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Abhstract

We examine patterns where ratios of the fermion masses and the W-boson mass
(®; = m;/my) are proportional to powers of a small parameter A (r; = AP
For a simple estimate of the uncertainty in the coefficients ¢; we determine the
allowed values of P; and the corresponding range of A.

Using this information we search for realistic patterns in a large class of
anomaly free SU(3)x ST(2)x U(1)x U (1) models where X is related to a symmetry
breaking seale and the P; follow from the quantum numbers. No realistic model
is found. In coutrast realistic mass patterns can be induced from an anomalous
U(1) symmetry.

It has been proposed [1] that small quantities appearing in the fermion mass matrices
correspond to different powers of a small parameter A, Models have been constructed where
all small mixing angles and small mass ratios 2; = m;/mw can be understood in terms of a
symmetry [2} The parameter X is a ratio of symunetry breaking scales and the various powers
of X follow from the quantum numbers under this symmetry. No small quantities besides A
are needed. In particular all the dimensionless couplings (Yukawa, gauge and scalar) are
supposed to be of the same order of magnitude.

First we discuss in what sense A and P; determine the various quantities. Then we give
an approximate diagonalization of the fermion mass matrices and use this to estinate the
uncertainty in ¢;. This informmation together witl the experimental values of the fermion
masses and mixings then fix the allowed regions of A and powers F;. A typical Yukawa
coupling of the order of the weak gange coupling leads to a fermion mass of order my.. We
write the dimensionless mass ratios and ihe mixing angles as

= = P (1)

g
8i; = ciA, (2)

In (2) 8, is the mixing angle between geueration i and j. We now want to fix X and F;. F;;
from the #, and #;. This of course depends on the allowed range of values for the ¢; and ¢;.
Tliese quantities cannot be understood purely in terms of syumnetry and their values depend
on specific details of a model. For the models considered in (2! these coefficients are given by
ratios of dimensionless coupling constants. In the context of higher dimensional unification
they correspond to generalized Clehsch Gordan coefficients {3]. In addition the ¢; often have
several contributions. The number of contributions typically increases with a higher power F,.
We therefore expect a larger uncertainty for the smaller quantities, in particular for the first
generation masses. We will take the ¢; to be equal to one within a multiplicative uncertainty
A; which reflects our lack of knowledge of the details of a model.

A & (3)

|

[
So if #7 and r; are the experimental upper and lower bound for x; the allowed values for A
for a given P, are those that satisfy

3': AN Al (4)
In this letter we will take for the masses of the third generation a standard uncertainty A = 2.
The uncertainty for the other #;, 8;; is taken as ;& and A with discussed below.

The powers P, and the coeflicients ¢, come from a diagonalization of the fermion mass
matrices, We will perforn this diagonalization explicitly. The elements of the up quark mass
watnx Ay are given by

T rf_:,\" Yy, (5)

Here i labels the species of right handed quarks »f and j stands for the generation of left
handed quarks v,. We asswme the matrix te be properly ordered so that gy is the largest
elewent, i.e. the mass of the top quark m,. We are only interested in the power of A and
negleet unnatural cancellations. This allows us 10 use the observed smallness of the mixings
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with the third generation to perform a simplified diagonalization of M. We first rotate the
elements u;; and ug; to zero. The 33 element of the resulting matrix v;; determines the top
quark mass (n1, = vz = ua). The other matrix elements induced by this rotation are of

order? or il
Ua 13 etz
Ty = Uy — + - —— (5)
my
H32la3 -
iy = Upp b —=em ")
my
Uagley | Uprplizabigz
Ty =Mt —— F (8)
my Ty
¥apioa  Uppllaalx
Pty = WUt Ty (9
" m;
g1tz Ui
T3 = Uy + ———=- + o {10}
Ity ny
Upziizz LS PR E]
Tas = Ugy + ———— + ——. (11)
™my ny

Next we rotate away the elements v3; and v32. This defines the contributions from Ay to the

mixing angles with the third generation :

