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ABSTRACT. A convergence theorem is proved, which states sufficient conditions for the existence of the continuum limit
for a wide class of Feynman integrals on a space-time lattice. A new kind of a UV-divergence degree is introduced, which
allows the formulation of the theorem in terms of power counting conditions.

1. Introduction

Feynman integrals on a cubic, four-dimensional lattice have a very specific structure. In momentum space
the integration domain is the Brillouin zone {BZ), hence compact for every non-vanishing lattice spacing a.
Instead of being rational the integrand is a periodic function. If none of the propagators has vanishing mass,
and so we will assume throughout this paper, a Feynman integral is absolutely convergent for every finite lattice
spacing. We want to discuss the behaviour of such integrals if the cutoff is removed, 1.e., if the lattice spacing
a tends to zero.

There exists the well known power counting theorem of Hahn and Zimmermann [1] which states sufficient
conditions for the absolute convergence of ordinary Feynman integrals. Convergence depends on the behaviour
of the integrand in various sections of the integration domain where some or all integration momenta get
large. This behaviour is described by use of UV-divergence degrees of the integrand with respect to so-called
Zimmermann subspaces, i.e., special classes of affine subspaces of the integration momenta. If the divergence
degrees with respect to all these subspaces are smaller than zero, the Feynman integral will be absolutely
convergent. Unfortunately, this power counting theorem assumes a rational structure of the integrand and
hence does not apply to diagrams with a lattice cutofl. Similar problems occur in connection with Weinberg’s
power counting theorem [2]. In fact, it is meaningless to discuss naively large momenta on the lattice, the
integrand of a Feynman integral being periodic. Actually, if convergence holds, only a neighborhood of zero
momentum in the Brillouin zone should contribute to the continuum limit. Other contributions should vanish.

At first sight it seems reasonable to assume existence of the continuum limit of a lattice Feynman integral
if the nalve & — 0-limit of the integrand is integrable. A simple counter-example shows that this is not se.
Consider the one-dimensional integral

di

f(q‘,u, )= /"/“ (fsin 1’23)‘1 [cos® L — cos ".;,'5] + (7sin;§)2c052 9.; (%sin 925)2 (1-1)
2 ta
-r/a ( —5 sin + p )

The formal continuum limit is given by
oo t2q2
/ L
e (2?2

which 1is absolutely convergent, whereas expanding cos? (ga/2) yields '

m

- 16
g p,a) = — dt

4
sin® £ [1 s? %
- (45111 Liu az)

i + O(1)

for small g, i.e., Tis (linearly) divergent. This example shows that "continuum UV-degrees” do not suffice to
control continuum limit behaviour of Feynman integrals on the lattice. This means we have to take into account
the lattice structure mote carefully. This can be done by introducing a new kind of UV-degrees which we shall
call "lattice UV-degrees”. It will be shown that they are suited to describe correctly the leading term in a small
a expansion of Feynman integrals. In some sense, these degrees describe the behaviour of Feynman integrals at
large momenta and small lattice spacing simultanecusly. Using them, we formulate a power counting theorem
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on the lattice which siates existence of the continuwm limit if all lattice UV-degrees are smaller than zero. In
a forthcoming paper this theorem will be used to construct a general renormalization procedure for lattice field
theories.

This article is essentially divided into two parts. The first part is devoted to the lattice power counting
theorern. In Section 2 we introduce the notion of a lattice UV-degree for functions containing a wide class of
Feynman integrands on the Jattice. We show that almost all properties one does expect of a degree are satisfied.
In Section 3 the power counting theorem is formulated, and the first steps of the proof are done in Section
4. As will be seen the numerator of the integrand causes some technical problems, but the integral is always
bounded by a sum of generalized continuum Feynman integrals. These are integrals which have a structure
similar to Feynman integrals in the continzum, but with a sharp cutoff and a more complicated numerator.
Hence it is necessary to have a theorem which states the cutoff dependence of such integrals. Such an auxiliary
power counting theorem is formulated in Section 5, and in Section 6 it is shown that the numerator of a lattice
Feynman integrand admits an estimate which allows application of this auxiliary theorem to complete the proof
of the power counting theorem in Section 7. The second part of this paper is devoted to the proof of the
auxiliary power counting theorem. Section 8 contains technical lemmas, and in Section 9 the proof is given by
induction on the number of loops.

2, UV-degrees on the lattice.

We shall consider momentum space-integrals of the general form

- /e Vik,q;p,a)
Tigiua =f Py - Aty e G 0) 21
g ) —7n/a ' C{kaq;”ua) ( )

where

n
ni(lia
Clk,gipa) =] (——i—zf) + u-f) . i >0,

i=1
Lilk,q) = Ki(k) + Qi(g) = D Ciykj + Qilg), i=1,....m,
i=1

and the Q; are linear {gq represents the external momenta and k the loop momenta). V and 5 are functions to
be specified below. As explained in the introduction, to discuss the behaviour of the integral when the cutoff is
removed, it does not suffice to consider the continuum limit of the integrand only. We will now define special
classes of functions and for them a generalized notion of a UV-degree. These degrees allow a generalization of
the old power counting theorem {1] which can be applied to diagrams with a lattice cutoff.

We shall consider functions of the lattice spacing a > 0, of "external” momenta w and "internal” momenta

.

Definition 2.1. For arbitrary m € Z, we define C,,, to be the set of functions V in real variables (u,w) =
(w1, .- un), (wi,...,w,) and a > 0 of the form

1. V(u,w;a) = (1/a™) F(ua, wa)

2-2
2. FeC®™. (2-2)

C is defined as the set of functions which are finite sums of functions in some Cp, .

' is the set of infinitely often differentiable functions. Co simplify the notation, we shall use multi-indices.
Set No = NU {0} ={0,1,2,...}. Forb & Nj and « € R” define

B = byl byt
b
u = ul‘---ui"

B = > b

i=1

The well known definition of a UV-degree of polynomials is given in Appendix C. We now define the lattice
version of a UV-degree of a function V & C,,, with respect to internal momenta u.

2
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Definition 2.2. Let V € C,n be of the form (2-2) and r, the largest non-negative integer such that

ot
(WF(u,w)) =0 for all b€ N}, b] < ry- {2-3)

w=0

Then the UV-degree of V with respect to (u) is defined by

degroV = m — 7y,

The UV-degree of a function V € Cp, with respect to internal momenta u is determined by the asymptotic
behaviour of V for small external momenta w. Note that always degr-V < m. With respect to all variables,

degr—V = m, the set of complementary variables being empty. If for all &

8P Fiu, w) I
—_— =0,
awb 1w:0
we set degr~¥ = —oo. Note that, contrary to the definition of a polynomial degree, we never fix external

momenta.

This form of a degree will be useful later in many circumstances, e.g. in proving convergence of renormalized
Feynman integrals. An equivalent, even simpler definition is the following. Let V € Cp, for some m € Z. Then
&y = degr~V if and only if

1
V(du, w; Ta) = Alu, w;a) My o(a="1), A - oo, (2-4)
where A{u, w;a) # 0 (A is a polynomial in w and C* in u).

As can be seen from (2-4), the UV-degree of V with respect to u is determined by the behaviour of V' for
large u and small a simultaneously. There may be high powers in X not occuring in the large u behaviour of
the leading term of a small ¢ expansion of V. For example, let

4 2 2
2.1 i 2 .1 2 .
Vit,q;e) = (c_r, sin —20-) [cos? g; — cos? g] + (E sin —;) cos® 225 (E sin q—;u)

as in the introduction. Then degrV = 4, but lim,_.o V(At, q;a) = A¥12¢%. The leading term does not show the
correct asymptotic behaviour of V if ¢t and 1/a tend to infinity simulianeously.

If F in Definition 2.2 is a homogeneous polynomial in u, w of degree mg, then
Viw,wia) = a® F{u,w) and degr,F =mp—ry=d+ degr~V,
where d = mg — m. In this case the lattice degree reproduces the old pelynomial degree up to a constant which

counts inverse powers of the lattice spacing. Every additional factor a in V' decreases the lattice degree by one,
j.e., improves the continuum limit behavieur.

We now generalize Definition 2.2 to functions in C.
Definition 2.3. Let V £,V = ZiEI V;, Vi € Gy, for some m; € T, m; # my for i £ k. Then we define
degroV = max degr~V;. (2-5)
By Defintion 2.3, the UV-degree is uniquely defined for every V € C. Again, &, = degr~V ifand only if V shows

a behaviour (2-4). The lattice degree defined in this way has quite similar properties as the usual degree of a
polynomial. Using {2-4), we get
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Lemma 2.1. Let V,V;,...,V, € C be functions in variables (v, w) and a > 0. Then

?
1. degrzz V; < t._rx]laxpdegr;:V,- (2--6)
i=1 T
P P
2. degr;HVi < Zdegr:Vi (2-7)
i=1 i=1
< —
3. degr;aucV < degroV - ¢ {2-8)
—_— < —
4, degrzawc V < degrzV (2-9)

Note that the second statement is an inequality, whereas the analogous property of polynomial degrees is
an equality.

We further restrict the function classes Cn, and C. Until now we have not made any assumption about the
behaviour of functions in C for small lattice spacing a. We now assume existence of the continuum limit.

Definition 2.4. C;, is the set of functions V defined by

a. Veln,,
b. lin}} V(u,w;a) exists.

C® consists of all finite sums of functions in some C5,.

This roughly defines the class of functions to which numerators and denominators of Feynman integrals belong.
In particular, they are assumed to be infinitely often differentiable, and their continuum limit exists. Before
defining the exact form of Feynman integrals to which the power counting theorem will be applicable we state
some important properties of the class C5,. If V' & (7, is independent of momenta u, then
degr-V{(u, w; a) < 0.
If in addition lim, _¢ V (u, w;a) # 0, we have
degr-V(u,w;a} = 0.
Every V € Cf, has an expansion for small jattice spacing a of the form
1
Viu,w;a) = — F(ua,wa) = P{u, w)+ R{u, uw;a). {2-10)
am
The continuum limit P of V 1s a homogeneous polynomial of order m. In general,
degr, P < degr-V. (2-11)

As shown by the example considered above, degr, P < degr~V cannot be excluded. However, with respect to
all momenta u, w,
degr,,,, P = degr~V if P(u,w)Z 0.

In this special case the lattice degree is determined by the continuum limit. In general, "lattice effects” are
described by the remainder R{u, w;a). As can easily be seen, R admits an estimate

|R(v,wia)| < a” Y |Qifw,w)l, p2>1, (2-12)

icl
where I is a finite set and @; are polynomials satisfying degr, @; < degr-V + p. This means every additional
power of u in Q; {with respect to degr-V) is accompanied by a power of a. Unfortunately, (2-12) depends on
the partition of (u, w) into internal and external momenta. Later we will derive a much more general inequality

which aliows determination of the cutoff dependence of Feynman integrals having such a V' as the numerator
of the integrand.

We now define a class of Feynman integrands on the lattice. To this end we choose momentum variables
(u1....,us) and (wy,..., w,), where u; and w; are four-momenta. The following considerations can easily be
extended to other dimensions.
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Definition 2.5. F is the set of functions F in momentum variables (u1,...,un}, (wy,..., w,), masses p =
(g1, 2, --.) and a > 0 of the form
v
F = — 2-13
. (2-13)

and the following properties:

1. V € C° is of the form V{u,w;p,a) = 3. ,c7 Pilje) Vi(u,wia), I a finite set and V; € C7,., m; € Z. For
every i € I, P; is a polynomial in the masses p 1.

2. C is a product
: ™
€ = [Jledttis a) 423,
i=1

where n € Nog = {0,1,2,...}. The "line momenta” l; £ 0 are of the form

) h F]
Li{u,w)= ZCU u; + Zd“‘ Wi,

i=t k=1

where c;;, di are real constants, and

1
e; €C5,  eilliza) = — millia),

a
where
mi(lia #0) >0 forl; € [-n/a, n/a]?,
7;  2m-periodic in every component of [;a,
and

. X L. . 2
gl_’n}'e,(l“a) =1

With respect to addition and multiplication, the set of functions F is closed. Furthermore, F is invariant
under differentiation. We always assume that every e;{l;; a) is periodic in I; with the BZ, and e; should have only
one zero in the BZ, located at vanishing momentum. Especially, naive fermions are excluded, their propagators
having more than one pole. If we would drop this condition, our general assumptions about the form of the
numerator would not be sufficient to get convergence of a Feynman integral in the continuum limit.

