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Abstract 

The recently proposed formulation of lattice field theory 

as a pecolation process is tested numerically in the 0(3) 

G-model. Its spins decompose into fluctuating clusters 

similar to Fisher droplets. We use the explicitly 

available cluster structure to perform collective moves 

reducing autocorrelation times and to define improved 

estimators for physical observables. On a 56 2 lattice 

gains in computer time efficiency up to a factor 5 are 

realized. 
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1. Introduction 

Monte Carlo simulation on computers has become a standard 

tool to extract information from models in statistical 

mechanics and field theory. Most physically interesting 

features of these models are related tc their long range 

collective behavior which can be accurately calculated 

analytically in exceptional cases only. Since the simula

tion is ah,ays (much too) finite we have to introduce 

cutoffs whereever nature is truely or effectively infi

nite. In field theory the introduction of a finite volume 

together with a finite resolution in the form of a >len

zero lattice spacing are prerequisites for a numerical 

simulation. Since in our present understanding these 

scales are artificial rather than constants of nature, 

observable results have to be insensitive to their values 

once the cutoffs are remote from physical scales. From 

the statistical mechanics point of view one is thus 

required to work with large correlation lEngtr.s which are 

still small compared to the linear system dimension. This 

clearly calls for large lattices. If one is enabled to 

increase the lattice size- for instance by the advent of 

a new computer generation- one may either expand the 

simulated volume or shrink the lattice spacing. 

Great progress has been made in understanding the 

approach to the infinite volume limit[!]. The asymptotic 

dependence on the vclume of an underlying torus can be 

eYtrapolated with good confidence and EvJ:>n be used to 

obtain information about scattering. For the lifting of 

the ultraviolet cutoff universality and the renor

malization group[2] provide an understanding and a para-

metrization. This, however, seems to be a more 

prcblemat ical J imi t at present. Even in asypmtotically 

free theories, where the i!Symptotic dependence on the 

lattice spacing is known and no critical t•xponents have 

to be fitted, it is still to some degree controversial 

when and whPre scaling sets in. Consequently one may want 
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to use larger lattices mainly to reduce the lattice 

spacing, i.e. get closer to criticality. The additional 

problem of critical slowing down(3] has then to be faced. 

Clearly the computing time for one pass through the lat

tice is proportional to the number of degrees of freedom. 

In the critical region estimates for observables derived 

from successive configurations produced with standard 

local algorithms become more and more statistically 

dependent. The computer time needed to measure a quantity 

to a given accuracy then grows with a higher power of the 

lattice size. Physically the reason is that the long 

wavelength fluctuations are inefficiently sampled by the 

local updates. Improved beha·.!ior in this respect can 

only[4] be hoped for, if we design algorithms performing 

collective moves of many variables. Previous atterr.pts 

aiming in this direction are Fourier acceleration [ 5, 6] 

and multigrid methods[?]. 

Recently Swendsen and Wang { 8] ( SW) have put fo~·ward an 

amazingly efficient algorithm for models involving Potts 

spins. It is based on the numerical exploitation of an 

alternative but equivalent representation of the :node! by 

Fortuin and Kasteleyn(9](FK) which is closely related to 

percolation theory. In this article we explore a genera

lization of this method to arbitrary and in particular to 

continuous fields. 

The paper i~ organized as follows: In sect. 2 we review 

the FK-representation in a form also u~eful for non-Potts 

models. In sect. 3 a microcanonical variant of the SW

algorithm is constructed and briefly tested in the !sing 

model. This is followed in sect. 4 by the report of 

extensive numerical studies for the asymptotically free 

0(3) G-model in two dimensions. Finally sect. 5 contains 

conclusions and open q~estions. 
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2. Dynamical Dilution 

The method of introducing additional two valued bond 

variables as dynamical fields (annealed summation) in 

spin models has already been briefly introduced in [10]. 

Here we start with a ruther general lattice system with 

dynamical variables ~rr where rare sites, links or even 

higher dimensional objects. A number of them interacts 

locally on bonds b (links, plaquettes, etc.). The par

tition function of such a system is given by 

2!: 
\ 'Z s.(~,') 
:J 7 dcr\'f<) e... h • (2.1) 

Both the integration measure d~(~r) and the one-bond 

actionfl sb(~r) determine the invariance properties, and 

each sb depends only on the ~r connected by bond b (rEb). 