. Ty Ug tez®  UprHia?
Bla = — 5ty (12)
™m, mg my
i gy | UzpUaz® | iUzt
my my my

This, of course, again induces elements in the top quark colomn {# 3, ux). They are, however,
suppressed by the smallness of the angles #;3 and the small relative size of v;; for i,7 = 1,2.
We neglect them and consider only the remaining two by two matrix for the lower generations.
Up to negligible corrections ~ #5602, this matrix is given by v,; (i.j = 1,2). This is easily
diagonalized and one obtains

Uapling  lpaltagdiya®
Me =Wlgp+ —— + — {14)
m, e}
. Mypiaattya?
952: 4 LaTRE (15)
m.  meny rit .y
W31H 2 1 Uaptinn g tize Uapllogitg*
Py = g B g 4 Ty, 0Tt (16)
e, m, m, 1y m?

We have neglected terms which are proportional to other terms up to a factor of order oue
or smaller.
The diagonalization of Mp is similar. The final mixing angles are a combination from if-
and AMp
8; =8 + 8- (17)
For the lepton mass matrix nothing is known about mixing angles. We nevertheless adopt
the same procedure and take care of the large mixing case hy considering both Ay and Af]

as discussed in |2}

Remember that we only determine the order of magnitude, not the exact value.

From (12)-(16} we can easily comupute the powers %, P, in terms of I';;, D;; and L;; like
Py, = Dy {18)
P, = T?Jf??(Dgz. D:;g -+ ng — Dy, Dyy v Doy v Dy — 2D33)- {19}

For the nncertainty factors we choose n, as the number of undetermined matrix elements in
the right hand side of the corresponding formulae {12)-{16). Here the contributions involving
wore than one factor of the heaviest mass are denoted with an asterix and are not counted
in the uncertainty since they are important only under relatively rare circumstances. For
exampie, from (8) one obtains n, = 3, n, = 4. { We note that m;, in contrast with
all other mass values should be treated as an unknown matrix element.) The n; derived
fromi {12}-(18) are given in table 1. This simple counting rule for the uncertainty can be
motivated by the following reasoning : For two matrix elements with uncertainty factors
Ay, A, . the uncertainty of the product (or ratio) is approximatelyd,, = Jad ~ A if the
two A, are treated as statistically independent errors, The error of a sum or difference cannot
be so casily estimated but a square root addition &, = V[z_\f — A2 reflects at least some
qualitative features. Our rule for the error then follows if all matrix elements have the same
uncertainty factor A and all terius in {12)-(16) contribute equally. One may argue that often
not all contrilutions to a given quaulity are important and therefore the uncertainty for the
lower generations is smaller. On the other hand the uncertainty of a given matrix element
also tends to increase with the power of A since usually more ratios of dimensionless couplings
are involved (see [2,14 for examples.) No more accurate estimate of the uncertainty involved
seems possible without using more detailed information about specific models. Qur simple
estimate should be regarded as an educated guess which qualitatively reproduces the increase
of uncertainty for the lower generations.

We now turn to the determination of the allowed regions in A and the corresponding
P,. We assume first that the rough equality of Yukawa couplings holds at some large scale
(uear M p) where also the generation symmetry is spontaneously broken. We correct for
the different renormalization group behaviour by multiplving the lepton masses by a factor
2.5-3.5. A standard uncertainty A = 2 allows for factors of four in (corrected) masses to
be explained by differences in Clebseh Gordan coetficients. The regions for the different

quantities are given by

A AN \JJ,‘_\ (20)

for 1he quarks and
PR - S L AR TV ST (21)
VA
for the leptons. The values y° are shown in table 1. Quark masses are taken from 3 except
for the recent UAl lower bound on the top quark mass 6. Values for the mixing angles are
taken from v and the lepton inasses from the particle data book 8.

The allowed values for A for the different guantitics in terms of the P, are plotted in fig. 1.
The allowed regions of A can be divided according to Py, equal to 1 or 2, There are no solutions
for X - .033 and we do not consider A~ .25 because theu the distinetion between differences
in ¢, and different powers of A disappears. The region with P, = 1 can be subdivided in
P.- 1and P. -= 2 (called I and Il in fig.1). The allowed values of P, for the other quantities
are given in table 2. The $U7(5) example discussed in 2 corresponds to case II.
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The above regions are those relevant for generation symmetries broken at a large scale.
We have done the same analysis for a scenario more relevant for composite models. In this
case there is no extra renormalization group factor for the leptons. Yukawa couplings here
are a consequence of strong interactions beiween bound states. We took this into account by
replacing mw in (1} by the vacuum expectation value » == 175 GeV. The resulting values for
A and P; can be found in table 3.