For F = V/C € F we define

degr-F = degr-V — degr-C. (2-14)
Note that
{2 it (i, Cin) £ 0

degr-(e;(l;;a) + wi) = 0 otherwise

hence for F = V/C € F
degr~F = degr2V — 2ny,

where n, is the number of line momenta I;, ¢ € {1,...,n}, which are dependent on u. In particular
n n
degr;H[ei(li; a)+uil = Z degr~fe;(l;;a) + pll. {2-15)
=3 i=1

In this special case Lemma 2.1.2 is an equality, i.e., the UV-degree of the denominator is already given by the
polynomial degree of its continuum limit. As a consequence, for every F' € F

degr, lin':J Flu,wyp, 0} < degroF(u, w;p,a). (2-16)

The UV-degrees of functions F' € F have "typical” degree properties. They are direct consequences of Definition
2.5 and of Lemma 2.1, and are listed below, although we do not make use of them in this paper. Nevertheless,
they are of importance, especially in proving convergence of renormalization schemes [4].

I The mass dependence of the nwmerator is important if Feynman integrals containing massless propagators are to be renormalized.

Then it will be necessary to introduce auxiliary masses.



A power counting theorem for Feynman integrals on the lattice

Lemma 2.2. Let F,Fy,...,F, € F. Then

1. -~ < -~ —_
degr Zl F; rrllax degr F (2-17)
d »
2. degr:H F < Zdegr:Fi (2-18)
i=1 i=1
——rr—— < —
3. degr;autF < degr~F — |c] (2-19)
[
4. degr:(‘awc F < degroF {2-20)
For instance, to prove 3., let F € F. Then
ew oc
u (72 ’

hence

aF — 8V — _8C S
e < degr~C—— | degr-V 2"} - ~C
degr- 30 < max( egru("au , degr- 8u) 2 degr-,

< degrpV — degro(” — 1 = degroF — 1.

The assertion now follows by induction on the number of derivatives.

3. The Power Counting Theorem.

We consider Feynman integrals

= r/a
Iig,p,a) = f d%ky - d*k Fik, q;p, a), (3-1)

ria

where

Flk,qip,a) = Vik, ¢ p,a)/Clk,q; 1, a) € F.

We assume periodicity of the numerator V € €° with the Brillouin zone [~n/a, n/a]* in all internal momenta
k1,...,km. An important notion is given by the following

Definition 3.1. Lef £ be a set of four-vectors I;,

™

Lik,q) = Ki(k) + Qi(g Z ik +Qilg), i=1,...,N,Cy€eR.

L 1s called natural with respect to k, if the following conditions hold:

1.
Ci; ¢ Z foralli=1,...,N; j=1,...,m,

rank(Cij) =m,
(Cir,-. ., Cim}#0 foralli=1,... N.

2. If the four-momenta

:ZC’i,ij—, l:l,...,?n

i=1

are linearly independent, then

L’j = Z Ajz k; with AJ‘; c Z.
=1
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This condition is natural in the sense that arbitrary independent I; € £ could be chosen as integration
momenta, the coefficients C; always being integer valued. For a Feynman integral this condition is ensured if
all loop momenta k1, ..., k,, coincide with momenta of lines up to external momenta [3]. Also, using periodicity
of the integrand, the integration domain could always be chosen to be [~m/a, n/al*™. As an example of the
importance of line momenta to be natural consider

wla 1 1 1 1 22 72)®
f dthyd*k, = iy S (B2 +77)
~x/a ki +p® k3 4+ 07 (ky —ky 4 p2)® (ki + Ry + p2)8

Here k2 = Z:izl(flfaz)sin2 (k,a/2) and p® > 0. All criteria of the power counting theorem below are satisfied
except that the set {k;, k2, ky — k2, k1 + k2 } is not natural. In fact, if 0 < € < 1/2 and e = (1,0, 0, 0}, the integral
s divergent in the sector

T s 2 T T
ko]l = — €, [lkall 2 =€, fllr + k2 — —el| < —€, ||ky —kaf| < —€
a a a a a

as a — 0, where [|i|| = \/Z?ﬂ 2 for 1 = (I1,...,l4) € R* As will be seen below, naturalness means that
line momenta in neighborhoods of poles? of propagators in higher BZs can be transformed simultaneously
into neighborhoods of the poles in the first BZ by translation with reciprocal lattice vectors. Under such
a transformation the numerator of a Feynman integrand is invariant. This would not be the case by other
translations. They would produce explicit negative powers in the lattice spacing destroying convergence.

Before defining UV-divergence degrees of Feynman integrals in Zimmermann subspaces, we have to intro-
duce the notion of a basis of a set of line momenta. Given variables k = (k, ..., k) (loop momenta) and g =
(¢1.--.,qa) (external momenta), k;, g; € R%, let L denote the space of all linear mappings I : R'™x R*M _ R*
of the form

ik, q) = K{k) +Q(q) ' (3-2)
K(k):Za{ki; aeR,i=1,...,m (3-3)
i=1
M
Q(Q):ij%; bhbeR,j=1,... M (3-4)
j=1
in the four-momenta ky, ..., km and ¢;,...,qu. K and @ is said to be linear in k and g, respectively.

Let MM C L be an arbitrary subset. Elements {y,..., I, € M,
m M
[,‘(k,q)i Z“ijkj+zbijq1» t=1,...,8 ) (3*5)
i=1 F=1

are called linearly independent with respect to k if their homogeneous parts in k are linearly independent.
Furthermore, {I1,...,1,} C M is called a basis of M with respect to kif l;,..., [, are linearly independent and

every ! € M can be writlen as

l(k)g) - Zcili(kr Q) + Q(Q)a (3_6)
i=1
where c; € R,i = 1,...,5 and @ is linear. In this case we define rank; M = s.

We now define UV-divergence degrees with respect to Zimunermann subspaces. Let £ be a natural set of

3

four-momenta © and

Uy :lil,...,ud:ll‘d

(3-7)

(31 :Ij;:'-':vm—d:ljm,d

2A "pole” of a propagator 1/ (%ﬂ + ,112) denotes a zero of the n-function.
% Actually, property 1 in the definition of naturalness would be sufficient to define UV-degrees of Feynman integrals. However it is
convenient here to assume £ to be natural, this being an important assumption of the power counting theorem.

7
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be an arbitrary basis of £ with respect to k, 1 < d < m. By fixing vy,...,vn_¢ we define a class H of affine
subspaces in the space of integration momenta R*™. H is called a Zimmermann subspace, (u) = (u1,.. -, ug) is
called the parametrization of H, and (v) = (v1, ..., v;m_a) are the complementary parameters of H. For F ¢ F
we define

degrﬁf(q; poa) = 4d -+ degr~F(k(u, v, q), ¢ 1, @) (3-8)

(v, q represent the "external momenta” of H). The set of all Zimmermann subspaces, for all bases (3-7), will
be denoted by H. Note that H depends on the set £ of four-momenta. Now we state

Theorem 1. Power Counting Theorem. Let

= n/a
I{g; i, a) :] d*ky - -d Ry, Fik, q;u, a) (3-1)
—-rfa
and F £ F of the form )
: Vik,qgiu,a
Flk,qip,a)= o,
( ) Clk,q;p,a)
where V € C° is (2w /a)-periodic in every component of kv, ..., k,, and

Clk,gipa) = []leilli(k,q)ia) + u2),  u >0,

7=1

Let £ be a natural set of four-momenta and {l,,...,1,} C £. i for every H € H

-~

degrgI{g; u,a) < 0, (3-9)

the continuum limit of I{g; u, a} exists and is given by

.- * Pk, q, 1)
lim J(q; p,a) = d¥hy - dik, 10 3-10
where
Plk,g,n) = lim V(k, ¢ p, a)
E(k,q,p) = lim C(k, g; 1, a)-
If P £ 0, the set £' = {l;,...,l,} contains a basis of £ with respect to k (otherwise w(H) > 0 for some

H ¢ H). Hence, if £ is natural so is £’. In this case the theorem can be formulated using £’ instead of £. The
continuum limit (3-10) is absolutely convergent according to (2-16) and the power counting theorem of Y.Hahn
und W.Zimmermann [1] {or by Theorem 2 below).

As an example for the importance of (3-9), let us look at (1-1) in the introduction again. Omnly one subspace
must be considered, and the corresponding divergence degree is equal to one. Hence the theorem cannot be
applied, and as we have seen, (1-1) is in fact divergent in the limit of vanishing lattice spacing a.

To prove the theorem, using Definition 2.3, it does suffice to assume V € C’,"nO for some mo € Z. Hence let
us consider

- r/e Vik.q;a)
Tlaima) = [ dihy oty oL (3-11)
~nfe iP5 + i
Ve . me € Z. Without loss of generality we assume £ = {l,...,Ix}, N an integer greater or equal to
n, and that ky, ...,k are contained in £. By naturalness of £, this is always possible to arrange by a linear

transformation.

4. Proof of the power counting theorem: first steps.

The proof idea is as follows: The integral {3-11) will be written as a sum of integrals over various sections
in jnomentum space. The division of the integration domain will be done in dependence on the configuration of

8
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line momenta I;. For every propagator we distinguish line momenta in neighborhoods of the poles and outside
of them. As will be seen, a propagator can then be estimated by its continuum limit or by some powers of the
lattice spacing @, respectively.

For I ¢ R? define

_Jo if {jl — (2x/a) z|| < (7/a) ¢ for some z € Z* B
Ol = { 1 otherwise, (4-1)

where ¢ is a small positive constant which will be chosen below. Using Heavisides @-function, @(z} = 1 ifz > 0
and @{z) =01l « < 0,

+ Y ol ez, (4-2)

ze 2t
Doing so for every propagator, (3-11) can be written as

f(q;u'aa) = Z Zflz(q;“:a‘): (4—3)

JC{1,.,n} =

where for every "sector” J,2 = (z;}i € J), we have

I7.(q:1e,a) = [”/a ) PRV &F Iz(jﬁf_qi,l | ) (H@ —e— ||l - —z,H ) 'HOE(li), (4-4)
_ o) 4 3

n
mie Hi:l i€J igJg

and for every J the sum ¥ runs over finitely many configurations z. We have to estimate the contributions
of all integrals (4-4) for small latiice spacing @. To this end, we make an appropriate transformation for each
integral {4-4). As a consequence of naturalness of the set £ of four-momenta, for small enough € > 0 and for
every J, z, there exists a translation

2
kj_,kj_,__fgj, §; €2t j=1,...,m
a

so that )
L—bh+Z s forallicJ, (4-5)
a

This is shown in Appendix D. By (4-5}, all line momenta at poles of propagators in higher BZs are shifted into
neighborhoods of the origin in the first BZ, leaving V(k, g; @} and all #; invariani. Consequently

g = [ dtdthn SR (TToCe- ) JTodt) (40

H?: (#2_,_“) ied igd

where
or ={(k1, .. km) € R¥M — (14 2(6;))7/a < {k;); <(1—-2(8;))r/a, j=1,...,myi=1,....,4}. (4-T)

Now, in every integral (4-6} the propagators can easily be esiimated, using their properties listed in Definition
2.5. Again, for small enough ¢, there is a constant «, so that

1 Q

nlba) 2 = B2 p?

a

(4-8)

VAN

whenever ||I;|] < {x/a)e. This can be seen by an expansion of »; at vanishing momentum. Furthermore, there
is a constant 4 > 0 such that, if [|l; — (2x/a) z|]| > {w/a)e for all z € Z*, then

1
< yal. (4-9)

m(f.aj +H

Hence, the denominator in every integral (4-6) is bounded by a product of continuum propagators and explicit
powers of the lattice spacing a. If it would be possible to estimate the numerator V{k, g; a) by its continuum limit,

9
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(4-6) would be bounded by a rational function to which the power counting theorem of Hahn and Zimmermann
could be applied (in a somewhat generalized form to determine the cutoff behaviour). Unfortunately, this will
not be possible, as we have seen in the introduction. Another possibility would be to expand V' at small lattice
spacing a,

Vi(k, g;a) = Pk, q) + R(k, g a),

P being the continuum limit of V and R a Taylor remainder, and to estimate R by a polynomial. But this
estimate is too rough, the conditions (3-9) will not be sufficient for convergence of this estimate. This is because
we have a lot of Zimmermann subspaces and for every such space a corresponding lattice degree of the numerator
V. For a fixed space we will get an estimate of the form (2-12), but now we need such an inequality which
respects degree properties of all Zimmermann subspaces simultaneously. This is not possible in general.

