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Abstract

Several formal solutions of the Klein-Gordon equation in a curved background,
given by power series expansions, are proven to render in fact convergent solutions
in very extense domains. In particular, one family of solutions is analytic in the
whole of space-time. For a complex domain of values of the frequency, the family
of solutions corresponds to particles of real mass m > 0.

1 Alexander von Humboldt Foundation Fellow. On leave from and permanent address: Facultat de Fisica,

TUniversitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain.

1. Introduction.

The factorizable solutions of the Klein-Gordon equation
s l _
(?AV/“‘-.m)@—O (1.1)
in a curved, Schwarzschild space-time
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can be written as [1]
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where the Yi,, are spherical harmonics and the radial functions f,; satisfy
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7, being the Regge-Wheeler coordinate
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Notice our definition with absolute valne which will allow us to use this coordinate for r <
2G 3. Tn the asymptotic region r going to infinity, the solutions of (1.4) are
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so that (1.3) reduces to
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A considerable number of attempts have been carried out in order to solve equation {1.4)
and very much is already known about the general properties of the solutions |2], which, on
the other hand, have proven to be very difficult to give explicitely. Normally one has to work
without knowing them in terms of simple functions. The derivation of the Hawking cffect {3]
is a beautiful example of how to proceed without solving the exact equation [1,4].

It seems clear that any effort aiming at the derivation of regular solutions of eq. (1.4}
in the most explicit way possible and valid over very large domains of space-time should
be welcome. Concerning this last requeriment, it is apparent that the Schwarzschild radius
rs = 2G'M builds a natural frontier for these domains (sec. however, the first and third of our
solutions) as the physical properties of the solutions in the region vutside and in the region
inside the hypersphere r = rg (usually called regions I and I1. respectively) arve different —and
this in spite of the fact that r = rs is not a true singularity of the Schwarzschild metrie, In
our caleulations we have divided the whole of space-time correspoadingly. With respect to
the first requeriment, we shall in some cases he able to produce solutions given by elementary
functions. They will be analytic in the whole domain 1 or H in each case and some of them
will even be valid in part of the complemnentary domaiu. The last ones may prove to be
relevant for the study of gravitational collapse.

We shall actually analyze three different types of solutions to eq. {1.4), two of them valid
in the region I, exterior io the Schwarzschild herizon and the other one valid in the interior
region II. The precise derivation of the solutions was done elsewhere [5] and will not be
repeated here. We shall concentrate in the proof of the convergence of each of the solutions,
a task which involves very careful analysis of terms of different order, as we shall see.

The paper is structured as follows. In Section 2 the asvinptotic behaviour of the coeffi-
rg = 2G M (the Schwarzschild radius) is analyzed.
The existence of exact solutions {0 the recurrence equation satisfied by the coefficients is

cients of the series expansion valid for r =

proven. In Section 3 these solutions are found. Attention is focussed on the precise initial
conditions leading to exact and to very approximate solutions. The results of a numerical
analysis carried out for different values of the parameters is also given here. In Sections 4 and
5 the same study is repeated for the other two series expansions considered, one of them valid
for big r and the other for small r. respectively. Finally, Section 6 is devoted to discussions
and conclusions.

2. Analysis of the recursion formula corresponding to
the case r > rs .

The most interesting of the series expansions we are going to analyze is the one about

r = rg, In principle it is valid for » > 75 but it can be easily extended to rg/2 =< r < r5. By
doing the change of variabies
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equation (1.4) transforms into
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As was proven in [5. a solution of (2.2) is given by
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wlhere the cocflicients are compietely determined in terms of the parameters m, M, w, and |

as follows
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For 5 __ 5 the general coefficient of the series solution {2.3) is given by the recurrence eguation
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Notice that some modifications have been introduced with respect to ref. 5 with the aim of
rendering the expression more compaet. We can go further and write (2.7) in an equivalent
form more adequate for the manipulations fo come, namely
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where the square bracket means "integer value of’. For s even, s=2p, this expression can be
written as
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while for s odd, s=2p+1, one sees that
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Let us now proceed to the analysis of the behaviour of ¢, as s tends to infinity. In this

