14) and ( 3.13). 

The optimization of 02'-jet/ otot and 03"-jet/ ot'ot is performed in an ana­

logous way. We start from 

cr;,-Je:/; /a;, = 1 +- rsw ;t(,•) + Yi<L 'A.t-{1') ( 3.181 

where r
8

W and rKL are given in section 2. They are the expansion coefficients of 

the 2-jet cross section with scale q 2 in the MS scheme. From this we calculate the 

expansion terms for cr;-jet/ Oftot by dividing (3.18) by R in (3.1). Then 

o;,-Jet-1~ = -1 + ( ~lv' - r., ) A('1Z) 

+ { ri<L. - G{rsw-Y1) r;_) A. .t.(q.t.) 
( 3.191 

so that e>;-jet/ ~tot - 1 has a similiar expansion as £l R2 . Therefore the 

equation for determining ~~pt/q 2 is the same as (3,13) if we substitute r 1 ~ ~SW- r 1 

and ~2 7-i=KL- r 1 (~SW- r 1)- ~2 . The optimized value vor o-;-jet/ O"tot- 1 follows 

from {3.17) with the replacement r 1 7~sw- r 1. 

The expansion of C':3-jet/ Cf0 starts with a term 0(/L). In the MS-Scheme and 

with scale q 2 we have 

03-jd I o-;, = 5sw :1\.(tf)+ s I<L A. .t.('!z) (3.201 
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and 

o-3-;j<t lotot = Ssw /c.{f)r ( SI<L - '1 Ssw) /c,Y<t'-) 

Then ~~pt/q 2 for the 3-jet multiplicity follows from (3.13) if r 1 ~ ~SW and 

r2 ~ ~L- r 1~SW and the optimized 3-jet multiplicity is calculated from (3.17) 

with r 1 replaced by Ssw· We have S8w = - (rSW- r 1) as it should be because 

0'3-jet + 0"2-jet )/ d'fot = ino(;l.). 

In our earlier work /4/ we found that rKL contains the term 2CFb0ln 3y, This 

( 3.21) 

term porpotional to ln 3 y has a rather large numerical coefficient and is in leading 

order of lny equal to (- b0 lny i= SW). This term can easily be absorbed into ~ ( q 2 ) 

by changing the scale of~ into yq 2 since up to 0(~2 ) we have 

:\_(tf'L) = ?t.(7J11
) ( -1 + b.£...~ 'it(7J?'-)) ( 3-22) 

'fhen instead of ( 3.19) we get for the 2-jet multiplicity: 

. -1 cr-;-Jet / (J"+ot- = ( rsw- '1) :t{-a't•) 

+ ( ri<L- Y1( rsw -r:;)- ':t +-(rsw-r:;)bofM!J)itl'l{f-)(3.23 ) 

The same term with opposite sign appears in the O(/l 2 ) term ~L of the 3-jet 

cross section, where it can be absorbed into /l as well. If we do this we have 

instead of (3.21): 

153-jet-/crtct =o ssw /i.('lfr") 

-t- ( SkL - '1 Ssw + Ssw 1,_-t.,_d) /1.. -}7!'7") ( 3.24) 

------·---~------------~-------------·-__ ,____~ __ ,., _____ -_____________ . ___ ___.-_~-------------------
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The formula ( 3. T) for O"tot/ 0"'
0 

= R, the exCess of the total annihilation cross 

section over thE; lowest order point cross section (with r
2 
~ 1=2 } and the formulas 

(3.23) and,(3.24) for the two- arid three-jet multiplicities respe~tively are the 

formulas on which our optimization procedure as described in detail above for R is 

based. The results of the optimization will be described in the next section. 
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4. Results and Conclusions 

In this section we present the results of the optimization of Cftot' CT2-jet/ ~at 

and ~-jet/ crtat' Then ~-jet/ crfot is calculated from 

o-'1-j•* I o;.,t = 1 0.-:iet-I ~t- a-'3;;<-t / ot-ot- (4.1 I 

All four quantities are compared to experimental data. The total annihilation cross 

section <r;ot has been measured by the PETRA and PEP experiments. The CELLO colla­

boration at PE'fRA has made a fit to all these data /9/. In the fitting procedure 

they took the correlations between measurements into account and determined the 

electroweak mixing angle sin 2 ~ W and the strong coupling constant O(s(q 2 ) using 

the second order formula ( 2. 1), The fit to the combined data yielded (.Xs ( ( 34 GeV) 2 ) 

= 0.1h5.! 0.020 /9/(F2 }. From this value of 0( we infer O:t t/~ = 1.0119 ~ 0.001, 
' 0 0 

which we take as the experimental value of <Jtot at q 2 = (34 GeV) 2 in our compa-

rison. 

