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Abstract 

Several formal solutions of the Klein-Gordon equation in a curved background, 

given by power series expansions, are proven t-o render in fact convergent solutions 

in very ext.ense domains. In particular, one family of solutions is analytic in the 

whole of space-time. For a complex domain of values of the frequPncy, thP family 

of solutions corresponds to particles of real mass m _> 0. 

1 Alexander von Humboldt Foundation Fellow. On leave from and permanent address· Fa.<"ultat de Flsi<"a, 

llniversital de Barcelona. Diagona\647, 08028 Barct>lona, Spain. 

1. Introduction. 

The f<i.dorizable solutions of the Klein-Gordon equation 

(}:W'- ... ') P=O (1.1) 

in a curved, Schwarzschild space-time 

ds 2= (-"- 7~1f).J1:'-(I- 2~1fT!Jr =. r'-(dfJ'-+~'e ol'f
2

) (1.2) 

can be written as [1] 

,-1/ (ri'f. (t},yJ)eA<.JJ(-iwt) 
w_f .lW1 I ' (1.3) 

where the lim are spherical harmonics and the radial functions J..,1 satisfy 

o(
2

.P,_, (rl {·. , [ < t(t+fJ 2Gif](.'- 2611)]' (r}=O, 
-__,l_,<e:- + W _ ., +- --.,_- T f3 A r lG-.;f (1.

4
) 

J , r 
"' r .. 

r. being thf" Regge-V/heeler coordinate 

-y ~I+ 26f1.iM/__I._ -1/ "* 2 GPI (1.5) 

Notice our definition with absolute vahw which will allow us t-o use t.his coordinate for r < 
2G.U. In the asymptotic region r going to infinity. the solutions of (1.4) are 

Mtf+<l:r;;J, k~(w"-~-'<~)0, 
(1.6) 

:,.o that (1.3) reduces to 

{" -< >;j&, vi .e"r [-<· (wt: ~ k-:;)] 
(1.7) 
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A considerable number of atte-mpts have- been carried out in order t.o solve equation (1.4) 

and very much is already known about. the general properties of the solutions j2], which, on 

the other hand, have proven to be very difficult to give explicitely. Normally one has to work 

without knowing them in terms of simple functions. Tht> derivation of tht> Hawking effect. [3] 
is a beautiful example of how to proceed without solving the exaC"t. equation [1,4]. 

It. seems dear that any effort aiming at the derivation of regular solutions of eq. (1.4) 

in the most explic.it way possible and valid over very large domains of space-time should 

be welcome. Concerning this last. requeriment., it. is apparent that the- Srhwarzschild radius 

rs :::= 2G.l\II builds a natural frontier for these domains (sec, howew'r. the first. and third of our 

solutions) as thf' physiC"al properties of the solutions in the region outside a1Hl in the region 

inside the hypersphere r = rs (usually ,ailed n·gions I all(l IL rt>spediwly) are different -and 

this in spite of the fact that. r ;7 rs is not a true singularity of tht' Schwarzschild metric. In 

our calculations we have dividt>d tht> wholt> of space-timf' C"orrespondingly. \\'it.h resped to 

the first requeriment, we shall in sonw rases ht> ahlt> In produ•e solutions given by elementary 
functions. They will be analytic in the whole domain I or II in each case and some of them 

will even be valid in part of the complementary domain. The last ones may prove to be 
relevant for the study of gravitational collapse. 

'i/iie shall actually analyze three different. types of solut.ions t.o cq. (L4L t.wo of them valid 

in the region I, exterior to the Schwarzsd1ild horizon and the other one valid in the interior 

region II. The precise derivation of the solutions was done elsewhere [5] and will not lw 
repeated here. We shall C"Oncentralt> in the proof of the convergence of each of the solutions. 

a task which im·olves very careful analysis of terms of different order, as we shall see. 

The paper is structured as follows. In Section 2 thP asymptotic behaviour of the coeffi

cients of the series expansion valid for r rs = 2G111 (the Schwarzschild radius) is analyzed. 

The exisknce of exact solutions to tht> rPcnrrPIH"f' t>quation sa.tisfif'd hy the coefficit>nts is 

proven. In Section 3 these solutions arc found. Att.Pntion is focussed on the prPC"ise initial 
C"ondit.ions leading to exact and to \·ery approx.intale solutions. Tht> rt>sult.s of a numerical 

analysis C"arried out. for different values of I he paranwtPrs is also given here. In Sections 4 and 

5 the same study is repeated for the other two series expansions C"Onsidered, one of them "Valid 
for big r and the ot.hPr for small r. respectively. Finally, Section 6 is devoted to discussions 

and con•lusions. 

2. Analysis of the recursion formula corresponding to 
the case r > rs . 

The most interesting of the series expansions we art:> going to ;ma.l~-zf' is the one about 

r· = rs. In principle it is valid for r ~- 7"s but it. can be easily extended t.o rs/2:..:: r < 1"5· By 
doing the change of variables 

f= A - ZC,<f .. 
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(2.1) 

C'quation ( 1.4) transforms into 

ci"J.~. 
,o} ~~ l. !

, L ( L d.f'JI).f1': 
+ (.."". - /J-"t.-1 -j- ~.2 .-z)( 

1G /., I 

1(t't:J+3 s eL,- I 
---;i--z_r;t;:1 F +- >rG-2/-fZ J 

2 f'(!-r !} ·-+- -~ 
-46=~-.M~-

Ji ~- 0 . 
J'cf 

As was proven in 15;. a ~olution of (2.2) is ~iYPll by 

t' 

/wr ~''(ex!' [ t ("-' r~ + i}!f'!] ' 
•-'0 

~ rpJ ~ ~_c,(' 
s c 1 

(2.2) 

(2,3) 

where the coefficients are romplC'td.v detenniur-d in terms of the parameters Ill, l\-1, ...v. and l 

as follows 

c, 

c3 

c4 

where 

For·' 

li 
-~1~~ 
2t:7 -c.· ' cz c ·-

1 

c
1
z.+ 2L c1 .- b 

~-~---·-- .:;._ 
/((i;-\.) 

:!:___ {' ,- c (c -c)+ 2 -~(' } a /. -z ~ ~ -t 1 2 ;-c.-· ..,c~-c 1 +-tOe -Gc -,-,lv .-, 1.. 1 

- ~b, +,'[.?c
1

(<
1
-c2 J+"-'(1c1 - Ec2 ) _ 6, ]I 

.") ?, 2... J ' 
12A) 

ir:_c;,i) {--W ( i cl c3 
2 L 3 c L) -L (J . ) +Cl.- ,c1 CL + 2:" 1 +- tt.• c.3 - C2.. 