Section, under the hypothesis that ¢, is analytical as a function of 1/s, as s —» oo, we shall

demonstrate that the series 7%, ¢,p* has radius of convergence g, = 1, i.e. that the sum

glp} exists for any value p - 1. To this end, let us call

- “s-7
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r, will be an analytical function of 1/s for s big encugh

Eqgs. (2.6) and {2.9) are then immediately rewritten as
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At this point. the different products of series of the type r, (2.11) are to be substituted
i eqs. (2.12). (2.13). Their explicit cxpressions are given in the Appendix (see formmlae
{A.1)-{A.8}). After a lengthy calculation one finds that: i} the terns of highest order in s in
eq. (2.12}. i.e. the terms of order 1, cancel if and onlv if

x = (2.15)

i) independently of the values of 7.+,.,. in (2.11). the terms of order 57! and of order s7¢

cancel throughout: and iii} the contributions to the term of order s72 only depend on 4, and

are given by
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while the full expression (2.12} turns out to be {a = .1j
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Thus, we have proved that under the condition that e, he analytical us a function of 57! as

s+ {2.11)0 the equation of recurrenee (2.6) hplies that o == 1 and then it is fulfilled up
to terms of order = . Let us analyze these terms and see if they can be also made disappear
for a couvenient value of p. Substituting (2.16) into {2.18) one gets
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Actually. we have uot heen completely precise concerning the order of the term affected by
the summation sign in (2,16} (2.19%) and (2.20). In fact, we could not be so. hecause its order
depends on the asviuptotic hehaviour of the o) s, However, it is clear now that it is at mast
of order Ofs ') (ot taking into account the coefficients in front of it) as a consequence of

the fact that the coethicient 7 in the expansion (2,311 nust necessarily he
- or =
/q . (2.21)

in order te satisfy the recurrence relation. whick is nonv cast under the form (2,20} In fact.
we have proved that the fulfillent of the recursion equation for the ¢, s implies that

S g L s,
Sy
with .7 = Gorl. But this oo its turu provides a Hmitation for the possible expressions of ¢, as

an cxpausion in terms of 57 It is inunediate to see that if
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the result is
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Therefore, it turns out that in the case B = 0 any expansion of the form (2.23) fulfills the
recurrence equation up to terms of order O{s~*}, while in the case 3 = 1, ¢, must be given
by {2.25} with k=1. These are al! the possible solutions and we sec a posteriori that, in all
cases, the terms affected by the summation sign in eqs. {2.16), (2.19) and (2.20} are, in fact,
at most of order O(s™ ') [not taking into account the coeflicients in front). Further, from eq.
(2.20) we also deduce that for every ¢ - 0 there exists an s, & ¥ such that for s » s, one has

Ix,~1l <&, ¥ sz

Summing up, it has been proven in this Section that if ¢, is asymptotically an analytic
function of s~! (a sensible condition in view of the form of the recurrence relation (2.6)) then
all possible solutions of the recursion formula for the ¢, s are given by (2.23) and (2.25}. the
last for k=1. In all cases we obtain a series g{p) (2.3) with radius of convergenee p; = 1. The
verification of the analyticity assumption for the c, depends on the initial values 1, ¢3.05.¢4
which do not ohey the general recursion formula (2.6}, valid for s .- 5, and which are com-
pletely fixed by the parameters @, and m (2.5). In the following Section we shall analyze this
dependence on the initial values and some exact and aproximate solutions will be explicitly
worked out.

3. Solutions valid for r > rg.
An exact solution of the radial equation (2.2) is given by (2.3} with

=, S:’f;2)32“‘
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In fact, substituting for
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in the recursion formmla (2.6} for s=5 one gets ¢; = ¢4 and, in general, ¢, = c¢,_y, provided

that ¢; = ¢3 = ... = ¢,1. The sum of the series g(p} is given by
- =€ - c (_t; .
gff’} = U ZGA ) (3.3)

Actually. it is not possible to provide aun exact realization of the condition (3.1} in terms of
the parameters 5.1 and . and only approximate solutions can be cbtained in this way. In
fact, tmposing (3.2) one gets the relations
%
[ = —_
=— 2 » 275
1 L=t
IR e / (3.4)
o Gy ey = @ o
3 3(2a-3¢) ¥ —2()