The results for ~-jet/ CTtot (n = 2, 3, 4} are compared with the n-cluster 

event rates measured by the JADE collaboration at PETRA /6/. These cluster event 

rates for up to 5 clusters were obtained as a function of invariant mass cut y 

between y = 0.015 andy= 0.08 for q 2 = (34 GeV) 2 • Unfortunately these n-cluster 

multiplicities are not equal to the n-jet multiplicities as calculated from QCD 

perturbation theory. Due to fragmentation effects of quarks and gluons into hadrons 

not all events with n clusters with a fixed y cut originate from a perturbative 

n-jet production with the same y cut. The fragmentation produces fluctuations which 

might for example cause a primary 2-jet process to be classified as a 3-cluster 

event. To unfold these effects from the measured cluster event rates one must do 

calculations with fragmentation models on top of the perturbative QCD predictions 
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which have nol.. been done yet. In an earlier study of 3-jet production at y = 0.04 it 

was found that these corrections are fairly small for the invariant mass method /10/, 

For 4-jet production and for 2- and 3-jet production at small y's we must expect 

l~rger corrections /6/. As long as these corrections are not known we shall not draw 

any conclusion concerning )\ MS from a comparison of optimized n-jet rates with the 

empirical n-cluster rates from JADE. But the comparison with the cluster rates will 

help us to see more clearly the change of the jet multiplicities due to optimization 

as compared to the non-optimized values. 

ln Fig. 1 we show the 2- and 3-jet multiplicities as a function of 1\ MS for 

y = O.Oh calculated directly from the expansion of o;-jet/ <:rtot and 0"3-jet/ o-fot 

obtained from (2.1), (2.2) and (2.3) with /l((34 GeV) 2 ) due to {3.6) and compared 

to the 2- and 3-cluster multiplicities of /6/. Of course, the 2-jet multiplicity 

decreases and the 3-jet multiplicity increases as a function of 1\ . 'l'he theoretical 

curves cross the empirical bands for 2- and 3-cluster rates at two different 1\ 's, 

0.18 GeV and 0.14 GeV, which need not disturb us, since the cluster rates have 

corrections if compared to QCD jet rates. For later comparison we note that the 

1\ values to i'it the cluster rates are around 0.15 GeV. The corresponding 4-jet 

raLe, i.e. calcula-ted from (2.h) with .:\...(q 2 ) = tX
6

(q 2 )/21r, q 2 = (34 GeV) 2 , i.e. 

for non-optimized 0: can be seen in Fig. 2_ as a function of 1\ 
' 

Up to 1\ = 0.2 GeV 

the h-jet multiplicity is small, approximately 1%, and is roughly a factor 4 smaller 

than the measured 4-cluster rate at the same energy and the same y. This means that 

the 4-cluster rate is larger as one expects from lowest order QCD with ~ s evaluated 

at scale q 2
• Since we do not expect that the fragmentation corrections for 4 clusters 

are so large, as to cause a change of a factor of l1 compared to the 4-jet rate, 

we conclude that the 4-jet rate comes out too small in lowest order QCD and scale q 2 

in C( s This agrees with the conclusion of /6/. In /6/ the cluster rates were 
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calculated from a model based on perturbation theory up to 0( «8
2 ) and the hadroni-

z.ation of 2-, 3- and 4-jet built in. The scale of DC 
8 

was equal to q 2 • 0( was 
5 

determined in such a way that the 2- and 3-cluster rate was in agreement with the 

data. 

