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ABSTRACT. A convergence theorem is proved, which st,ates sufficient conditions for the existence of the continuum limit 
for a wide class of Feynman integrals on a space-time lattice. A new kind of a UV-divergence degree is introduced, which 
allows the formulation of the theorem in terms of power counting conditions. 

1. Introduction 

Feynman integrals on a cubic, four-dimensional lattice have a very specific structure. In momentum space 
the integration domain is the Brillouin zone (BZ), hence compact for every non-vanishing lattice spacing a. 
Instead of being rational the integrand is a periodic function. If none of the propagators has vanishing mass, 
and so we will assume throughout this paper, a Feynman integral is absolutely convergent for every finite lattice 
spacing. W€' want to discuss the behaviour of such integrals if the cutoff is removed, i.e., if the lattice spacing 
a. tends to zero. 

There exists the well known power counting theorem of Hahn and Zimmermann [1] which states sufficient 
conditions for the absolute convergence of ordinary Feynman integrals. Convergence depends on the behaviour 
of the integrand in various sections of the integration domain where some or all integration momenta get 
large. This behaviour is described by use of UV-divergence degrees of the integrand with respect to so-called 
Zimmermann subspaces, i.e., special classes of affine subspaces of the integration momenta. If the divergence 
degrees with respect to all these subspaces are small€'r than zero, the Feynman integral will be absolutely 
convergent. Unfortunately, this power counting theorem assumes a rational structure of the integrand and 
hence does not apply to diagrams with a lattice cutoff. Similar problems occur in connection with Weinberg's 
power counting theorem [2]. In fact, it is meaningless to discuss naively large momenta· on the lattice, the 
integrand of a Feynman integral being periodic. Actually, if convergence holds, only a neighborhood of zero 
momentum in the Brillouin zone should contribute to the continuum limit. Other contributions should vanish. 

At first sight it seems reasonable to assume existence of the continuum limit of a lattice Feynman integral 
if th€' naive a ----+ 0-limit of the integrand is integrable. A simple counter-example shows that this is not so. 
Consider the one-dimensional integral 

(H) 

The formal continuum limit is given by 

which is absolutely convergent, whereas expanding cos2 (qa/2) yields 

+ 0(1) 

for small a, i.e., ? is (linearly) divergent. This example shows that "continuum UV-degrees" do not suffice to 
control continuum limit behaviour of Feynman integrals on the lattice. This means we have to take into account 
the lattice structure more carefully. This can be done by introducing a new kind of UV-degrees which we shall 
call "lattice UV -degrees". It will be shown that they are suited to describe correctly the leading term in a small 
a. expansion of Feynman integrals. In some sense, these degrees describe the behaviour of Feynman integrals at 
large momenta and small lattice spacing simultaneously. Using them, we formulate a power counting theorem 

0 Address after Septe-mber 1987: Max Planck lnstitut fiir Physik und Astrophysik, D-8000 Miichen 40. Munich, Fed.Rep.Germany 
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A power counting theorem for Feynman iJJtegrals on the lattice 

on the lattice which states existence of the continuum limit if all lattice UV -degrees are smaller than zero. In 

a forthcoming paper this theorem will be used to construct a general renormalization procedure for lattice field 

theories. 

This article is essentially divided into two parts. The first part is devoted to the lattice power c.ounting 

theorem. In Section 2 we introduce the notion of a lattice UV -degree for functions containing a wide class of 

Fe:ynman integrands on the lattice. We show that almost all properties one does expect of a degree are satisfied. 

In Section 3 the power counting theorem is formulated, and the first steps of the proof are done in Section 

4. As will be seen the numerator of the integrand causes some technical problems, but the integral is always 

bounded by a sum of generalized continuum Feynman integrals. These are integrals which have a structure 

similar to Feynman integrals in the continuum, but with a sharp cutoff and a more complicated numerator. 

Hence it is necessary to have a theorem which states the eutoff dependence of such integrals. Such an auxiliary 

power counting theorem is formulated in Section 5, and in Section 6 it is shown that the numerator of a lattice 

Feynman integrand admits an estimate which allows application of this auxiliary theorem to complete the proof 

of the power counting theorem in Section 7. The second part of this paper is devoted to the proof of the 

auxiliary power counting theorem. Section 8 contains technical lemmas, and in Section 9 the proof is given by 

induction on the number of loops. 

2. UV -degrees on the lattice. 

Vile shalJ consider momentum space-integrals of the general form 

~ ) j'/" d4 ···d'k V(k,q;JL,a) 
J(q;JL,O- = · k1 m ' 

-r./a C(k,q;11-,a) 
(2-1) 

where 

IIn ('J;(I;a) ') 
C(k,q;JL,a) =. ~~+I'; , 

t::::l 

11-; > 0, 

m 

Z,(k, q) = K;(k) + Q;(q) = L c,, k; + Q;(q), i =I, ... , n, 

j::::l 

and the Qi are linear (q represents the externaJ momenta and k the loop momenta). V and ry are functions to 

be specified below. As explained in the introduction, to discuss the behaviour of the integral when the cutoff is 

removed, it does not suffice to c:-onsider the c.ontinuum limit of the integrand only. We will now define special 

classes of functions and for them a generalized notion of a UV -degree. These degrees allow a generalization of 

the old power counting theorem [1] which can be applied to diagrams with a lattice c:-utoff. 

We shaH consider functions of the lattiee spacing a > 0, of" external'' momenta w and "internal" momenta 

u. 

Definition 2.1. For arbitrar,v m E Z, we define Cm to be the set of functions V in real variables ( u, w) 

(u1 , ... ,uh),(wl,··-,w,) and a> 0 ofthe form 

!. V(u,w;a) = (1/a"')F(ua,wa) 

2. FEC 00
• 

Cis defined as the set of functions whicli are finite sums of functions in some C.m. 

(2-2) 

C 00 is the set of infinitely often differentiable functions. To simplify the notation, we shall use multi-indiees. 

Set N 0 = N u {0} = {0, I, 2, ... }. Forb EN~ and u E R" define 

i=l 

The well known definition of a UV.-degree of polynomials is g1ven m Appendix C. VVe now define the lattiet:> 

version of a lTV-degree of a function FE Cm with respect to internal momenta u. 
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A power counting thE-orem for Feynman integrals on the lattice 

Definition 2.2. Let V E Cm be of the form (2~2) and Tu the largest non-negative integer such that 

for all bE N~, [b[ < r •. (2-3) 

Tl1en tl1e UV-degree ofV with respect to (u) is defined by 

The UV -degree of a function F E Cm with respect to internal momenta u is determined by the asymptotic 

behaviour ofF for small- external momenta w. Note that always degr~V :::; m. With respect to all variables, 

degr-- V :;= m, the set of complementary variables being empty. If for all b 
ti.U' 

B'F(u,w)l _ 

a b = 0, 
W lw:::O 

we set degr~ v· 
u 

-- oo. Note that, contrary to the definition of a polynomial degree, we never fix external 

momenta. 

This form of a degree will be useful later in many circumstances, e.g. in proving convergence of renormalized 

Feynman integrals. An equivalent, even simpler definition is the following. Let FE Cm for some mE Z. Then 

Dv. = degr~ V if and only if 
u • 

1 
V(>.u,w; ~a)= A(u,w;a) ), 6

• + O(J,'·- 1
), ), ~ oo, (2-4) 

where A(u, w; a)'!' 0 (A is a polynomial in wand coo in u). 

As can be seen from (2-4), the UV-degree of V with respect to u is determined by the behaviour of V for 

large u and small a simultaneously. There may be high powers in ,\ not occuring in the large u behaviour of 

the leading term of a small a expansion of V. For example, let 

( )
4 ( 2 ta 2 qa 2 ta 2 

V(t,q;a)= -sin- [cos- -cos-]+ -
a 2 2 2 a 

2 ) 2 . ta 2 qa 2 . qa 
sm -) cos - (- sm-

2 2 a 2 

as in the introduction. Then degrtll = 4, but lima ....... o V(.\t, qj a)= A2 t 2 q2
. The leading term does not show the 

correct asymptotic behaviour of 1l ift and 1/a tend to infinity simultaneously. 

IfF in Definition 2.2 is a homoge-neous polynomial in u, w of degree mo: then 

V(u,w;a)=a•F(u,w) and 

where d = m 0 - m. In this case the lattice degree reproduces the old polynomial degree up to a constant which 

counts inverse powers of the lattice spacing. Every additional factor a. in 11 decreases the lattice degree by one, 

i.e., improves the continuum limit behaviour. 

\Ve now generalize Definition 2.2 to functions in C. 

Definition 2.3. Let 1l E C, V = L:iEl Vi, ~'i E Cm, for some mi E Z, 1ni #- mk fori-:/:- k. Then we define 

(2-5) 

By Defintion 2.3, the UV -degree is uniquely defined for every F E C. Again! b'l.L = degr;V if and only if V shows 

a behaviour (2~4). The lattice degree defined in this way h_as quite similar properties as the usual degree of a 

polynomial. Using (2-4), we get 
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Lemma 2.1. Let V, vl, ... ' Vp E c be functions in Yariables (u, w) and a.> 0. Then 

p 

1. degr:;; L Vi :::; . max degr:;;Vi 
i:::l t:::l, ... ,p 

p p 

2. degr:;; n vi :s L degr:;;- Vi 

3. 
~~ 8' ~~ 
degr--V < degr-V- lei 

u. auc - 1.1. 

4. 
~~ 8' ~-
degr---V < degr-V 

1.1. awe - u 

(2-6) 

(2-7) 

(2-8) 

(2-9) 

Note that the second statement is an inequality, whereas the analogous property of polynomial degrees is 

an equality. 

We further restrict the function classes Cm and C. Until now we have not made any assumption about the 

behaviour of functions in C for smalllattic.e spacing a.. We now assume existence of the continuum limit. 

Definition 2.4. C~ is the set of functions V defined by 

a. V E Cm, 

b. lim V( u, w; a) exists. 
a-o 

cc consists of all finite sums of functions in some C~. 

This roughly defines the class of functions to which numerators and denominators of Feynman integrals belong. 

In particular, they are assumed to be infinite.ly often differentiable, and their continuum limit exists. Before 

defining the exact form of Feynman integrals to which the power counting theorem will be applicable we state 

some important properties of the class C~. If V E C~ is independent of momenta u, then 

degr:;;V(u,w;a) :S 0. 

If in addition lima ..... o V ( u, w; a.) 1- 0, we have 

degr;V(u,w;a):::: 0. 

Every V E C~ has an expansion for small lattice spacing a. of the form 

1 
V(u, w; a)= - F(ua, wa) = P(u, w) + R(u, w; a). 

a= 

The continuum limit P of V is a homogeneous polynomial of order m. In general, 

(2-10) 

As shown by the example considered above, degru.P < degr;V cannot be excluded. However, with respect to 

all momenta u, 11' 1 

degr.wP = degr-V if P(u, w) ~ 0. 
uw 

In this special case the lattice degree is determined by the continuum limit. In general, "lattice effects" are 

described by the remainder R(u, w; a). As can easily be seen, R admits an estimate 

IR(u, w; a) I :SaP L IQ;(u, w)i, p 2: 1, 
iEJ 

(2-12) 

where I is a finite set and Qi are polynomials satisfying degruQi :S degr;;V + p. This means every additional 

power of 11 in Qi (with respect to degr:;;V) is accompanied by a power of a. Unfortunately, (2~12) depends on 

the partition of ( u, w) into internal and external momenta. Later we will derive a much more general inequality 

which allows determination of the cutoff dependence of Feynman integrals having such a V as the numerator 

of the integrand. 

We now define a class of Feynrnan integrands on the lattice. To this end we choose momentum variables 

( u 1 , ... , uh) and ( w 1 , ... , w,), where u.i and Wj are four-momenta. The follo~ing considerations can easily be 

extended to other dimensions. 
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Definition 2.5. F is the set of functions F in momentum variables ( u 1 , •. . , uh ), ( w 1 1 •
•• , w! ), masses 1l = 

(ILl, /k2, ... ) and a > 0 of the form 

F 

and the following properties: 

v 
c (2-13) 

1. V E cc is of the form V(u, w; p., a)= L:iEI Pi(P.) Vi(u, w; a), I a finite set and Vi E C~;' mi E Z. For 

every i E I, Pi is a polynomial in the masses p. 1 . 