It is the last condition the one which cannot be exactly satisfied, although it can be approx-
imated to any desived order. The remaining three equations (3.4} imply

& =(1+2cE, 5, 8T -78,+8=0,

(3.5)
whose solutions are
7 =-3448 , 7= 2T+ (142G ) f A+ (4-2v3)72 ],
€= = = £ a+ 4+ 205)72 7, {3.6a)
and
Fm e 3-VE, o t= 2003 #4203 [a- (44 205)7 ],
T, T ==l JA—4-203)72 ] . (3.6b)

A numerical analysis carricd ont both for swall and for large values of & provides the follow-
ing explicit, approximate solutions of the radial equation {2.2).
i) In the range of & between o = 0 and w — 0.3 one gets

10



o e [y ¢ )+ 2 ()
mO“’7"‘zaﬁf)]*’f'é(z%f_f_a'f/{”-——)§

2 A
This solution corresponds to {3.6a).
it) In the other extreme, for @ 3> 10, one obtains & couple of solutions

Fup (HNO(W{ [Q(ZGM ZCW"'{))
+Oaz(_—-4]+4?3(-—-—4§ (2.8)

where the plus sign corresponds to (3.6a) and the minus sign to {3.6b), respectively. Notice
the important fact that the second of these solutions is convergent at r — oo due to the
presence of the factor exp(-1.73(r/2GM-1)).

Another solution of the radial equation (2.2} is given by (2.3) with
c = CT » 5 = 4, 2) 3,
s = (3.9}
This can be seen by substituting
. - <
. - < c., = < <, = —
¢ o= <, = = 2 2 ? %
14 > T2 z 2 4 (3.10)

in the equation of recurrence {2.6) for s=-5. One gets r; = ¢/5 and, proceeding further, for
the general ¢, one abtains ¢, = c/s. provided that ¢, = ¢/k , k=1,2......5-1. As before, one
must now express the initial conditions {3.10) in terms of the parameters &, and . Starting
from (2.4), one has

< o= — é; > C *Z(Cv"‘Z{)C - O’
23— ¢
2cti5ic-6,=0, cle2ic-14=0, (3.11)

which can he solved and yield

0, £=0, M =0 , c = .

it

w

Substituiing this result into (2.3} we ohtain

?({a} =

N&
f
&
!#

n
¥

11

and
(3.14)
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It can also be demonstrated that an arbitrary combination of the two exact solutions

which we have found above, nanely

» s= 4,2 AT

kN

= (3.15)

yields also an exact solution of eq. (2.2}, Observe that this is not at all immediate, because
the equation of recurrence (2.6) is not linear, owing to the presence of the ¥, terms. This
third type of exact solutions can be also expressed in terms of the @, I and m. From (2.4) we

get
£ C1£+2£'(1 ‘é_a
A+ = — T b = S = - 4
2G5 -4 2o —i)
. . . (3.16)
Jeyb i (Gr48)b=0y 7L 206170,
The solutions to these equations are
= ,{_. .[/A 2 6 = ’-1.': >
»f? = — "f'i‘ v—/*.?'(tj r A f_ (3.1}-)
. TRary .
= —2+2(J+4w}(2+w+2cw)) oo 4
This vields for the general coethicient of the expansion {2.3)
g A
- = A - =f.
Cs ([) s) (3.18)

Agaim the series is convergent and its sum is

.
g = <[/ ls5 ,,r)-/.um]- (3.19)

Tlus we obtain the following exaci solution of the radial equation (2.2}
i) e ',_L“_+’_/‘_-f/]
Feue (1= aenp [ 45 [ 5 b |55~
= v r '
- (V2 —U(2GM-4)+/M2GKI,§ . (3.20)

12



It is very interesting to notice that for auv & - B« / U when we take the plus sign iu the
square Toof we get o couvergent solution ai r - X . In fact. for every @ # 0 the real part
of (1 + 2f&)Y? — 1 is positive and this makes f.+(r} tend to zero as v tends to infinity. For
o= a+4iB,0< 8 < 1,(3.20) provides us with a whole family of solutions of (2.2] with real
m - 0 and converging both at » = rg (Kruskal coordinates) and at # = +oc. This is a very
remarkable family of solutions. It had even been speculated that such solutions would not
exist.