A way out is the following. A simultaneous estimate which respects degree properties can be done for
ordered subspaces H,,..., H,, i.c., H; is a subspace of H; if i < j. This means that for every such sequence we
get an estimate

|R(u,w;a)| < a” Y |Qu(u, w)l, (4-10)

beB

where p is a natural number, B a finite set, and the polynomials @, satisfy
degruJ_Qﬁ Sdegr=V4p,j=1,...,8 (4-11)
E

w;) being the internal parameters of H;. Doing so for every ordered sequence of Zimmermann subspaces, we
J g 7 E ¥ q
get

b a < min aP? alk, q)l. 4-12
|R( aqia)‘ = rz'nel}la bg; |Q b( Q)‘ ( )

so that for every ordered sequence there exists an i € I such that
degr, Qip < degr;V +p; forallb € B;, {4-13)

(u) being the parameters of an arbitrary Zimmermann subspace in the sequence. Using this and the above
estimates for propagators in the integral (4-6), we get generalized continuum Feynman integrals, i.e., integrals
which look like Feynman integrals in the continuum with a sharp cutoff, the right hand side of (4-12) being the
numerator. In the next section we will state a theorem which controls the cutoff dependence of integrals having
this form. Furthermore, we will prove the validity of an inequality (4-12). Using these two statements it will
be possible to complete the proof of the power counting theorem under the conditions (3-9).

5. A Power Counting Theorem for generalized continuum Feynman integrals.

In the present section we state an auxiliary theorem which will be used to complete the proof of the power

counting theorem. Set k = (kq,..., km) (loop-momenta) and ¢ = (q1,...,qn) (external momenta), k;, ¢; € R*.
L again denotes the space of linear mappings ! : R*™ x R*™ — R? of the form (3-2)-(3-4) in the four-momenta
ky,....km, and q;,...,qa- The notion of a basis of a set of line momenta is defined in (3-5)-(3-6).

Let £ ¢ L be a finite subset

£={lik,q)=> Cikj+ Qi) | i=1,...,N}, (5-1a)

j=1
where
rank(Ci;) = m
(C',-l,...,(‘im):,éo foralli:l,...,N ) (5'—1b)
2 2 P
li ?f l_',' i ‘# I

so that rank,L = m (cp. (3-6), especially N > m}. Furthermore, let A" C £ be an arbitrary subset. We
consider integrals of the form

AL - -
: ier ATP Pk, .
I)\(QS }t} = f qul T 'dék'ﬂl == eIB.(k q} H)( q)‘ ) P > 0 integer. (572)

10



A power counting theorem for Feynman integrals on the lattice

I is a finite set, P; are polynomials in the components of the four-momenta kq, . .., k,,, and g1, --..9M, and
E(k,qpu) = [T (kq) + )™, w?>0, meN={2,..} (5-3)
N

[14 means product over I; € A”. Hence A is the set of all I; € £ appearing in the denominator of the integrand
of ). We always have ranki N < m. All propagators are assumed to be massive.

For a finite subset MM C L satisfying rankpAM = m we define

A, M
/ d*ky - d*k, Fk) : (5-4)
as the integral over all (k1, ..., kxn) € R*™ subject to the constraints
Plh,g) < A? forallle M. .. (5-5)

Iy is convergent for every finite A. We examine the behaviour of I, for large A. The cutoff dependence can
be described with the help of divergence degrees with respect to Zimmermann subspaces of the integration
momenta. First we make the notions more precise. Let

ulzlilw---wud:lig (5 6)
U1 :ljl,...,'vmﬁd = I‘m_d

be an arbiirary basis of £ with respect to k, so that k = k(w,v,q), 1 < d < m. As in Section 3, by fixing
V1;.. ., ¥mq, We define a class H of affine subspaces in the space of integration momenta k called Zimmermann
subspace. (u) = (u1, ..., uq}is called the parametrization of H. (%1, ..., vm.q4) ate said to be the complementary
parameters of H. The set of all H, for all bases (5-6) of £, is denoted by H. H is the set of all possible
Zimmermann subspaces, and it depends on the set £.

Definition 5.1. Let

wt) o alm) (5-7a)
be an arbitrary basis of £ and Hy,...,H,, s > 1, a sequence of classes of affine subspaces in 'H having the
following properties:
1. H; is parametrized by (u;) = (w1, ..., %a,) € {u), .., ul™} the remaining u{/)'s
in the basis being the complementary parameters of H;. (5-Tb)
2. (uj) are contained in (ux) if j < k.
Then the sequence Hy, ..., H, is called an ordered sequence with respect to the basis (5-7a).

With respect to the set of polynomials {P;[¢ € I} in the numerator of (5-2) we define

Definition 5.2. The set {§(H)|H € H} is called an ultraviolet-set (UV-set), if
1. 8(H) ¢ Z for every H € 'H.

2. For every hasis ('a.(l), .. .ju(m)) of L and every sequence Hq,..., H, which is ordered with respect to
this basis, there exists an ¢ € I such that {cf Appendix C)

degr, |, Pi(k.q) — pi < 86(H;) for all. (5-8)

Here (u;) denotes the parameters of H; and (u;,v;} = ('u.(l), .. .,u(m)).

The number of possible bases of £ and ordered sequences of subspaces in ‘H is finite. Hence UV-sets do
always exist. If I == {1} consists of one element only, the set of

6(H} = degrul’vpi(k(uv 1’;‘1)e‘1) - M

11



A power counting theorem for Feynman integrals on the lattice

for every H € H, where (u) is the parametrization of i and (v) are the complementary variables, is a UV-set.
In this case the notion of ordered subspaces is superfluous. Note that UV-sets as defined in (5-8) are dependent
on the external momenta g, which we have kept fixed. momenta g. However, for every UV-set {6(H)|H € H}
one can find a UV-set {§'(H)|H € H}, which is independent of g, where §'(H) > §(H) for 21l H € H.

We now define UV-divergence degrees for integrals of the form (5-2). UV-degrees of polynomials are defined
in Appendix C. Let {§(H)/H € M} be a UV-set. Given an arbitrary basts (5-6) of £, we define for H ¢ H,
parametrized by (u) = (ug,..., uq),

w(H) = degryTx = 4d + §(H) — degr,,, E(k(u,v,q), g, p). (5-9)

This definition depends on a given UV-set. The following theorem states the cutoff behavior of integrals (5-2)
{for large X if a UV-set is given.

Theorem 2. Auxiliary Power Counting Theorem. Let {§(H)|H € H} be a UV-set and {w(H)|H € H}
the corresponding set of UV-divergence degrees. Then there exist K(p,q) > 0 and c(p,q) > 0, so that for all
A > K(p,q)

1 if maxw(H} <0
HeR
Talg, p) < el g} - A1 log™ A if }fnngéw(H)<0andp,- >1foralliel (5-10)

amex w(H) Jog™ ) if maxw(H) > 0.
Heh

If the momenta g are bounded and the UV-set is independent of such g, then K and ¢ can be chosen to be
independent of g.

The estimate (5-10) can be strenghened if a UV-set is given having maxges w(H) minimal. However, we
do not need this in our application, where a UV-set will be given in a natural way. The theorem is an extension
of the power counting theorem of Hahn und Zimmermann [1j. In general, the numerator is not a polynomial,
instead it is a minimum of a collection of polynomials, and we include the cutoff behavior of divergent integrals
(for A — oc). Below we will apply the theorem (for A ~ 1/a) in two special cases. If I = {1} and p; = 0,
the statement of [1] is reproduced. If all p; > 1 and the limit exists, it is zero. If p; = 0 forall i € I and
maxyey w({H) < 0, then 7,(g, 1) converges to

[m dky - - dbh minier | Pi(k. g}
e E(k, g, 1)

The proof of Theorem 2 will be given in Sections 8,9.

6. Bounds on the numerator of a lattice Feynman integrand.

Having introduced appropriate notions and an auxiliary power counting theoremn being at our disposal, we
will now show that the numerator of a Feynman integrand can be estimated as proposed at the end of Section
5. This statement is contained in the following theorem. It is a consequence of the definition of UV-degrees on
the lattice. Remember we are using multi-index notation. We shall write k = (k1,...,km) and ¢ = (q1,-- ., qn)
as in the power counting theorem.

Theorem 3. Let V(k,q;a) € C, forsomemg € Z, L a natural set of four-vectors with respect to k *, and
let (ka,qa) be bounded. Then V admits an estimate of the form

(b ar _ P 1 . —
V(k,g;0) — Plk,g)l <a bez;gyczm(k,q)\, (6-1)

where I, B are finite sets, p ¢ N, and

41t would be sufficient to assume property 1 in the definition of naturalness (existence of a basis). However, in application of
Theorem 3 below, £ will be natural.

12
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1. P(k,q) = limg_o V(k,qg;a). For every H € 'H, parametrized by (u)

degr, P < degr-V. (6-2)

2. Qi are polynomials. For every basis
Wl =1y, ™ = (6-3)
of L with respect to k and every sequence Hy, ..., H, of classes of affine subspaces in H which is ordered with

respect to the basis (6-3), there exists an i € I, so that

'degrujQib <degi~ V+p forallj=1,...,sandallbe B, {6-4)
v
where (u;) denotes the set of parameters of Hj.

The statement means that, for every b € B, the set of all §(H) = Fgrav, where (u) is the parametrization
of H € 'H, is a UV-set for the polynomials @y, which is independent of g. This allows us to apply the cutoff
theorem to the integrals (5-8) ir Section 5 to determine their cutoff dependence, as will be seen in the next
section. Note that always p > 1. If P{k,g) £ O, then p can be chosen to be 1. If V{k, ¢;a) is the numerator
of a Feynman integral, the variables {ka,qa) are always bounded, because ky,...,k, range over the BZ, and
external momenta g are fixed.

In the remaining pari of this section Theorem 3 is proved. First of all we note an extended version of

Taylors theorem.

Lemina 6.1. Let F be a C°-function of the form F(vy,...,v,), v; € R™i. Let §; € Ng = {0,1,2, ...} for
everyi=1,...,m,and &§; > &, ifi < k. If

Flog, oo ve1, Avy, oo Aun ) = O()xb‘), A—0;s=1,...,n, {6-5)
then there exist C'™-functions Fy,, b € Ng'", |b| — &, satisfying
Fb(?}l, ceey Uso1, A‘v-"l R AT”ﬂ) - O(’\ﬁlkén)l A—0 (6—6)

foralts = 1,...,n — 1, so that

F(vl,...,vn):sz Fylvy,- .., ta). {(6-7)

3

This lemma is an extension of Taylors formula in the sense that it states the coefficient functions Fj being
% if'this already holds for F*. This allows successive applicatton of (6-7).

ProoF: By induction on my,. lf m, = 1 let b =&, € Ny and

Flvg, ..o,
Fb('ul,.“,vn) = w—(—T_l
By Taylors formula, Fy € ™, and (6-6) is satisfled. Assume the statement holds for all m, < M, where
M € N. Let v, = {wy, ws), w; € R¥ wy, € R, For 1 =0,...,6, — 1 set

51
Arfvg, o o, ) = [a—z Fluog, oo, tn_1, W1, W2)]u,=0,
ws
and define a function G by
ful
. 2
G(I] """ ’U“n—lluls‘wz):F(T’1$--'71‘n711w1au’2)_ T-Al(vl:---:vnvlywl)~
i=0 '

13
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The hypothesis of induction can be applied to G and A;. For, as A — 0 we have

)

A}('I-’l, .. .,vn_l,)‘wl) = O(Aé"_t
) 1<s<n~1

A{vy, o 0,01, Avg, L, Ay, Awn ) = O()'s'
G(¥1, -y Uy, wr, Awz) = O(A")
GV, g1y ATyy oo AUy, Awy, dwg) = O(A%); 1< s<n— 1

Hence, there exist g{vy,. .., a1, w1, w2) € C%° and hrp{vy, ..., 0n1,w1) € C* forall b € NM, |b| = 6, — 1, s0
that

A,‘_('D‘l, ey Up1, 1.[)1) = Z wl{ hg,b('vl, cey U1, wl),
b

Rpp(o1, ooy Wam1, Ay, oo AU, Awe) = O(Mr ) A0 1<s<n—1,
and
G('l’l,...,vn_]_,'fBl,WZ) - wgng(ﬁla"'avﬂ—llwluwz))
gv1, o Vo1, ATy, oo, Al _ 1, AWy, Awp) = O()\ﬁ‘_é“), A—0 1<s<n-1.
Writing F in terms of G and 4;, the assertion follows.

g

We shall use the following notation: For s € N, § = (,,...,&) € No7**! and multi-indices b; € N, i =
$,...,m let

o [bol 4o [ba = 6, and

— 1
haja(bs, .- bn) = bo| 4 - 4 b < 8, — biyy foralli=s, ... n—1
0 otherwise.