2. C is a product 
n 

C = Ille,(l,; a)+ ~LlJ, 
i :::1 

where n E No = {0, 1, 2, ... }. The "line:' momenta" li #- 0 are of the form 

h • 

li(u, u)) = L Cij ui + L dik wk, 

j:::l k:::l 

where cij, dik are real constants, and 

where 

and 

1 
e,(l,; a)= 2 7J;(I;a), 

a 

1Ji(l;a f 0) > 0 for I; E [-rr/a, rr/a]', 

'rfi 21r-periodic in every component of lia, 

\\lith respect to addition and multiplication, the set of functions F is closed. Furthermore, F is invariant 

under differentiation. We always assume that every ei(li; a) is periodic in li with the BZ, and ei should have only 

one zero in the BZ, located at vanishing momentum. Especially, naive fermions are excluded, their propagators 

having more than one pole. If we would drop this condition, our general assumptions about the form of the 

numerator would not be sufficient to get convergence of a Feynman integral in the continuum limit. 

For F = V fC E :F we define 

N ole that 
~ 2 {2 
degr~(e;(l,; a)+ !ki) = 

0 

hence for F = V/C E :F 

if (c,,, ... ,c;n) f 0 

otherwise, 

where nu is the number of line momenta li, i E {1, ... , n}, which are dependent on u. In particular 

(2-14) 

(2-1.5) 

In this special case Lemma 2.1.2 is an equality, i.e., the UV-degree of the denominator is already given by the 

polynomial degree of its continuum limit. As a consequence, for every F E F 

(2-16) 

The UV-degrees offundions FE F have "typical" degree properties. They are direct consequences of Definition 

2.5 and of Lemma 2.1, and are listed below, although we do not make use of them in this paper. Nevertheless, 

they are of importance, especially in proving convergence of renormalization schemes [4]. 

1 The mass dependen<'e of the numerator is important. if Feynman integrals containing massless propagators are to be rep,ormalized. 

Then it will be necessary to introduce auxillary masses. 
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Lemma 2.2. Let F, F1 , ... , Fp E F. Then 

p p 

2. degr;;-IJ F; :S L degr;;-F; 
i=l i=l 

3. 
-- f)' --
degr--F < degr-F - fcl u 8uc - u 

4. 
-- f)' --
degr---F < degr-F 

u awe - u 

For instance, to prove 3., let FE F. Then 

hence 

f) 
-F= 
fJu 

cnv - vnc 
8u 8u 

C' 

- &F - av - ec -
degr-- < max(degr-C- degr-V-)- 2 degr-C u 8u - u 8u ' u 8u u 

< degr-V - degr-C' - I = degr-F- I. - u u u 

The assertion now follows by induction on the number of derivatives. 

3. The Power Counting Theorem. 

~~e consider Feynman integrals 

!
,fa 

- 4 4 I(q,p.,a) = d k 1 ···d k= F(k,q;p.,a), 
-1f/a 

where 

F(k, q; /l, a.)= V(k, q; p., a)/C(k, q; p., a) E :F. 

(2-17) 

(2-18) 

(2-19) 

(2-20) 

(3-1) 

We assume periodicity of the numerator V E cc with the Brillouin zone [-1rja, 1rja] 4 in al1 internal momenta 
k 1 , ... , A·m. An important notion is given by the following 

Definition 3.1. Let C be a set of four-vectors li, 

m 

li(k, q) = Ki(k) + Q;(q) = L C;; k; + Q;(q), i =I, ... , N, C;; E R. 
j=l 

£ is called natural with respect to k, if the following conditions hold: 

1. 

2. If the four-momenta 

C;; E Z for all i = 1, ... , N; j = 1, ... , m, 

rank( C;;) = m, 

( Cil, ... , C;m) i 0 for all i = I, ... , N. 

m 

1..~; = '2::: C'irJ kj, l = 1, ... , 1n 

j::::.l 

are linearly independent, then 

m 

l..~j = L Aj11..~; with Ajl E Z. 
1=1 

6 
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This condition is natural in the sense that arbitrary independent li E L could be chosen as integration 

momenta, the coefficients Cij always being integer valued. For a Feynman integral this condition is ensured if 

all loop momenta kt, ... , km. coincide with momenta of lines up to external momenta [3]. Also, using periodicity 

of the integrand, the integration domain could always be chosen to be [-11"/a, 7r/a]4m.. As an example of the 

importance of line momenta to be natural consider 

d4k d4 k - =::-----:-
1 J

rr/a 1 1 
1 2 2 2 2 2 ~-:::---.,~~-

-rr/a kl +I' kz +I' (k 1 - kz + p2 ) 8 

Here k' = I::= 1 (4/a2 )sin2 (k"a/2) and p 2 > 0. All criteria of the power counting theorem below are satisfied 

except that the set {k,, k,, k,- k,, k1 + k,} is not natural. In fact, if 0 < < < 1/2 and e = (1, 0, 0, 0), the integral 

is divergent in the sector 

21r 1r 
llk1 + k,- -ell < -' 

a a ' 

1r 
~, 

a 

as a ~ 0, where IIlii = )I::=l ll for l = (l, ... , !4) E R 4. As will be seen below, naturalness means that 

line momenta in neighborhoods of poles2 of propagators in higher BZs can be transformed simultaneously 

into neighborhoods of the poles in the first BZ by translation with reciprocal lattice vectors. Under such 

a transformation the numerator of a Feynman integrand is invariant. This would not be the case by other 

translations. They would produce explicit negative powers in the lattice spacing destroying convergence. 

Before defining UV-divergenc.e degrees of Feynman integrals in Zimmermann subspaces, we have to intro­

duce the notion of a basis of a set of line momenta. Given variables k = (k1 , ... , km.) (loop momenta) and q = 
( q1 .... , qM) (external momenta), ki, q1 E R 4 , let L denote the space of all linear mappings l : R 4m. x R 4 M - R 4 

of the form 

l(k,q) = K(k) + Q(q) (3-2) 
~ 

K(k)=Laiki; aiER,i=l, ... ,m (3-3) 
i:::1 

M 

Q(qJ = I),v; biER,j=1, .... M (3-4) 
j :::1 

in the four-momenta k1 l ••• , km and q1 , ..• , qM. K and Q is said to be linear in k and q, respectively. 

Let M ~ L be an arbitrary subset. Elements 11 , .. _, 14 E M 

~ M 

li(k,q) = I:a;;k; + Lb;;q,, i = 1, ... ,s (3-5) 
j:::l j:::l 

are called linearly independent with respect to k if their homogeneous parts in k are linearly independent. 

Furthermore, {11 , ... , l,} ~ M is called a basis of M with respect to k if it, ... , l, are linearly independent and 

every l E M can be written as 

l(k,q) = L c;l;(k, g)+ Q(q), (3-6) 

i:::1 

where Ci E R~ i = 1, ... , sand Q is linear. In this case we define rankkM::::: s. 

We now define lTV-divergence degrees with respect to Zimmermann subspaces. Let L be a natural set of 

four-momenta 3 and 
1t1 = li 1 , ••• , Ud = [ia. 

l'l = lj 1 1 .-., Vm-d = lj.,._a. 
(3-7) 

2 A ·•pole" of a propagator 1/ ( '1~kza) + ~; 2 ) denotes a zero of the ry-function. 
3 ACtually, property 1 in the definition of naturalness would be sufficient to define UV -degrees of Feynman integrals. However it is 

convenient here to assume C to be natural, this being an important assumption of the power counting theorem. 
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be an arbitrary basis of£ with respect to k, 1 ~ d ~ m. By fixing t• 1 , ... , Vm-d we define a class H of affine 
subs paces in the space of integration momenta R 4=. H is called a Zimmermann subspace, ( u) = ( u 1, .. . , ud) is 
called the parametrization of H, and ( t•) = ( v 11 ... , Vm-d) are the complementary parameters of H. For F E :F 
we define 

( v, q represent the "external momenta'' of H). The set of all Zimmermann subspaces, for all bases (3-7), will 
be denoted by }{. Note that }{ depends on the set £ of four-momenta. Now we state 

Theorem 1. Power Counting Theorem. Let 

and F E :F of tl1e form 

F(k 
. ) _ V(k,q;Jl,a) 

,q,JL,a ~ ' 
C(k, q; If, a) 

where V E cc is (2n'f a )-periodic in every component of k1 , ... , km, and 

" 
C(k, q; p, a)= IT [e;(l;(k, q); a)+ JLT], 11! > 0. 

i::::l 

Let C be a natural set of four-momenta and {11 , ... , ln} c; C. If [or every H E 1{ 

tl1e contiJJUum limit off( q; J1, a) exists and is given by 

\vhere 

lim l(q;p,a) = 1= d4 k1 · ··d4 km 
a-->0 _

00 

P(k,q,p) 

E(k, q, 11)' 

P(k, q, !f)= lim V(k, q; If, a) 
a-0 

E(k,q,Jl) = limC(k,q;Jl,a). 
a-0 

(3-1) 

(3-9) 

(3-10) 

If P f- 0, the set C' = {11 , ... , ln} contains a basis of C with respect to k (otherwise w( H) ::C 0 for some 
H E 1t.). Renee, if£ is natural so is£'. In this case the theorem can be formulated using .C' instead of£. The 
continuum limit (3-10) is absolutely convergent according to (2-16) and the power counting theorem ofY.Hahn 
und W.Zimmermann [I] (or by Theorem 2 below). 

As an example for the importance of ( 3-9), let us look at (1-1) in the introduction again. Only one subspace 
must be considered, and the corresponding divergence degree is equal to one. Hence the theorem cannot be 
applied, and as we have seen, (1-1) is in fact divergent in the limit of vanishing lattice spacing a. 

To prove the theorem, using Definition 2.3, it does suffice to assume F E c;,.o for some mo E Z. Hence let 
us consider 

(3-11) 

l'- E C~~o' moE. Z. \~lithout loss of generality we assume£= {11 , .. . ,IN}, Nan integer greater or equal to 
n, and that k1, ... , km are contained in £. By naturalness of£, this is always possible to arrange by a linear 
transformation. 

4. Proof of the power counting theorexn: first steps. 

The proof idea is as follows: The integral (3-11) will be written as a sum of integrals over various sections 
in momentum space. The division of the integration domain will be done in dependence on the configuration of 

8 
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line momenta li. For every propagator we distinguish line momenta in neighborhoods of the poles and outside 
of them. As will be seen, a propagator can then be estimated by its continuum limit or by some powers of the 
lattice spacing a, respectively. 

For l E R 4 define 

e,(l) = { ~ if Ill- (2,-la)zll < (1rla)< for some z E Z 4 

otherwise, 
(4-1) 

where£ is a small positive constant which will be chosen below. Using Heavisides 0-function, G(x) = 1 iLr ~ 0 
and e(~) = 0 if~< 0, 

"' " 2,-1 = e,(l) + L, e(-< -111-- zlll· 
a a 

(4-2) 
zEZ• 

Doing so for every propagator, (3-11) can be written as 

l(q;p,a) = {H) 
J~{l, .. ,n} z 

where for every ''sec.tor" 1, z::.: (zili E J), we have 

(IT e(~< -Ill;- 2
: z;lll). IT e,(l;), 

iEJ i9[J 

{4-4) 

and for every 1 the sum Lz runs over finitely many configurations z. We have to estimate the contributions 
of all integrals ( 4-~4) for srnalllattiC"e spacing a. To this end, we make an appropriate transformation for each 
integral (4-4). As a consequence of naturalness of the set£ of four-momenta, for small enough t: > 0 and for 
t'vo:·ry J . .:::, there exists a translation 

so that 
2,-

zi ----+ li + - Zi for all i E J. 
a 

(4-5) 

This is shown in Appendix D. By (4-5), all line momenta at poles of propagators in higher BZs are shifted into 
neighborhoods of the origin in the first BZ, leaving V(k, q; a) and all 'rfi invariant. Consequently 

l;,(q;Jl.,a) = r a•k, .. . a•km ?k,q;a) ) (IT e("-, -lll,lil). IT e,(l,), (4-6) }" n11 rr.(lia) 2 a 
CTJ i:::l a2 + J.li iEJ i9(.J 

where 

u J = { ( k,, ... , km) E R 4"' I - { 1 + 2{ b; ); ) 1r I a :<= { k; ); :<= { 1 - 2{ b; ); ) 1r I a, j = 1, ... , m; i = 1, ... , 4 }. ( 4-7) 

Now, in every integral (4-6) the propagators can easily be estimated, using their properties listed in Definition 
2.5. Again, for small enough£, there is a constant a, so that 

1 
<--­

rr.(l;a) + 2- lf + f.l[' -.-,- 11; 

whenever lllili < (r.ja) f. This can be seen by an expansion of IJi at vanishing momentum. 
is a constant 1 > 0 such that, if Ill;- (Zr.la) zll 2: (1rla)' for all z E Z 4

, then 

1 2 

II I 
< "Y a . 