As before, we have carried out a numerical check ou the validity of the exact solution (3.20)
for different values of & . The accuracy and the stability of the coefficients are remarkable and
the recursion formula (2.6) can actually be used with negligible errors to obtain the values of
the ¢, up to very high s, A standard Fortran program with double precision complex variables
does the job pretty well. In particular, the cheek that cige — €10 = 0.09i has an accuracy of
107%.

All what has been done in this and in the preceding Section by taking the plus sign in
front of the i in (2.3) cau be repeated for -i. This corresponds to taking the alternative sign
for i in (1.6). (1.7). There is no problem in doing this for 7 -~ r5 and the number of solutions
given above is duplicated in this region.

We now turn Lo study what happensin the interior region 75/2 <2 r <l rg,i.e. =1 < p < 0.
As has been proven in Section 2. the series given above are also convergent here, and the
corresponding function g{p) they define is valid, in principle, in this region inside the event
horizon. However, as everybody knows, the coordinates (f,r) are singular at r — rs and
the differential equation {1.4) makes no sense at this point. It actually makes sense again
for 0 < v < rg and {1.4) has an exact solution given, for example. by (3.20) there, but the
question is: how can we make sure that the solution (3.20) for » - rg and the sclution (3.20}
for r5/2 < v < rs are the same solution, namely that the second is the one into which the
first converts (ie. it remains intact in this case) affer having erossed the event horizon 1.
This question is very relevant in the study of gravitational collapse.

In order to answer it. one has to abandon the singular coordinates (f,7) and use regular
ones, such as the Kruskal coordinates

V-

. Ay
f = ——2—— bl Y =z {321]

or, equivalently, the coordinates U, 17 defined through the pair of Eddimgton-Finkelstein co-
ordinates {u,+) and (v,r) by

ﬂ: -@xf; (_4‘/?-.7—4) 4 V-:: .edxf) (ZXCE/"_'i'), (3.22)

where
—t-r y=1+1% -
M= * (3.23)
In the eoordinates {3.22) the Schwarzschild metric {1.2} becomes
3 .
Ast= 4(264) (- ) d2UAV 2 (A% iniZEAE).
~ -é‘«/{) SEAy 0{ ( 43t F’ ) (3.24)
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Irs only singnbarity s now the ovigin » - 0 . This = a trne physical singularity (it veflects,
for instance. in the curvature sealar) and eamwn he eliminated by further coordinate trans-
formations,

The coordinate change from (¢.») to (L.17) is singular at r = rg (that is, the singularity
r = ry of the differential equation (1.2} has been eliminated by performing a coordinate
transformation which is singular a1 this same pointl. In principle. the definition of (I',17)
from (1.r) given by (3.22). (3.23) is valid only for »  rs . In the other regions of space-time
the coordinates U. V" are the bues to he nsed. However. since we have taken the logarithu:
of the absolute value in the definition of r, (1.5). one would think that the same relations
{3.22). (3.23} would also hold for 0 - r -+, . An easy calculation shows that, starting
frow {3.24). one gets the Schwarzschild metric (1.2) whith a global minus sign. Such a
metrie is mathematically {and physically) indistinguishable from the Schwarzschild one (1.2}
In particular, the radial Klein-Gordon equation one gets from it is exactly the same (1.4}
Notwithstanding that. one has to be, again, very careful on crossing the coordinate singularity
T =Tg .

The correct way to proceed is to make consistent use of the nonsingular coordinates (L, 17}
{or (t'.+') } . The solution of the radial Klein-Gordon equation corresponding to the metric
(3.24) ~let us call it g{UV} will be valid in the whole entarged domain of space-time covered
by the Kruskal coordinates {vegions I, II, III and IV of the Kruskal diagram). In region I,
that is L' < 0,7 = 0, or r = rg. the solution we are considering here let us call it fi(f,r)-

expressed in terms of {#.r) is given by (3.20). At the event horizon » = r4 the solution can

only be expressed in terms of (L', 17) but it has no translation in terms of (1. 7). In the black-
hole region 11 namely U7~ 0,77 -0, 0r 0 - r - +y. the solution g{T". 17} will be expressed in
terms of (o) by frp(for) . Summng up,