Since the higher order coefficients in t:r':.
2 

. t and c,.-:.
3 

. t (see ( 2.2) and 
-Je -Je 

(2.3) together with tables 1-5) are large we expect appreciable changes in our 

predictions by changing the scale of OC
8

• As was mentioned in the last section 

the analytical calculations of the higher order terms of cr2_jet suggest to 

absorb large terms ~ln3y into the coupling constant o< 5 . This brings us to the 

scale yq 2 instead of q?. The results for jet mutlpicities based on ~ 8 (yq
2 ) are 

shown in Fig. 3 for y = 0.04. Comparing these predictions with the results in Fig. 

we notice some change. Now 0"2-jet/ O"tot decreases and 03-jet/ otot increases 

stronger with increasing 1\ . They fit the experimental 2- and 3-cluster rates 

for J\ ~ 0.1 GeV. ~4-jet/ ~tot (see Fig. 2) changes roughly by a factor of 2, 

since Q( is now evaluated at a much smaller scale. It is still smaller than the 
s 

experimental 4-cluster rate for the 1\•s of interest, Results for y = 0.05 are 

exhibited in ·Fig. 4. 'l'he curves fit the experimental 2-and 3-cluster rates also for 

J\ ~ 0.1 GeV and the 4-jet rate is still smaller than the 4-cluster rate. We also 

show <Ttot/ a; as a function of 1\ together with the experimental data from the 

CELLO analysis /9/. 

require 1\ = 0. 24 ~ 

()""tot 
0.24 
0. 13 

is calculated with 0(
5

(q 2 ) from (2. 1). The CELLO data 

GeV. The same calculations for y = 0.03 and 0.02 give 

similar results, except that the )\ values obtained from fitting 2- and 3-jets to 

the corresponding cluster rates are different which indicates either a breakdown 

of perturbation theory or different fragmentation corrections than for y = 0, 05 and 

y = 0.04. For y = 0.01 the higher order corrections are so large that Ct;-jet be­

comes unphysical for A .>,:..,., 0. 08 GeV. One should note thA.t the 2- and 3-.iet rates 

are much more suitable to determine 1\ since the variatiorLwith 1\ is much larger 

than in the case of crtot and the 4-jet rate. 

~~ ......____..._ __ _..__-..--n.-... _ _,., __ -"-_---.-J;__ ........ _______..----"'~---- "'~--" ----"-------"------~ ~----· 
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The results with optimization are shown in' Fig. 5, 6 and 7. In Fig, 5 the opti-

mized curve for Cftot/ ~ is very similar to ~he non-optimized result in Fig. 4. 

This is to be expected since the higher order coefficient in CJtot is small so that 

the optimized scale is near the original scale. The scale comes out as~~ t/q 2 =0.3509 
op 

J\ = 0.1 GeV. For the other 1\ 's ~ 2 tis roughly the same. Furthermore in 
op 

for 

Fig. 5 we see the optimized curves for the 2-, 3- and 4-jet multiplicities with 

y = 0.05, where the 4-jet multiplicity is calculated from (4.1), Since cr4 . t is -Je 

available only in lowest order it cannot be optimized. We see that the theoretical 

curves fit the experimental cluster multiplicities for I\ = 0.08 GeV which is Somewhat 

smaller than the A in Fig. 4. We also observe that CJ4'-j et is now even larger 

than with G( (yq 2 ) in Fig. 4. It almost fits the 4-cluster rate for /1 = 0.08 GeV. 

' 
The lower bound on the experimental ~ot/ ~ crosses the optimized curve appro-

ximately at the same I\ value. The values for 1-1 t for 2- and 3-jet rates are 
op 

collected in Table 6, always for 1\ = 0.1 GeV. The results for y = 0.04 are in 

Fig. 6. The conclusions are similar as for y 

cluster rates is a little smaller than for y 

0.05. The 1\ value which fits the 

0.05. ~4 . t is increased compared 
-Je 

to the result in Fig. 4. In Fig. 2 we have the comparison of ~-jet with y = 0.04 

for the three cases (i) coupling O(s(q 2 ), (ii) coupling C(s(yq~) and (iii) opti­

mized coupling. In case (iii) the 4-jet rate is the largest. The values for ~opt 

are again in Table 6. Finally in Fig. 7 the results for y = 0.03 are shown. Here 

2- and 3-jet rates cannot be fitted to the corresponding cluster rates with the 

same 1\ and the 4-cluster rate is still larger than the 4-jet mul~iplicity. Whether 

this can be improved after correcting the cluster rates due to fragmentation will 

be seen in the future. 