By iteration of Lemma 6.1 we get

Lemma 6.2. Let F be a C®-function of the form F(vy,...,va), v: € R™ and é; € Ng foreveryi=1,...,n,
& > &, ifi<k IfasA— 0

Fog, ..., 01, A0,..., Av,) = O(Xe) t=1,....n, {6-8)

then for arbitrary s = 1,...,n there exist functions Fy,..,, € C*, so that

Flor,-yva) = Y hapalbayoba) vl - oopt Fop (V1,0 vm), (6-9)
bybn

Fy p (01, o, ATy, o ATg) = Oty A 50, 1<t <s {6-10)

ProoF: If s — m, this is the statement of Lemma 6.1. Assume it holds for some s > 2. Application of Lemma
6.1 to Fyp, ., in {6-9) yields

"

a1 ¢
Fo, (1, ., 00) = E ot v Py b e geeen (P11 B ),
le, x|+ A|enl=6,-1—8,

Fooobocr e (Vhh oo o1, A, L v = O(M ) A0 1<t <s - 1

Inserting this into {6-9) and collecting indices of Fy .4, ¢, ,..c,., We obtain

[
F(’(’],...,’U-,;)I Z héis—l(bs—li'"ybn)t’,gli "'I’:,n Fb.71<'<bn(1’11"'avn)1
b

be_yobn

Fo, o, oo v, v, A ) = O 8 w0 1<t <s — 1.
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Lemma 8.3. Let
}u(m} = i

S (6-11)

™

be an arbitrary basis of £ with respect to k, and Hy,..., H, an arbitrary sequence of Zimmermann subspaces
which is ordered with respect to (6-11). Furthermore, let V(k, ¢;a) € C,, , mo € Z, and (ka, ga) be bounded.
Then V admits an estimate of the form

[V{k,g;a) — Plk,a)| < a¥ Y Qs(k, q)l, (6-12)
be R

where B is a finite set. p € N isindependent of the basis (6-11} and the sequence of subspaces. The homogeneous
polynomial P is given by P(k,q) = lim,_o V{(k,g;a), and @, are homogeneous polynomials of erder p 4+ myg

such that —
degr, P < degr- V
! ! (6-13)
degr, Qy < p+degry V,
B 1

where (1, ) Is the parametrﬁéétion of H;, forall j =1,...,s and all b€ B.

If Plk.q) 2 0, p can be chosen to be 1. If P(k,q) = 0, p is the largest natural number such that
limg, o V(k, g;a)/aP # 0 exists.

Proor: 1. We define new sets of variables vy, ..., v,41 as follows:

(u-’) - (Ula ---,'UJ)
(u(l), R u(m),q) = (o1, ..., U41) = ().
Lel V(k,q;a) = F(ka, ga)/a™ € CZ,_ and F'(v) = F(k,q). For every H; in the given ordered sequence we make

a partition (v) = (u;, w;), where (u;) = (v1,-..,v;) are the "internal” momenta and {(w;} = (¥j41.-. Y41}
are the “external” momenta of H;. Sei r; = mp — degr;,V. Then 7y > --- > 7, and
2

Fllo, oo v, Avyen, o Avgg) = OAAY L A—=05 7=1,...,5.

2. For & € Z define
F'()m;, . AU,+1)

Ad !

Pdr(t’ly"-avs-%l) = )\hino

and set
G('Ul,...,'v,_{._;) = Fr(’Ul,...,‘U,+1) - P:no(”h---a”aﬂ)-

Let 7o € Np be the largest integer number such that P/ (vy,..., v,41) Z 0 exists. Set

. To if mo < To
o = .
7o+ 1 if mg = 1o
and #; = 7; for j > 1. Then
Glor, o 0, AT 41, o AU ) = O(A); A= 0, 0< 5 <s,
and 7 > ¥y > --- > 7,. Applying Lemma 6.2 to G yields

Besr
Glor, . -, tys1) = By by, by )00 vy By, (1,0 2t ),
h +

byyobagn
where N
X |bl‘+"'+lb,+1]:?‘0 and
1
h;‘](bl,...,bsﬂ): . b1+ -+ [bj| < Fo—-7F; forallj=1,...,5
0 otherwise,
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and F.. & . For bounded wa we get
) g

by

|G(U1(1,. . .11}J+1a)‘ S G.Tn Z ‘Q;,(’U;,. . .,‘U,+1)|,
e B

where @} are (finitely many) homogeneous polynomials of order 7y satisfying
degr,,... @y < Fo— F; = (Fo ~ mo) + degr~ V, j=1,...,s,

for all ® € B. Finally, let
1
Plk,g) = li[% GTOV(k,q;a) =P, (vi,. -0, Uss1)

Mg

Qo(k,q) = Qy(v1,...,v,41) foralldc B.
Setting p = ¥op — mo € N, (6-14) follows, and as a consequence of (6-14)

1
[Vik,gsa) = Plk,g)l = — |G(via, ..., v, 10| < a” > @ik, q)].

am™
ek

ProoF oF THEOGREM 3:

(6-14)

a

Let the set of all ordered sequences of subspaces in M be indexed by a finite set . Using Lemma 6.3,

V & 7, admits for every i € I an estimate of the form

[V(k,q;a) — Pik,g)| < @ > |Qu(k,q)l,

beB;

where B; is a finite set and p € N is independent of i € I. P is equal to the continuum limit of V', hence is

independent of all sequences, and satisfies for every H € H, parametrized by (u)
degr, P < degr;V.
For every H;, parametrized by {u;}, in the ordered sequence,
degr, Qs < p -+ &g}"@v, for all b € B;.

In summary, using the inequality and notations of Appendix B, V obeys an inequality

V(kigia) ~ P(k,g)l < o min 3 Qs(k,q)| < a® 3 min|Qu(k,q)l.

be B, beB

where B = ®;c1 B;, and for b = (b;}ie; € B, Qi = @Qp,. Point 2 in Theorem 3 is satisfied by construction.

7. Completion of the proof of the power counting theorem.

O

Having shown that the numerator of a lattice Feynman integrand admits an estimate as supposed at the end
of Section 4, and a theorem being at our disposal which states the cutoff dependence of generalized continuum
Feynman integrals, it is not hard to complete the proof of Theorem 1. Our starting point is (4-6). Using

Theorem 3 we write Vik,q:a) = P(k,q) + R(k, g;a), so that
fJ: = fJOz + ff:!

where

o= [t dti R (TToCe— ul)) - [T 0ctt)

ila .
1=, (n“_‘—(az )+#-?) ied igt
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and

T B PR Rk, gia) ( L ) . _
® u/”d b (o 1) TloGe= 1) - TTow (1-2)

P is the continnum limit of V', and R{k, ¢; a) admits an estimate

|R(k,g;a)| < a”grpggl [Qaa(k, a)]- (7-3)
€

By Theorem 3, for every fixed b € B, the set of all é(H) = degr-V'; (u} being the parametrization of 4 € K, is
a UV-set for the polynomials Q;;.

Using the bounds {4-8), {4-9) on the propagators, we get the estimates

[Pk, g)|

= =0
17.gin,0) < 1), (g, na) = a”'(‘raz)“"‘/ d*hy - d ke (7-4)
) w1 HieJ (17 +uf) '
and -
gl < 317 (g ), (7-5a)
beB
where ineer @ [Qun(k, )|
+(®) hi . 2yn—h 4 4, Mingera® |Qulk, q
Iyg. pal=a(va / k- dPhey . 7-5b
! ) ®a ' icy (17 + ui) ( )
h is the number of elements of J, 1.¢., it is the number of propagators having a momentum near a pole,
wy ={(k1, .. k) €ER¥Y™|IL] < 6/a for alll; € L5}, (7-6)
ﬁ_;:{lj|jEJ}U{k1,...,km}§£, (7*7)
and
&= max (me, dn(1-+]|&]/2)), {7-8)
t=1,..,mMm

is a constant. To every integral in (7-4) and (7-5) we can now apply the auxiliary power counting theorem to
discuss the small o behavior. All integrals are of the form needed, where X is replaced by é/a and £ by L.
The corresponding set H; of Zimmermann subspaces of k is defined by bases of L5 with respect to k. By (7-7)
Hy C M. Hence for every J C {1,...,n} the set of 6(H#) = degrV', (u) being the parametrization of H, for all
H € My is a UV-set for the family of polynomials @;;, for every fixed b € B. It is independent of the external
momenta q.

We first consider the integrals fgb). As a consequence of (3-9), for arbitrary H € Hj, parametrized by
()} = (uy, ..., uq) say, we get

dengTsz)(q, p,a) = 4d + 6(H) — degr, H (12 + pf)

ieJd
= [4d + degr~V — degrEC] + degr, H (17 + u?) (7-9)
gt
< degr, [[ (# +ul) < 20n-h),
igd
where we have used (2-15). Hence
degrgfgbz)(q,u,a) <2n-h)-1 forall H & Hy. (7-10)

By the auxiliary power counting theorem, there exist positive constants K and ¢, so that for all a < K1

a. ifn—h>0, T_E,bj(q, o) < ela®) e BRI 60™ g = ¢ alog™ a. (7-11)
B)

b ifn—h=0, Ti, (g, jt,a) < calog™a {because of p > 1). (T-12)

k4
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Thus, the remainder f_‘fz does not contribute in the continuum limit.

~ Next, we turn to the integrals f?,z. If P(k,q) = 0,all ng vanish and the proof of the power counting theorem
is complete. Thus, let us assume that P(k,q) #Z 0. For every H € H;, parametrized by (u) = (u1, ..., uq),

degr, P < degr-V. (7-13)
The set of §( H) = degr, P(k(u,v,q),q), H € H;, is a UV-set. Consequently, using (7-13) and (3-9), we have

dengT_?;(q, i, a) = 4d + degr, Pk, g) — degr,, H (lf + .uf)

ied
< [4d+ degr~V — degr;C] -+ degr, H (17 +pf) < 2(n— R}, (7-14)
igJ
and hence o
dengIJz(Qa#ﬂa) S 2(’1’L - h) -1, (7415)

for every H € ‘M. Using again the auxiliary power counting theorem, there exist X > 0 and ¢ > 0, so that for
ala< K!

a. ifn—h >0, T?Z(q, i,a) < cla?) M a BRI 16e™ g - ca log™a (7-16)

b. ifn - h = 0, f;)z(q, “.a) < e (7-17)

This shows that in the continuum limit only sectors (Jg, z) where Jo = {1,...,n}, contribute to (4-3), i.e,,
when the momenta of all propagators are located near the poles. In fact, for appropriate small € > 0, there 1s
exactly one such sector. For, if P # 0, the set {f;,...,1,} of line momenta contains a basis of £ with respect to
k. Let z = (21,...,2,) € Z%" and k& € R*™ satisfying

= 2
Ki(k) = S Cijk; = _afzi, i=1,...,n (7-18)
i=1

By rank(C;;) = m, this system has a unique solution. By naturalness of £, it is of the form k = 3‘;’5 AL A g Lt
{Appendix D). For k € [-7/a, n/a]*™ this is possible only if A = 0, i.e.,, z = 0. Hence, having choosen ¢ > 0
according to Lemma D.1, for Jg only z = 0 appears in (4-3). The integrand of TJODO and hence off_ﬂo is bounded
by
b PGl r-19)
[Tizy (F(k,q) + uf)

and the integral

a Pk, q)| 2
* /_md’%lmd%m [Iio, (2K, q) + pf) (7-20)

is convergent by (7-15) and the power counting theorem of [1] (or by the auxiliary power counting theorem]}.
Using Lebesgue’s "theorem of dominated convergence”, we get

e R o Pk,
11mOI(q; toa) = lm}JIfoo(q;u, a) = / d*ky - di ke, (k,9) (7-21)
o— a—

— oo H?=1 (i?(k"?)‘*‘“?)‘

This completely proves the power counting theorem.