T: ;(f{,\/}:(!f— géﬁ') fr(f‘fr):

fo — 7+ 7 -
Alz-enpl- £5) V= enp(TH). (3.23)

I g = (28 [t r)s

. | 3.245b}
) £ 13 _ [l (3.2%;
Al= rfxf(-* ﬁ__ztééﬁ ; V= i ol B

where r, is given by (1.5). The change of sign in U in {3.253b} is the natural implementation
of the global chaige of sign in the Schwarzschild metric ds® found above. Egs. (3.25) lead to

Joltriw)= L e T oy

Xfl (t+a, f(f,}-c‘)), a = 2EMLn (1) . 03.26)

For fr given by {3.20) this can be written explicitly ax

14
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where ¢ = fr,) 15 the imversion of (190 Put in another form. in terms of the funetion

rozovir ) inverse of v or - 3G iInde 2CAS 0 1 roowe can write

Jrterl= o« &S VR oy jytal o

I
( (3.28)
. -, 1o ,
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T G AL
Thix is the solution corresponding to {3.20} after crossiug the event horizon r = re,

having chosen a determination of the logarithm. ard in terms of the Eddington-Finkelstein
coordinates (o.r) . The coordinate v is the one relevant when going from region 1 to region
If through r = ro along a geodesic given by v=const. A similar analysis could be made
for the transit from region 1I (the white-hole region U -2 0,17 - 0 } to region . In fact,
putting -i instead of 1 in {3.20} {or in any other of the ansatze which we shall encounter
in this paper} one gets a new. independent solution in region I In it. the other Eddington-
Finkelstein coordinate » {3.23) appears. This is the salution relevant for the cross-over from
region I11 to region L. aloug a geodesic u=const. 6

The ansatz {2.3)-{2.7) appears to be well suited in order 1o study the different aspects of
quantum scatar fields in Schwarzschild space-time for: i} as has been proven. it provides us
with analytic solutions in the entire region extending from re to % plus the interior region
rgi® - r - re D1l cousidered as a function of & it does not develop singularities. Notice that

when + — ry it hehaves as

fwc (r) = 0{-6"&20[1'6-‘f; " fz{’ff(/ 96/‘7_"_ C\((4 26/{) )} (529)

AF 20l
while when r — 2. it behaves a-

Fue (" Nfr (5,2 enp-certyls (3.30)

where 4, 15 a well defined function of &. I. i for any value » - . As has been demonstrated.
Joc exists {or entire families of values of the paraneters.

4. Solutions developed around » = oo .

A solution to eq. (2.2) as a power series of 2GM/r is given by
i b A T S 4 [26H)
= . " R — S iy
fwe('“/""“g“fo/i[k*“o '/26/4)*% s (25 )J}'”’rﬁ’ (4.1)

By direct substitution into (2.2), we find the values for the first coeflicients
é) = M F é = [ - 'Z— ’]
o = MK, ,,/;‘FQM?);(;M,
A

S g - G 5]

*2&(/«,}%), (4.2)

A~

b, 4 A
o= fra B R )
. ;_' C3b,+66,+6,) ],
where
= ml *
F= 26M% , /a Sg2 (4.3]
For s .- 4 the general b, is given by the recursion formula
és = i; (pd(st] by + ?/u/s-‘.?}é,kz —als-3)6
' 53
.- '(r-‘—?)/mé_‘_
[Z”?(S/ f)é %y 2}%’ 7 3 sy -2
1-g Donb, o

- ?(g./ 36 475
=}

4
~2s1)(s-2) b, +(s-1hs-3/ 6, ]} ’ Sz 4.