In models with a generation symmetry broken somewhat below the unification scale the

powers P; can be computed in terms of the generation quantum numbers [2]. We can use the’

results in table 2 to decide if a given set quantum numbers leads to a realistic fermion mass
pattern. We have investigated a three parameter (m, p,v) set of anomaly free U/{1} generation
symmetries, These models can all be obtained from compactification of a six dimensional
50{12) model [9]. The quark and lepton charges are obtained from a linear combination of
the U(1}); subgroup of a generation group SU(2); and another abelian symmetry U1}, :

Q=Q+rQ, (22)

The quantum numbers of the fermions under SU7(2); x U(1), are
g B+ 153 - Pl
ut B3 —p+2m)ipp+ 13+ p—2m)iap
& B —p—22m)ip+ 33+ p+2m)an (23)
L E%(3 = 3piliyz + [%(3 + 3p)
et {%(3 + 3p - 2m)hye %(3 = 3p- 2m)|_yp

The standard notation 1s used for the SU(3} x SU{2) » U{1)y representation. The number
in brackets is the SU(2); representation and the subscript the U'(1), guantum number. A
negative number in brackets means a mirror particle in the conjugate representation under
SUBy x SU{2y x U(1)y = I11), whose SU(2), representation is given by the absolute value
of the number in brackets. The mirror particles acquire a mass from spountaneous breaking
of the U(1) generation syimmetry. We elinnnate the supermassive quark-mirror pairs, taking
into account the mixing with light fermions according to the algorithm for mass matrix
diagonalization discussed in detail in section 3 of ref. i4]. This leaves us then with three
generations of light fernnons which are linear combinations of those in (23}, We then allow
for an arbitrary charge of the "leading” weak higgs doublet [2i under the extra U'{1) and search
for a realistic set of resulting ;. These are given by, the difference of the fernuon bilinear
guantum numbers ancd the higgs ones [2]. We have performed a computerized sean for p = 1.3
ymo= =3, -2, .., 3and r = --9/2,-5/2,....9/2. {This leads to integer differences of the
U(1) charge between fermion bilinears.} We found uo realistic mass patterns corresponding
to case 1. I1 or III of table 2. One assignment of quantum numbers leads to realistic masses
and mixings for the up and down quark mass matrices {case I1), but all lepton masses cowe
out of the order of mr,. This demonstrates how diflienlt it is to reproduce realistic masses frow
higher dimensional field or siring theories. (These theories generically fulfil our assumption
of dimensiouless coupliugs all of the sane order of magnitude so that the structure of mass

)

matrices should be explained by symmetries.) A realistic fermion mass pattern is therefore a
very restrictive phenomenological criterion for an acceptable ground states in such theories.

For arbitrary generation symmetries it is in general possible to find quantwm numbers to
reproduce all the different scenarios discussed here. A rather complete list for scenario IT can
be found in [2]. We list here a set of guantum numbers for the different fermions under an
extra [7{1) that lead {o each of our scenarios :

scenario | : g(2,1.0}, «9(2,0,0), d9(2,1.1), L(2.1,0). ¢7{2.1,1).
scenario 11 : ¢(2,1,0). v*(2,1.0), d°(2.1.1}, L(2,1.0), €7(3.1,1).
scenario 1II : ¢{3.2.0). «%(3.1,0}. 4(3.2,1), L(3,2,0). e*(4.2.1}.

In cach of these cases the higgs doublet has zero charge under the extra I'(1). Very similar
solutions exist for the composite case,
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Figure captions.
Fig. 1. The allowed regions for A in terms of the power P, for all masses and mixing

Table 1 N angles for the unification scenariv. For wz, ouly P - 0 is allowed and there is no restriction
quantity exp. value n; vy on A,
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