TJ, ,a + 2 -
~ fl; 

( 4-8) 

Furthermore) there 

(4-9) 

HenC"e, the denominator in every integral ( 4-6) is bounded by a produd of continuum propagators and expliC"it 
pow{'rs ofthe.latti<.'e spacing a. If it would be possible to estimate the numerator V(k, q; a) by its continuum limit, 

9 



A power counting theorem for Feynman integrals on the lattice 

(4-6) would be bounded by a rational function to which the power counting theorem of Hahn and Zimmermann 

eould be applied (in a somewhat generalized form to determine the cutoff behaviour). Unfortunately, this will 

not be possible, as we have seen in the introduction. Another possibility would be to expand Vat small lattice 

spacing a, 
V(k, q; a)= P(k, q) + R(k, q; a), 

P being the continuum limit of V and R a Taylor remainder, and to estimate R by a polynomial. But this 

estimate is too rough, the conditions (3-9) will not be sufficient for convergence of this estimate. This is because 

we have a lot of Zimmermann subs paces and for every such space a corresponding lattice degree of the numerator 

V. For a fixed space we will get an estimate of the form (2-12), but now we need such an inequality which 

respects degree properties of all Zimmermann subspaces simultaneously. This is not possible in general. 

A way out is the following. A simultaneous estimate which respects degree properties can be done for 

ordered subspaces H 1, ... , H ~, i.e., Ht is a subspace of Hj if i < j. This means that for every such sequence we 

get an estimate 

IR(u, w; a)l SaP L IQ,(u, w)l, 
bEB 

where pis a natural number, B a finite set, and the polynomials Qb satisfy 

(4-10) 

(4-11) 

( Uj) being the internal parameters of Hj. Doing so for every ordered sequence of Zimmermann subspaces, we 

get 

IR(k,q;a)l S 'fl,ipaP' L IQ;,(k,q)l, 
bE B. 

(4-12) 

so that for every ordered sequence there exists an i E I such that 

degruQib S degr;;V + p; for all bE B;, (4-13) 

( u) being the parameters of an arbitrary Zimmermann subspace in the sequence. Using this and the above 

estimates for propagators in the integral (4-6), we get generalized continuum Feynman integrals, i.e., integrals 

which look like Feynman integrals in the continuum with a sharp cutoff, the right hand side of (4-12) being the 

numerator. In the next section we will state a theorem which controls the cutoff dependenee of integrals having 

this form. Furthermore, we will prove the validity of an inequality (4-12). Using these two statements it will 

be possible to complete the proof of the power counting theorem under the conditions ( 3~9 ). 

5. A Power Counting Theorem for generalized continuum Feynman integrals. 

In the present section we state an auxiliary theorem which wil1 be used to complete the proof of the power 

counting theorem. Set k = (k 1 , ... , km) (loop-momenta) and q = (q1 , ... , qM) (external momenta), k;, q; E R 4 • 

L again denotes the space of linear mappings l: R4= x R4M ~ R4 of the form (3-2)-(3-4) in the four-momenta 

k1 , ... , krn and q1 , • •• , qM. The notion of a basis of a set of line momenta is defined in {3-5 )-(3-6). 

Let L C L be a finite subset 

L = {l;(k,q) = L C;;k; + Q;(q) z=l, ... ,N}, 

where 

J :::0 l 

rank( Cij) = tn 

(Gil,· .. ,C\m.) -j. 0 

12 _., 12 
' 1- J 

for all i = 1, ... , N 

if i -:f. j, 

(5-la) 

(5-lb) 

so that ra.nkkC = m. (cp. (3-6), especially N :2'_ m). Furthermore, let J\( ~ C be an arbitrary subset. "\Ve 

consider integrals of the form 

I,(q, 1') = f >,L .. ·d''·. min;u >,-P·]P;(k,q)l 
d

4
k1 •m 

E(k, q, I') ' 
Pi ~ 0 integer. (5-2) 

10 
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I is a finite set, Pi are polynomials in the components of the four-momenta ki, ... , km and qi, ... , qM, and 

E(k,q,!')=II(li(k,q)+IL!)n', IL!>O, n;EN={l,2, ... }. 
}/ 

(5-3) 

ITN means product over lj E .A!. Hence .A! is the set of allli E L appearing in the denominator of the integrand 
of I>.. We always have 1'ankk.A!.::; m. All propagators are assumed to be massive. 

For a finite subset M C L satisfying 1'ankkM :::: m we define 

(H) 

as the integral over all (ki, ... , k=) E R 4= subject to the constraints 

l'(k, q) :S A2 for all! EM. (5-5) 

7>.. is convergent for every finite A. We examine the behaviour of I>. for large A. The cutoff dependence can 
be described with the help of divergence degrees with respect to Zimmermann subspaces of the integration 
momenta. First we make the notions more precise. Let 

u1:::: li 1 , ••• , ud = li 4 

V1 = [h, .. . , V=-d = lj,..._ 4 

(5-6) 

be an arbitrary basis of L with respect to k, so that k = k(u, v, q), 1 ::; d ::; m. As in Section 3, by fixing 
'VI, ... , t'm-d. we define a class H of affine subs paces in the space of integration momenta k called Zimmermann 
subspace. {u) = ( u 1, ... , ud) is called the parametrization of H. (v1, ... 1 Vm-d) are said to be the complementary 
parameters of H. The set of all H, for all bases (5-6) of C, is denoted by 'H.. 1f. is the set of all possible 
Zimmermann subspaces 1 and it depends on the set L. 

Definition 5.1. Let 

(5-7a) 

be a11 arbitrary basis of[, and HI, ... 1 H 3 , s 2: 1, a sequence of classes of affine subspaces in 1{ having the 
following properties: 

1. Hi is parametrized by ( ui} = ( UilJ ... , Uid;) ~ { u(l), ... , u(m)} 1 the remaining uU)•s 

in the basis being the complementary parameters of Hi. 

2. (u;) are contained in (uk) if j < k. 

Then the sequence HI, ... , H, is called an ordered sequence with respect to the basis (5-7 a). 

With respect to the set of polynomials {Pili E I} in the numerator of (5-2) we define 

Definition 5.2. The set {b(H)IH E 'H.} is called an ultraviolet-set (UV-set), if 

1. 6(H) E Z for ever.v HE 'H.. 

(5-7b) 

2. For every basis (u(l), ... ,u(m)) of! and every sequence H 1 , ... ,H1 which is ordered with respect to 
this basis, then· exists an i E I such that ( cf. Appendix C) 

for all. (5-8) 

Here ( u 3 ) denotes tile parameters of H; and ( Uj, <';) = ( u( 1 l, ... , u(m) ). 

The number of possible bases of£ and ordered sequences of subspaces in 1{ is finite. Hence UV-sets do 
always exist. If I::= {1} consists of one element only, the set of 

11 
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for every HE Ji, where (u) is the parametrization of Hand (v) are the complementary variables, is a UV-set. 

In this ease the notion of ordered subspaces is superfluous. Note that UV-sets as defined in (5-8) are dependent 

on the external momenta q, which we have kept fixed. momenta q. However, for every UV-set {b(H)[H E 'It} 

one can find a UV-set {b'(H)[H E 'It}, which is independent of q, where b'(H) 2: b(H) for dl HE 1t. 

We now define UV-divergence degrees for integrals of the form (5-2). UV -degrees of polynomials are defined 

in Appendix C. Let {b(H)IH E 7t} be a UV-set. Given an arbitrary basis (5-6) of C, we define for H E 'It, 

parametrized by (u) = (u,, ... , ud), 

(5-9) 

This definition depends on a given UV-set. The following theorem states the cutoff behavior of integrals (5-2) 

for large .\ if a UV -set is given. 

Theorem 2. Auxiliary Power Counting Theorem. Let {b(H)[H E 'It} be a UV-set and {w(H)[H E 'It} 

the corresponding set of UV-divergence degrees. Then there exist K(p., q) > 0 and c(p., q) > 0, so that for all 

.\ > K(p., q) 

if maxw(H) < 0 
HOi. 

if maxw(H) < 0 and Pi 2: 1 for all i E I 
HE?i 

if maxw(H) > 0. 
HE1t -

(5-10) 

If the momenta q are boundt>d and the UV-set is independt>nt of such q, then K and c can be chosen to be 

independent of q. 

The estimate (5-10) can be strenghened if a UV-set is given having maxHE7t w(H) minimaL However, we 

do not need this in our applieation, where a UV-set will be given in a natural way. The theorem is an extension 

of the power counting theorem of Hahn und Zimmermann [1]. In general, the numerator is not a polynomial, 

instead it is a minimum of a collection of polynomials, and we indude the cutoff behavior of divergent integrals 

(for .\ ~ oo). Below we will apply the theorem (for .\ - 1/a) in two special cases. If I = {1} and p1 = 0, 

the statement of [1] is reproduced. If all p; 2: 1 and the limit exists, it is zero. If Pi = 0 for all i E I and 

maxHE?i w(H) < 0, then I,(q, p.) converges to 

The proof of Theorem 2 will be given in Sections 8,9. 

miniEI[Pi(k, q)[ 
E(k, q, p.) 

6. Bounds on the numerator of a lattice Feynman integrand. 

Having introduced appropriate notions and an auxiliary power counting theorem being at our disposal, we 

will now show that the numerator of a Feynman integrand can be estimated as proposed at the end of Section 

5. This statement is contained in the following theorem. It is a consequence of the definition of UV -degrees on 

the lattice. Remember we are using multi-index notation. We shall write k = (k1, ... , krn) and q = (q1, ... , qM) 

as in the power counting theorem. 

Theorem 3. Let ll(k, q; a.) E C~o for some mo E Z, [ a 11atural set of four-vectors with respect to k 4 and 

let (ka., qa) be bounded. Then V admits an estimate of the form 

[V(k,q;a)- P(k,q)[-<; aP "'miniQib(k,q)[, 
L iEJ 
bEB 

where I, Bare finite sets, pEN, and 

(6-1) 

4It would be sufficient to assuroe proper(y 1 in the definition of naturalness (existence of a basis). However, in appl,ication of 

Theorem 3 below, L will be natural. 

12 
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1. P(k, q) = lima-o V(k, q; a). For every HE 11., parametrized by (u) 

(6-2) 

2. Qu, are polynomials. For every basis 

i'l-z. l=l-z. u - ttl ••• ) u ~ t,.,.. (6-3) 

of L with respect to k and every sequence H 11 .•• , H, of classes of affine subspaces in 1{ which is ordered with 

respect to the basis (6-3), there exists ani E J, so that 

(6-4} 

where ( ui) dt?notes the set of parameters of Hj. 

The statement means that, for every bE B, the set of all b(H) = degr;;V, where (u) is the parametrization 

of H E 11., is a UV-set for the polynomials Qib, which is independent of q. This allows us to apply the cutoff 

theorem to the integrals (5-8) in Section 5 to determine their cutoff dependence, as will be seen in the next 

section. Note that always p :> 1. If P(k, q) '$ 0, then p can be chosen to be 1. If V(k, q; a) is the numerator 

of a Feynrnan integral, the variables (ka., qa) are always bounded, because k1 , ... , km range over the BZ, and 

external momenta q are fixed. 

In the remaining part of this section Theorem 3 is proved. First of all we note an extended version of 

Taylors theorem. 

Lenuna 6.1. Let F be a C 00 -function of the form F(v 1 , ... ,·vnL ·viE Rm'. Let bi E No= {0,1,2, ... }for 

every i = l, ... ,n, andbi 2: bk ifi < k. If 

F(v 1 , ... ,v3 _ 1 ,Av,, ... ,>.tln) = O(A!J•), A~ 0; s = l, ... ,n, 

then tltere exist C 00 -i'unctions Fb, bEN~ .. , [b[ = bn, satisfying 

foralls = 1, ... ,n-1, so that 

F(vt, ... ,vn) = L·v~Fb(v1,···,11n)· 
• 

(6-5) 

(6-6) 

(6-7) 

This lemma is an extension of Taylors formula in the sense that it states the coefficient functions Fb being 

C 00 ifthis already holds for F. This allows successive application of {6-7). 