The procedure will be exactly the same as before. The starting hy pothesm was that b, is
analytic as a function of 1/s. for s big enough. We write
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]
&
+

l
4+
&
4
=
z

<

Substituting this expression into (4.3), we get

b= —ff b [(Aopd (1] 3¢+ 2 (525 Koy 085308 My *s-z ]

-f——
-+—’J’2£i’(‘/ ’/5 /:(4 2hey it Koy Ney-2 )

B g g5
_ {-i%- X, [g(‘g‘_{}r(.?j'-ﬁj(S"Z) xg‘fﬂ“("s"ﬁf/(s"zlk_g‘, Ksp | 9
where p and X are given by (2.17), and
S, = 2/:(,04)5? é’/a—, - 2(p-1) 2%;, > 5=2p,
(4.5)

2 T - 1.
SS_:/olé) ~ (Pl é?_,, S =2p ]

Substituting for the different x, s the expansions given in the Appendix, after a straightfor-
ward but tedious calculation we find that, order by order in 1/s, the terms on the rlus. of
{4.5) vanish, provided that the corresponding coeflicient a in (4.4} is equal to 1. Namely, for

:,(czo’?(f:--“:q;v':{; {1.8)

the recurrence egqnation (4.3) is satisfied up to terms of order 57U e, we Liave

c Q<70 (4.9)

Notice that

b g L0072,

4, (4.10)
e., for any ¢ = 0 there exasts an §, € A such that for every s _ s, one has
/ by 4 / < £ ,
{4.11)

~f

The radius of convergence of the series solution is again p, = 1 .
Swmming up, there is only one exact solution 1o the radial equation (2.2): the one given
by (4.1). namely

s (4.12)

In fact, it is easy to prove that,

é‘{é aré, f;ﬂlf)’ J ‘és = - sz1, (4.13)

is an exact soluticn of the reenrrenre equation (4.5). {4.6}. The corresponding solution fu(r)
turns out to he :

fc\g (r/ = qf@oc/)/',('ﬂ'; +b, --/M%’Pg - éf..%,/,/, gf-ﬂf/f;

{4.14)

As before, by = In/? and by -+ by 3 impose restrictions on the values of the paranieters a0
and m wiclh actually lead to a solntion of the type (4+.12).

Changing the sign in front of 1 iu {41} we get a sccond exaet solution of (2.2) which is
independent of the above one. Both are valid in the whole region ontside the event horizon
re. - =+o. For Imb; . 0 the solution (4.14) ix also convergent as r — rys :

:f;-(,(r/ PP e.ic/-)j’f%ﬂ; —(/: Jé,(/ - ‘i%\_/f)j . (4.15)

For Truby - 0 1he solution is convergent as » -» —x

: ) yas --.z'cjg o LEA ]
%“((f/fv X .:1.2*}[4 * — | (116)

For Jrmiby anid Tl positive we obtain an exact solution valid iu the whole compact region

[ R N

5. Solutions valid for r < r5 .

Onee wore. the saine procedure can e emplined to vestigate the conversenuce of the
. il F
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series solutions of {2.2) given by

?’we ) = o(m/oﬁ'[zr;wb% 2@, g s G:;,)ij ’ (51)

with

Hp=-C 5 “-/:'L"Zf ‘(e:—'f-ri‘fﬂ’;zb
2 T3

Ty = -—-‘——-—[f"f L (G Sh{i,..f"'-)] (5.2)
and with the general a, being given by
ap= L {Gcitzen @ ~(5(s2) %
4{[25‘((! 2)@_ (S -3/, 3)1—}‘ gﬁ/)a K s
{5.3)

5~3
~.QZ_¢(S/ 1)6? 't +Zﬂ(‘/ 2/‘:}'“:7'-2.”’ S24.

Exactly the same considerations as before apply here. By postulating that a, is analytic in s
as $ — oo , we may write

L Ky haf] g
A= 20 = Xt — b 2 e
5 s < 5 2 (5.4}

Eq. {(5.3) can be written in terms of the 2, :
4= L {& [Cs-1)cos-ux~cs-ues-2in 5, ]
oy [ZF% L (520 ~(5-3)% ;)
w2 B geqry ey (17 g b

+4éf‘¢‘f“r/f” *‘/4)*55”’
e

where p and A are given by (2.17), and

{5.5)
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S;': ,0 « _(/o -1)* /’J’ 7 5= 21‘0 s (5.6)
S, = ?/0 d{o ng(/"”«/’q/’-f’- s=2p+ 7.