+ z!c
1
-f(c

2
+Cc

1
-t ~::20. + .{·[-3c1 c_3 -2c.i+?c1 c2 

2 ,- ( q 1 6- ' { ] 7 3 c, - u...: z c 5 - ( 2.. -+ 2 (.1 ) -t- 2 . ] ' 

'-" 2 Glv/ w ' 
tJ=h1 2 +i"r1r 

·1 

fiz= 2f+3' 

»1 =- 2G;tf-YM> 

z = ~((ff), 

6'3 = .f -d 
(2.S) 

j the 1-!;('llCral coefticiC'n1 of the :-nie:-; solution i 2.3) is giYen h~· the ref"urrence equation 
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c
5
= 2 . ) [zwL_ +2w 2 [2(s-1)c5 _1-cs-z)c5 _ 2 J 

5(~1..-+tfw 2 s 
+ s[(<-1}(2s-I)C

5
_
1
-3(S-1){s-2Jc<-2. +(S-3){ZS-3) c.5_3 

(2.6) 

- ~(s-z}(s-4)C5_4 ] .. ~ [s2., +w(-zrs-1)
2

c5_1 

+ (>-z}(!}s- <:)c,;_
2 

-2 (s-3)(2 s -3) c,_3 -t- (s-2 }( s- 1,) c5 _4 )] ~ , s~5 '· 

being 
s-1 s-2 

~ =- d.z_,-/(s-/lc;cs-i +ZL./Is)'-l)c;'cs-/-l 
5 2 ·~ 1 ( ' ' j ~1 

s-3 1 s-t, 
-3 0 jls-j-z) c;cs-;:-z. +- 2 ~JCs-/-3)c;.c5_j _3 

J = 1 r' ' ' 
s-r 

d. L_ /(s-/--'0 c · c5 _ ._ 4 z j _
1 

; I 

(2.7) 

Notice that some modifications have been introduced with respect t.o ref. 5 with the aim of 

rendering the expression more compact. We can go further and write (2.7) in au equivalent 

form more adequate for the manipulations to come, namely Z 

[~] [~1] [S;_], . 
2_ =- L .{(s-iJc;cs-i +~ ;L1·(s-f-J)C{cs1·-1-t;J._ J(s-;-2!c,<s-;"-z. 

s ·,, r r ' ' t~; r l '1 ' 

(2.8) 

1 <-•] 
r~-3J ~ 

+ Lt '5E!ics-;'-3)~·Cs-/-J-~ l(s-;"-41)·c,_/-~ 
f'1 I t 

(
s·+l [sJ). {£j>-c2. - /(~-js-tJ).('~')z c~_, + z - ~ z s/2 "1 z. z 2. ·z 

+Gt;' -F'~zJ)e;z)'c"s;z -4(';z -J<;3]){';3)'"cs~ 
. z 

( s-3 [<-"J){'-")z. c' -r -- - - [>~~ ' 
~ 2 2 ~ 

where the square bracket means "integer value of". For s eveu, s=2p, this expression ("all be 

written as 

L = £ [lc,-[-cs-;>s-;+H<-;'-1)C5 j- 1 -6(sj-z)c5;'-z 
zp f~1 

' ) . ·]7 I 2 2 / ' z 
+{.(s;-/-3JCs·-/-3-(S1-t, cs-;-t, ;-:z!' cl' -3•f-1) cf'_l 

+ fft-z)< cf-2- (f'cf)Cf+tcf_l +<:j'{j'-f}<jc/!'-1' 

.S=Zf' 

G 

(2.9a) 

while for s odd, s=2p+l, one sees that 

e;:J 
Lz!J+f = L {/c/j-(S'-jJC5_/ ;-l,(s-/-t)cs-;"-J 

I ) ~1 I 

- G ( >-;'-z! Cs-;' -2 +-4 (s j'-3) cs-;'-3 - ( s-/-¥! c~j'-4 J J 
(2.9b) 

. .,. 2f2cf- 2 1f·1f cf>-_,- f(f+l) cl' cf+l 

+{f-1}1f-z! cf_' cf-z' s = Zff I. 

Let. us now proceed to the analysis of the behaviour of c~ as s tends to infinity. In this 

Section, nuder the hypothesis that c, is analytical as a function of 1/s, ass -~ oo, we shall 

demonstrate that the series :=~ 1 c,p• has radius of convergence p9 = 1 , i.e. that the sum 

g(p) exists for any value p · 1. To this end, let us call 

X ~ Cs-1 
s ---

cs 

:r • will be an analytical function of 1/s for s big enough 

X =o(+fl +-1... +- d +- S... + Q(s-5") 
.s s s 2 s~ s~ · 

Eqs. (2.6) and (2.9) are then immediately rewritten as 

c, = S(s~+4<;;') { 2w Ls + zc:;L Cs [2(s-t}"s -rs-2)X,Xs-t] 

+ SC
5 
[(<-1j(2s~-/)X5 -.3(S-1/(S-2}JfsXs-J +(<-J}(2S-'J)Xs X5_,X,_ 2 

• ·r - z (<;-l}(S-I,}X,Jfs-()(S-ZXS-3 +A. S Ls 

+ w c, (-z(s·-1) 2 )(_, +(s··2)(SS:-b}X5 X5 _ 1 

-Z(<···3!(2J-3)'\K,;.t'f,_2 -t-(s-z)(r-1,JX, .r,_
1

-t5 _2 Xs-J)]}, 

aud 

(2.10) 

(2.11) 

(2.12) 

!'.:_2 
L = 2_ S (s} 

s ~~I ( 

+Cj f-1f'L-3(f-J/'-Aj;+ f_(f-2)2.~~"';L_t (2.13a.) 

--ln
2-J)..5L r~j'(f-t}x"], s~z;o, 

v XI'' I I 
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-=7 =£ s r' 

>vherc 

- L[ L - ' L S~ ( sj r cf' 2/J - .'(/' t}- A/' 

+- ( f -I) ( !' -2 ) '~' xf -a' 
_j~!_e__r i) 

.\-pt- ( 

'-,"22pt1f 

S; (sJ = J'"/c,
1
· [-(s-,;)+l,(s-;-t/X~/ __ (,(, ;-7/'\ I"; ;-1 

+ {(s-;~-J,J /(s:i -t,'/_,lfs:-;-l (<:--_;- 4 )A,/ lfs 1 

"' xs- I-;- x_., / ! 