PROOF: By induction on 1n71 . If m 71 = 1 let b = bn E No and 

F(t't,···,vn) 
F;(v,, ... ,vn)= b . 

1' n 

By Taylors formula, F0 E C 00
, and (6-6) is satisfied. A~sunH' the statement holds for all mn < A1, where 

At EN. Let 1'71 == (w1, w2), w1 E RM, w 2 E R. For l = 0, ... , bn- 1 set 

and define a fundi on G by 

G(t'I· ... , ~'n-1 1 W1, Wz) = F(l1 t 1 ..• , t'n-1, Wt, tv2)-

13 
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The hypothesis of induction can be applied toG and AJ. For, as A___,. 0 we have 

A,(l'l,--.,Vn-L.\w,) = 0(.\'"-1
) 

AJ{v1 , .•. ,v,_ 1 ,Av$, ... ,Avn-l,Aw1)=0(Ali,-l); 1<s<n-1 

G(v1, ... ,vn-l,wl,.\w,) = 0(.\'") 

G(v11 ... 1 vJ-1 1 Av$ 1 •• • 1 Avn-1, Aw1, Aw2) = O(A,o;• ); 1.:::; s S: n- 1. 

Hence, there exist g(vl, ... 1 V 11 _ 1 , w1, w2) E C 00 and hl,b(11t 1 ••• 1 Vn-1 1 w1) E C 00 for all bEN~, lbl == bn -l, so 
that 

and 

A1(v1, .. . , Vn-1 1 w1) = L wt h1,b(v1, · · ·, Vn-1, wi), 
b 

hl,b{t111 --- 1 V,_lJAv, 1 •
•• ,Avn-l,Aw1) = O(A.I,-.5 .. }; A___,. 0; 1 S: s S: n-1, 

G(t'l 1 ••• , Vn-1, Wt 1 w2) = w~" g(vt, ... , V11-1, Wt, w2}, 

g(t'l•···,v,_t.Av,, ... ,Avn-t,AwllAw2) = O(A6 ·-o~ .. ), A- 0; 1 S: s S: n-1. 

"\\'·riting Fin terms of G and A1, the assertion follows. 

0 

We shall use the following notation: For s E N, 6 = ( 6,, ... , 6n) E N~- •+l and multi-indices bi E N~', i ::::::: 

s, ... ,nlet 

By iteration of Lemma 6.1 we get 

lb, I+ · · · + Ibn I = b, and 
if 

lb, I+···+ lb;l <:; b, - bi+l for all i = s, ... , n- 1 
otherwise. 

Lemma 6.2. Let F be a C 00 -function of the form F( Vt, ... I Vn )I Vi E R=i I and bi E No for every i = 1, ... , n, 

b; 2 b, if i < k. If as >, ~ 0 

(6-8) 

then for arbitrary s ::::::: 11 ••• , n there exist functions Fb, .. ·b., E coo, so that 

F(vt, ... ,v11 ) = L h61 1 (b,, ... ,bn)t1;' ···V~" Fb,···b.,_(vi,···,vn), (6-9) 
b,···b,.. 

(6-10) 

PROOF: If s = n, this is the statement of Lemma 6.1. Assume it holds for some s 2 2. Applic.ation of Lemma 
6.1 to F,,. b. in (6-9) yields 

lc.-1l+ ··+lc .. l:::!i,_1-.5, 

Fb,···b.,_,c,_1 "C.,_ (1'1' ... I Vt-1, Avt, ... 1 At'n) = oplit-.5,_ 1 
), A- 0; 1 ::; t < s - 1. 

Inserting this into ( 6-9} and collecting indices of Fb,···b.,,c,_
1 
... c.,, we obtain 

F{11J, ... ,11, 1 )::::::: 2:: hlii•-I(b,_l,···,bn)v!~-11 ···11~,., Fb,_ 1 .. b,.,(11J,···,v11 ), 

b,_j•--b.,_ 
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Lemma 6.3. Let 
(6-11) 

be an arbitrary basis of C with respect to k 1 and H 1 , ... , H~ an arbitrary sequence of Zimmermann subspaces 

which is ordered with respect to (6-11). Furthermore, let V(k, q; a) E C;',,, m 0 E Z, and (ka, qa) be bounded. 

Then \ 1 admits an estimate of the form 

IV(k, q; a) - P(k, q)l <: aP L IQ,(k, q)l, 
bEB 

(6-12) 

where B is a finite set. p E N is independent of the basis (6-11} and the sequence ofsubspaces. The homogeneous 

polynomial P is given by P(k, q) = lim._ 0 V(k, q; a), and q, are homogeneous polynomials of order p + mo 

such that 
degrui P :::; degr;. V 

' 
degruiQb:::; p+degr;_V, 

. ' 

(6-13) 

where ( Uj) is the parametrization of Hj, for all j = 1, ... , s and all b E B. 

If P(k, q) t 0, p can be chosen to be 1. If P(k, q) = 0, p is the largest natural number such that 

lima-o V(k,q;a)faP cfo 0 exists. 

PROOF: 1. We define new sets of variables v1 , ... , v~+l as follows: 

( u!) = ( vl) 

(uz) = (v1, v2 ) 

(u,) = (v 1 , ... ,v,) 

( u(l), ... , u(m), q) = ( v 1 , ... , v>+!) = ( v ). 

Let V(k, q; a)= F(ka, qa)/am" E C;',, and F'(v) = F(k, q). For every H; in the given ordered sequence we make 

a partition (v)::: (uj,wj), where (uj) = (v1 , ... ,vj) are the "internal'' momenta and (wJ) = (vj+l,··-,V 1 +l) 

are the "external" momenta of Hj· Set Tj:::: m 0 - degr;_ V. Then T 1 2: · · · 2: r~ and 
' 

2. For a E Z define 
, . F'(>•l'I, ... , .Av,+I) 

P{J(vi,··-,v,+l) = hrn .\_li ,_, 
and set 

Let To E N 0 be the largest integer number such that P:0 ( v1, ... , v,+1) -=j_ 0 exists. Set 

- { ro 
To = To+ 1 

if mo < ro 
if mo = ro 

and rj = Tj for j '> 1. Then 

and T0 2: T1 2: · · · 2: T~. Applying Lemma 6.2 to G yields 

where 

G('v1, ... , -v~+l) = L h~ 1 (b1, ... , bJ+l) t 1;
1 

• • • v:-+.Y Fi, 1 ... Q,+ 1 (1'1, ... , v,+l ), 

bJ, ... b,+i 

lb1l + ... + lbo+1l =To and 
if 

lb,l + ... + lbJI <:To-T, forallj = 1, . . ,s 
otherwise, 
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IG(v,a, ... ,v,+,a)l :0 a;, L IQ;(v,, ... ,v,+I)I, 
bEE 

where Q~ are (finitely many) homogeneous polynomials of order T0 satisfying 

for all bE B. Finally, let 

P(k,q)= lim -
1
-V(k,q;a)=P:, (v1 , ... ,v,+l) 

a->0 arno o 

Q,(k,q)=Q;(v,, ... ,v,+,) forallbEB. 

Setting p = r0 - m 0 EN, (6-14) follows,and as a consequence of (6-14) 

PROOF OF THEOREM 3: 

(6-14) 

0 

Let the set of all ordered sequences of subs paces in 1i be indexed by a finite set I. Using Lemma 6.3, 
V E C~o admits for every i E I an estimate of the form 

IV(k,q;a) - P(k,q)l S aP L IQ.(k,q)l, 
bEE, 

where Bi is a finite sd and p E N is independent of i E I. P is equal to the continuum limit of 11, henee is 
independent of all sequenees, and satisfi('s for every H E 1i, parametrized by ( u) 

For every Hj, parametrized by ( Uj ), in the ordered sequenee, 

In summary, using the inequality and notations of Appendix B, V obeys an inequality 

IV(k, q; a)- P(k, q)l < aP min'\""' IQ,(k, g) I< aP '\""'min IQib(k, q)l. 
- iEI L - LiEf 

bEE, !>EB 

where B = ®iEIBi, and forb= (bi)iEI E B, Qi!> = Q!>,· Point 2 in Theorem 3 is satisfied by eonstruction. 

0 

7. Completion of the proof of the power counting theorem. 

Having shown that the numerator of a lattiee Feynman integrand admits an estimate as supposed at the end 
of Section 4, and a theorem being at our disposal which states the cutoff dependence of generalized continuum 
Feynman integrals, it is not hard to complete the proof of Theorem 1. Our starting point is (4-6). Using 
Theorem 3 we write V(k, q; a)= P(k, q) + R(k, q; a), so that 

where 

(rr 0( ~,-Ill· Ill) 
iEJ 

. I1 0,(1;) 
igJ 

(7-1) 
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and -, 1 4 4 R(k,q;a) (rr " ) rr Jh = d k1·· ·d km ( ) 0(-< -Ill; II) · 0,(1;). nn ,,(l,a) 2 a 
f7J i=l a2 + /Ji iEJ if/_J 

(7-2) 

Pis the continuum limit of V, and R(k, q; a) admits an estimate 

IR(k,q; a)l < aP L min IQib(k, q)l. 
~ iEI 

;EB 

(7-3) 

By Theorem 3, for every fixed bE B, the set of all 6(H) = degr;;V, (u) being the parametrization of HE 'H., is 
a UV -set for the polynomials Qib· 

Using the bounds (4~8), (4~9) on the propagators, we get the estimates 

and 

where 
-11•1( ) h( 2)n~h~ d4 k ·d4 k min;EJaPIQib(k,q)l 

J::. q,j.l,a :::::a: 1a ... 1.. m 2 2 
••o n,u (I, + l'i) 

h is the number of elements of J, i.e., it is the number of propagators having a momentum near a pole, 

and 

"J = {(k,, ... ,km) E R 4m IIIli II S 6/a for alllj E LJ}, 

LJ = {ljljE J}u{k,, ... ,km}c; £, 

6 =.max (11:£, 471:(1 + 116£11/2)), 
t=l, ... ,rn 

(7~4) 

(7~5a) 

(7~5b) 

(7~6) 

(7~7) 

(7-8) 

is a constant. To every integral in (7-4) and (7-5) we can now apply the auxiliary power counting theorem to 
discuss thr smal.l a behavior. All integrals are of the form needed, where A is replaced by 6/a and .C by LJ. 
The c-orresponding set 1iJ of Zimmermann subspaces of k is defined by bases of LJ with respect to k. By (7-7) 
'liJ c; 'H.. Hence for every J c; {1, ... , n} the set of 6(H) = degr;;V, (u) being the parametrization of H, for all 
H E 1iJ is a UV-set for the family of polynomials Qib, for every fixed b E B. It is independent of the external 
momenta g. 

We first consider the integrals I~b}. As a consequence of (3-9), for arbitrary H E 1iJ, parametrized by 
(u) = (u1, ... ,ud) say, we get 

- -1•1 - rr ( 2 2) degralh(q,l',a) = 4d+ 6(H)- degr. I,+ l'i 

where we have used (2-15). Henc-e 

= I 4d + degr;; v - degr;;C l + de gr. rr ( 1} + l'n 
i~J 

< degru IT (If+ !'f) :S 2(n- h), 
i~J 

degraYj'}(q, /',a) :S 2(n- h)- 1 for all HE 'liJ. 

(7~9) 

(7~10) 

By the auxiliary power c-ounting theorem, there exist positive c-onstants K and c, so that for all a.< K- 1 

a.ifn~h>O, J~b}(q,ft,a)~c(a2 )n-ha-l2 (n-h)-l]Jogma=calogma. 

~II'i ( ) ~ I m b. if n ~ h = 0, 1::. q, j.l, a ::::: c a og a (because of p ~ 1). 

17 
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Thus, the remainder f:Jz does not contribute in the continuum limit. 