By the inttoduction of a dynamical field kb with values 0 

c>o.d l on the bonds a new oind in general diffprent model 

results with partition function 

2: 
L (lf<4>-l~\ p.[><+S,(~.'i] 

t_k"'-o, 1) ,jr -..Je.. ( 2. 2) 

A chemical potential 4t. ~or bonds has been included as a 

free parameter, and for.O{..~oothe bonds will freeze to 

kb~l bringing us back to the original model up to a tri

vial normalization factor. Of course we are interested in 

new members of the family of models ( 2. 2) with 'lot.< oo. 

Then, for a typical given configuration tkb1, the model 

is diluted as part of the interaction bonds are absent. 

The variables ~t may be grouped into a maximal number of 

Nc independent clusters c such that there are no active 

bonds ( kb=l) between ~..... in different clusters. A con

sequence is that each cluster enjoys the symmetry of the 

whole system (global spin rotations, gauge invariancel 
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independently. The number and shape of clusters is a 

complicated function of the bond variables and fluc

tuates. Nevertheless, at least for standard cases like 

bonds on links corresponding to nearest neighbor spin 

models, algorithms[ll) are known from percolation theory 

that identify clusters very efficiently. In particular 

the time to do so grows only linearly with the volume. 

Explicit knowledge of the clusters may then be used to 

perform large collective moves along constant action sur

faces in the simulation of ( 2. 2) : each cluster is moved 

as a whole by a randomly chosen member of the symmetry 

group. Such moves interspersed between standard update 

sweeps on [kb, lfrS may very well result in an improved 

algorithm at reasonable cost in computer time. Let us now 

think of sb as an action of ferromagnetic character that 

is maximal for configurations like aligned spins or pure 

gauges. Then <2~2> shows a tendency to have active bends 

between aligned variables and vice versa. Clearly the 

clusters will bear at least qualitative resemblance with 

Fisher droplets[l2]. 

It is time now to discuss what kind of system actually 

has resulted from introducing the bond variables in 

(2.2). Aliho~gh we plan to numerically simulate the joint 

distribution {_kb, "f~~ we may also perform the kb- sum

matico exactly producing an effective action SbC~r), 

s,(.~,)~ logl(l+ e."-+'•'~·l)/(l+e.~~- ( 2.3) 

Here the irrelevant constants in sb, Sb have been fixed 

by demanding them to vanish for classical configurations 

of maximal Boltzmann weight denoted by ~r=l 
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s,('fc=oi) = 0 ~ s.(~c~l). ( 2. 4) 

The new action is trivially of the same geometrical 

structure (nParest neighbor, one-plaquette etc.) as the 

original one. Also, if sb is ferromagnetic, so is Sb, but 

the suppression of non-aligned configurations has become 

weaker since 

o<. J.. sb 
d._ .sb 

-I 
= (\ t- e.--.e.->:b) < I. 

(2.5) 

Obviously fer1omagnetism has ~eakend as each bond is 

active only "pact of the time" forot.<oo. 

The simplest cases with regard to transformation (2.3) 

are q-state Potts models. Their bond actions are only 

capable of two different 'Jalues sb{ 4r )E: f_O,-K3 for any 

configuration of the q-valued \fr 

action, too, with 

Then Sb is a Potts 

-K l 0 ':\ [ u .,_ e."'-- k) I (I + e... ..... !]. ( 2. 6) 

Each Potts theory of fixed K is exactly equivalent to a 

one parameter family of dynamically diluted models. Its 

extremal member at K=OO, 'Jt=log(eK-1) corresponds to the 

FK-representation used by SW. The ~r-integration in (2.2) 

then degenerates to counting the number of ~,-con

figurations that saturate all bonds by Sb( \frl=O. !n the 

simple near~st neighbor r-otts spin model all spins have 

to be parallel and equal to one of the q possible values 

thus entailing the weight factor qNc[9]. Although the 

terminology is somewhat different, SW(8] effectively 

simulate the joint distribution of l_kb,({r~ at K==- eoo. For 

the critical Ising model in two dimensions they find an 

energy autocorrelation time "'t" growing as "'t c.c.:: LO · 35, when L 

is the side length of a square lattice. This clearly 

represents quite an appreciable improvement over standard 

local algorithms Hi th T ~ L2 .125 (see also sect. 3) • 
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Most lattice models whose scaling limits are of 

interest as quantum field theories possess continuous 

spin or gauge field variables. Then in general S'h will 

have a different functional dependence on lf .... than sb for 

any ~< oo . One strategy that comes to mind is to lry to 

find an sb such that Sb coincides with some standard 

action for the model at hand. In practical applications 

we found this inefficient if at the same time all weights 

in (2.2) are kept positive (real sb,~l. If we evaluate 

( 2. 3) for fields that receive maximal suppression Sb=-b. 
(like antiparallel spins at b) we find an inequality 

