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Abstract

The logical foundation of the probabilistic interpretation of
guantum-mechanical states is re-examined in view of Fukuda's new
theory of measurement. We suggest that the probabilistic inter-
pretation could be viewed as a natural consequence of the
reduction of states upon measurement, rather than an a pricri
ansatz contained in the "external observation" framework of
guantum mechanics.

Permanent address

1. Introduction

Recently much attentions have been paid to the apparent limitati-
on of the "external observation” formalism of guantum mechanics,
since this kind of formalism does not lcok applicable to any
isclated and closed quantum system, for example the whole
universe, invelving the measuring apparatus and observers inside.
To get rid of this difficulty many physicists b have been
tempted to adopt the "many-worlds interpretation" of quantum
mechanics suggested by Everett, III some years ago 2).

Although this latter scheme of guantum theory, known as the
*relative state” formulation, poses a possible closed theory
based exclusively on the superposition principle and the
causal-unitary timedevelopment of the quantum states, there are
still some difficulties with conceiving infinite multiple of the
whole world. On the other hand it has long been an open question
3) whether or not the reduction of wave-packet could well bhe

described in some way as a physical process of measurement and

not as an axiomatic proposition.

In this connection, a new approach to the theory of measurement,
develaoped recently by Fukuda 4} locks particularly appealing to
us. As it will be outlined in the next section he treated the
motion of measuring apparatus in the large number limit of a
many-body guantum mechanical system and proved that the Hilbert
space for the states of macroscopic detector undergoes a sort of
phase-transition, converting itself into a set of a large number
of disconnected subspaces in an extremely short period cof time.

I1f one takes this view-point for granted, one may then ask
whether or not the probabilistic interpretaticon of the state
should really be regarded as one of the starting hypothesis for
the guantum thecry.

The point is that now it is no longer necessary to treat the

measurement in terms of the "external cbservation" formalism.



The present note addresses some points concerning this issue,
which may suggest a new way of axicmatization of guantum
mechanics. In Section 3, the probabilistic interpretation of the
state, i.e. Born's ansatz 5), is re-examined not as starting
hypothesis but as a notion which acquires meaning connected only
with the measurement through the macroscopic apparatus. The last
section of the paper will be devoted to discuss of these results.

2. Macroscopic variables in the measuring process

As a preparation to the later discussion we recapitulate briefly
the essential aspects of the theory of measurement developed by

Fukuda 4).

The measuring apparatus, as a macroscopic system, consists of, in
general, an infinitely large number (N-2ess) cof degrees of
freedom. The relevant quantities which, somehow, record the
results of measurement are the Class I intensive variablesFl),
which are obtained by averaging the local wvariables over a
macroscopic region. These variables remain finite in the limit
V-~»e0 with N/V fixed. The volume V denotes the spatial extension
of the relevant part of the measuring apparatus; this volume
could be very small but it is assumed to be infinitely larger
than the size of atoms or nuclei. Now it is evident that such a
macroscopic variable thus defined obeys the individual c¢-number
equation of motion without any guantum fluctuations. But how does
this come about in terms of the large number 1imit of guantum
mechanics? This is just the problem which Fukuda treated
successfully by using the method of functional integration,

Fl) We follow Fukuda's terminology here. The intensive variabies
not belonging to the Class I are called Class II. On the
contrary, the extensive variables cannot exist in the limit V-Jee
since they are infinite operators. This section does not contain
any new result beyond Fukuda's treatment, except for a minor
change of notations. The inter§§ted reader can obtain further
details in the criginal paper .

thereby clarifying the structure of the Eilbert space for any

macroscopic system.