Next, we turn to the integrals :Gz. If P(k, q) = 0, all I~.:: vanish and the proof of the power counting theorem 

is complete. Thus, let us assume that P(k, q) 1: 0. For every HE 1iJ, parametrized by (u):::: (u1, ... , ud), 

(7-13) 

The set of b(H) = degruP(k(u, t•, q), q), HE H,, is a UV-set. Consequently, using (7-13) and (3-9), we have 

and hence 

degrHJ;jq,p,a) = 4d+ degruP(k,q)- degru II (lf + ll?) 
iEJ 

:S [4d + degr;;V- degr;;C] + degru II (lf +pi) < 2(n- h), 
i(jf_J 

-- -0 
degrHI,jq, /1, a) :S 2(n- h)- 1, 

(7-14) 

(7-15) 

for every H E 'H1. Using again the auxiliary power counting theorem, there exist K > 0 and c > 0, so that for 

alla<K- 1 

a. if n- h > 0, 

b. if n- h = 0, 

I~z(q, 11-, a.) .:S c(a.2r-h. a.-(2(n-h)-1] logm a= c a logm a 

-0 
l;,(q,JL,a) :S c. 

(7-16) 

(7-17) 

This shows that in the continuum limit only sectors (10 , z) where 10 :::: {1, ... , n}, contribute to (4-3), i.e., 

when the momenta of all propagators are located near the poles. In fact, for appropriate small f > 0, there is 

exactly one such sector. For, if P ¥- 0, the set { h, ... , ln} of line momenta contains a basis of£ with respect to 

k. Let z = ( z1 , ... , z") E Z 4
" and k E R •= satisfying 

. m 271" 
K;(k) = L C;;k; = - Z;, 

a 
j~l 

i = 1, .. . ,n. (7-18) 

By rank( Cij) = m, this system has a unique solution. By naturalness of£, it is of the form k = 2
: a, A E Z4m 

(Appendix D). Fork E [-1rja, 1rja]4= this is possible only if Ll. = 0, i.e., z = 0. Hence, having choosen < > 0 

according to Lemma D.l, for lo only z = 0 appears in (4-3). The integrand orYJoo and hence off_?o 0 is bounded 
by 

n [P(k,q)[ 

" IE=1 (lf(k, q) + llfl' 
(7-19) 

and the integral 
IP(k, q)[ (7-20) 

is convergent by (7-15) and the power counting theorem of [1] (or by the auxiliary power counting theorem). 
Using Lebesgue's ''theorem of dominated convergence", we get 

j
oo 

. _..... . ""0 4 4 
hml(q;JL,a)= hml, 0 (q;JL,a)= d k1···d km 
a-o a-o 0 

_ 00 

P(k,q) 
(7-21) 

TI" (' ')' ;= 1 I; (k, q) + /1; 

This completely proves the power counting theorem. 

8. Some technic.allemmas. 

\\te now start to prove the auxiliary power counting theorem. The proof idea is similar to that of the 
convergence theorem of Hahn and Zimmermann [1]. However, to discuss the cutoff behaviour, we need some 
deeper statements (e.g. Lemma 8.6). In this and the next sec.tion we shall use the notations of Section 5. 
Espec.ially, £.is a set as given in (5-1). In addition, throughout the sequel we shall use the shorthand notation 

], ( {P;}[q, /1) = JA,C d' k, ... d' km min;u .\ -p, [P;(k) 1 .. 

E(k, q, p.) 
(8-1) 
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Here, I is a finite set, and {Pi} represents a set of polynomials Pi, i E I. For r > 0 we define 

D••' = {(k,, ... ,km) E R 4m ll](k,q) 2 r 2 for alll; E .C}, 

and for X<; R 4
m 

J ({P·}I X)= J,",c a•k .. ·d•k min;o ),-P•IP;(k)l 
A ' q' Jl., 1 m E(k ) 

X ,q,~ 

f >,Ld4 ·d4k (k) min;EI ),-P•IP;(k)l = k1.. m XX E(k,q,p) ' 

where Xx is the characteristic function 

xx(k) = { 1 
0 

k EX 
k </c X. 

(8-2) 

(8-3) 

(8-4) 

The present section contains a series oflemmas which will be used to prove the auxiliary power counting theorem 

by induction on the number of (four-dimensional) integrations. 

Lemma 8.1. Let I be a iinite set and r E N 0 = {0, 1, 2, ... }. For every i E I let P;(x, z) be a function of 

x E RP and a polynomial in variables Zj, j :::::: 1, . _., n of degree smaller or equal to -r: 

T 

P;(x,z) = L . . L aj:1 ;.(x) zi' z~". (8-5a) 
iJ:::O j.,.:::O 

Let Yo •... , y, ERber+ 1 different points, Y = {(z1 , ... , zn)lz; E {y0 , ... , y,} for all i = 1, ... , n} and !1 <; R'­

If ti1e integrals 

are convergent for all y(i) E Y, then so are the integrals 

r b min la,(i) .,-,Jx)l, Jn iEI •l •• 

for arbitrary ji 1 , ... 1 )in E {0, ... 1 r} , and there exists c > 0, depending only on Yo,.-. 1 Yr, such that 

(8-5b) 

The number c is independent of the integration domain f!. 

PROOF: For every i E I there exist constants c)~~-"in (y) such that 

Using the inequality of Appendix B, (8-5b) follows, where 

c = . max lcj' 1 ;. (y)l. 
Jt, ... ,j,. ,yEY ,iEl 1 

0 

The following lemma is a direct consequence of Lemma 8.1. 
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Lemma 8.2. Let I be a finite set andrE N 0 = {0, 1, 2, ... }. Every polynomial P; of degree smaller or equal 
to r in the components of k 1 , ... , km can be written as 

P;(k) = L P;a(k), i E J, (8-6) 
o:=O 

where Pia is a homogeneous polynomial of order o:. Let fo, ..• , fr E R be r + 1 different points and Y = 
{to, ... , lr }. Then there exists c > 0, depending only on /o, ... , 11" (but not on the polynomials Pi), such that 

"' j'·" -··d'k min;EJA-''IP;(p,k)l ::; c ~ d4 k, 
m E(k,q,JL) ' 

p;EY for all iEI 

(8-7) 

for arbitrary sequences ( Pia,)iEI. 

PROOF: Since rankkL = m, the integral 

is convergent for every finite A and all Pi E R, i E I. Sinc.e fo, . .. , 11" E R are different points and Y 
{'Yo, ... ,/,.}, Lemma 8.1 implies that 

f A,£ d'k, .. -d'km min;EJ A-p,IPia,(k)l 
E(k, q, I') 

< c L j''" d'k,·. ·d'km min;El A-p~;: o(P;)" P;a(k)l 
p,EYforalliE[ ( ,q,p.) 

f
A,£ 

= C I: d4
k1 · · · d4 km 

p,:EY for all iEJ 

for some constant c depending on Jo, ... , ,.,. only. 

Next we quote 

Lemma 8.3 [1]. Let k,l E R 4 and I'> 0. Then 

(k + l)' + JL' < c(l) 
k' +I'' -

where c(l) = 1 + IIlii/ I'+ l' / 1'2 

and 

min;EJ A -p; IP;(p;k) I 

E(k, q, JL) 

Reeall that we are- using the euclidean norm IIlii = JL)= 1 {f for IE R 4 . As a eorollary, we have 

Lemma 8.4. If the momenta q are bounded, then there exists c(Jl) > 0 such that 

(8-8) 

D 

(8-9) 

(8-10) 

Exc.luding small neighborhoods of the poles of the propagators, I.e., regions where some line momenta 
vanish, the masses may be set to ze-ro without affecting the large cutoff behavior: 

Lemma 8.5. ForT > 0 

1. J,({P;}Iq,JL,D'·T) :0 J,({P;}Iq,O,D'·T). (8-11) 

2. There exists a c(JL, r) > 0 such that 

J' ( { P; }lq, 0, D'·T) <; c(J', r) J, ( {Pi} lq, !', D'·T). (8-12) 

This can be seen from 12 j(l' + 1' 2 ) <; 1 and (1 2 + p 2 )/l2 :S 1 + (p 2 /r2 ). We will now show that the cutoff 
dependence of J>.. does not change if the poles of propagators are excluded from th(" integration domain (Lemma 
8.8). This ]emma will be used in Lemma 8.9 to get. homogeneous denominators in 1>,. As a preliminary, we 
state 
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Lemma 8.6. Let I be a finite set, r E No = {0, 1, 2, ... } and r > 0. Set 

X.\'T = { (k,, ... , km) E R 4
m 

DV = {(k,, ... ,km) E R 4m 

llf;(k, q)ll ~ T; 

T ~ llf;(k, q)ll ~).; 
j=1, ... ,s } 

j = s + 1, . .. ,JV ) 

T ~ lll;(k, q)ll ~ >. ; j = 1, ... , N}. 

(8-13) 

(8-14) 

Suppose {11 , ... ,1,} contains a basis of£ with respect to k. Then there exist a(C,r) > 0 andc0 (C,p,r,r) > 0 

such that for all polynomials Pi of degree ~i, constrained by L:iEI 1'i :::; r, we have 

where.\=>.+ a(C, r). 

min;EI >.-P• IP;(k)l 
fL!(l](k,q) + ~'Il"', 

Note that c0 and a are independent of external momenta q. 

PROOF: The set t:. is given in (5-1). First of all assume 

cij = bijJ Qi = 0 for every i = 1, ... ,m. 

Then X1'T is the set of all (k 1 , ... , km) E R 4
m satisfying Ilk; II ~ r fori= 1, ... , m and 

m 

II L C;;k; + Q;ll ~ r, i = m+ 1, ... ,s 
j:;;;:l 

m 

T ~II L C;;k; + Q;ll ~ .\, i=s+1, ... ,N, 
j:;;;:l 

and DV is the set of k satisfying r ~ Ilk; II ~X for i = 1, ... , m and 

r ~ IILC;;k; + Q;!l ~X, i = m+ 1, ... ,N. 
j:;;;: 1 

To prove Lemma 8. 6 we use the following lemma proved in Appendix A. 

(8-15) 

(8-16) 

(8-17) 

(8-18) 

Len1ma A.l. Let I be a finite set, r E No and o-1 , ff 2 compact cubes in R 4m, cr2 containing an open set. Then 

there exists a constant c( cr1 , ff 2 , C, J.L, r) > 0 such that 

(8-19) 

for arbitrary polynomials Pi of degree Ti, constrained by LiEf Ti :::; r, and for all momenta q. 

To apply this lemma we have to find a > 0 and cubes ff1 , o-2 having the desired properties and satisfying 

and (8-20) 

where X = A +a. At first, Lemma 8.6 is trivial if Xj'T = 0. Furthermore, if N = m, x_~,T and D1'T are 

independent of q, and D1'r for A 2: 2T contains an ope-n subset of R 4m whic.h is independent of A. Hence 

Lemma A.l is applicable, and for a= 2T, Lemma 8.6 follows. 

Let N ~ 1n + 1 and X~,r ¥- 0. We now proceed t.o construd appropriate cubes cr1 , cr2 in several steps. 

v'" ·l - 0'" I I' 1. ~"\.,\ ~ cr1 , w 1ere fft- i:;;;:l -T, T . 
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ii. There exists R(C,r) > 0 such that IIQ;II <; A+R(C,r) for every i = m+1, ... ,N. For, setting C = 
maXi,j ICij I, R = Cmr, and (k1, ... , krn) E Xf'r, we obtain 

= = 
(8-21) 

Next, we define 

.6. = {Q = (Qm+l, ... ,QN) E R 4
(N-m) IIIQ;II SA+ R(C,r), i = m+ 1, ... ,N}. (8-22) 

If A grows, Q is not bounded, hence a cube o-2 contained in D~r for all values of Q does not exist. Instead, we 
> 

construct a(C, r) > 0 and a finite set of cubes, so that for every Q E .6. one of them is contained in D~r, where 

); = A +a. 

iii. To this end, we construet numbers bo(C, r), · · ·, bN-m+1 (C, r) as follows. Set bo(C, r) = 0. If bo, .. . , b-r-I 
are given for an integer r, 1 < T < N ~ m + 1, choose b-r(C, r) > 0 such that the set of (k 1 , .•. , krn) E R 4m, 
satisfying 

i = 1, ... ,m 

= 
b,_,(C, m, r) + 2r S II L C;;k;ll <; b,(C, r), i = m+l, ... ,N 

(8-23) 

j :::1 

contains a compact cube 0-r which itself contains an open set. Such numbers bo, ... ,bN-m+1 do always exist, 
'\'m C k - 0 b . h ] . R 4m L..-Jj:::l 'ij j ~ emg a yperp ane m . 