8. Some technical lemmas.

We now start to prove the auxiliary power counting theorem. The proof idea is similar to that of the
convergence theorem of Hahn and Ziminermann [1]. However, to discuss the cutoff behaviour, we need some
deeper statements (e.g. Lemma 8.6). In this and the next section we shall use the notations of Section 5.
Especially, £ is a set as given in (5-1). In addition, throughout the sequel we shall use the shorthand notation

mingcp A7P| P (k)|

Ekoq,4) (8-1)

ML
In({P.Hg. u) = / @k d R

18



A power counting theorem for Feynman integrals on the lattice
Here, I is a finite set, and {F;} represents a set of polynomials P;, i € I. For 7 > 0 we define
DY = {{k1,..., km) € R*" | l_.?(k,q) > 1% foralll; € £}, (8-2)
and for X C R¥"

miniu AP |P,_(k)|
E(k,q,u)

AL
JA({Pi}Iq,p,X):f d4ky - - dk,
X

AL . .
‘ ier AP Py(k)|
= Atk - dh xx (k) e Ul 8-3
[tk xx (k) TR (8-3)
where yx 1s the characteristic function
_ 1 , keX -
xx (k) = { 0, k¢X (8-4)

The present section contains a series of lemmas which will be used to prove the auxiliary power counting theorem
by induction on the number of {four-dimensional} integrations.

Lemma 8.1. Let I be a finite set and » € N¢ = {0,1,2,...}. For every ¢ € I let P;{z,z) be a function of
@ € R? and a polynomial in variables z;, j = 1,...,n of degree smaller or equal to r:

Pz, z) = Z Z aji)__j“(:c) Pz AL {8-5a)
71=0 Iin=0

Let yo....,y, € R be r+1 different points, Y = {(21,...,2a)|2 € {yo, .. ..y foralli=1,...,n} and 0 C R”.
If the integrals

/dz’ min | Pi{z, 3"
o iel

are convergent for all y!) € Y, then so are the integrals

fd:c min [al) . (2)],
141

icl
for arbitrary ji1, ..., 5in € {0,...,7} , and there exists ¢ > 0, depending only on wo, ..., y,. such that

f dz min af) @l Y f dz min | Pi{z, y)). (8-5b)
o $IeY forallicl ¥ T

The number ¢ is independent of the integration domain £2.

PrOOF: For every ¢ € [ there exist constants c;-i)___jn(y) such that

a @)= S0 (W) Pila )

ye¥
Using the inequality of Appendix B, (8-5b) follows, where

(2)

¢ = max chl__‘j"(y)]-

Jryndn  VEY JiET

The foilowing lemuma. is a direct consequence of Lemma 8.1.
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A power counting theorem for Feynman integrals on the lattice

Lemma 8.2. Let I be a finite set and » € Ng = {0,1,2, ...}. Every polynomial P; of degree smaller or equal
to 7 in the components of ky, ... k. can be written as

= Z Pi(k), i€l (8-6)

where P, is a homogeneous polynomial of order . Let 7o,...,v € R be v + 1 different points and ¥ =
{¥0,---»¥+}. Then there exists ¢ >> 0, depending only on ¥g,...,¥. (but not on the polynomials P;), such that

AL : — XL - -
, i1 AP Pig, (k)] ’ minger AP P pi k)|
qu . d4km min;ey forg < e f d4k .. d4k , 8-7
/ ! E(k.gp) = 2 1 " Blkqu) &7

for arbitrary sequences (Pig, Jicr-

pi€Y forallicl

ProoOF: Since rankgl = m, the integral
\/A’[’ dik; - -dik mingez A7% iz;:o i Pialk)l
E(ks%ﬂ')

is convergent for every finite A and all p; € R, i € I. Since vp,...,7 € R are different points and ¥ =
{70, .--: 7}, Lemma 8.1 implies that

f” Pk gk, TRiEr AT Pia (k)
Efk.q, 1)

M inger AP 3T ) Piolk
<e ¥ f Lk gt TiMer E!(%w()p) (k)] oo

pi€Y forallic]

im. - P e
e T / &y dh miniez A7P Pipik)|

pi€Y for sllieT E(k9 Q:P’)

for some constant ¢ depending on g, ..., only.
O
Next we quote
Lemma 8.3 [1]. Let k,I ¢ R* and p > 0. Then
(k+l)2+,u2 k2+ﬂ2
— < (! d e ! B-9
sy we EE e (8-9)
where c(l) = 1 + ||l||/p + 1%/ .
Recall that we are using the euclidean norm ||{|| = Z: L2 for I € R% As a corollary, we have
Lemma 8.4. If the momenta ¢ are bounded, then there exists c(u) > 0 such that
AL : —p 2ME . -
' min; ey AP P (k)| ' min;ey A7P | Pi(k)|
Ay dil, — < il MY o : 8-10
[ Bk 1 E(k,0.1) (510

Excluding small neighborhoods of the poles of the propagators, 1.e., regions where some line momenta
vanish, the masses may be set to zero without aflecting the large cutoff behavior:

Lemma 8.5. Forr > 0

1. Ja({Pi}g, #, D*7) < Jr({Pi}lg. 0, D7) (8-11)
2. There exists a ¢(u, 7) > 0 such that
In({Pitlg, 0, D7) < c(pe, ) In({Pi}lg, u, D¥7). (8-12)

This can be seen from IZ/{1* + u?} < 1 and (I + p2)/12 < 1 + (p2/7%). We will now show that the cutoff
dependence of Jy does not change i the poles of propagators are excluded from the integration domain (Lemma
8.8). This lemma will be used in Lemma 8.9 to get homogeneous denominators in Jy. As a preliminary, we
state
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A power counting theorem for Feynman integrals on the lattice

Lemma 8.6. Let I be a finite set, » € Ng = {0,1,2, ...} and 7 > 0. Set

ik, @)l <75 7=1,...,
X3 = {(kh---,hn)e R | ’ , (8-13)
r< kgl <A =541, N
DI = {(k1,... km) € R™ | r< |k, ll<A i=1,...,N}. (8-14)
Suppose {l;,...,1,} contains a basis of L with respect to k. Then there exist a(C,7) > 0 and ¢o(C, u, 7, 7) > 0
such that for all polynomials P; of degree r;, constrained by 3, ; r; < r, we have
iner AP | Py(k)|
Ay e o
./xg-* ' TG (R, g} + pd)m (5-15)
. -15
minger AP | Pi(k)|
<co(C,p, 7, T) ik, - -dk -
‘ D;"' ™m HN(lf(k’q) 4 P?)n;
where A = A+ &(C, 7).
Note that ¢ and @ are independent of external momenta q.
Proor: The set £ is given in (5-1). First of all assume
Cij =85, Qi=0 foreveryi=1,...,m. (8-16)
Then X{7 is the set of all {(k;,.. ., kn) € RA™ satisfying ||ks]| < v fori=1,...,m and
1Y Cijks +Qill <7 i=m+1,...,5
" (-17)
T Gk + Q<A i=s+ 1. N,
i=1
and D;’T is the set of k satisfying 7 < |[ks]] < Afori=1,...,m and
r< I3 Ciks +Qif €A, i=mol., N (8-18)

=1
To prove Lemma 8.6 we use the following lemma proved in Appendix A.

Lemma A.1. Let [ be a finite set, r € Ny and o1, &5 compact cubes in R*¥™, oy coniaining an open set. Then
there exists a constant ¢(o1, 02, C, g, 7} > 0 such that

(8-19)

inicq |Pi(k)| minger |Pi(k)|
dék “‘d4km min EII 1 < o ,O’,C,[L,T’ f d4k "'d4k
/g, 1 Mk, )+ iy~ < '), h ™ TIw Bk, @) + u)™

for arbitrary polynomials B of degree r;, constrained by ZiEI r; < r, and for all momenta q.
To apply this lemma we have to find @ > 0 and cubes o1, o3 having the desired properties and satisfying
X{"Coy and o3 C D%’T, {8-20)

where A = A+ @. At first, Lemma 8.6 is trivial if Xg'f = @. Furthermore, if N = m, X{7 and DE‘T are
independent of g, and D{'" for A > 2r contains an open subset of R4 which is independent of A. Hence
Lemma A.l is applicable, and for @ — 27, Lemma 8.6 follows.

Let N > m +1and X777 # 0. We now proceed to construct appropriate cubes ¢, o2 in several steps.
i XT7 C oy, where oy = [0 [-7, T}q.
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ii. There exists R(C,7) > 0 such that ||Q;|] < A + R(C,7) for every i = m + 1,..., N. For, setting C =

max; ; |Ci;l, R = Cmr, and (k1 .. S km) € X7, we obtain
IQill = 1D Cishs + Qi = Y Cishs| <A+ R(C,7); i=m+1,...,N. (8-21)
i=1 =1
Next, we define
A={Q=(Qms1,...,Qn) e R*"™ ™|Qi| <A+ R(C,7),i=m+1,..., N} (8-22)

If A grows, Q is not bounded, hence a cube ¢; contained in D;’T for all values of @ does not exist. Instead, we
construet &(C’, ) > 0 and a finite set of cubes, so that for every Q € A one of them is contained in D;‘T, where

A= A+ a.

ii. To this end, we construct numbers bo(C, 1), -+ -, by_m1(C, 1) as follows. Set bo(C,7) = 0. W bg, ..., 0
are given for an integer r, 1 <» < N —m +1, choose b,(C,7) > 0 such that the set of {k1,... k) € R"m,
satisfying
7 < Rl i=1,...,m
= 8-23
bt (Com, T) 4+ 20 I Cishgli < B,(C7),  i=m+l,.. N (8-23)
i=1

contains a compact cube {1, which itself contains an open set. Such numbers bg,.. ..by_m41 do always exist,
4_(1_1 C;jk; = 0 being a hyperplane in R*™.
iv. Consider the following subsets of A:

a. Ay_my1 C A such that {|Q;|| < by_pm +7foralli=m+1,...,N.

b. Forr, 1 <r < N —m, let A, C A such that forevery i=m+1,..., N
Qi <bror+ 7 or [[Qi 24 + 7. (8-24)

Obviously, A is the union of these sets. For every r let K,(C, ) be a number such that |jk;|| < K.(C, r) for all
{k1.... . km) € 82,. Set a.{C,7) = max(K.{C,7), b, (C,7) + R(C, 7)) and X = A+ a,. Then for Q€ A, using
(8-24), we easily get 2, C D%‘T.

v. Let €1 be the finite set of cubes constructed in iv., and @(C, r) = max, a,. We have just shown that for every
¢} € A there exists a cube ¢ & © which is contained in D%‘T. By Lemma A.1, for every o there is a constant
cloy,o,C,r,7) > 0 such that

X3 a7k, q) + pf)ms

injer ATP | By .
< / dhy - diiy, mn €21' P(zkl‘_ (by 1.)
.. T (B (k. q) + u2)"
inser AP PR 2
< ¢(oy, oy(”,p.,r)/d‘*kl oo d e, mmler l (by Lemnma A.1)
- [Tar (B (k, q) + pFyns
min; e AP | Py(k)| .
< co{C,p, 7, 7')/ Ay - dtk (by iv.),
p2 " Tl (k) + k)
where ¢o(C, p, 7, 7) = max_ = eloy, o, C, u, v) and A = A+ @ This proves Lemma 8.6, if (8-16) holds.
In the general case, we make a non-singular transformation
k; - lh k q) Z(h,’lk + Qll(Q)
=1
{8-26)

by =L, (k) = > Ciski + Qilg),

1=1
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This is always possible because {l;,...,[,} contains a basis {I;,,..., L} of £ (with respect to k). Under such
a transformation, the form of (8-15) does not change. Every I; € £ has the form

and C satisfies (5-1b) and (8-16). This reduces the general case to the above situation, and the lemma is
proved.