'>L ~ !::. + lc'J(I- e..-AJ. (2.7) 

Close to the scaling limit it seems very unnatural in 

continuous models that the bond chemical potential is 

essentially determined by the energy penalty for maxi

mally frustrated bonds. We found that when this is tried 

for the 'E:' -model, bonds practically never break. We then 

decided to choose a readily imf.lementable standard form 

for sb and to work with the Sb that we are 3ble to pro

duce by tun_ing ~ and the parameters in sb. We assume-as 

far as long range physics is concerned- that this is 

covered under the umbrella of universality: If tuning 

leads to long range correlations, we expect to see uni

versal features of the theory that are j ndependent of 

details in th~ lattice action. At present it is not c~ear 

to us to which degree of rigor this can actually be 

established analytically, or if the new kind of action 

may even approach the continuum wore smoothly. 

It may be noted that on the nrie hand there is an infi

nite set of extra terms, when Sb is expanded in terms of 

Sb· On the other hand, since we stick to effective 

actions of one and the same range and geometry, they are 

in a way all neighbors in the space of all conceivable 

actions[2,13]. One could also regard the fluctuating 

linkage of degrees of freedom as a step in the direction 
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of a random lattice [ 14] .. Among the other acceleration 

methods the multigrid formalism[?] is closest to the 

method presented here. There the clusters are chosen "by 

hand" in a hierarchical order while we "derive" them' in a 

stochastic way correlated with the energy fluctuations of 

the fields. An advantage of the multigrid algorithms is 

presumably that they allow to test a more general class 

of collective moves which are only conditionally 

accepted. 
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3. Microcanonical Algorithm for Diluted Models 

The number of active bonds med~ating interactions bet

ween fields Nb= L. kb is a simple observable in system 
• (2.2). It is an extensive variable equal to a fraction 

Pb of all possible bonds Nb•ll which we assume to be of 

the order of the number of lattice sites, 

( "-~•) "' ·p,, N\:"" (3.1) 

For given actions Sb the bond fraction Pb will be a mono

tonically growing function of~. According to the general 

principles of thermodynamics fluctuations ~n Nb will be 

irrelevant in the large lattice lim.> t. Instead of 

adjusting '"II(. to produce a desired value for Pb we may 

equally well directly restrict the values Nb in the sum 

over configurations (microcanonical ensemble) 

Z~(~bJ= L 
{I<,\ 

( L. 1<, sb('f,)C' 
\ T cl?-~'f,) e."' op,lti, ( 3. 2) 

from which the canonical partition function may be 

reconstructed 

N~o.x. 

~ = ~ 
N,=o 

'*- N, 
e. t::..., (f.J,'). (3.3) 

Following Creutz[l5J a practical method to perform a 

microcanonical simulation consists of adding one (or 

several) degrees of freedom called demon(s} to the system 

and evaluating 
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cb Cw~.) 
(10 

=I: ~"' (N,) ~N',-kn,N'• 
k~=D 

(3. 4) 

The advantage of having the demon is th?t it relaxes the 

constraint by reintroducing microscopic fluctuationsi2 in 

Nb for finite volume and thus allows a local bond by bond 

updating. Moreover, it functions as a "thermometer" 

because ko is distributed according to the same 

"temperature" as the bonds namely the chemical potential 
% 

f' ( k,.) 
- "'- kn 

oe.e_ 9 ~ = Lc~ (I+ 1/<k,')). ( 3. 5) 

The -;(.-value for an equivalent canonical simulation may 

thus be found by observir.g the bond content ko of the 

demon. Obviously the relation 

Z, (ll') = ~ :z: ... Uf,) E> (N" .. -N"b') 13.6) 
1'lb 

connects the strictly microcanonical Zm and the demon 

ensemble z0 . To summarize, all three ensembles z (2. 2), 

Zm (3.2), z0 (3.4) are equivalent in the large lattice 

1 imi t when fl uctuatj ons of Nb become unj mportant; at a 

more formal level this may be verified by saddle point 

expansions in the inverse volume. 