The arguments proceed as follows. Let ;(3&) be a gquantized field
which, with its canconical conjugate, represent the infinitely
many degreeé of freedom of the macroscopic system under
consideration. Then the state prepared at the time io R ‘é§¢;>
is written as a wave functional <Z léip> -___-é‘o[g] , and
the subsegquent time development of the state is prescribed by the
kernel K as

$.[z1= §t<{,i,,zc,;,> (21048 ] (1)

where, as is well-known, K is computed by the method of
functicnal path-integration:

At
Kk wj[igljmp(%gL (g, gct')Jou') (2)
*'0

with g[i) = d.f/d,t . The space coordinate x in ; {z, 1') is
omitted for brevity. The functional integration here is performed
over all possible forms of the c-number field ;(E;tl) with
to< t'¢ t, with two boundary functions ffﬁﬁt) =7 and
;(E]iu) =717, taking fixed values, respectively. Given the
Lagrangian of the system, L, our next task is to rewrite the
kernel (2) as a sum of contributicons from the actions, each of
which now being given in terms of suitably chosen collective
variables rather than of original canonical field wvariables.
Since we are dealing with a macroscopic system, the toctal action
obtained by the integration gzi[{’] must be proporticnal to the
volume V, so that the predominant contribution to the action

density comes solely from the Class I intensive copertors, denoted
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by A, [;C‘t)] (i = 1,2,...)?2) In other words, A;'s are the set

of relevant ceollective variables, all possible values of which
could contribute to the kernel. However, for the same reason
that, in the limit of classical action, the classical path of
motion of a particle determined by the Euler-Lagrange equation
saturates the contribution to the whole action, the effective
action density in our case is uniquely determined once we
evaluate it in terms of the classical solution ai(t) of Ai

from its equation of motio§3), under the given boundary
conditions. More precisely, for each Ai there exist a number of
different c-number solutions corresponding to mutually different
types of eguations of motion. We differentiate labelling them by
the letter r, say a“'(7 &,) . The set of atx), faccr ¢,0} .
thus exhausts all the macroscopic properties of the system. Since
the equation of motions are deterministic, no fluctuation occurs
in any of their solutions. The state functional éﬁxztz 7 is now
written in a form

%k[CJ——nEg[d{a]@m[%C,] (3)

vy

with

&"g,¢.]

1]

] (0.5 Texpd SV 15, €1 (0

E2) Operators A, are certain functionals of §'(§,t) and its
canonical conjigate, the latter being rewritten here as a
function of ; (t) and ¢ ().

F3) In general, this kind of equation of motion is derived from
the requirement that the effective action "fa(t)]l should be
stationary under the variation of a -» §a, &/ = 0.

) . . . : . .
where f‘ ? is obwviously the effective action density responsible
for the corresponding solution af“(;;g; ) , and C is an ampli-
tude associated with the respective action.

Egqs. (3} and (4} mean that, in the iimit V -3¢0 , each term in (3}
gets an infinite phase and the phase difference of any pair of
terms is, in general, alsc infinite. Thus the phase correlation
among the pair of terms in (3) vanish within a short time At
even if one prepares at t = tO the state é§¢°[§5:] with a
definite phase. At is estimated to be of the order of magnitude
1/V or equivalently 1/N. It is also easily understood that there
exist no finite operators which have non-vanishing matrix element
between any pair of terms in the expansion (3); this implies that
the Hilbert spaces spanned by the set of states S %{"[g,goj }
are completely disjoint of each other.

The last, but the most important observation by Fukuda is the
disappearance of the Hamiltonian which would govern the time
evolution of the whole system. A simple reason for this is that
the total Hamiltonian is an extensive operator and thus infinite.
The unitary development of the state is only operative within
each Hilbert space characterized by (r), and the state vectors in
each space develope themselves controlled by the guantum
mechanics concerning the Class II intensive variables.

To summarize, the time development of the macrescopic system is
describable in a quantum mechanical basis; to each c-number value
of Class I intensive variable a Hilbert space is associated, and
these spaces belonging to the different species of solution
a(r)(glga) are completely disjoint; the development of the state
{(Egs. (3) and (4)) is not unitary nor time-reversal invariant -
it is a sort of phase-transitions undergone within a very short
time interval At~1/V {(or 1/N}.



3. Measuring process and the prokabilistic interpretation

The measuring process is a change of the state of a system
composed of a 'to-be-measured' system S and a macroscopic
detector M, under the interacticn between these two.