IV. Consider the following subsets of .6.: 

a. D.N -=+I c; .6. such that IIQ;II < bN -m + T for all i = m + 1, ... , N. 

b. For r, 1 :S r :=:; N ~ m, let Ar ~A such that for every i = m + 1, ... , N 

(8-24) 

Obviously, .6. is the union of these sets. For every r let K, ( C, r) be a number such that Ilk; II C: K, ( C, r) for all 
(k 1 , •.• ,km) E 11,. Set a,(C,r) = max(K,(C,r), b,(C,r)+R(C,r)) and 3: = A+a,. Then for Q E .6.., using 
(8-24), we easily get 11, c; DV. 
v. Let 0 be the finite set of cubes constructed in iv., and Ci(C, r) = maxr a-r. We have just shown that for every 
Q E A there exists a cube cr E fi which is contained in D!.·r. By Lemma A.1, for every cr there is a eonstant 

A 
c(cr1 ,cr,C,r,r) > 0 such that 

(by i.) 

(by Lemma A.l) 

(by iv.), 

where c0 ( C, Jl., r, r) = max - c( u 1 , u, C, Jl., r) and ); = A+ ii. This proves Lemma 8.6, if (8-16) holds. oEn 

In the general case, we make a non-singular transformation 

k; = z,,(k,q) = z::c,,,k, + Q,,(q) 
j =1 

k;, = l;~(k,q) = z::e;~,k, + Q,~(q), 
J :. 1 
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This is always possible because {l11 ... , l,} contains a basis {till ... , li.,..} of L (with respect to k). Under such 

a transformation, the form of (8-15) does not change. Every liE£ has the form 

m 

l;(k', q) = L C\;kj + Q,(q) 
j:;;;:l 

and C satisfies (5-lb) and (8-16). This reduces the general case to the above situation, and the lemma is 

proved. 

0 

We now generalize Lemma 8.6 to arbitrary "sectors" X,S. For any S ~ £, XS denotes the set of k E R 4m 

satisfying 
l}(k, q) 2 r 2 

l}(k, q) ::; r 2 

for 1, E S 

fori; E C\S. 
(8-27) 

Lemma 8.7. Let I be a finite set, r E No = {0, 1, 2, ... } and T > 0. Then there exist K(r) > 0 and 

c(J-L, r, T) > 0, so that for arbitrary polynomials Pi of degree ri in the components of k1, ... , km, constrained by 

LiE I ri :; r, in every sector XS and for all.\ > K( r), the bound 

(8-28) 

holds, where 3: =A+ K(r). 

The set Dq,r is defined in (8-2). The constants K and care independent of external momenta q. In general 

we suppress the dependence on the incidence matrix C. In contrary, mass dependence will be written explicitly, 

since non-vanishing masses are important to avoid IR-singularities. 

PROOF: LetS r;;; £ be an arbitrary subset and X~ the corresponding sector. If S = £, the statement is trivial. 

Hence let Sf-£. By an appropriate renumbering, XS is the set of k E R 4
m satisfying 

l}(k, q) 2 r 2 

l}(k, q)::; r 2 

for j = 1, ... , a 

for j =a+ 1, ... , N, 
(8-29) 

where a E N 0 . Let us write l; (k, q) = K; (k) + Q; ( q) for every j = 1, ... , N. Renumbering again, one can find 

b 2: a+ 1 and a,1, 1:; a:; 1:; o:, so that the following conditions hold. 

1. K = {Ka+!, ... ,K,} is a basis of{Ka+!,···,KN}· 

2. It can be completed by K = {K1 , ... ,Ka} to a basis of{K1 , ... ,KN}· 

3. For every {3 = 1, ... , 1 
a 

Kp = Kp(K) = LCpi K,, Cpi E R, 
i:;;;:l 

and 1 is maximal. 

Then, for f3 = 1 + 1, ... , N, 

b a 

Kp=Kp(K,K)= L dp,l{i+LfpiKi; (dp(a+!), ... ,dpb)y'O, dpi,/piER. 
i::::o+l i:;;;:l 

Define 
z;··' = {K = (K1 , ... ,Ka) E R 4

" r 2 ::; (K;(K) +Q;)
2

::; A'; j = 1, ... ,1} 

and for any K let x;~ be the set of all J{ = (Ka+ 1 , ... , K,) E R 41b-a) such that 

- 2 

(K,(K)+ Q;) :S r 2
; j =a+ 1, ... ,N 

- 2 

r 2 :S(K;(K.K)+Q;) ::;>.'; j=-y+1, ... ,a. 
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Using K, K as new integration variables in h ( {P;} lq, !',X$), we get 

(8-30) 

where 

El{k(K),q,!') =II (l](k(K),q) + l'](j; JV1 = N n {I; E C I j = I, ... , -r}, 
A!, 

E,(k(K, K), q, I')= II (l](k(K, K), q) + l'])"j; N2 = Nn{l; E c I j = -r+l, ... ,N}. 
A!, 

ds is the Jacobian of (k1 , ... , km) with respect to (K, K). We can now apply Lemma 8.6 to the inner integral 

in (8-30). For, the set of momenta 

l;(k(K,K),q)= K;(K,K)+Q;(q), j=a+l, ... ,N (8-31) 

contains a basis of { 1~+ 1 , ... , IN} with respect to K. Hence there exist Ks( 7) > 0 and cs (I', r, 7) > 0, so that 

], 
= min;EJ.>.-P·IP;(k(K,K))I ( ) f d--:- min;u.>.-P·IP;(k(K,K))I 

dK :ScsJ.t,r,r}
1

_K 
x;'fc E 2 (k(K,K),q,p) D~'fc E 2 (k(K,K),q,p) 

(8-32) 

for all polynomials Pi of degree ri, LiE! T'i:::; r·, where 3: =A+ Ks(r) and 

Consequently 

{ _ dK f _ dK min;EJ >.-P·IP;(k(K, K))l 

Jz•·' lv·:O E(k(K K) q ") 
s SK ' ' ',_.. (8-33) 

( ) f>,c 4 ···d'k min;u.>.-P•IP;(k)l 
=csp,r,7 dk 1 = ) . 

D'•' E(k, q, J1 

Setting K(7) = maxsu Ks(r) and using 

for >. > K( 7) and:\= >. + K( r), one can find c(p, r, r) > 0, so that 

(8-34) 

0 

As a corollary, we get 

Lemma 8.8. Let 1 be a finite set, rENo= {0, 1, 2 ... } and T > 0. TJ1en 

1. 
(8-35) 
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2. There exist K(r) > 0 and c(l-', r, r) > 0, so that for all A> K(r) and all polynomials P;, i E I, of a degree 
Ti in the components of k1, ... , km, constrained by I:iEI Ti S: T, we have 

(8-36) 

where X= A+ K(r). 

PROOF: The first statement is trivial. To prove 2, write R 4m::: UsX,S. If si-S', xs nxs, is a set of measure 
zero, hence 

J,({P;}jq,,.,) = Lh({P;}Iq,,.,,X~). 
s 

Using Lemma 8.7, there exist K(r) > 0 and co(!-', r, r) > 0, so that for A> K(r) and every S <; £ 

where X:::).+ K(r). The right hand side is independent of S. Summation overS then proves the assertion. 

Using Lemma 8.8, we state the important 

Lemma 8.9. Let I be a finite set, r E N 0 = {0, 1, 2, ... } and T > 0. Then 

1. There exists c1 (1-', r) > 0 such that 

D 

(8-37) 

2. One can find K(r) > 0 and c2(J.L, r, r) > 0, so that for all polynomials Pi of degree Ti, constrained by 
L:iEITi S r, and for all A> K(r), we have 

h({P;}jq= 0,1') <:; c,(,.,,r,r)J:\({P;}jq= 0,!-'= O,D0·r), (8-38) 

where X= A+ K(r). 

3. Let q be bounded. Then there exist R > 0 and c3 (1-') > 0, so that for all A > R 

(8-39) 

where A = A+ R. 

Note Do,r = Dq,r lq:::::O• and Dq(r is defined in (8-2). If all masses are positive, external momenta do not 
have any influence on the cutoff dependence of J >.. 

PROOF: 

1. 
l.>.({P;}jq = 0, 1-' = 0, D 0 ·T) <: c,(,.,, r) l>.({P,}jq = o,,_,, D 0 ·T) (by Lemma 8.5) 

<:; c1 (!-',r)J.>.({P;}jq= 0,1t) (by Lemma8.8). 

2. Using Lemma 8.8, there exist K ( T) > 0 and c2 (1-', r, r) > 0, so that for all A > K( r) 

1>.( {P;}jq = 0, I') <:; cz(l-', r, r) Jx( {P;}jq = 0, /-', D0 •r) 

<:; cz(l-', r, r) J'\( {P;}jq = 0, 1-' = 0, D 0•r), 

where).=: A+ K(r), and we have used Lemma 8.5 again. 

3. For q in a bounded region we get by Lemma 8.4 

J,({P;}jq,l') <:; c'(l'). !>.,£ d'k,·· ·d'k min;EI A-P·jP;(k)j 
= E(k,o,,_,) · 
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£ is given in {5-1). Choose R 2: maX;=l, ... ,N [[Q;(q)[[ independent of q and .\ = .\ + R. Then for every 
j = 1, ... , N and all k in the integration domain we have 

lltj(k, o)ll :S lllj{k, q)ll + IIQ,(q)ll :S i 

Furthermore, for .\ > R the estimate 

holds, where dis a constant. Hence, setting Z = {l;(k, O)li = 1, ... , N} and c3 (p) = c'(p) d, we get 

~E . - ~p, 

I ' 4 4 mm;u (.\) [P;(k)[ 
h({P;}[q,p):Sca(Jl)· d k, ... d km E(k,O,p) =ca(p)J;;({P;}[q=O,p). 

D 

Finally, we state the following elementary 

Lemma 8.10. Let P be a polynomial in variables (u) = ( u1 , ... , ua), (v) = ( 1• 1 , .•. , v,) and q, and let W(v, q) = 
{W1 (v, q), ... , Wa( 1•, q)), R( <•, q) = (R,(v, q), ... , Rb(v, q)) be linear functions, and p > 0. Then 

PROOF: \Vrite 

P(pu + W(v, q), R(1•, q), q) = L S0 (R(1•, q), q) · T0 (pu + W(v, q)), 
D 

To. being linearly independent homogeneous polynomials and 5 0 in v not identically vanishing polynomials. 
Then 

9. Proof of the auxiliary power counting theorem. 

Consider now the integral 

min;u .\ -p, [P;( k, q) I 
E(k, q, p) 

D 

(9-1) 

where the external momenta q are fixed or at least bounded, and E(k, q, 11) is given in (5-3). We prove the 
auxiliary power counting theorem by induction on m. For m = 0 nothing has to be shown. Given some natural 
number m.0 , we thus assume the theorem is valid for m < m 0 and proceed to show that it then also holds for 
m:::::: m 0 . Let T = L~EJ Ti, where Ti is the degree of Pi ink. 

The proof idea is as follows (cp. [!]). The integral (9-1) will be divided into a sum of integrals over 
appropriate subsections. These integrals will be splitted into a four-dimensional ''outer" and a 4(m0 - I)­
dimensional "inner'' integration, and the denominator will be made homogeneous by use of Lemma 8.9. The 
idea is to apply the hypothesis of induction to the inner integrals in such a way that the remaining integrations 
show the desired cutoff dependence_ To this end, the numerator is dE'composed into homogeneous components. 
This allows an appropriate scaling of inner momenta by the outer one (here homogeneity of the denominator is 
important). After scaling, the inner integrals can be brought to a form similar to the original one. These results 
are summarized in Lemma 9.1. Lemma 9.2 states that the hypothesis of induction can be applied to thes<' 
integrals, and combining both lemmas, a simple cak'.llation leads to the desired cutoff dependence of (9-l ), I.E'., 

the auxiliary power counting theorem holds for m = m 0 . 
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In thl:' following we identify m with a given natural number 1n0. We again use the shorthand notation 

Ki(k) = li(k, 0). At first, for every~= 1, ... , N we define a non-singular linear transformation 

t, = L(Adij k;; (Ad,; E R; i,j = 1, ... , m (9-2a) 

j::: 1 

such that 
t 1 = Kr(k). (9-2b) 

Then k(t) = A( 1t. Without loss of generality we assume det(A1) = 1. Furthermore, we introduce the following 

notations. 

i. Let 7t0 be the set of all H E 7t which are parametrized by a basis of C 5
. Set A = maxHE7i' li(H). Then we 

define w0 by ( cp. (5-3)) 

w0 = 4m + L'>- 2 L n; = max w(H). (9-3) 
N HE'JiO 

11. Let ~ E { 1, ... , N}. For every sequence H 1 , .• • , H$ of Zimmermann subspaces which is ordered with respect 

to a basis of C containing I{ and satisfying 

a. H$_ 1 has l{ =canst., 

b. H$ has all line momenta of a basis variabel, 
(9-4) 

there exists ani E J, so that (5-8) holds. The set of all these i E I is denoted by J(O. 

m. For given (define £1 = {l;(A( 1t, O)l,~o ij E {1, ... , N} \ {(}}. 