(2.13b) 

(2.14) 

At thi:; point.. the different products of series of the t~-pe .r .• {2.11) are t.o lw ;;;ubstitutf'd 

in eqs. (2.12). (2.13). Their E'Xplicit expression:< are ~iYE'll in the AppnHlix (seE' formula<' 

(A.1)-(A.8)). After a kngthy calculation onC' fin(b that: i) tlw term>. of highest order ius iu 

E'<J- (2.12). i.e. the terms of order L nwcel if and onh· if 

q-"~4; 
(2.15) 

ii) independently of the- values of .-1.-,, ... in (2.11 ). the terms of order s- 1 aud of order 8- 2 

caun·l throughout: and iii) thc- \ontrihutions to the term of order s- 3 only depend on ,J. and 
are given by 

-- :;tJ L- 4;<0 ,,)(!J f.!) , c,- -L, -- . (s _
1 

-f); ) i 7 I 
1 ~ 1 " ' 

I /A"(.' I) '-llij!+l/{13+2}{/31!/ 1 c . C - I _,L _ _f C 
- ;- - '-'~- --- ' I '/ I' I' 

(5-, )3 " 

+- ()(v·<'l 
I _; ' 

(2.16) 

where 

{ 

1 , 

;\ = 0 

'5-::::: 2f; 

s=ZJ'I-1, 
(2.11) 

while the full expression (2.12) turu.<- ont to be (o II 

c~= 4 {4<:: L + S(s '~4w''Jc + ?isL /_ -+{Ys 'J 
~ s(s .... +fc;l) .s s .s.; . 

(2.18) 

' 

Tim:<. W<' have pro\·t·d that uutkr tlw rowliti••H that r_, hf' <tualytint! as a fund ion of .s- 1 as 

• %. (2.11 ), tlw rqmJ.tion uf rrcnrn·Hn' (2.G) implies that o 1 and then it is fnlfilled up 
to trrms of orrkr _,- :• Lrt us anal~·zp thr;,(' krms and ;.;f'c if they ran be also madf' disappt>ar 

for a <"oll\'Pnif'nt \"alne ofp. Suhstitntin~ (2.16) into (2.18) onf' g;Pt.s 

.! 
v~ '>(>'(_·:--[ -~) 

0 i- -1 () ____ -e 
x d---1-· 

--- <.s. 
J - i 

This nlll hf' si1uplifi<'"d 

I f_!;L_i} 
L ' 

(/--?:}; 
'-//f'll)(!!rl/ 

(l_r!J<sl) -~ 
(s ;'!' -

(; ( s <) . (2.19 I 

c) "'!''iHJ I _f 

s 1 J, __ _ ,_ ·) L ' 

p-1-,1 

f/< '!}If' 12 J )-
/:( 

L'!.' 
5ijj' + c ( s -<) . (2.20 I CU-;J 

Actually. ""<'han· uot h('<'ll <'Olll!Jlr-h·lv prt>cis(' nHKernin~ the order of the term affectt'd lJy 

the sumBHitiou :-igu iu (:?.16). (2.19) aud (:?.20). In fact.\\'(' could not be ~o. bc\ause its order 
depends on tilt' nsnuptotic lwlHIYiour of tlw rj ·s. Howf'n"r. it j-, dear no\\' tlwt it is at most 

of order 0(.~ 1
) (uot taking iuto a\rount tllf' co{'ffiricnt~ iu front of it) a-. H rou:->eqnf'nce of 

tlw filet that tlw coetticieut .-1 iu the c-xpausiou (:?.11) mu>.t nen·>--.Hrih·lw 

f=C u l 1 
t:?.21 I 

iu order to ;;ati;,(\· tlw rc-rtuT<"H<T rclatiou. "·hid1 i~ no\\· ca>.t tll!dPr the fonu 12.20). In foct. 
\\T hil\'<" JlH>\Tr\ that Tlw fulfi.llm('ut of tlw rr•(·ur:--iou f'(JilRtiou for tlw r, ·>- impli<">- that 

c·., _, 

c' 
~ l+ _JI__ 

s + '' ' 
s --------;;.- ~' 7 

(2.221 

'"ith .-f- Oorl. But thi, on ih turu prnYid<>:-- a limitfltion for tlw po,,iblr expressions of c, a~ 
au expau-.i<>u iu tt--nu-. of,,--'. It j_,; iuuJJ<'dialf' to:-<"<" tlHtl if 

c , x:_J -r 

t ltcu o1w r>IJt niw-. 

(.~ -I 
x, c, 

while for 

.?\'k 
s<-

+ 
..r..,---r l 

s"''f'1 

1 + ko..\'1, 
·..>((.., 

-r- .•• -"'c ~ C 7 (?.23) 

I 
sJ.:-+-I + ·- ·' (2.2-l:J 
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the result is 

X = s 

c.:::; «k -+-
' s< 

«k+--1 

~ 
+- ••• .! 

Cs·I=J+k_ +[k(krt) +-
c5 s 2 

'-'<k 4 0' 

-~7.!..-r··· 
o(k .J ~:z 

(2.25) 

(2.26) 

Therefore, it turns out that in the case t3 = 0 any expansion of the form (2.23) fulfills the 

recurrence equation up to terms of order O(s- 4
), while in the case !3 = 1, c, must be given 

by (2.25) with k=l. These are all the possible solutions and WP see a po.5feriori that, in all 

cases, the terms affected by the sununation sign in eqs. (2.16). (2.19) and (2.20) are, in fad, 

at most of order 0( s~ 1 ) (not taking int.o account t lw coefficients in front). Further, from eq. 

(2.20) we also deduce that for eYery f 0 there exists an s, C X such that for 8,::: s. one has 

I X
5 
-1/ < "-, v- .s ~ st: • 

(2.27) 

Summing up, it has been proven in this Section that if c~ is asymptotically an analytic 

function of s- 1 (a sensible coudition in view of the form of the recurrence relation ( 2.6)) then 

all possiblP solutions oft lw recursion formula for the c ~ 's arc given hy ( 2.23) and ( 2.2G ). the 

last for k=l. In all ca~es we obt.ain a series g(p) (2.3) wit.h radius of converg1·uce pg = 1. The 

verification of the analyticity assumption for tlw c, depends on thf" initial values c1 ,c2 .c3 .c4 

which do not obey the general recursion formula (2.6), valid for s ~ G. and \Yhich are com" 

pletely fixed by the paramet.ers w,[ and ril (2.5). In the following Section WP shall analyze this 

dependence on the initial values and some exact and aproximate solutions will he explicitly 

worked out. 