Originally we thought that it was simply more con-

venient to control Pb instead of '1e.. From uncorrelated 

bond percolctj0n[l6J we have some experjence that typical 

bond probabilities around 0.5 le:ad to nontrivial cluster 

structure. In practice it turned out that even for the 

Ising model a microcanonical version of the SW-simulation 

brings about considerable further improvement, as will be 

~hown in the remainder of this section. For the 0( 3) 

~-model we completely switched to the microcanonical 

control of bond occupation after a few initial experi

ments with the canonical form. 
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To specialize the general co~cepts developed so far to 

the Ising model on an L2 lattice we replace r-7x, b--;;>x~, 

'{.,.-? G'.,=il, sb-=7 B<s~~ • ..,._-1>. The canonical and the demon 

partition functions read 

l_- 2: e_?i.k,,._[><-+\>(6<G<<-"-1)] 
( 3. 7) 

'-k,,_•o,,~ 
~G,..,:!:_I~ 

and 

it_b = L e..l3 ?;:;.k.r (.,;,r,,.,-1) 

tk .. ,.. ":0)11 

\.<>.•!IS 

e (~k,,.. -1',2L'). c 3. 8> 

In ( 3. 8) the sum over demon bonds has been carried out 

and, comparing with ( 3. 5), ko has now been replaced by 

the excess bonds (argument of the e -function). 

To test the microcanonical algorithm by comparison with 

re£.[8] we 

(infinite 

ran simulations 

volume) critical 

it is 

for the 

point. 

located 

Ising model at the 

For the usual for

at •c=ilog ( 1+ i2' ) . 
applied to the Ising model <two state 

mulation (K= OO) 

According to (2.6) 

Potts model) this 

fullfilling 

implies criticality for all (B,~) 

\,_e. X-2~ 
-i+e.~-

-2~< 
=e.- ="'12'-1 

FK-limi t is 

( 3. 9) 

included at B=oo, In particular the 

~log(e2B~-l>=!log2 =:'4t.c. The results of our Ising simu-

lation are shown in table 1. On square lattices of sizes 

L=20, 40, 80 we ran three types of simulations: Type 1 

are standard heatbath runs at Sc with all bonds in place. 

In type 2 runs we put S=OO and update the k~-variables 

according to (3, 7) with ~=~c; these runs are of the same 
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kind as in re£.[8]. For type 3 runs we use our new micro

canonical formulation (3.8) at B=oo. From exact results 

as well as from our type 2 simulation we know that we 

have Pb=i at criticality, and consequently we use this 

value as an input parameter in our type 3 runs <Ph in 

( 3. 8)). Incidentally Pb=i is also the percolation 

threshold for uncorrelated link percolalion#3 on a two 

dj mensional square lattice ( 171; such a coincidence bet

ween Ising and percolation criticality ceases however to 

be true in three dimensions[l8]. After each update sweep 

on tk~,..._~ in type 2, 3 calculations we run the Hoshen

Kopelman algorithm[ll] to sort out the clusters. It pro

duces a label for each spin that uniquely denotes the 

cluster that the spin belongs to. Then one of the two 

spin orientations is randomly assigned to the cluster as 

a whole. A new bond sweep follows where S= oo is tr~.ken 

into account by never activating a bond between opposite 

spins. We call this whole sequence of operations one 

sweep. The number of sweeps constituting each simulation 

is quoted in the tables in multiples of 1000. Note in 

which way the cluster structure is allowed to fluctuate: 

bonds within a cluster may break with probability 

( l+e'Jt)-1, while broken bonds between different clusters 

of the same spin orientation may be switched on with the 

complementary probability. 

Beside the average number Nc of clusters (not including 

one-spin clusters for technical reasons) we report values 

and autocorrelation times for two kinds of vbservables in 

table 1. The nearest neighbor correlation E is defined as 

E ~ I 
2 L"-

< 2: s, s,.f-) 
'I"-

( 3.10) 

and the (unsubtracted) magnetic susceptibility 'X. as 
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< p_: G"._ y- >. ( 3.11) 

We use it as a simple quantity sensitive to long rlistance 

behavior. Instead of X we actually quote the suscep

tibility per volume c~~L2, O~C(l. For our numerical work 

we used .'.mproved estimators for E and C. They take into 

account that correlations between spins in different 

clusters would vanish exactly if the complete spin sum

mations were carried out for each (kJ....,..'!. configuration. 