O

We now generalize Lemma 8.6 to arbitrary "sectors” Xz. For any § C £, X3 denotes the set of k € R

satisfying
lf-(k,g) > 72 forl; €&

§-27
(k,q) < 72 fori; € L\ S. ( )

Lemma 8.7. Let I be a finite set, r € Ng = {0,1,2,...} and 7 > 0. Then there exist K(7} > 0 and
(g, 7, 7) > 0, so that for arbitrary polynomials P; of degree r; in the components of ky, ..., km, constrained by
YicrTi <7, in every sector Xg and for all A > K(7), the bound

JA({Pl}M1 ey X‘;) S C(;‘..L, ™ T) JX({'P!}lq: 23 Dqﬂ-) (8_28)
holds, where A = A+ K(7).

The set D97 is defined in (8-2). The constants K and ¢ are independent of external momenta g. In general
we suppress the dependence on the incidence matrix C. In contrary, mass dependence will be written explicitly,
since non-vanishing masses are important to avoid IR-singularities.

Proor: Let § C £ be an arbitrary subset and X the corresponding sector. If § = £, the statement is trivial.
Hence let § £ £. By an appropriate renumbering, X% is the set of k € R*™ satisfying
2 2 -
Lik,q) =7 forj=1,...,a

8-29
!f(k,q)g‘rz forj=a+1,...,N, ( )

where o € Ng. Let us write [;j(k,q) = K; (k) + Q;(q) for every j = 1,..., N. Renumbering again, one can find
b>a+1land a,7, 1 <a <+v < a, so that the following conditions hold.

1. K = {Kgt1,---, Ky} is a basis of {Kqi1,..., Kn}.
2. It can be completed by K = {K;,..., K,} to a basis of {K1,..., Kn}.
3. Forevery 3 =1,....7

a

K;a = Kﬁ(ﬁf) = ZC,@; K, cg; € R,

i=1
and v 1s maximal.

Then, for 3 =4+1,..., N,

o b a

Ky = Kp(K,K) = Z dg: K; + Zfﬁi K (dgas1)s--2dpe) # 0, dgi, fae € R
i=a41 i1
Define N i \
200 = (B =(Ky,....KJ)eR*™ | f2<(K(E)+Q;) <A j=1...,7}

and for any K let X:‘-;. be the set of all & — {Koag1,.--. Ks) € R4~ such that
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Using K, K as new integration variables in Jx({P:}|q. 1, X5}, we get

I P g X5) = ds | f 4R G fx i mmer IPRHE B (8-30)

z7* Ey(k(K).q, 1) Jx72 Ey(k(K,K).q, 1)
where
Ey\(k(R),q,0) = [T @ k(). @)+ 1])™; M=No{el|i=1,...7}
My
E(k(E,K).qu) = [JEMEK)a)+ud) s Me=Nn{el|j=r+1..., N}
N2
ds is the Jacobian of (k1, ..., km) with respect to (K, -f_) We can now apply Lemma 8.6 to the inner integral

in {8-30). For, the set of momenta

contains a basis of {l,41,...,In} with respect to K. Hence there exist Ks(7) > 0 and cs(p, 7, 7) > 0, so that
= minies A7 |P(k(E, K = miney A" P(R(K, K
[ RER ) [ e HRGER o
X7 Ea(k(K,K), q, 1) e Ey(k(K,K},q,u)

pay

for all polynomials P; of degree 7;, Y‘m r; < r, where A = A+ Ks(7) and

>

D :{f:(KG.H,...,Kb)ERq(bia)|T2§(Kj( ',f)—}—Qj) ﬁ—x, j:'y+1,...,N}.

=

r
S

Consequently

— frares 2 : Aip‘ i ——:,?
JA({P5}|q,,u,Xg)gcs(u,r,r)ds/ _dK/ g mimer A T B(R(K, X))l
z* = E{k(K,K), q,1t)
AL

(8-33)
' mingey A7P¢ ]P,(kﬂ
=csf{p, 7, T dthy - d¥ke,
stwrer) [t Bk 4,4)
Setting K{7) = maxsc; Ks(7) and using
AP < (R)T 2P
for A > K(r) and X = A+ K(7), one can find ¢(u,r, 7) > 0, so that
EW : 3P
: ier (A Pk
JA({-P:}"]’“!XE) S C(}L,T‘, T) / d4k1"'d4km n E‘IE((}?) I) ( )|
Dar gy M (8'—34)
= C(“! "y T] J')T({p‘i}ltb Hy Dq’T)'
O
As a corollary, we get
Lemima 8.8. Let I be a finite set, r € Ng = {0,1,2..} and 7 > 0. Then
1.
JA('{Pi}\q‘%Dq'T) S J)\({Pi}hi'nu)' (8735)
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2. There exist K(r) > 0 and c(p,», 7) > 0, so that for all A > K(7) and all polynomials P;, i € I, of a degree
7, in the components of ky, ..., k,,, constrained by Ziel r; < r, we have

J)\({Pi}|Q= “) =< C(ﬂr r, T) JX({R}IQ: oy Dq’r)1 (8W36)
where A = A + K(7).

Proor: The first statement is trivial. To prove 2, write R*™ = UsXZ. IfS # &' XN XZ is a set of measure
zero, hence

Ia{{Pi}tg, 1) = }: Ia({P:}Hg, u, X5}
Using Lemma 8.7, there exist K(7) > 0 and co(g, 7, 7) > 0, so that for A > K(7) and every S C L

Ja({Pi}lg, #, X5) < colp, 7, 7) J5({Pi}g, #, D7),

where X = A + K (7). The right hand side is independent of §. Summation over S then proves the assertion.

]
Using Lemma 8.8, we stale the important
Lemma 8.9. Let I be a finite set, » € Ng = {0,1,2,...} and 7 > 4. Then
1. There exists ¢yfu, 7) > 0 such that
I{PHg =0, =0,D") < ¢ (g, 7) JA({P:}g = 0,n). (8-37)

2. One can find K(7) > 0 and cp{u, 7, 7) > 0, so that for all polvnomials P; of degree r;, constrained by
Yicrmi <7, and for all A > K(7), we have

IN{Pi}g=0,u) < exlpm,7) Jx({Pi}lg=0,p=0,D%T), (8-38)
where X = A+ K{r).
3. Let g be bounded. Then there exist R > 0 and c3(p} > 0, so that forall A > R
Ja{Pitla p) < calp) J3{({Pi}la = 0,p), (8-39)
where A = A + R.

Note D7 = D‘T’TEFO, and D?7 is defined in (8-2}. I all masses are positive, external momenta do not
have any influence on the cutoff dependence of J.
PROOF:

1.
AP Hg =0, =0,D%) < ey(pe, 7) n({P: g = 0,6, D*7) (by Lemma 8.5)

<eop, 7Y IA({ B Ha = 0, 1) (by Lemma 8.8}.
2. Using Lemma 8.8, there exist K(7) > 0 and eal{p, 7, 1) > 0, so that for all A > A(7)

A{P}g = 0,p4) < eaf, 7, 7) Jx({Pi}lg = 0,1, DO)

< y
S Cz(,U.,T’,T) JX({Pt}|q = Owﬂ = O: DO!T):

where A = A + K(7), and we have used Lemma 8.5 again.
3. For ¢ in a bounded region we get by Lemma 8.4

min;er A7P P (k)]
Elk,0, 1)

AL
J,\({Pi}lq,msa(m-/ By,
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L is given in {5-1). Choose R > max;-y, _ n ||/@Qi(g)}| independent of ¢ and X = A+ R. Then for every
j=1,...,N and all k in the integration domain we have

125 (R, 011 < (12 (R, g)l] + 1Qu(g)l] < A,

Furthermore, for A > R the estimate

AP PR < -
I;'Iclgl}l/\ |P{k)| < d 1;121}1(/\)

Pe

Pi(k)]
holds, where d is a constant. Hence, setting £ = {L;(k,0)[i = 1, .. .. N} and es(p) = ' (p) d, we get

minger (A) " [Pik)]
E(k,0, 1) B

tWa
Ia({Pi}la, p) < ca{p) - f diky o diky, ca(p) J5({P:}g = 0, ).

Finally, we state the following elementary

Lemma 8.30. Let P be a polynomial in variables (u} = (u;,...,u,), (v) = {v1,...,vy) and g, and let W{v, g) =
{(Wilv,q), ..., Walv,q)), R(v,q) = (Ri{v,q),..., Rs(v,q)) be linear functions, and p > 0. Then

degr, |, P(pu + W(v,q), R{v,q),q) < egr, |, Plu, v, q). (8-40)

Proor: Write
Plpu+ Wiv,q), R(v,9),9) = Y Sa(R(z,q),¢) - Tulpu + W(v,9)),

Ty being linearly independent homogeneous polynomials and S, in v not identically vanishing polynomials.

Then

degr,,), P(pu + W(v,q), R(v, ¢}, q) < maxdegr, To(u)
< degr, |, P(u, v, ).
|
9. Proof of the auxiliary power counting theorem.
Consider now the integral
AL . -
‘ minger A77* | Py(k, q)t

Ii(gq,pn :/ Ak dk,, , 9-1
(@#) ' E(k,q,p) (8-1)

where the external momenta g are fixed or at least bounded, and E(k, g, u) is given in (5-3). We prove the
auxiliary power counting theorem by induction on m. For m = 0 nothing has to be shown. Given some natural
number myg, we thus assume the theorem is valid for m < mg and proceed to show that it then also holds for
m=1mg. Let r = S 1 Tis where =; 1s the degree of P; in k.

it

The proof idea is as follows {cp. [1]). The integral (9-1) will be divided into a sum of integrals over
appropriate subsections. These integrals will be splitted into a four-dimensional "outer” and a 4(my — 1)-
dimensional "inner” integration, and the denominator will be made homogeneous by use of Lemma §.9. The
idea is to apply the hypothesis of induction to the inner integrals in such a way that the remaining integrations
show the desired cuteff dependence. To this end, the numerator is decomposed into homogeneous components.
This allows an appropriate scaling of inner momenta by the outer one (here homogeneity of the denominator is
important). After scaling, the inner integrals can be brought to a form similar to the original one. These results
are summarized in Lemma 9.1. Lemma 9.2 states that the hypothesis of induction can be applied to these
integrals, and combining both lemmas, a simple calculation leads to the desired cutoff dependence of (9-1), i.e.,
the auxiliary power counting theorem holds for m = myg.

26



A power counting theorem for Feynman integrals on the lattice

In the following we identify m with a given natural number mqo. We again use the shorthand notation

K.(k) = L;(k,0). At first, for every £ = 1,..., N we define a non-singular linear transformation
t; = Z(Ag)ij kj; (Ag); €R;4,7=1,...,m (9-2a)
i=1
such that
t; = Ke(k). (9-2b)

Then k{t) = A;It. Without loss of generality we assume det(A,) = 1. Furthermore, we introduce the following
notations.

i. Let H° be the set of all H € H which are parametrized by a basis of £ . Set A = maxgeno 6{H). Then we
define wo by (cp. (5-3))

wog=4dm+ A -2 n; = max w{H). 9-3
o ; I T Hene ( ) ( )
ii. Let £ € {1,..., N}. For every sequence Hy,..., H, of Zimmermann subspaces which is ordered with respect

to a basis of £ containing !¢ and satisfying

a. H,_1 has l¢ = const. | (9-4)
b. H, has all line momenta of a basis variabel,
there exists an i € I, so that (5-8) holds. The set of all these i € I is denoted by I(¢).

iii. For given £ define £¢ = {lj(Aglt,U). . [ie{1,...., N\ {£}}.

ty=

Lernma 9.1. There exist K > 0 and R > 0 such that the following statement holds: For allb > R one can
find e(p, v, b) > 0, so that

N
Ia(gp) S c(mmd) 3 D /W(A}d4i1 [[2]° 7% - Targg(t1,9) (9-5a)

£=1 yeYi§)

for all A > K, where W{A) = {t; ¢ R*| 1 < |[t1]| € X + K}, Y(1),...,Y(N) are finite sets, and

AL min; MY Py (A U,
gy (tr, ) :/ ity dtey, Bien) 1 Pylde La)] (9-5b)
E{Agt,0,p1)
ty=0
Here M = b{X +d)/|[t:|| + €, and
Piy(Ae '1,9) = PilA¢ 7' [Fiy{t), q)- (9-6)

where
[F'r.y(i)} = (Ciya piytZ} ey Piytm)~

d,e and cyy, piy > 0 are appropriate constants.