3. Solutions valid for r > r 5 . 

An exact solutioti of thP radial equation (2.2) is gin·n by (2.3) with 

C =C 
5 

In fad, snhstitutin).'; for 

s-~1 7 2)3> 

9 

{3.1) 

c1 ·::::- c .2.. = c3 = c,_ =.c 
(3.2) 

in tlw recursion formula (2.6) for s=5 one gets c5 = c4 and, in general, c, 

that c1 = c1 = ... = c,_ 1 • The sum of the series g(p) is given by 

c~- 1 , provided 

q /,oJ- .::.L.. = c (.:£:_ - 1) cr'' - A-f 2GH • (3.3) 

Actually. it is not possible to provide an exact realization of the condition (3.1) in terms of 

the parameters .:;:.land iil. and only approximate solutions can be obtained in this way. In 

fact. imposing (3.2) one gets the relations 

F, 
c1-= - 2.:._-;--l· ' c2. 

t'c.z ·-GL. c, = c, + 3( 2w-3i/ ' 

c, 
c/+2-t.c1 -~ 

Li(c-:::-tJ ' 

c-9 -= c3 + ~-1 -· 
't{w-zii 

(3.4) 

It i:-. the last condition the one which cannot be exactly satisfied, although it can be approx

imated to any desired order. The remaining three equations (3.4) imply 

t;- = (1+2,.w)F3 I . ' !;
2

- 2/i.o +b.;= 0, 
l 

·whose solution~ arf" 

T = -3nll , m2.~ 2-U+(1+2ii::,)[1+(4-2;1J)'i'z ], 

c1 Cz = <~~ i / 4'+ (4- 21.Df/2 ], 

and 

.l=-l-v'l, m z. = 2+13 +(1+z(,~J l1- (1+2/3) 1/z.], 

Lf = Ccc = Cl = -(· jf- {4-2li)l/z]. 

(3.5) 

{3.6a) 

(3.6b) 

A nunH"rical analysis carried out hoth for small and for lar~e Yalues of....; lHO\·ides the follow

ing explicit. approximate sol11tions of the radial equCition (~.2). 

i) In the range of ..:1:• betwPeu _:._. 0 aud .._.- 0.3 ouf' gets 

10 



/w.,CY/ "' c< ""'! J .;,;: [ ;:H + t', ( -;;"- i) + (. 2 ( f~;, - I 

- 0.1 ~ 
2
:1'1)] + 4 4 (/,:H -f- 0. I~~ 2'~ 8 ) ~ 

This solution mrrcsponds to (3.6a). 
ii) In the other extreme, for CJ? 10, one obtains a couple of solutions 

l ( r I "' « -eM> { < · 1 i.:J (__c_ + r;_, (__c.__ - ·t)). rwe ( L' 2GM LG.,>t 

+ o.oz(-if-M-1)} ~ J. 7-3 ( 2~H- 1) j, 

(3.7) 

(3.8) 

where the plus sign corresponds to (3.6a) and t.he minus sign to (3.6b), respectively. Notice 
t.he important fad that the second of these solutions is conn·rgent. at r ---> 00 due to the 
presence of the factor exp( -1.73(r /2GM-1) ). 

Another solution of the radial equation (2.2) is gin·n hy (2.3) with 

c" 
c_ 

.$ • 

This can be seen by substituting 

c.:, ·:::::: c. ) C.z. = c 
2 • 

s=,f,27 3~-·· 

c, c = 3 , c_ c, ·~ ;; 

(3.9) 

(3.10) 

in the equation of recurreH<"e (2.6) for s=5. One gets r 5 = c)5 and, pnl("eedi11g further, for 
the general C8 OlW oht.ains c_, = c/s. provided that ck = c;J.: , k=l,2 ...... s-1. As before. oue 
must now express the initial <"ondit.ions ( 3.10) in terms of the parameters~- land ii1. Starting 
from ( 2.4), one has 

t; , 
C=--~ 

c 1- - 2 ( c~ - Zl'}c - ~ = 0 , 

2 cz.+ 6-A..-'c -~ -= 0 J 
. l. . 

c +Zcc-1=0 1 

which ran ht" solYed and yidd 

W-::::.0, 1=0 1 mz.~o, c ·:::::--:-<. 

Substituting this rt"sult int.o (2.3) we obtain 

'j(fl-= c l, £i .. 
c .f.,., 2 G"1 

11 

(3.11) 

(3.12) 

(3.13) 

:uvi 

(r) = •>: --,
1 

(3.14) !. 
y· 

L:o J (rt~ 

n•coYeriug the already known result for ... : = 0, 1 - 0. 
It can also bf' demonstrakd that an arhitrar~' combiuat-ion of the two exad solutions 

whid1 we have found above, namely 

C
5
,- -.= C:( f 

6 - ' ~ 

s-~f;Z 7 3, 
(3.15) 

yit>lds also an exact solution of f'CJ. (2.:n. Observe that this is not at all immediate, because 
the equation of H'\UlTf'll<'f' (2.6) is not linear, owing to tht> presence of the I:~ terms. This 
third type of exad solutions <'an he also expressed in terms of the c;J and iiL From (2.4) we 
get 

<C{ +h ~ - (:;, 
2-----=------- ' (,,.;- ( 

l h - c, +-2 i ( -F. - 1 2-

Z(i::-t; • 

2c;b H. (c,~ifh;-/;,=0, 6' .. zi6-1=0. 

The solutions to these equations arc 

C{ = ".• .f 6:=----c~ 

-t~ -1-T 0><,::; 
mz = -2+2{Ai<;,}(2+V1+Zt;;;)) 

,, ~A.r"b; f-,-,'1_ rr. 

This yields for the general roetfirieut of the expansion (2.3) 

( <; = -<(.1- dj . s . 

Again the series is <"onvergent and its snm is 

q (r J = -<'[.t-(..C... - f) - _t.., -. r .J· tT 26;'-1 26t'f 

Thus Wt" obtain tht" follmYing exact solution of thc- radial equation (2.2) 

kr (r I -= "l".e->"f' {-< 'iv [2~/1 +~ J ?~M- 1/] 

- (.iY1rZiC: -tJ(7;M-1)+-f.., 2~N S. 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 



It i~ Yer:r interesting to notice tlHlt for tun·,_;_- R . .,.: / (J 1Yltcu wr take the plus si,gu iu thf' 

square root we get. a convergent solution at 1 x In fact. for every W f 0 the real part 

of (1, 2i...<J) 112 - 1 is positive and this makes Lt(t·) tend to zero as r tends to infinity. For 

._;;, ::-:: o. + ·i.B,O < fJ 1, (3.20) prm·ides us with a whole family of solutions of (2.2) with real 

m 0 and converging both at r = rs (Kruskal coordinates) and at r = +rx-. This is a very 

remarkable family of solutions. It. had even been speculated that such solutions would not 

exist.. 
As before, we have carried out. a numerical ch.-rk on the validity of the exact solution ( 3.20) 

for different values of..., . The accuracy and t.lw stability oft he coefficients are remarkable and 

the recursion formula (2.6) ran actually be used with twp;ligible errors to obtain the values of 

the c, up to very highs. A standard Fortran program with doublP precision complex variables 

does the job pretty well. In particular. tlw check that. c100 c 10 = 0.09i has an accm·ary of 

10- 9 • 

All what has been donP in this and in t.he preceding Section by taking the plus sign in 

front of the i in (2.3) can be repeated for-i. This corresponds to taking the alternative sign 

fori in (1.6), (1.7). Then· is no problem in doing this for r / rs and the number of solutions 

given above is duplicated in this region. 