Substituting (5.4) and the expressions given in the‘Appendix into (5.5), after another some-
how tedious calculation we find a similar result as in the preceding Section, namely setting

a, ==t =g =T, (5.7)

the recursion relation (5.3} is satisfied up to terms of order s71*" | ie., we have

@, = & + O s—("*”). (5.8)

Also, the convergence radius for the series in {5.1) is exactly equal to 1, because

Ao og- L+ O(s77). (5.9)

ey
It is not difficult io prove by direct substitution that

. «y .
o s &, arbff‘rar)/ R .= = 57 7, (5.10)

is an exact solution of the recurrence equations (5.1), (5.3). The corresponding solution of

{2.2) is
f (r}-we«/o[fsz‘ﬂ“ﬁf?g” j‘vﬂ“//FgGM)J (5.11)

The conditions @y = a;/2 and a3 = a,/3 can be expressed in terms of the parameters &, [

and m
& N NG o
4t o=,
) 2 4 (6.42)
;‘ 4
5-—-7(512{—317—»?)—0
We obtam
L= g (5.43)
- 513
Pi+1)
Notice that for [ = 0 we have k = /1 = 0 and the very simple solution
r
fulr) ST {5.14)
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Another example, for I = 2i we have £ = 1,/m% = 2%/ — (2 + 2%/*) | and the solution

falr) = o (1 - ZG‘LM) exp (1' (ﬁ +(1 427 1n (1 - ZJM))) (5.15)

All of them are convergent solutions as r — 0. Moreover, the second solution, {5.15), is aiso
convergent at » = rs. In general, we observe that the solution (5.11) is convergent as r — 0
due to the presence of the factor r/2GM. If Rel < 0, it is convergent in the compact region
D<r<rs.

In the present case, the connection between the part of the global solution ¢(l/, V'} {3.25)
valid in region I {the one above) and the part valid in the subregion rg < r < 2rg of Lis
done in a way which is completely analogous to the procedure described in Section 3, eqs.
(3.25), {3.26). The only modification to be taken into account is that now we start from f,
(given by (5.11)) and we have to obtain the corresponding f; by making use of {3.25). Thus,
the expression (3.26) has to be inverted.

Alternatively, we could also have started from the independent solution given by {5.11)

a-1/4

with -i instead of +i, and could have envisaged this solution as being defined in region III;
going ahead, we would then obtain the corresponding solution in region I, through the re-
lations similar to (3.26), for the transit IIT — [ along a geodesic n=const., as has already
been described to the end of Section 3.

6. Discussions and conclusions.

Lei us recapitulate what we have dene. The aim was to find solutions of the radial Klein-
Gordon equation corresponding to a spinless particle of mass m in Schwarzschild space-time,
as created by a black hole of mass M. We tried to find any such solution which can be expressed
as a power series expansion around 1} 7 = rg = 2GM (Sections 2 and 3), i) r = +oc (Section
4), or iii) r=0 (Section 5). The first step was just to obtain the recursion formulae for the
coefficients of the series expansions in each case [5].

The second step has been to investigate which of these formal series expansions actually
vield convergent, exact solutions of the radial Klein-Gordon-Schwarzschild equation, to deter-
mine the convergence radius of each power series expansion and to sum them, thus providing
closed, algebraic expressions for the solutions. Of course, all the coefficients of the series ex-
pansions and the algebraic expressions for the solutions themselves are given in terms of the
parameters m, M, w and L. Actually, they always appear in the combinations m = 2GMm,
w=20Mwand =1l +1).

In case i) we have obtained in this way two essentially different exact solutions (2.3), {3.3)
and (2.3}, (3.18), and also a very interesting combination of them (2.3}, (3.19). In cases ii)
and iii) the solution was completely specified by ‘the above conditions of being given by a
convergent series expansion . It is given by {4.14) and by (5.11}, respectively.

The third step in the whole procednre has been to mateh the parameters m,o and !
with the first coefficients of the power series expansions in each case, In fact, this tmposes
restrictions on the values of these parameters which lead to exact, convergent solutions. The
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situition is different ww each case. Sonletitues the paraieters are completely determiued m this
way. and we obtain just one solution corresponding 1o these precise values of the parameters:
this is the case in (3.14). Sometimes. they have remained undetermined and a one-parametes
family of soluiions has been obtained. as in (3.20) and {5.11). (5.13). And it has also once
ocurred that the matching vields incompatible equations. so that only approximate solutions
are vhtained, This was the case in (3.4) which yielded the approximate solutions (3.7) and
(3.8).