As will be seen below, the hypothesis of induction can be applied to (9-5b) if b is large enough. Remember
that g is fixed or at least bounded.

Proo¥: 1. Applying Lemma 8.9.3 and Lemma 8.9.2 to (9-1), one can find K > 0 and e1{p, 7) > 0 such that
for A > K - -
e minzer ()| Pi(k. q)]

7 . ‘ diky - dYk, : 9-7
M, ) < ealu, ) L L E(k,0,0) (e

where A = A+ K, L = {Ki(k}li = 1,...,N} and D®! is defined in (8-2). The denominator in (9-T7) is
homogeneous, and the poles are excluded from the integration range. For every £=1,..., N we define a sector
X¢ € R* in the integration domain by

EXk)> K} (k)>1 forall i=1,...,N. (9-8)

5This means that all momenta of a basis are variable on H.

27



A power counting theorem for Feynman integrals on the lattice
Using D%! = U?v:l Xe, we get

N
Ta(g, 1) < exlp,m) Y Kyla, Xe), (9-9a)
£=1

where
min;er (X) 1 Pi(k, q)|
E(k,0,0)

5B
Kx{g, X¢) = /X A%y - A%k (9-9b)
£

In the following let £ € {1,..., N} be arbitrary. We apply the transformation (9-2) to Ky{(g, X¢}. Then

- IIIiIl;’eI (A)_piui{‘l{_lts Q)l
Klg, Xg) = f da*, - f Ao dYy, , 9-10
A( E} U(X) ! V(—jn‘:) z E(A‘lt,0,0) ( )

where

U(R) = {1 € R 1< Ll <2},

V(A€) = {(t2y. - tm) € RAY |37 > K2(A 1) > 2 forallic {1,..., N}\ {€}}.

2. For every i € I the polynomial P; is decomposed according to

A7 q) ZTW(A ie 1, (9-11)
where T}, are homogeneous polynomials in the components of 3, .., t,, of degree o. Further,
T;cx Z ’-rzorﬁ 3 Q)'l (gwlz)

4 . .
where Ej:] B; < r; — « and Ting are homogeneous in the components of 1, 1.e.,

Tz‘aﬁ(qu_]f,Q') = (tl)’fl : "(fi)f:' Sianlla, .o lm,q). (9-13)

Using the notation of Appendix B and writing (a8) = (@i, Bi)icr, we get

Kx(g, X¢) < b Tstapy (@ Xe), (9-14)

oy, (Bi)1, . (Bi)e for all ig]

rﬂln ﬂa A 11—5
jX(ag)(q, Xe) = f _ dit, - / N dity - dit,, %61( ) l v q)| {9-15)
U V(x,€) E(Af t,0,0)

Substituting
(T2, atm) = (th, ..o tn,) - [Jad (9-16)

in the inner integral and writing # = £,/ [|t1|| and X = bA/ |[t1]], where & > 1 (to be chosen below), we get
Txtap) (@ Xe) < C'(b)f ot Il T (e, X, (9-17a)
Ui

where ¢'{b) is some power of b, wo is defined in (9-8), and

. Iy P —1,t
mingerie) (A) 1w, (A7 ' q)l
41,9, X dit - d - 3 , 9-17b
‘7,\( ,(3)( 1.4, E) f(i{) 2 m E{Agit’,0,0) ( )
VX €)= {(th ... ) € RAD X7 > RHAM) > 35 forall i € {1,.., N}V {€}}. (9-18)
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Here we have used that, by definition of I(£) and A, for every ¢ € I{£) the inequalities a; + E;:l(ﬁi ); < and
i —p; << A hold, ie, for |t1]] = 1 and all ¢ € (&)

(B it Zeoms 178 < ()7 ), (9-19)
From Lemima 8.5 and (9-13), we get

Ty TR
A [Sipith -t )l
E(A; ', 0,p)

ot (9-20)

¥

:,E( 10
(tla a0 X{) S CZ(#) f d4t’2 o d4t;n mlnaEI(E)(
where £¢ = {K; (A7 "5 € {1,..., NY\ {€}}. t| is bounded. Using Lemma 8.9.3, there exist B > 0 and
£ I ’ 1 B
e3{p) > 0, so that for b > R (= A > R)
: /\"Lé mini M Ra Sia- (¢ s ...,t" ,
ji?;ﬁ)(ilﬂv X{) < c;g(,u) f d‘ltfz . 'd4t:,n GI(E)( )71| :Fﬁ( 2 L) q)|’ (9“21)
E{A, 1, 0,u)
.

1

where X = BA/||t1]| + R and £; = { K;(A;'¢)

BIEL SRR AT (33

3. So far we have re-introduced masses in the denominators, and the whole {;-dependence of the inner integral
is contained in A'. The last step in proving Lemma 9.1 is to re-introduce the polynomials P;. Let ¥ = max;es 7
and choose 7 + 1 different points yg,..., % ¢ R and set

X ={(z1,-v24) | 2 € {yo,. .., 9s} foralli=1,...,4}.

According to Lemma 8.1, there exists cq4{p) > 0 such that

j;?(jﬁ)(tl,Qv-XE) < calp) Z (9-22)

v, €X for all ief

fx’té g iy e (M) T (A @legm
2" m '
E(4c't0.n)|

Similarly, let vo,...,4 > 0 be 7 + 1 different points and Z = {vp,...,v}. Using Lerﬂma 8.2, one can find
¢5(pt) > 0 such that

. i ) ALy minief(g) (Ar)fpilpi(A—l[T,_ .],Q)J
Ti (1,9, X¢) < eslw) 3 / L d ) IR )
y.€EX ,pi€Z forallief E(AE .0, 1)

[
t, =0

where
(Ty.0.) = (W, pity - pity, ) (9-23)

Collecting indices and using the notation (9-6), we get Lemma 9.1.

We now show that the hypothesis of induction can be applied to the integrals (9-5b}.

Lemma 9.2. There exist Ko{u,q) > 0 and eq(p, q) > 0, so that for b > Ko, q) for all § and all y € Y(£) we
have
1 if @w(&) <0
Lugy(t @) < ol @) - 4 (N) " log™ ™ A" if G(€) < 0 and p; > 1 for all i € Z(€) (9-24)
(VP Tog™ 1N if @(€) > 0,
where W(£} = maxyex, w(H). A Is defined in Lemma 9.1. Hy C M is the set of Zimmermann subspaces,

defined by bases of L containing I; with respect to ki,..., k, and having {; = const. If ¢ is bounded and
{6(H)|H ¢ M.} is independent of g, Ko and co can be chosen to be independent of q.

Proor: Let £ € {1,..., N} be arbitrary and
Wy, .., Uy (9-25a)
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be an arbitrary basis of £y with respect to (f2,...,1,) of the form

=8 .. 0= 1
ST . (9-25b)
vy = Ij,} ey Umaled & ljm_x—a’
where l_’?- = lj(Af_lt,O) . The variables (@) and constants () define a Zimmermann subspace H of

1:=0 _ _ . .
(t2,...,tm). The set of these H, for arbitrary basis (9-25), is denoted by H,. With every If € H, we as-
sociate H € H as follows. Let a basis (9-25b) be given. Take the basis

220zl (9-26)
of £ with respect to (ky,..., k) of the form

uw:liw(kaq)1 u’:11---ad
v = (k,g), w=1l,...,m-1-4d {9-27)
Vm—d :lf(k:Q)s

and let k = AEIT, where ' = (z,12,...,1m). Then

uu’:&w+(ju*(maq), u’:11"'}d
Vyp = B + Viu(z,¢), w=1,...,.m~1-4d
Umod =  + Q¢lg),

where Uy, V,,, Q¢ are linear functions. Then the H € H associated with B e 7;!5 15 defined by variables
{(#) = (#1,-..,u4) and constants {v) = {v1,..., ¥m.q). We define 6(E] = 6{H). The set of these H ¢ H is
identical to H¢ in the lemma.

By this construction, to every sequence H,,..., H, of Zimmermann subspaces in 7:65, which is ordered
with respect to a basis (9-25) corresponds an ordered sequence Hy,..., H, of Zimmermann subspaces in M,
with respect to the corresponding basis (9-26). Adding H,.y € M, parametrized by the whole basis (9-26),
we again get an ordered sequence. Let (#') be the parameters of H; and (@) the complement vanables, i.e.,
(@, #) = (ws, ...y wm), and correspondingly (u’) the parameters of H;, (v/, v’} = {22,..., zm, L}, for every
7=1,...,s By construction of I{(£}, using Lemma 8.10 (and inequality {C-4) of Appendix C), there exists an
i € I{£) such that

degtysss Piy(Ag 't @) — pi < degryes P4, [Fig()] @) — pi
< deghysps Pilk(vw', v, q). q) — px (9-28)
< 6(Hjy),

for all 7 = 1,...,5. This means the set {6(3)\3 e 7:65} is a UV-set of the numerator of (9-5b). For every
H € H¢, parametrized by (9-25b), and corresponding H ¢ He

w(f) = 4d + §(H) — degry B(A"¢.0,p)|
= 4d + §(H) — degr, E(k{u, v,q),q) (9-29)

=w(H).

Thus, all the conditions are met for the auxiliary power counting to apply io the inner integrals Tnig, (%1, g).
According to the hypothesis of induction, we get Lemma 9.2.

0

We now proceed to complete the proof of the main Theorem 2. All what remains to do is to insert the
cutoff estimates of Lemma 9.2 into the inequality of Lemma 9.1. Then, re-expressing A’ by A, the remaining
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integration can be done without problems. Choose a fixed b according to Lemma 9.1 and Lemma 9.2. Then
there exist constants ¢(g,g) > 0 and K{u, ¢) > 0 such that for all A > K(u,q)

N 1 fwg < Dand @(£) < 0
Talg, p) <elp, q) Z A7t log™ A Hwg < Dand@(f) < Gandp; > 1forallic’
e=1 | Amax(woBE) 1op™ A ifwg > 0or @(¢) > 0
1 if maxw(H) <0
Hen
< &, q) - A7 log™ A if gxg;ﬁcw(ﬂ) <Oandp; > 1forallicl (9-30)
amexzenle(H)] 1op™ if maxw{H) >0,
Hek -

where we have used

max (wo, ¥{¢)) < max (Hrpggow(ﬂ’),ww)) < maxw(H).

K and ¢ can be chosen to be independent of ¢ if ¢ is bounded and if {§{H)|H € H} and hence {w(H)|H € H}
are independent of g. This completely proves the auxiliary power counting theorem.

Conclusions.

We have proved a convergence theorem for Feynman integrals with a lattice cutoff. Under very general
conditions, it states existence of the contimaum limit as well as its coincidence with the formal limit, i.c., the
Feynman integral, which results from taking the continuum limit in the integrand. If convergence holds, only a
neighborhood of zero momentum in the Brillouin zone contributes to the limit.

An important convergence condition is the naturalness of line momenta. This means that their homogeneous

Z(?ijkj,

i=1

parts in the integration momenta k,

satisfy C;; € Z for the given representation (3-1) and for every choice of independent line momenta as integration
variables ki, ..., k. For a lattice Feynman integral it is always possible to choose the loop momenta in such
a way that this condition is satisfied, e.g. if the loop momenta kq,...,kn coincide with momenta of lines.
However, in the case of renormalizations one rmust be very careful in order to ensure that the subtracted
integrand still satisfies this condition. Note that in the power counting theorem of Hahn and Zimmermann ]
the condition of naturalness is unnecessary. However, this theorem can only be applied to integrals having a
rational integrand. On the lattice, in connection with the periodicity of the integrand, naturalness makes sure
that only one Brillouin zone contributes in the continuum hmit.

Furthermore, the theorem assumes that the propagators have only one pole in the Brillouin zone, located
at vanishing line momenta. This means that the denominators of the propagators

1
satisfy n{la # 0) » 0 in the Brillonin zone. If this condition would be violated, the assumed periodicity of the
integrand would not be sufficient for convergence. In particular, the theorem does not apply to lattice fermions
with propagators having poles on the boundary of the Brillouin zone. In general, the pole condition implies
that only a small neighborhood of zero momentum contributes as the lattice spacing tends to zero, and that
the continunm limit of a lattice Feynman imtegral is equal to the formal limit.