VVe nmv turn t.o study what happens in the interior regionrs/2 < r < rs, i.e. -1 < p ,_ 0. 

As has been proven in Sert.ion 2. the series given above are also convergent. here, and t.he 

corresponding function g(p) they define is valid, in principle, in this region inside the event 

horizon. However, as everybody knows, the coordinates (t,r) are singular at r - rs and 

the differential equation (1.4) makes no sense at this point. It actually makes sense again 

for 0 < r < rs and (1.4) has an exact. solution given, for exa!1lple. hy (3.20) there, but thP 

question is: how ran we make sure that the solution (3.20) for 'I' rs and the solution (3.20) 

for rs /2 r < rs are the same solution, namely that the second is the one into which the 

first converts (i.e. it remains intact in this case) after having crossed the event horizon?. 

This question is very relevant in t.he study of gravitational collapse. 

In order t.o answer it. one has to abandon the singular coordinates (t,r) and use regular 

ones, such as the Kruskal coordinates 

t'- 1.JrV 
2 

'("= V-U z- (3.21) 

or. equivalently, the coordinates [.~, l- defitwd through the pait· of Eddington-Finkelstein co

ordinates (u,r) and (t•,r) hy 

1J_ ~ - P><f (- /:.11) V= "'"'('(.,~11)' (3.22) 

wher<' 

.M.= t-'1.- ' V::=: t + 1;. 
(3.23) 

In tht' coordinates (3.22) the Sdnvarzsrhild metrir (1.2) becomes 

ds2 = 
3 . 

4 (261'1) · .tN<D (-..'L.-) <l{liAV _ ,z ( c{g2+.-,:..~zc;d'('2). 
r 1 2G"t'! (3.24) 
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It,.. r,u}y siugnlaritY io. uow the origin r 

for iust;u1ce. in the nuvature scalar) and 

furumtiou~: 

{J Tlti~ i~ h trn•· phy,.,ical singularity (it rdlerts. 

rauw•l lJt· eliminated h~· further coordinate trans-

Th(' coordinate change from (f. r) to (C l-) is :;ingular at r ::-:: rs (that is, the singularity 

1·.~ of the differential equation (1.2) has been elimin<~ted hy performing a coordinate 

transfonnatim1 whirh is singular at this sam<' poiutl. In principle. the definition of (e, V) 

from (l.r) given by (3.22). (3.23) is valid only for 1· r:; In the other regi()nsofspace-time 

thf• coordinates l'. \- arP the (HI{'s to he 11~wr\. HowrYer. since we have taken the logarit-lun 

uf the absolute value in tlw definition of r, (l.:J). on(• would think that the same relations 

(3.22). (3.23) would also hold for 0 r r~ An easy calculation shows that, starting 

from (3.24). one gets thr Srhwarzsrhild metric (1.2) whith a global minus sign. Such <1 

nwtrir is mat hematirally (and physically) indistinguishable from the Schvmrzschild one ( 1.2 ). 

In particular. the r<~dial Klein-Gordon equation one gets from it is exactly the same (1.4). 

Kotwithstanding that. one has to be, again, very careful on crossing the coordinate singularity 

r =--- rs 

The correct way to proceed is to make consistent use of the nonsingular coordinates ( e, l.-) 

(or (t'.r') ) The solution of the radial Klein-Gordon equation corresponding to the metric 

(3.24) --lf't us call it g(LY) will be valid in the whole enlarged domain of space-tim<' covered 

1Jy tlw Kruskal coordinate~ (regions I, IL III and I\" of the Kruskal diagram). In region I, 

tlwt is [' 0, r 0. orr rs. the solution we are considering here let us call it. fi(f, r)

exprPssPd in terms of (f. r) is given by (3.20). At tlw event horizon r =- rs the solution can 

only be express<'d in terms of (C, l") but it has no translation in terms of (f. r). In t.h<' black

hole region 11. namely(- O.l- · 0. (Jr 0- t~·· the solution g([-. I") \\·ill be expressPd in 

ti'IUI" uf ( t.r) by fu(i. r) Snmming up. 

I: ';}(lit V) = (4- 2 ';.-""Jirrt,r), 

-n: 

/t(= -<'-~<P(- fcti ). 
I 46-~1 1 v = ""'*"!' ( t-1-"*) 

4G11 " 

;j(l!,i/) '= (:!- 2~1) /rr(t,r-J, 

/{{= 1?1<f (- ~-;;J! ( t+r-*)' V= .ey 4?1'1 

(3 2?-a) 

(3.Z'>b) 

where r, is ?;iven h:-· (1.5). Th(' change of sign in Fin (3.2,Jh) is the natural implementation 

of the global rhar:ge of siRn in the Srhwarzschild metrir d.~~ found ahoYe. Eqs. (3.25) lead t.o 

.P (t r(r l)- l{t",.-"] [f'(r;,-cr) -r 1 
(f'_rr ) * ---

1
- exp .,,...u . 

x /r (t trr, •lr;,-a-J), cr s 2C:h~'<(1) (3.26) 

Fur ft giveu hy (3.20) this can he writteu explicitly a~ 

H 



/II (f, r} =" ,-(,.;,.-rr) L c(l;;--o)-,-1 f' . D -
<'X{) - -- --· €'/({) - {CC (-{- J •) -Hr] 

1- I ?.r:;,q I .,. 
(3.21) 

- ( f v {-t-2:C~ -1)[ c/'(1;.-<r) 
.'? c~ /-I 7 . L. tj(f: -<T) l~--1_ +J~l ~_,.-___ 1 

~"") & 1-1 

'dH-'n· r·-:- ,:,(r,) i:-. the iun-r~iuu uf (1.:>). Pnt iu <lnotlH'r fonu. in t.t·rm:, nf tllf' functiou 

r::t•(r,)inn•r:,cof :?GJ!ln(·t:?GJI 1J.I' r~.,n·eanwrit•· 

jii(t,rl = " 
:! rr~z. 

e y (r;,.J 
,- -R Xj' 1 'f(C.) - 0 ] 