Lemma 9.1. There exist K > 0 and R > 0 such that the following statement holds: For all b > R one can 

find c(l', r, b)> 0, so that 

for all A> K, where W(A) = {t1 E R 4 l1 :Slit, II :SA+ K}, Y(1), ... , Y(N) are finite sets, and 

) 
/

,•,c, 
4 4 

miniEI(()(A')-p'IP,y(A(- 1t,q)i 
IA'(y(t,,q = dt, ... dtm 

1 

. 

E(A( 1 t, 0, I') 

Here A' = b(A + d)/iitdi + e, and 

[Fiy(t)] = (ciy,Piytz, ... ,p,ytm)· 

d, e and Ciy, Piy > 0 are appropriate constants. 

t1:::0 

(9-5a) 

(9-5b) 

(9-6) 

As will be seen below, the hypothesis of induction can be applied to (9-5b) ifb is large enough. Remember 

that q is fixed or at least bounded. 

PROOF: 1. Applying Lemma 8.9.3 and Lemma 8.9.2 to (9-1), one can find K > 0 and c,(l', T) > 0 such that 

for A> K 

j '\.Z 4 4 min:EI (XfP'IJ\(k, q)l 
I,(q,Jt)<;cl(!',T) D''dk, .. ·dkm E(k,O,O) • (9-7) 

where A= A+ K. Z ~ {K,(k)li = 1, ... ,N} and D 0
·
1 is defined in (8-2). The denominator in (9-7) is 

homogeneous, and the poles are excluded from the integration range. For every~:::: 1, .. . , N we define a sec.tor 

X{ ~ R 4 m in the integration domain by 

J(f(k) ~ Kf(k) ~ 1 for all i = 1, ... , N. (9-8) 

5 This means that all momenta of a basis are variable on H. 
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Using D 0
' 1 ::: u~~l X{, we get 

where 

N 

I,(q,J1) <; c,(J1, r) L K,-(q, Xd, 
(=1 

(9-9a) 

(9-9b) 

In the following let~ E {I, .... , N} be arbitrary. We apply the transformation (9-2) to K,-(q, X(). Then 

(9-10) 

where 
U(X) = {t, E R4 II<; lit, II<; X}, 

V (A, 0 = { (t,,. . , t=) E R •1=-' I I X' 2: K} (A( -'t) 2: ti for all i E {I, ... , N} \ {0}. 

2. For every i E I the polynomial Pi is d~composed according to 

,, 
P;(A( 1t,q) = LT;0 (A( 1t,q), i E J, (9-11) 

a=O 

where 7ia are homogeneous polynomials in the components of t2, ... , trn of degree o. Further, 

T; 0 (A( 1 l, q) = L T;0~(A( 1 l, q), (9-12) 
{3),·· ,{34 

where I:;=l /3j S Ti - o and Tiof3 are homogeneous in the components of t 1, i.e., 

(9-13) 

Using the notation of Appendix Band writing (a./3) = (a.;,/3;);u, we get 

(9-14) 

(9-15) 

Substituting 

(tz, .. ·, lm) = (t;, · · ·, t:,) ·llt1ll (9-16) 

in the inner integral and writing t; = t1/ 11t111 and>:= bXj llt111, where b 2: I (to be chosen below), we get 

(9-17a) 

where c'(b) is some power of b, w0 is defined in (9-3), and 

(9-!7b) 

V(:!:,O = {(t;, ... ,t:,) E R 41=-ll I:!:' 2: A}(A( 1 t') 2: I; for all i E {l, ... ,N} \{0}. (9-18) 
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Here we have used that, by definition of I(O and ll, for every i E I(O the inequalities <>i + I:;=l (f3i); :S ri and 
r;- Pi :S ll hold, i.e., for Jjtlll2: I and all i E I(~) 

(9-19) 

From Lemma 8.5 and (9-13), we get 

(9-20) 

where i( {K;(A( 1t')li E {!'..: .. , N} \ {~}}. t~ is bounded. Using Lemma 8.9.3, there exist R > 0 and 

<'3(1') > 0, so that forb> R (=?A> R) 

miniEI(() (-'Tp, ]Sio;~Jt;, ... , t;,, q) I 

E(A( 1 t', 0, Jt)j 
t~ ::::0 

where X= bX/iitlJI +Rand C( = {K,(A( 1t'Jj liE {1, .. ,N} \ {0} 
t~ ::::0 

(9-21) 

3. So far we have re-introduced masses in the denominators, and the whole t 1 -dependence of the inner integral 
is contained inN. The last step in proving Lemma 9.1 is to re-introduce the polynomials Pi. LetT= maXiE] Ti 

and choose T + 1 different points Yo, ... , YT E Rand set 

X= {(zJ, ... ,z4) I zi E {yo, ... ,y,} for alii= 1, ... ,4}. 

According to Lemma 8.1, there exists c4 (p.) > 0 such that 

miniEI(() ( -'') -p, IT;o; (A( 1t', q) It; =y; 

E(A( 1t', O,~t)j 
t~ ::::0 

Similarly, let ro, ... , rr > 0 be T + 1 different points and Z = {ro, ... , r:r}. Using Lemma 8.2, one can find 
cs(l') > 0 such that 

where 

[T~,p.J = (yi,Pit;, .. . ,pit'=)· 

Collecting indices and using the notation (9-6), we get Lemma 9.1. 

miniEl(() (ATP' ]Pi(A( 1 [T;,p,J, q)J 

E(A( 1 t',O,~t)j 
t~ ::::0 

We now show that the hypothesis of induction can be applied to the integrals (9-5b). 

(9-23) 

0 

Lemma 9.2. There exist Ko(l', q) > 0 and co(!', q) > 0, so that forb> Ko(l', q) for all~ and ally E Y(O we 
have 

if w(O < o 
if w( 0 < 0 and Pi 2: I for all i E I ( 0 
if w(O 2: o, 

(9-24) 

wl1ere W(O = maxnE?tl w(H). N is defined in Lemma. 9.1. 1-({ C 1-( is the set of Zimmermann subspaces, 
defined by bases of L containing l{ witl1 respect to k 1 , ... , km and having l{ = canst. If q is bounded a11d 
{b(H)jH E Hd is independent ofq, K 0 and c0 can be chosen to be independent ofq. 

PRoOF: Let<: E {I, ... , N} be arbitrary and 
(9-25a) 
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be an arbitrary basis of£{ with respect to (t 2 , ... , trn) of the form 

(9-25b) 

where Ij = lj(A( 1 t, 0)1 . The variables (ii) and c.onstants (V) define a Zimmermann subspace fi of 
tl :::::0 

(t,, ... , tm)- The set of these if, for arbitrary basis (9-25), is denoted by it(. With every if E it( we as­
sociate HE'/{ as follows. Let a basis (9-25b) be given. Take the basis 

(9-26) 

of£. with respect to ( k1 , ... , km) of the form 

Uw=li,_,(k,q), W=l, ... ,d 

Vw = l;w(k,q), W = 1, ... ,m-1-d (9-27) 

Vm-d = l((k, q), 

and let k = A( 1 T, where T= (z,t2 , •.. ,tm)- Then 

Uw=it..w+U.w(a:.,q), W=l, ... ,d 

t 1w = i1u, + V11 , (X 1 q) , w = 1, ... , nl- 1 - d 

where Uu,, Vw 1 Q( are linear functions. The11 the H E 1{ associated with fi E it{ is defined by variables 

(u) = (u1, ... ,ud) and constants (1') = (v 1 , ... ,Vm-d)- We define b(if) = 8(H). The set of these HE'/{ is 
identical to 1{{ in the lemma. 

By this construction, to every sequence if 1 , ... , iJ t of Zimmermann subspac.es in it{ 1 which is ordered 
with respect to a basis (9-25) corresponds an ordered sequence H 1 , •. . , Ht of Zimmermann subspaces in 1{{, 

with respect to the corresponding basis (9-26). Adding H,+l E 'If, parametrized by the whole basis (9-26), 
we again get an ordered sequence. Let ("Ui) be the parameters of flj and (i,i) the complement variables, i.e., 
( ii.i, i,j) = ( w2, ... , Wm) 1 and correspondingly ( uj) the parameters of H j, ( ui, vi) = ( z2 , ... , Zm, l{ }, for every 
j = 1, ... , s. By construction of I(e), using Lemma 8.10 (and inequality (C-4) of Appendix C), there exists an 
i E I( e) such that 

-- -1 -- -1 
degr,,I,,Piy(A( t,q)- Pi:': degr,,I,,Pi(A( [Fiy(t)J,q)- Pi 

:S degruii,,Pi(k(u', v', q), q)- Pi 

S b(H; ), 

(9-28) 

for all j = 1, ... , s. This means the set {8(if)lif E itd is a UV-set of the numerator of (9-5b). For every 
if E it(, parametrized by (9-25b), and corresponding HE 'If( 

w(if) = 4d + 8(if) - degr, E(A( 1 t, 0, J.L) I 

= 4d + 8(H) - degruE(k( u, v, q), q) 

= w(H). 

t l ::::0 

(9-29) 

Thus, all the conditions are met for the auxiliary power counting to apply to the inner integrals l>.'{y(t 1 ,q). 
According to the hypothesis of induction, we get Lemma 9.2. 

0 

'0le now proceed to complete the proof of the main Theorem 2. All what remains to do is to insert the 
cutoff estimates of Lemma 9.2 into the inequality of Lemma 9.1. Then, re-expressing )/ by >., the remaining 
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integration can be done without problems. Choose a fixed b acc-ording to Lemma 9.1 and Lemma 9.2. Then 

there exist constants c(f1, q) > 0 and K (I', q) > 0 such that for all A > K (I', q) 

where we have used 

if w 0 < 0 and w( O < 0 

if wo < 0 and w( 0 < 0 and Pi 2' 1 for all i E I 

if w0 2 0 or w( 0 2 0 

if max w(H) < 0 
HE?t 

if maxw(H) < 0 and Pi> 1 for all i E I 
HE?i -

if maxw(H) > 0, 
HE?i -

max(wo,w(0) <: max (max w(H'),w(H)) <: maxw(H). 
HE?i( H'E1i 0 HE?i 

(9-30) 

K and c can be chosen to be independent of q if q is bounded and if {b(H)IH E 'li} and hence {w(H)IH E 'li} 
are independent of q. This completely proves the auxiliary power counting theorem. 

Conclusions. 

We have proved a convergence theorem for Feynman integrals with a lattice cutoff. Under very general 

conditions 1 it states existence of the continuum limit as well as its coincidence with the formallimit 1 i.e., the 

Feynman integral, which results from taking the continuum limit in the integrand. If convergence holds, only a 

neighborhood of zero momentum in the Brillouin zone contributes to the limit. 

An important convergence condition is the naturalness ofline momenta. This means that their homogeneous 

parts in the integration momenta k 1 

= L c,,kj, 
i::::l 

satisfy Cij E Z for the given representation (3-1) and for every choice of independent line momenta as integration 

variables k1 l ••• , k=. For a lattice Feynman integral it is always possible to choose the loop momenta in such 

a way that this condition is satisfied 1 e.g. if the loop momenta k1 , ... l km coinc.ide with momenta of lines. 

However! in the case of renormalizations one must be very careful in order to ensure that the subtracted 

integrand still satisfies this condition. Note that in the power counting theorem of Hahn and Zimmermann [1] 

the condition of naturalness is unnecessary. However, this theorem can only be applied to integrals having a 

rational integrand. On the lattice, in connection with the periodicity of the integrand, naturalness makes sure 

that only one Brillouin zone contributes in the continuum limit. 

Furthermore, the theorem assumes that the propagators have only one pole in the Brillouin zone, located 

at vanishing line momenta. This means that the denominators of the propagators 

1 

~+ 2 
a' I' 

satisfy ry(la f. 0) > 0 in the Brillouin zone. If this condition would be violated, the assumed periodicity of the 

integrand would not be sufficient for convergence. In particular, the theorem does not apply to lattice fermions 

with propagators having poles on the boundary of the Brillouin zone. In general, the pole condition implies 

that only a small neighborhood of zero momentum contributes as the lattice spacing tends to zero, and that 

the continuum limit of a lattice Feynman integral is equal to the formal limit. 