Sunnming up. equations (3.7), (3.8}, (3.14), (3.20), (3.28}, (4.14) and {5.11) contain the
main results of this work., All of tliem are solutions of thie Klein-Gordon-Schwarzschild radial

" equation. The first two are only approximate solutions, valid for the region rs < 7 < +ou;

the second of them is also convergent at 7 = +oo. (3.14) 35 an exact solution valid in the
same region. For complex & = o + 23, 0 - 7 < 1. (3.20).(3.28) provide us with a remarkable
one-parameter family of exact solutions of (2.2} for real mass m - 0 and converging in the
whole of space-fime 0 - r < +oc. Such a kind of soluiion had been long searched for in the
literature {7]. Of course.in every case the event horizon r = rg rewmains singular in the sense
that the variable r, blows up there and we are faced up with the known problem of having
to choose good coordinates {such as the Kruskal ones) in order to come across this event
(see the long explanation towards the end of Section 3}. Notice, however. that our additional
function g{p) is free from these difficulty. it never worsens the situation. For particular values
of the parameters. (4.14} is a solution valid in the compaet region rs % r < oo, (5.11),
valid for 0 .2 r - ry, together with its continuation to rg < 7 -7 2ry, provides a family of
solutions valid in the whole interior region, actually for 0 «= 7 7 2r5. As a final remarck,
these solutions are the relevant ones in order to study gravitational collapse, which involves
crassing the event horizon by going from region T to the black-hole region II along a geodesic
v—const. All the previous solutions are duplicate by substifuting -1 for i in the initial ansatz,
thus providing also the way to study the transition from the white-hole region III to the
region I along a geodesic u=const.
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Appendix.

S$arting from the expansion of =, for s big, given by {2.11), after a boresome but straight-
forward calculation we obtain

2, 208 2, 2 1
Toxey =00+ — - H{ad + 2oy + s = (ad 4 2aq | 3+ 206 + 2,‘_‘7'7]—T
5 &5 &
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, 5 1 P
+{ef + 3oy 4+ 37 4 3ub = 3y = 2ae + 236 4 ')‘?):‘; 4 Ols 7). (A/f)

and
3a%d 5. 3
Eglg 1Ty = a®+ ar +(od + ay +.H-)_(;
& s
aa. 1
45?3 + 6a’ + 63’ + 3078 + 6afy + ;’_‘13}5—3 (/12)
+{9a2d + 1503 + 12032 + 9026 4 3a’e
, 1 .
+18a3y + 6ad6 + 3an® + 33 = 38% ), + O™}
s
ﬂ.ll(l
4a3d . 2a?
Tl 1Te 2@y 3 = o + T’ +(3af + 2ay + 3;?2}%
3

+(Ta’B + 6a’y + 20%8 + 9aB” + 6aBy + 2,5'3)1—‘: + {3603 + 42a%y + 53023 (’4 3)
1180% + 4a’e + 540’8y + 120786 + 6a’y? + 18a8” + 1282 + _B‘):lq + G %).
On the other hand, it is clear that as s — oo then alse p — =, so that
& €

B0, 8 o
o R R (A.4)

. The series expansions needed in order to be substituted into eq. {2.13) are the following

4

Tp:£:1+

2 s 2o 2o+ 3 Zad - 2,

et + + 0™, A5
F P P? p,"! (p ( )
and
40 , 20t
;r.i:r;‘:_‘ =a'+ el + (o + 205 ~ 3@2)-?;,
p R P (/4.6)
+{a?B + 207y + 30 + 20%6 + 6ady + 2}331;%: + 00,
and
1 1 Ie) al —an + 37
21 o atp 't et
pet @ a‘p a?p (A?)
{03 + 2a%y — a% — 2a8" + 2afy — B%)— s + O(p~),
a’p
. F g B Fer-aB-B (AF)
T op alp? ") i

The term z,%,_; can be read off from (A.1) for s=p.
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