2 6,.<1 

x c.y {-,·,_.~,- ( ±V.t~h 0 -iJ[V'(r,.)_ 
.!.6-"1 

i]+~vo~'!~(r.)]}. 
- .t.-,61-1 

(3.28) 

Thi:-. i~ tlw :-nlutiou COITt>SJHHHling to (3.20) after nossiug r.lw 1"\'Cllt horizon r = 1'::;. 

ln1Yinp; dw::-en a df'tf'nninatiou of the logarithm. and in term::- of the Eddington-Finkelstein 
cuordinat('S ( 11. r) Th(' coordiu<ttf' u i:- tlw onf' reif'Yant when going from region I to region 

II throu)!;h r· -=- r_, aloug. a g<'odesic giYf'H hy Y=con.st. A similar analysis could be m<Hk 

for the transit from region lll (tlw white-hole re)!;ion [' 0,1- 0) to region I. In fact, 

putting .j instf'<Hi of i iu (3.20) (or in any otlu·r of the ansiit.z!" which we shall encounter 

in thi:-: pap!"r) one gets a new, indepf'tHI!"nt solution in region I. In it. the ot.her Eddingt.on· 
Finkelstein ("Oordinatf' I' (3.23) appears. Thi, i::. th<" ,..oJutiou relt>Yant for thf' cross-oYer from 

region III to region I. along a geodesiC" u=C"onst. 6 
The ansatz (2.3)-(2.71 appears to lJe well sui It'd in ord<'r to stud~· the different aspeds of 

quantum SC'alar fields in SchwarzsC"hild spaC'e-tinw for: i) a>< hils bf't'll j)I"O\'f'll. it provides us 
with anal~·tiC" solutions in tlw t>ntire region extending from r·." to x plu!> the interior region 

r·:;/2- r r·;;: ii l cousid<'r<'d as a function of~· it does not dt>Yelop singulariti<'s. ::\'oti<"e that 

when r ---.> r~ it ilf'han·~ as 

{ 
. "'',ft-1 (! .J (rJ~ .x;.exn ,,.-r,_ t _. _ ·-

{t...Jl I AT/t~.o ... ' 
2 6 /-f)+ (J ~(:{- 2 61!') ')j 

r / ( 1 r ' (3.29) 

while ,,·hen r - • x.. it hdHn·es a" 

j._,( r} ~ /r (>;, ~~ -fj_._,,f(~-i <c' '*), 
(3.30) 

when· ..l" is a \Yell defiH~C"d functio11 of ..;.·.l.n1 for lillY Yalu"' r -x. As has he<"n demonstrated . 

. Joe exists for entire- families of values of the paramt>ff'rs. 
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4. Solutions developed around r = = . 
A solution to eq. (2.2) as a power series of 2GM/r is given hy 

/we (rf= "''"f {4f,; +b0 !..r (z;,.,) + t, 65 (?~If)'] J, 0 '5, 

By direct. substitution int.o (2.2), we find the- values for the first. eoefficients 

bo =/'f: 1 b =_,c:! [;t(p-7) + z +-<], 
1 2 / /k 

.h2 

kl 

where 

.-1;· [ -lr y '/"+ 2) 

2A. (/-' -r .f,.) ' 
= f Jz(d- ;")bz 

t~f 

T + ..£..] 
./' ;(' 

.( 
6, (b +2 b.,}- 2,(: +- " 
?~ 

+- F (-.lb2 + f>/,1 +b0 }] 1 

k= 2G;lf/:, /' 
..,, 

2 ,f 2-

For s 4 thf' genf'ral b3 is given hy t.he recursion formula 

1/ (17•)(s·tlhs-t +?/"(s-2)6s-z '/'(s-3)~_3 
:>-2 'i-J 

-r j_ [L i(s;~t}b_ ~>, 1~, -2;>:._ {(s-;-2/b- 4- ·_2 

21< jot , r' ; ; 

b 
s 

f-4 . ' 
+ L 1 (sr 31 ~ ;,,_ ·-3 J - z~ [ s (s-1) bs-1 

1 ~I J 

_rzs-1/(s-z)b + (s-r)(s-3;6 Jj (• S-2 S-3 ' s-"' 4. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The proC"edure will be exaC"t.!y the same as ht>fore-. The starting hypothesis was that b. is 
analytic as a fundion of 1 is. for s big enough. \\·e write 

IG 



X= s -
hs-J =: 

b, 
o( + D(' + O{z. + ... 

0 s s 2. 

Substituting this expression into ( 4.3), we get. 

b_,= / { q [0/}(5·/Jx,.,. 7'-'(s-z)x, x,_, /'(s-3}~5 ~<5 ., -<5 . 2] 

. e_-1-). . . 
.,._:!_. [iL ;(s1-t/6-~-~- 1 (1-2--t,1-_,+,;;,i_, -<,-/_,) 

2 /c f~ 1 I 

+Lf Z ;'£
1
,. 6.,1~ 2 (1- !rs-;~2) + ~ ] 

j =I 

- { .5.. x [>IS-f/-(?J-1/(s-z)x,_ +(5-t/(5-]Jx ,-. J I 
2 R 5 I ,<:; -{ s L . 7 

where p and). are given by (2.17), anrl 

S =2D(j·f}bpb_ -2{;·-t}'-j,'· 
s t 1 ft ,P-t 7 

s.=t'''-' '! - (f·il'f/· r-, , 
) ""2p J 

'~ 2f +I 

(4.5) 

(4.6) 

(-!.7) 

Substituting for the differf'nt J", 's the expamions gin·u in the Appendix. after a strnightfor

ward hut. tedious calculation Wf' fiud that, order by order in 1/s, the tenu>- 011 tlw r.h.s. r,f 

(4.5) Yanish, providerl that the corre,;pondiug coefficient tl in (4.4) is f>qnal to 1. :\cunrly. for 

qo = tx:'l "'. 
' 1' 

the recurrence equation (4.3) is satisfied up to terms of order 5-(• HI, i.e., we lmv<> 

hs o ~ .,. 0 (·,-(-<+f)). 