For simplicity, we have always assumed th€' numerator and denominator of the integrand to be coo. Actu­

ally, the denominator needs to be differentiable only in a small neighbourhood of vanishing line momenta, and 

globally continuous. In the case of renormalization, the whole integrand has to be differentiable to a degree 

depending on the divergence degrees. 

The main point of the convergence theorem is that it is a power counting tl1eorem. This means that con­

vergence of Feynman integrals in the continuum limit is described by ultraviolet divergence degrees with respect 
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to speeial subspaces of the integration momenta, eal1ed Zimmermann subspaces. In order to get convergenee 
in the continuum limit, the divergence degrees with respect to all these subspaces should be smal1er than zero. 
Due to the structure of diagrams with a lattic.e cutoff, we have a Df'W kind of degrees to be distinguished from 
UV-degrees of rational functions [1]. A lattice degree describes the behavior of a Feynman integrand for large 
internal momenta of a Zimmermann subspace and small lattice spacing a simultaneously. To discuss naively 
large momenta for fixed a would be meaningless because of the periodicity of the integrand. 

To every Zimmermann subspace there corresponds a (sub- )diagram. Hence, loosely speaking, negative 
UV-divergence degrees mean that all subdiagrams are c.onvergent. Usually, a Feynman diagram must be renor­
malized. ln terms of a power counting theorem this means that counterterms have to be arranged in such a way 
that divergence degrees of all subspaces are negative. In a following paper [4], this correspondence will be used 
to construct a renormalization scheme for Feynman integrals on the lattice, which is analogous to the BPHZ 
finite part prescription for continuum Feynman integrals. It will hf' seen that counterterms instead of being 
polynomials are periodic functions. From the fad that negative lattice divergence degrees ensure not only the 
existenct: of the continuum limit but also it's coincidence with the formal limit, it will follow that renormalized 
perturbation theory is universal, which means that the continuum limit does not depend on a specific choic_e of 
the lattice action. 

The power <ounting theorem applies to a wide class of lattice field theories. In this investigation we 
lmve been concerned solely with the problem of ultraviolet divergencies. We have assumed all fields to be 
massive in order to avoid infrared singularities. ]n the given form the power counting theorem does not apply 
to lattice field theories with massless propagators. Whereas the lattice provides a UV-cutoff, IR-singularities 
are expected to be the same as in the continuum. This suggests that one should supplement the UV-power 
counting conditions by IR-power counting conditions, which describe the behavior of a Feynman integrand for 
small internal momenta and state IR-convergence at non-exceptional external momenta. By this modification, 
the power counting theorem should apply also to massless field theories on the lattice. In a forthcoming paper 
we will show that this is indeed the case, and that the ideas presented here will go through. 
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Appendix A. Proof of Lemma A.l. 

We first show that the propagators of (8~19) are of no importance'for the validity of Lemma A.l. Recall 
that the line momenta li E .AI are of the form 

m 

ti(k,g) = :Lc;jkj + Q;(g). 
j=l 

Given compact cubes a 1 , a 2 and a 2 containing an open set, let a= a 1 U a2 and choose K(C, o-) > 0 such that 
for alii; EN 

m 

iiLC;ik,lj ~ K(C,,.) for all k E <T , 

j.::_l 

and define 
1 

9"(Q) = :g (K(C, <T) + jjQ,jj)' + 11!. 
Using the triangle inequality and Lemma 8.3 one can find a constant d(C, o-, Jl·) -._, 0, so that for alll~ Eo-

1 
9a ( Q) 5 "'Tic-.,-' (eeL"! (""k-, Q::c)c--+~11 ~~) ~ d( c, "'· 11·) g"( Q ). 

Now Lemma A.J is a direct consequence of 

(A-3) 

(A-4) 

(A-.5) 

Len1.ma A.2. Let U' EN, r· E N 0 aJJd a 1 , 0' 2 compact cubes in Rn. CT2 containing an open set. Tlu'n tl1ere is 
a const.aiJt. c(a1 ,o-2 , r·) > 0, so t!Jal 

llllll IP;(~)I 
i= l, ... ,V' 

(A-6) 
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for arbitrary polynomials Pi of degree Ti in Z1, ... , Xn, with 2:~::: 1 Ti :Sr. 

PROOF: By complete induction on the number n of integrations. 

A. n = 1. By induction on T. The case r = 0 is trivial. Assume for some r E N 0 there exists a constant 

c(a1, a2, r) > 0, so that 

rum ]Pi(~)] 
i:::1, ... ,w 

(A-7) 

for all polynomials Pi of a degree Ti, 2:~::: 1 Ti::; r. Now let Pi of degree Ti and 2:::~::: 1 Ti = r + 1. Suppose every 

Pi has the form ,, 
P;(x) =a; IT (x- Z;j), 

j :::1 

where a,, Zij E C; a, cJ 0. Choose R(<T) > 0 so large, that for all z E C, ]z] > R(<T) 

~<1!-"1<~ 2- z - 2 
for all ~ E CT. (A-8) 

All fr, ··rw are continuous and non-negative. If l.:ij I :S R(a) for all i, j, then there exists a constant B(a1, <12) > 0, 

so that 
j, ... ,. ( z, a) c:; B( <T1 , "' ). 

On the other hand, if izioiol > R(a) for some j 0 , i 0 , set 

such that 

by (A-8), and set 

Then, by induction hypothesis 

Pio(::r) = aio Zioio IT (x- Zioj) 
i(f:io) 

~IP;,(x)] c:; ]P,,(x)] c:; ~]P;,(~)I for all x E CT 

for alii cJ io. 

fr
1 

••• r..,(z,a) :S 3c(<T1J0""2,r). 

Choosing c( "', "', r + I) = max ( B( "', "') , 3c( "', "', r)) the assertion follows for n = I. 

B. Let n > 1. Assume the lemma holds for all natural numbers v < n. Without loss of generality set 

"' = [a, b]" and"'= [a:, b]". By induction hypothesis, there exist c!(abab) > 0 and Cn_ 1 (abab) > 0, so that for 

all polynomials Pi of degree smaller or equal to Ti in :r1, ... , Xn, where L:~:::l Ti :S r, using Fubinis theorem 

. min ]P,(x 1 , ... ,x,)] 
I::: 1, ... 11.(1 

This proves Lemma A.2. 

D 

Appendix B. A useful inequality. 

We state a simple but useful inequality. 
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Lemma B.l. Let n EN be a natural number, I= {l, ... ,n}, and Li a finite set for every i E J. For all iE I 
and alll E L; let ,, 2: 0. Then 

This inequality can be written in a more concise form. For I= { i1, ... , in} and sets Li 1 , ••• , Li .. define 

i.e., every l E L is of the form 
l = (l;);u = (1,, ... ,l;J, 

where 

Using this notation, Lemma B.l can b.e written as follows. 

Lemma B.2. Let I and L; for every i E I be finite sets. Let ,, 2: 0 for alll E L; and i E J. Then 

min~ x 1 
iEI L 

lEL, 

<~min xi!, - L iEl 
lEL 

where L = ®iEILi, and for every l = (li)iEI E L: ;ril:::::: xr,· 

Appendix C. UV ~degrees of polynomials. 

Let P be a polynomial of u, v and q. The UV-degree degr.1,.P(u, v, q) is defined as follows. P can be 
written as 

P(u, v, q) = L Qa(v, q)Ma(u), Qa(v, q) '/' 0 in v (q fixed), (C-1) 

where M 0 are linearly independent homogeneous polynomials in u, and Q{.'f. are polynomials. Then we define 

degrult•p = maxdegrM{.'f., 
0 

(C-2) 

degrM0 being the homogeneity degree of M 0 • Usually, all parameters which are considered as variables are 
written in the argument of degr. In (C-2), q is fixed. If all momenta are variables we will sometimes use the 

shorthand notation 
(C-3) 

In general, 
degr.1,P(u, v, q) :S degr.P(u, v, q). (C-4) 

A useful characterization is the following. degrult·P(u, v, q)::::::. 6 if and only if 

P(.\u,v,q) = A(u,v,q) ·-'' + op'- 1
), ,\ ~ oo, (C-5) 

A(u, v,q) '/' 0 in u, v (q fixed 1). 

Appendix D. Nat.uralness of line momenta. 

"-'e state an important property of a natural set of line momenta. This property is needed when the 
integration domain of a Feynman integral on the lattice is divided into various sections to determine the 
continuum limit behaviour. It happens that line momenta have values in neighborhoods of poles of propagators 
in higher BZ's. The following two lemmas show that, if the neighborhoods are chosen sufficiently small, it is 
possible to shift the line- momenta into the first BZ simultaneously by a translation of the integration momenta 
hy reciprocal lattice vectors. Under such a transformation, the periodic numerator of a Feynman integrand does 
not change. 

V•./e shall use the notation of Definition 3.1. 
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Lemma D.l. Given a set C = {l1 , ... , lN} of four-momenta, there exist f > 0 and a0 > 0, so that for all 

a. < ao the following statement holds: 

Let J <;; {1, ... , N} and z = {z; E Z4 li E J} such that 

is not empty. Then there exists a momentum configuration k E [ -1!" fa, 1r / a] 4m such that 

2rr 
Ki(k) = - Z; for all i E J. 

a 

(D-1) 

(D-2) 

If the statement holds for some f > 0, then so for f', 0 < £
1 ::=; f. The lemma states that neighborhoods of 

the poles can always be chosen so small that their intersedion (D-1) with the integration domain is non-empty 

only if the "internal" momenta Ki, for some k, satisfy (D-2). 

PROOF: Let J <;; {1, ... , N} be an arbitrary subset and Z = {z E Z 4 lllzll < 1 + 2miCI}, where ICI=maX;,j IC;;I 

(cp. Definition 3.1). 

1. Set a,= min;~ 1 , .. ,n (rr/IIQ;II) and <1 = 1/2. Then MJ.(<,a) = 0 if<< <1, a< a,, and z; 1/c Z for some i E J. 

For, a simple calculation shows 

27r 1l" 7r 

llli(k, q)- - z;ll?: - (2llz;ll- (4miCI + 1)) >- <. 
a a a 

2. Let MJ.(<,a) cp 0. lfthere exists no k E [-rr/a, rr/a] 4= satisfying (D-2), then there exist j E J and b > 0 

such that 

This means 

lll;(k,q)- 2arr z;ll?: ~b -IIQ;II > ~<(J,z) 

if a< a,(J,z) = rrb/(2IIQ;II) and<< <2 = b/4, in contradiction to Mh(<,a) cp 0. Taking the minimum of all 

E 1 , Ez ( J, z) and of all a 2 ( J, z), a1, respectively, the assertion follows. 

D 

The importance of Lemma D.l rests on the following 

Lemma D.2. Let the set£ = {11 , ... , IN} be natural and J c;; {1, ... , N} an arbitrary subset. If k E R 4= 
exists, satisfying 

, 2rr 
K;(k) = - Z; for some z; E Z4 and all i E J, 

a 

and for all i E J, theJI there exist reciprocal lattice vectors 

so that for L'. = (L'. 1 , ... , L'>m) 

2rr 4 L'>,, ... , L'>m E {- T IT E Z }, 
a 

2rr . 
K;(L'.) = - z; for alit E J. 

a 

The translation alluded to in the introduction to this appendix thus consists in 

so that for all i E J 

kj---->J..~i+Llj, j=l, ... ,1n, 

2rr 
fi----> fi + _, Zi. 

a 
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PROOF: Let J <; {!, ... ,N} and k E R 4=, satisfying 

Ki(k) 
211' 
-Zi 1 a 

Z; E Z4 for all i E J. 

Choose linearly independent Kc,, ... , Kc.,.., so that Kc,, ... , Kc.~, d :S: m, is a basis of { Ki li E J}. According to 
Definition 3.1 

for every j = 1, ... , m, and 

Define for j 

k; 

d 

Ki LDil Kq for all i E J; Dil E Z. 
1::::1 

211' 

a 
211' 4 

E~Z 
a 

and ~ (~ 1 , ... ,~=)· Then, for every i E J 

d d 

K;(~) LD"K"(~) L Dil K,,(k) K,(k) 
l::::l 1::::1 
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