For simplicity, we have always assumed the numerator and derominator of the integrand to be C™. Actu-
ally, the denominator needs to be differentiable only in a small neighbourhood of vanishing line momenta, and
globally continuous. In the case of renormalization, the whole integrand has to be differentiable to a degree
depending on the divergence degrees.

The main point of the convergence theorem is that it is a power counting theorem. This means that con-
vergence of Feynman integrals in the continuum limit is described by ultraviolet divergence degrees with tespect
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to special subspaces of the integration momenta, called Zimmermann subspaces. In order to get convergence
in the continnum limit, the divergence degrees with respect to all these subspaces should be smaller than zero.
Due to the structure of diagrams with a latiice cutoff, we have a new kind of degrees to be distinguished from
UV-degrees of rational functions [1]. A lattice degree describes the behavior of a Feynman integrand for large
internal momenta of a Zimmermann subspace and small lattice spacing a simultaneously. To discuss naively
large momenta for fixed a would be meaningless because of the periodicity of the integrand.

To every Zimmermann subspace there corresponds a (sub-)diagram. Hence, loosely speaking, negative
UV-divergence degrees mean that ali subdiagrams are convergent. Usually, a Feynman diagram must be renor-
malized. In terms of a power counting theotem this means that counterterms have to be arranged in such a way
that divergence degrees of all subspaces are negative. In a following paper [4], this correspondence will be used
to construct a renormalization scheme for Feynman integrals on the lattice, which is analogous to the BPHZ
finite part prescription for continuum Feynman integrals. It will be seen that counterterms instead of being
polynomials are periodic functions. From the fact that negative lattice divergence degrees ensure not only the
existence of the continunm limit but also it’s coincidence with the formal limit, it will follow that renormalized
perturbation theory is universal, which means that the continuum limit does not depend on a specific choice of
the lattice action.

The power counting theorem applies to a wide class of lattice field theories. In this investigation we
have been concerned solely with the problem of ultraviolet divergencies. We have assumed all fields to be
massive in order to avoid infrared singularities. In the given form the power counting theorem does not apply
to lattice field theories with massless propagators. Whereas the lattice provides a UV-cutoff, IR-singularities
are expected to be the same as in the continuum. This suggests that one should supplement the UV-power
counting conditions by IR-power counting conditions, which describe the behavior of a Feynman integrand for
small internal momenta and state IR-convergence ai non-exceptional external momenta. By this modification,
the power counting theorem should apply also to massless field theories on the lattice. In a forthcoming paper
we will show that this is indeed the case, and that the ideas presented here will go through.
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Appendix A. Proof of Lemma A.1.

We first show that the propagators of (8-19) are of no importance for the validity of Lemma A.1. Recall
that the line momenta §; € A" are of the form

Li(k,q) = Y Cizk; + Qulq).
Jj=1

Given compact cubes oy, o, and o containing an open set, let ¢ = ¢y U o5 and choose K(C', ¢} > 0 such that
foralll; ¢ A

1) ksl < KE(C o) forallkco, (A-3)
i-1
and define .
= - " - A—4
o = e o+ (A4)
Using the triangle inequality and Lerma 8.3 one can find a constant d(C, o, ) > 0, so that for all k € &

P 1
= v (500, Q) + 47)

Now Lemma A.7 is a direct conseguence of

< d(C, o) go(Q) (A-5)

Lemima A.2. Let w & N, r € Ng and 0y, 02 compact cebes in R”, o, containing an open set. Then there is
a constant c{oy, oy, 7) = 0, so that

/ dzy -« dr, min [Fiz)| < c(al,ag,r)/

iz 1, o

dil‘l . 'd-’fﬂ

__l}ﬁn FAES] (A-5)

i=1,..,w
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for arbitrary polynomials P; of degree v; in 1,...,2,, with )::":1 <7

ProoF: By complete induction on the number n of integrations.

A. n = 1. By induction on r. The case » = 0 is trivial. Assume for some » € No there exists a constant
elor, o3, 7) > 0, so that

i=1,...,2

/0] de z:r{unw |Bi(z)] < {1, 02, 7) /;2 dz min [P{=) {A-T)

for all polynomials P; of a degree »;, .. r; < r. Now let P; of degree ; and Yiiq™ =7+ 1. Suppose every

)
P; has the form
T

Piz)=a; ] (& — 2),

J=1
where a;, z;; € C; a; # 0. Choose R{c) > 0 so large, that for all z € C, jz| > R(7)
1

foralle € o. (A-8)

Let z = (211, 20, J E C™ a = (a1,...,au) € C* and for (r,...,ry) € Nj, S ri=rt
I, d= i:I}Iin,w|Pi(w)|

froon fzya) = . —.
foy o 2pin, 1P
All ..., are continuous and non-negative. If |z;;| < R(o) for all 4, j, then there exists a constant B(Ul,&z) > 0,
so that
frion (2,0) < Bloy, o)

On the other hand, if iz;,;,] > Ric) for some jg, o, set

Pl 2) = asy Zigjo ] (= — 2105)
HESTY!
such that " 5
EIP;O(:::H < |P,(2)} < §{Pi’o(a:)| forallz € o
by {A-8), and set
Pl =P for all ¢ # ig.

1

Then, by induction hypothesis
.f?;n-'rw (2‘1 a) S 3C(0-11 a2, T)'

Choosing ¢(ay, a2, 7 + 1) = max (B(ey, 03) , 3¢(o1, 02, 7)) the assertion follows for n = 1.

B. Let n > 1. Assume the lemma holds for all natural numbers v < n. Without loss of generality set
oy = [a,b]" and o3 = [@,b]*. By induction hypothesis, there exist ¢;{abab) > 0 and ¢ -1(ab@b) > 0, so that for
all polynomials P; of degree smaller or equal to 7y in 21,. .., 2n, where S, 7: < 7, using Fubinis theorem

b b b
/ d.;m/ d((‘z"'f dz, min [P{zy, ..., 2,)]
a a o i=i,...w

b b b
gcn_l/ d.:h/ dmg--~/ de, min |Pi(z1,..., &)
Ja = I =1,..,w

a

b 3
< ¢y enoi / da:1---/ de, min [Pz, ..., 2.)].
. .

a 2=1,...,w

This proves Lemma A.2.

Appendix B. A useful inequality.

We state a simple but useful inequality.
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Lemma B.1. Let n € N be a natural number, I = {1,...,n}, and L; a finite set for every i € I. Forallic ]

and &1} l e L1 Iet &£} > 0. Thf‘.n
min E Ly < E s Ini]l £y
icl iel

lel; LeL, ineLl,
This inequality can be written in a more concise form. For I = {4;,...,1,} and sets L;,, ..., L;, define
L=®erli = (Li,,. .-, Li,),

i.e., every I ¢ L is of the form
l = (li)ief = (li]’ M ‘,l'in):

where
li;.eLi.,a k:l,...,n.

Using this notation, Lemma B.1 can be wintten as follows.

Lemma B.2, Let J and L; for every ¢ € I be finite sets. Let @y > G for alll € L; and i € I. Then

min 7 < E min z;,
iel 3]
leL, leL

where L = ®;egL;, and for every I = (I;)icr € Lt @y = 2,

Appendix C. UV-degrees of polynomials.

Let P be a polynomial of u,v and ¢. The UV-.degree degr, |, P(u,v,q) is defined as follows. P can be
written as

P(u,v,9) = > Qa{v,9)Malu), Qalv.q) # 0in v (g fixed), (C-1)
where M, are linearly independent homogeneous polynomials in u, and @, are polynomials. Then we define

degr, |, P = maxdegrM,, (C-2)
degr M, being the homogeneity degree of M,. Usually, all parameters which are considered as variables are
written in the argument of degr. In {C-2), g is fixed. If all momenta are variables we will sometimes use the
shorthand notation

degtup(u1 le) = degru"t:qp(’uﬁ 'U,q)- (C_S)

In general,

degruwp(u, v,q) < degr, P{u, v, g). (C-4)

A useful characterization is the following. degr,,, P(u,v,¢) = é if and only if
P(Au,v,q) = A(n,v,9) - X+ 0(A* 1), A — oo, (C-5)

Alu,v,q) # 0in u, v (g fixed!).

Appendix D. Naturainess of line momenta.

We state an important property of a natural set of line momenta. This property is needed when the
integration domain of a Feynman integral on the lattice is divided into various sections to determine the
continuum hmit behaviour. It happens that line momenta have values in neighborhoods of poles of propagators
in higher BZ's. The following two lemmas show that, if the neighborhoods are chosen sufficiently small, it is
possible to shift the line momenta into the first BZ stinultaneously by a translation of the integration momenta
by reciprocal lattice vectors. Under such a transformation, the periodic numerator of a Feynman integrand does
not change.

We shall use the notation of Definition 3.1.
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Lemma D.1. Given a set £ = {li,...,Iy} of four-momenta, there exist ¢ > 0 and ap > 0, so that for all
a < ap the following statement holds:

Let J C{1,...,N} and z = {2; € Z%i € J} such that
My.(e,a) = {(ks, ... km} € [-%/a, /a]*™ | [[li(k, @) — (27/a) z:]| < (x/a}e, foralli€ J} (D-1)

is not empty. Then there exists a momentum configuration k € [-7 /a, =/a]*™ such that

2
Ki(k) = ”}; % forallic J. (D-2)

If the statement holds for some € > 0, then so for €, 0 < ¢’ < e. The lemma states that neighborhoods of
the poles can always be chosen so small that their mtetsectmn {D-1) with the 1ntegrat10n domain is non-empty
only if the "internal” momenta Kj, for some k, satisfy {(D-2).

ProoF: Let J C {1,..., N} be an arbitrary subset and Z = {zcZzll <1+ 2m|C1}, where |C|=max; ; |Ci;|
{cp. Definition 3.1).

1. Set a3 = ming=1,_ . (x/|[Q:]}) and &; = 1/2. Then My (¢,a} =@ife < ey, a < ay, and z; € Z for some i € J.
For, a simple calculation shows

27 e T
1tk q) — — all >~ (2l]z] — (4m|Cl+ 1)) > —e

2. Let My.(c,a) # 0. If there exists no k € [~n/a, x/a]*™ satisfying (D-2), then there exist j € J and § > 0

such that
27
' Kj(k) —— Z_.,‘

&

> s for all k¢ [-n/a, m/a]*™.

a

This means

7 T
> -8 - ; —e(J
< 7 @511 > ae( ,2)

fj(k,Q)*?zj

ifa < ag(J,z) = 76/(2]|Q;]]) and € < €2 = /4, In contradiction to My.(e,a) # 0. Taking the minimum of all
€1, €2(J, z) and of all ay(J, z), a1, respectively, the assertion follows.
O

The importance of Lemma D.1 rests on the following

Lemma D.2. Let the set £ = {l1,...,In} be natural and J C {1,..., N} an arbitrary subset. Ifk ¢ R™
exists, satisfying
2
Ki(k) = z z; forsome z; € Z'and alli € J, {(D-3)
a

and for all i £ J, then there exist reciprocal lattice vectors

2
A;,...,Ame{fgr\TEZ‘*}, (D-4)
so that for A = (A,..., AR)
2
Ei{A)= — 2z forallie J. (D-5)
a .

The translation alluded to in the introduction to this appendix thus consists in
ki — ki +4;, 7=1,....m,

so that forall:i € J
2r
L=+ — =
a
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ProoF: Let J C {1,...,N} and k € R*™, satisfying

2
Eilk) = —aﬁz;, 5 e Z forallie J.

Choose linearly independent K., ,..., K, _, so that K., ,..., K.,, d < m, is a basis of {K;}i € J}. According to
Definition 3.1

kj = ZAJ:; Kq R Aj; eZ,
=1

for every j=1,...,m, and
d

K; = ZD“K” forallic J; Dy € Z.

1=1

Defineforj=1,...,m
i 2 ‘ 2r
) . 4T g4
A== > Ajiz, € -zt
i=1
and A = (Ay,...,Au). Then, for every i € J

d d
- - . . 2
Ki(A)y= Y DaK.{8) =Y DyK(k) = Ki(k) = —
I=1 1=
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