?\oti('<' that 

j,c 

~ 
1- .i. + C(> · 2 ) 

s· ' 

i.e., for any f 0 th('JT cxi"'" au 5, e: X c.nrh ih<1t f,,r cYery ·' ·'• one lw.~ 

;;,_.,____{/<~' 
hs 'I 
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1-U) 

(4.9) 

I 4.10 I 

(4.11) 

Tiw ntflius of cotwcrgence of the series solution is again p9 = 1 

Summing up, there is only one exact solution to the radial equation (2.2): the one giYen 

by ( 4.1 ). namdy 

"" 6s., 
X ~ -- - ' L _, 

5 b, 

In fac1, it 1s easy to prove that. 

h h a.~h. tmrv 
~(, f -1 / 

{.":::-[) 

h, 
;,, 
-;; 

_, 
5 ·f 

s? 1 J 

(4.12) 

(4.13) 

is au exact solution of tlw recmTenrP equation ( 4.5 ). ( 4.6 ). The corresponding solution f"'1( r) 

turns out to he 

J (r/ ~ "(~x{J/A/k<; --rb (, _r__ - /,.~I <f- ?_i'_H)_fj. 
R ... e 1 c- 26.£! r c· r- (4.14) 

A,; llf'fore, b2 =-- b1 /2 and b1 b1 3 impost' restrictions on the -.:alue;, of the parameters-.<·.[ 

<md 1/1 wich actually lead to a ><ulntioH of th(> typ<' (-Ll2). 

Chan?;iug tlw ,;ign in frnnt ofi iu (-1.1) '\"P g<>t a ,;econd exact solntion of (2.::n ;,-hich is 

indepr·ndf'nt of the abnvr otw. Both are Yalid in the wlto!f' region ontsirlt> the f'H'lll horizou 

f·_~ ---x. For lmb1 

i (r} "'
/'-".( 

0 tlw -~olntion ( -!.14) i.'- also convf'I",!';r''HI as r ____, rs· 

"' < ''/ j d ·~ -ib, .t:, (r- 1 C:' )] _ 

For lrub0 0 the solution i~ rouYerp;rnt as r- • -<X-

I (r I -v 
(r., ( 

x _, "'/ra-" _ , ~~ .6. 2 ( ,<( ·;· • ,. -

( ·±.10) 

("-16) 

For lml>u an.-\ lml, 1 po,itin· we obtain au exact solutiou Yalid iu tlw ,,·hok rompnrt r<>giou 

r~ . ')0. 

5. Solutions valid for r < rs . 

()ur<· IlHHT. t]J!' "111111' pro>n·•luJT cHI! lw Vllljl]l>)o·d 1,1 iuYI'~ti;!;ill•• tlw rnn\Tr~curc of t\w 

l ~ 



series solutions of (2.2) given by 

/w/r} ~ o( &?<;>{~fir<, +C?o ~ /;,<f +t, «s {z;:,.j}j, 
with 

lio = -£. 7 6?1 = -~--l' «2 = k -t- A.,_{([t-2); 
2, "' 

.:r- f _,_ -<. r;.:;r'+Z(.J-rS:.f+Z'J'], 3- 3 ql" 2 

and with the general a3 being given by 

t{< = f;. { (s:-t)(?S-1) (?,_1 - (f -f)(S-2) «'r-2 

s: -t 
-+if 2/i ((r-z/<fr-z -(S-3/<?_3 ).,...?;; -/(s /)"';· ".5 / 

S'-l S-J J . 
-2 L_ /(s-;'-11«;·~/-t+:r- /(.r-;'-2/«;·-"s-;'-z] J, s~L,, 

{~I 1 ~I 

(5.1) 

(5.2) 

(5.3) 

Exactly the same considerations as before apply here. By postulating that ll
3 

is analytic in s 
as .5 - oo , we may write 

Cf.s-t _ 
X= -- -
s «s 

o(. <><', o-t-s+ "'~ _,. 
5 '-

Eq. (5.3) can be written in terms of tht' x~ : 

«, = 
5

4,_ { '(5 [ (s-1) ('2s-I/Jr
5 -(S-t/(>-21Jr, ~- 1 ] 

+"', [2k"i;irs "S-1 ((s-2) -(S-3)A'5 • 2 ) 

+2 £!. i(s/l6?·"'sf (1'-2X,;/ +x,;i Jrs-;'-1) 
1 ~I ) 

+ 4 :t'! ;'')· ""•-/t ( 1- Ks7~ 1 ) + S5 ]} , 
I=, 

where p and,\ are given by (2.11), and 
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(5.4) 

(5.5) 

--z. <- I " ' s· = f « -(!'-' "' , s f p~ 
s = 21' ' (5.6) 

s, = 7f'"'/- 2f(r-tJG?1 "'f-7' s = 2! + -1. 

Substituting (5.4) and the expressions given in the Appendix into (5.5), after another some
how tedious calculation we find a similar result as in the preceding Section, namely setting 

Q('o = "f = ' ' = ~· = 1 J 

the recursion relation (5.3) is satisfit'd up t.o terms of order .5-(i+l) , i.e., we have 

«s = <~'s + 0 ( s-(-c'+l/). 

Also, the convergence radius for the series in (5.1) is exadly equal to 1, because 

«s 
t:t(S-1 

= 4'- :f. t O(s- 2
') s . 

It is not difficult to prow· by direct substitution that 

«o 1 '11 
~rbif-rary 1 

«t S?-f? Cl_r '= T Jf 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

is an exact solution of the recurrence equations (5.1), (5.3). The corresponding solution of 
(2.2) is 

i (rl ~0('¥-><IJf-<'JI',; +A _:c_ + Z-&-, //(- _c_J] r"-'f I 26N (' 2GH ' (5.11) 

The- conditions a 2 uJ/2 and a.3 - aJ/3 can be expressed in terms of the parameters W, [ 
and ill 

\Ve obtain 

J.. r - + i- -"' 0 2 4 , 

J.. i 5 
-- -(r11 2 + -P--+- Pl = o 3 9 2 . 

~"=-:P. 
2 

if1 2 = -P(l __._ 1). 

Notice that for [ = 0 we hare-~· ill = 0 and t.he very simple- solution 

" J, .... l(r) = n:?GJJ. 
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(6'.12) 

( 5'.13) 

(5.14) 



Another example, for P = 2i we have k = l,m2 = 23
/

4 ~ i(2 + 23/ 4 ). and the solution 

}- ·r''" 
J.,(r)~az;M (!- 2GM) exp(iC;M +(l+z-''')ln(l- 2;M))) (5.15) 

All of them are convergent solutions as r---+ 0. Moreover, the second solution, {5.15), is also 

convergent at r = r5 . In general, we observe that. the solut-ion (5.11) is convergent as r---+ 0 

due to the presence of t-he factor r/2GM. If Rel < O, it is convergent in the compact region_ 

0-::::; r-::::; rs. 
In the present case, the connection between the part of the global solution g(U, V) {3.25) 

valid in region II (the one above) and the part valid in t-he subregion rs < r < 2rs of I is 

done in a way which is completely analogous to the procedure described in Section 3, eqs. 