We start with the usual noticon of the state vector h¥> and
linear operators corresponding to physical observables, but
without any kind of assumptions concerning the expected values of

observables, or equivalently, the probabilistic interpretation of

state vectors (Born's ansatz}.

The usual assumpticn <of 'good measurement' may of course be
understood here. - It states that "If a system is in the state

]Ah), the eigenstate of an observable /\ associated to its
elgenvalue Ak , then the result of the measurement of /\ always
gives its value A, ."

Clearly the above statement, too, does not involve any
probabilistic conception.

Now we introduce the statistical ensemble and define the 'state
of ensemble' through the operatcrs

(a) U =‘¢>(¢! , or
{(5)

3 U= Tl (k] Wik ZMa= o,

The former operator (a) represents the state of ensemble in which
every system lies on one and the same state !¢> , and this state
of ensemble is called 'pure state'. On the contrary, the latter
(b} represents the state of ensemble in which there exists M
systems in the state |¥,) among the total N systems, M, being
the ratio M/N provided that both M and N are quite large numbers.
This state of ensemble is called as 'mixture' (Gemisch).

All these have been quite well-known as parts of the definition
of statistical operators. But, in order that U or U' are

6}

statistical operaters in ven Neumann's sense , Wwe need to add

the 'expected value hypothesis', that is

“T} UM {pure state)
LAY, = (6)
TrUA (mixture),

where ¢ ﬁ\)sv is the expected value of the observable A .

In the following, however, we will not impose the above condition

on our U or U'. Therefore our U (or U'} are still not statistical

operators but the equivalent substitute for the concept of state,

Fa)

extended to ensembles. The reiation (6) will be derived later

on. One should also notice that the 'statistical' element entered
in the definition {(b) of U' has nothing to do with the
'statistical interpretation' of gquantum mechanics, but concerns
only the classic calculus ¢f probabilities. We now proceed to
discuss the measuring process.

In the presence of the macroscopic detectors M, the state of M,
[§> , receives a change due to the interaction of M with the
object 5. To make the measurement (of the operator /\ of §)
successful, we should select an appropriate Class-I variable of
M, which couples effectively to the operator /\ one wishes to
measure. This is actually an abstract criterion to arrange a
suitable apparatus for a relevant measurement. Provided this has
been already done, we start with similar eguations to Egs. (1)
and (2), but replace them by more general ones which correspond
to the state of S$+M, YI}>. That is to say, we work with

<CelTy = 8,007 - P52 .01 and [tag1tdee]
instead of the 014 ones. Here (-e ) abbreviates the other varia-
bles of the object.

F4) our ¥ (or U') obey the time evolution equation

ik3U/et = HU-UH as usual.



9

At the time t_, before the measurement, the state ’éﬁz>is a
product of two states [q%°> and [é¥;>, corresponding to the
object and the macroscopic detector, respectively:

l ‘T-",:D = [q’t.,> lfﬁt,>_ {n

we have assumed here that both are in their pure state. The state
of ensemble compromising both 8 and M is, accordingly, expressed
by an cperator

Ungl‘?><¢l®|§><4’l (8)

at &t = to' This definition is unique since at least one of both
is assumed to be in the pure state, as was proved by von Neumann.
More specifically, we assume the object was in the state

l(h,> = EK-C\: l)\k> (9)

and hereafter all the state vectors, we assume , Lo be

normalized, e.g. <¥&) =4 , CAnlAp? = 8y ete.

After a very short passage of time to - to + 4At, 4t being
0(1/V) as was remarked previously, we can reasonably suppose that
the state fq%&> still keep the product form of Eq. (7) (and so

S+M

does Ut } approximately, and suppress the object Lagrangian from

L.(; é,,‘) retaining only the interaction part of S with M:
N K

Lz = L1580+ LGEA) a0

where the interaction part is introduced through the cbservable

10

, the function of dynamical variables of the object. The time
varjiation of the coefficients in (9) is to be estimated pertur-
batively. But, for sufficiently small 4t the variation wiil be
non-appreciable, or the measurement would lose its physical
meaning.