The optimization scales IJ.opt for 2- and 3-jet multiplicities for y = 0,05 to 0.01 

are all collected in Table 6. They are not equal for 2- and 3-jet-cross sections, 

since they have appreciable different higher order corrections. Therefore they differ 

more for y = 0.01 than for y = 0.05. For y = 0.02 and y = 0.01 the optimization 
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scale ~opt is approximately equal to yq 2
• Therefore the optimization does not 

change the 2-, 3- and 4-jet rates as comapred to the prediction with coupling 

t(s ( yq 2 }. The values of the optimization scale llopt for q 2 = ( 34 GeV) 2 and y = 0. 04 

is equal to 2.28 GeV for the 2-jet multiplicity and equal to 2.90 GeV for the 

3-jet multiplicity. 'rhese values are still much larger than the confinement scale 

where perturbation theory definitely breaks down. 

By comparing the results in Fig. 1 with those in Fig. 3 and Fig. 6 we get an 

overview about the effect of changing 0{ ( q 2 ) into ()( ( yq 2 ) and into 0( { 11 2 ) , 
s s s opt 

Whereas in Fig. 1 the 2- and 3-jet rates are equal for /\ = 0.28 GeV they cross in 

Fig. 3 for )\ = 0. 16 GeV and in Fig. 6 for I\= 0. 13 GeV. So the dependence on the 

scale changes appreciably through the optimization as compared to simple pertur-

bation theory with coupling O(s(q 2 ). In a first approximation the curves in Fig. 6 

are similar to those in Fig, 3, Therefore a first step would be to use the scale yq 2 

• 2 ( F3) Th. . 1 4 . t 1 . 
~nstead of q • ~s lmproves a ready the -Je rate to a arge extent. ThlS 

procedure could also easily be incorporated into models based on perturbation theory 

up to O(O(s 2 ) augmented with hadronization of quarks and gluons. Of course, it 

would also be no problem to introduce one of the optimized scales from Table 6, i.e. 

either the 2-jet or the 3-jet scale llopt into these models with the effect that then 

the 4-cluster rate might be described even better. 

We emphasize that the 4-jet rate has not been optimized. This is not possible 

since it has been calculated only in lowest order. But we have optimized the scales 

of the 2-jet and the 3-jet multiplicity and have determined the 4-jet multiplicity 

from (4.1) According to {3.17) the procedur.e of optimization has the effect that 

in our case the 2- and 3-jet rate is replaced by an infinite series with coefficients 

given by powers of b 1, which is the s~cond coefficient of ~he j3 -function. By 

- --,,- -~- ----
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calculating o-:"4 . t/ o-; t from (4.1) we derive it from a similar series with the 
- Je to 

on1y difference, that the coupling i\..opt is not determined from the higher order 

calculation of ~4-jet' which is not available, but instead from higher order 

~alculations of o-
2
_jet and c:r

3
_jet' We expect that this way we should come near 

to the result of •.fhat an optimization of cr"4_jet would give. Another way, to 

justify that. we r,et a better result for 0""4_jet than in lowest order, is to say 

the foLlowing. 'l'he optimization has quite generally the effect that higher order 

contributions are reduced by changing the coupling constant. llopt gives the scale 

where this happens in the most reasonable way, If the scale determined in (T"
2
_jet 

and 0""
3 

. 
1 

reduces the higher order terms in 0"':1 . t by the s·ame amount as in 
-Je- 1-Je 

.....-' ,, · 
1 

and ~3 • 
1 

we can approximately neglect the higher order terms in o--;1 • • 
v, -,J•·. V::-Je !-Jet 

But then we must. evaluate 0"' 4 . t at a scale as determined in o-2· . t 
-Je -Je and cr·3-jet 

In conclusion we state that the optimization of scale yields different predic-

tions for 2- and 3-jet multiplicities as a function of the mass cut y as compared 

to simple perturbation theory with scale q 2
• This will give a different 1\ MS para-

meler than the usual perturbation prediction with scale q 2 if a comparison with 

experimental jet multiplicities becomes available. The 4-jet multiplicity determined 

from the fact that the sum of all jet rates is equal to one comes out _much larger 

than from lowest order perturbation theory in 0( (q 2 ) and A~ 
o MS 

determined from 

3 ,jets. 
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Table Captions: 

Table 1: 

Table 2: 

Table 3: 

Table 4: 

Table 5: 

Table 6: 

o(A, 2
)- C:oefficientsfor2-, 3- and 4-jet cross sections as defined 

in (2.2), (2.3) and (2.4) for y O.Oj. 