(3.25L (3.26). The only modification t.o be taken into account is t-hat now we start from /11 
(given by ( 5.11)) and we have to obt-ain the corresponding h by making use of (3.25 ). Thus, 

the expression (3.26) has to be inverted. 

Alternat-ively, we could also have started from t.he independent solution given by (5.11) 

with -i instead of +i, and could have envisaged this solution as being defined in region III; 
going ahead, we would then obtain the corresponding solution in region I, through the re

lations similar to (3.26), for the transit III---+ I along a geodesic u=const., as has already 

been described t-o the end of Section 3. 

6. Discussions and conclusions. 

Let us recapitulate what we have done. The aim was to find solutions of the radial Klein

Gordon equation corresponding to a spinless particle of mass min Schwarzschild space-time, 

as created by a black hole of mass M. We hied to find any such solution which can be expressed 

as a power series expansion around i) r = rs ':'0 2GM (Sections 2 and3), ii) T = +rx., (Section 

4), or iii) r=O (Section 5). The first step was just to obtain the recursion formulae for the 

coefficients of the series expansions in each case [5]. 

The sec.ond step has been t.o investigate which of these formal series expansions actually 

yield convergent, exact solutions of the radial Klein-Gordon-Schwarzschild equat-ion, t-o deter

mine the convergence radius of each power series expansion and to sum them, thus providing 

closed, algebraic expressions for the solution&. Of course, all the coefficients of the series ex

pansions and the algebraic expressions for the solut-ions themselves are given in terms of the 

parameters m, M, wand L Actually, they always appear in t.he combinations m = 2GA1m, 

~ = 2GMw andl = l(l +- 1) 
In case i) we have obtained in this way two essentially different exact solutions (2.3), (3.3) 

and (2.3), (3.13), and also a very interesting combination of them (2.3), (3.19). In cases ii) 

and iii) the solution was completely specified by .the above conditions of being given by a 

convergent series expansion. It is given by {4.14) and by ([>.11), respectively. 

The third step in the whole- procedure has heen to match the parameters, if?,W and l 

with the first coefficients of the power series expansions in each case. In fact, this imposes 

restrictions on the values of t.he-se para1neters which lead to exact., convergent solutions. The 
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• - - - - -JI ---- ___ ,____ __ --

~ituatiou i:- 1liffcrcnt iu earh casC'. SotUC'Iillw'- the JH1l"itlUI'IPr:- <H<-' rmnpletely df'termitwd ill thi~ 

wa_\·. aud \\"!'obtain just one solution currespondillJ! to tlwse precise Yalues of the parameters: 

this is the case in (3.14). Some-times. they han• r<"mained unrletennined and a one-parameter 

family of solutions has been obtained. as in (3.20) and (3.11). (5.13). And it has abo OIH"e 

CJcnrre-d that the matching yields incompatible equations. so tlu11 only approximate solutions 

arc obtained. This was the casf' in {3.4) which yidded the approximate solutions (3.1) and 

(3.8). 

Snunuing up. equat-ions (3.1), (3.8). (3.14). (3.20), (3.28), {4.14) and (5.11) cont-ain the 

main results of this work. All of them are solutions of the Klein-Gordon-Schwarzschild radial 

equation. The first two are only approximate solutions, valid for the region rs <. r < +OCJ: 

tlw se-cond of them is also convergent at r = --t-00. (3.14) is an exact :mlution valid in-the 

same region. For complex CJ = o + iB. 0 · 1-1 -- 1. (3.20),{3.28) pro\·ide us \\·ith a remarkable 

<me--parameter family of exact. solutions of {2.2) for real mas.~ m 0 and converging in the 

whole of space-time 0 .-- r-::::; -t·oc. Such a kind of solution had been long sear<·hed for in the 

literature ['il Of course. in every case the event horizon r = rs remains singular in the sense 

that the variable r. blows up there and we are faced up with the known problem of having 

to choose good coordinates (such as the Kruskal one::.) in order to come across this event 

(see the long e-xplanation towards the end of Section 3). Xotice. however. that. our additional 

fuudion g{p) is free from these difficulty. it IH'Yer worsens the situation. For particular values 

of the parameters. (4.14) is a solution mlid in the comJHlct region rs r :S +OG. (5.11), 

Yalid for 0 :_:: r r~, toget-her with its continuation tors '- T :_:: 2r~, provides a family of 

solutions valid in the- whole interior re)!;ion. actually for 0:.:: r 2r8 . As a final remarck, 

these solutions are the relevant- one:, in order to study graYitational collapse. which involves 

crossing the event horizon by going from region I to the black-hoi<' rcgion II along a geodesic 

Y--=-const. All t.he previous solution:, are duplicate by substituting -i fori iu the initial ansatz, 

thus providing also the vmy to study the transition from the white-hole region III to the 

region I along a geodesic u=-const.. 
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Appendix. 

Starting from the expansion of ·'• for s hig, giYcn hr (~.11), after a boresome but straight

forward calculation w(' obtain 
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On t.he other hand, it. is dear that. as s- oo then alsop-----> oc, so that 

Cp-1 J3 '} b £ . -~ 
Xp =- = 1 +- +- +- ....-- ---t- O(p . ). 
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The series expansions needed in order f.o be substituted into eq. (2.13) are the following 

and 

and 
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The term XpXp-t can be read off from (A.1) for s=p. 

23 

(Mi) 

(A.G) 

(A-1) 

(A.11 

References 

'1, s('(•, for in:<tiHIC(". :\.D. Birrell awl P.C\\". DaYic~. 9!~ntum Fiel<bj_r~Q~:_ved Spa~~

Camhridgc l-ui\·. Pre:-.:-.. Cambrid~'P· Great Britain. 1982. 

!".!.~ B.P. Jen:-;cu aud P. Candela;;. Php-;. Re\-. P~_:}. 1590 (1986). D . .l. Rowan and G. Stephen

son, J. Phys.-A.P. 1631 ( 1976). D.G. Boulware. Phys. RcY. _Pll, 1404 (1975). S. Persides, 

J. Math. Phy;;.l4. 1017 (1913): ibid.!_.::.. b8;J (1974). 

[31 S.\"'· Hawking. Commun.l\lath. Ph~·;;. 9-], 199 (19i5). 

14] R.M. Wald, Ger~e-~~_Relati~~!X· The Univ. of Chirago Press, Chir.-ago, 1984. 

[5] E. Elizalde. Series solution for the Klein-Gordon equation in Schwarzschild space-time. 

Phys. ReY. D. to appear. 

~6} I thank R. Haag and K. Fredcnhagen for illuminating explanations of this point. 

:;; W.E. Couch . .l. 11ath. Phys. ?1, 1457 (1981). 

"4 

• - - - - - .,_ __ - __ ..._~..._ 