In this situation, it is easy to write

¥, Lg,]
4, 4at

= Z: Clol k) S[a;'][d;,] enp {:{ g"‘* (M4 16" A) }@i‘[c‘,] G1)

te

This is again Fukuda's formula, and the second factor in r.h.s.
of Eq. (11}, denoted by éisc[ZB Al] , would alsc have the
similar form as Egs. (3) and {(4}. Since the effective action
densities derived from the original Lagrangian are different
corresponding to different values KE ; the obtained classical
variables for the relevant Class I operators vary with different
Ak's; and just this fact enabkles us to record the results of
measurement in macroscopic terms. Evidently, any pair of Hilbert

spaces YQ“_[{;/\“] } and {@M(‘g ; ’\h’]} have no phase

correlation and are completely disconnected as far as k # k‘F5).

A state of the ensemble of the system S+M, after measurement, is
expressed as before by

UEZM:I@M><‘}M'. (12)

F5) Each space {é[‘Z;/\tJ} is, in general, decomposed further
into a large number of disconnected subspaces because everywhere
we have infinite phase differences in the limit V-3 do,
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The problem is to define similar operator referring only to the
system S. We postulate that this can be dene by taking the
'Trace' with respect to the states of M. Then

Us = 2RI, 13 a2

where P§»>is anr arbitrarily chosen complete-orth-normal vector
in the Hilbert space of M. Substituting the expression (11) into
Eq. {13} we have

Up = 2 2l O o (B2, 0500) @lealls,)

T2 el Ol @ (2. 13.I500) (Rl 1@.)

(14)

where we have omitted some summation symbols such as _S[cif’] ,
S o, belongs to the k-th Hilbert space) etc. to simplify the
né?étions. It is now immediately clear that the second term in
r.h.g. of Eq. {14} vanishes in the limit V ->e&¢ , because of the
disjointness of the space of {7§d*[gj } . However, with respect
to the first term, some minor portion of fz may survive for each
Ak' This would give certain quantum correction coming from the
Class-II coperators, which would be negligibly small in any
measurement in terms of classical variables. Thus, discarding
such a small correction we arrive at the formula

th = 2 Lo 1 D<A ], (15)

This implies that the ensemble state of S, originally in the pure
state \\k><J}I , converted itself to the mixture state (15).

12

Comparing with the definition of the mixture state (b) given
earlier, we are forced to interprete [ck[zas the probability Wy

for the state iAg> to cccur in the mixture, namelyFG)

2

From (16), the cperators U and U' are shown to become von
Neumann's statistical operators (or density matrices% sc that the
relations in {6) have been proved a posterigri.

4. Remarks

{4-1) No secret exists anywhere in our deduction. A new recipe is
to regard U and ' defined in Eg. (5) simply as mathematical
expressions for the 'state of ensemble' just like [tP> fof the
'state of a system'; thereby attaching no statistical meaning to
them. The path-integral formula does not involve in itself any
probabilistic notion, since it consists solely of the multiplica-
tion law of amplitudes.

(4-2) It is desirable to formulate the measuring process on a
more abstract ground. To this end we have only to establish a
precise definition of a 'good detector' in terms of guantum-
mechanical language. Such a 'good detector' would have to
invelve, in general, an infinite number of degrees of freedom. A
macroscopic detector is a possible example of the good detector
as was shown by Fukuda.

{4-3) Different discussions of a macroscopic detector have been

7

given by Machida and Namiki Their method of achieving the

state reduction is, however, not satisfactory for they introduced

F6) We simply set C_{t) = C, in the spirit of our approximate
k k
treatment.
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averaging functions in ad hoc manner, not derivabkle from the
gquantum theoretical basis.

{4-4) "Many-worlds interpretaticon" does not look any longer
necessary for the guantum mechanics to treat the whole universe,
provided it does contain an infinite number of degrees of
freedom. The quantum state of the universe could be known through
the accumulated results of 'measurements' performed by dividing
the universe into subsystems in various ways, such that in one
side of pairs of subsystems there contains a good detector.
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