Same as Table for y = 0.04. 

Same as Table for y == 0.03. 

Same as Table for y = 0.02. 

Same as Table 1 for y 0.01. 

Optimization scales ~opt for 2- and 3-jet cross sections for 

y = 0.05, 0.04, 0.03, 0.02 and 0.01. 

-~-- --1"'~- ------·---------------~~-~----'---------"'--------_r·--"---'-----.A-----=--------~----______..__-_ _.._..,_~ __ _._,.. -""--- - --~ ----1'------

i = ?. 

i = _1 

j = l1 

-

i = 2 

i = 3 
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z ( i I 
'c 

z ( i) 
N 

z (i) 
T 

3~ '71 - 102.13 30.03 

- 41.1!4 103.94 - 30.98 

6.36 0.34 0.26 

Table 1 

z ( i I 
c 

z ( il 
N 

z ( i) 
T 

53-96 - 131.61 38.87 

- 66.60 133. 15 - l.Jo. o4 

12.26 0.62 o.h8 

Table 2 
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z ( i) z (i) z ( i) 
c N T 

z {i) z (i) z ( i) 
'c N T 

i = ? 377-39 - 427.17 129.39 
i "' 2 88.9 - 175.0 51.5 

i = 3 - 538.2) 421.22 - 134.-92 
i = 3 - 112.2 175.8 - 53.2 

i = !1 160.49 8.10 4.83 
i "' 4 22.9 1.2 1.0 

Table 5 
Table 3 

z (i) z (i) z (i) 
c N T 

' l.lopt/yq
2 l.l~pt/yq 2 

y 

i = 2 161.05 - 253.81 75.85 2- jet 3-jet 

i = 3 - 217.23 253.21 - 78.4'1 0.06 0.08250 0.1121 

i = 4 55.80 2.75 1.93 0.04 o. 1121 o. 1814 

0.03 Q, 1866 o. 3730 
Table 4 ' 

0.02 0.3618 1.254 

0.01 1.706 17,59 

Table 6 
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Footnotes: 

(F1) In these processes one has the additional problem that the finite order 

predictions also depend on the factorization scale. 

(F2) A more refined analysis with higher order QED corrections gives 

CXs( ( 34 GeV)2) = 0.145 + 0.020 (\>1. de Boer, private communication). 

¥/e use this new value instead of the published value 

... s((3!1 GeV) 2 ) = 0.165 ~ 0.030. 

(F3) To introduce the scale yq 2 instead of q 2 to absorb large terms also 

in differential 3-jet cross sections was emphasized already in /11/. 
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F'igure CnpL lons: 

Pi1:. ,, 

Vi~. 2 : 

!•'il~· ,, 
Fig. !1: 

Fig. 5: 

Fig. 6: 

Fig. ·r: 

.Je-t. muJti.plicities as a function of 1\ for y 

compared to cluster multiplicities of /6/. 

0.04 with scale q 2 

l1-jet fraction as a function of 1\ for y 

scale q~, scale yq 2 and optimized scale. 

0.04 for the three cases: 

~;w1c a.~; Fig. 1 with scale yq 2 , 

Jet multiplicities as a function of A for y 0.05 with scale yq 2 

and <r;,ot I 0"0 as a function of 1\ with scale q 2 compared to cluster 

multiplicities of /6/ and ~ot data from /9/. 

Jet multiplicities for y ~ 0.05 and <rtot1 0'0 as a function of 1\ 
with optimized scale compared to cluster multiplicities from /6/ 

and ~tot data from /9/. 

Jet multiplicities for y 

cluster data from /6/. 

0.04 as a function of 1\ compared to 

Same as Fig. 6 for y = 0.03. 
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