This guarantees E and X to be also given by 

E~ 

and 

'X ~ 

I 
TLl. 

..L 
L" 

<~"' <>,<S,,_i"- e(x,x.y;l<,r)) 

~ < C ~<.,·Y> 
Here &<x,y;k,.;...) equals unity if x andy are in 

(3.121 

(3.131 

the same 

cluster associated with ~k·~\ and vanishes otherwise. The 

sum in (3.131 is over all clusters c, i.e. the suscep

tibility is additive in Lhe clusters. we found these 

improved estimators to have the same means but smaller 

variances than the naive ones. This is intuitively 

understandable(l9]: Instead of sampling one random member 

of a set Of configurations whose contributions cancel 

exactly we just record a zero. One could say that in this 

way by symmetry we take into account more spin con

figurations than actually appear in the computer mentory. 

In our measurements we found a medium size benefit from 

using improved estimators; a typical finding was a saving 

of 'V 40% sweeps to measure X to given accuracy. For 

measuring masses from purely long dis·tance correlations 

this could become more dramatic. 

Autocorrelation times have been estimated by monitoring 

the connected correlation function in time (number of 

sweeps) of the measured quanti ties for about 3 T . The 

error estimates on 1; are derived "by eye" only from the 
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oscillations in the ratios of successive values of 

correlation function over the plateau were they 

the 

are 

stable and not yet swamped by noise. Some multiple inde

pendent runs have been made to see consistency, too. The 

errors quoted for observables take into account the 

measured correlations up to the window described above 

and add the tail as extrapolated by a pure exponential 

with the estimated r. The quantities AE and Ac are pro

r1ucts of the mean square deviation and the autocorrela

tion time for the respective observables. If the 

co1relation is simply exponential in t~me, theni2A/NI is 

the error if N sweeps with correlation time l<t. 1:' << N are 

made. This is the rule that it takes-2Tsweeps[20) to 

produce an independent estimate. Our more refined errors 

usually deviate from the above estimate only by small 

margins. We propose A as a convenient measure to compare 

different algorithms. The ratio of A-valuoes equals the 

inverse ratio of the number of sweeps necessary to 

achieve the same accuracy. 

With all this said we see the enormous advantage of 

type 2,3 runs over standard type 1 simulations from table 

1. Our data are compatible with the same growth rate in L 

vs. L for type 2 and 3, but correlation times are cut by 

another factor "'-' 2 and the improved observables are less 

noisy for case 3. Results from type 1 and 2 are always 

compatible within errors as they have to be, and correla

tion times for the latter agree well with ref.(B]. Small 

deviab ons between 2 and 3 are finite volume effects of 

order l/L2. Due to physical rounding of the phase tran

sit ion and for 3 also due to the presence of the demon, 

in r.either case Pb equals 0.5 exactly. We rather find for 

instance Pb~0.50ll for type 2 and Pb~ .5002 for type 3 on 

the so2 lattice. We conclude that the microcanonical 

algorithm works well, and on the L=80 lattice, it reduces 

the needed number of sweeps by another factor of-16 for 

E and by rv5 for C. Returning to the standard algorithm 

one feels somewhat like trading a 'azor blade for a 

mallet. 
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4. Simulation of the 0(3) Nonlinear €>-Model 

All Ising model formulas in the Jast &ection carry over 

to O(n) ~-models if products of spins are interpreted as 

the appropriate O(n) in~ariant contractions, and if sums 

over spin orientations are replaced by integrations over 

spheres Sn-1 at each site. Our numerical work will be 

concerned with n=3, the minimal n for asymptotic freedom 

in two dimensions. The 0(3) b-model is a standard t~sting 

cround for methods to be applied to nonabelian gaug8 

theory. There exists a large amount of reliable reference 

data in ll1e lite:ature[21]. 

For the dynamically diluto:::d 6""-mL··del the (canonoical) 

partition function :nay be l>.'ritten in the suggestive form 

-z.~L: 
\k...,... .. o/~ 

~ 1 ct<>, e.\"~ k.,. L'"·. s,.,. - (t- ovp~ 
( 4.1) 

In the action the cosine of the angle between neighboring 

spins is compared with 1-~B. This is precisely the 

expected weak coupling behavior (6-'}oo l of neighbor 

correlations for spins in one cluster. Although typical 

spin fluctuations l:ecome smaller when J3 grows, the com

bination in the action will keep fluctuating in sign, and 

t.he bonds will get st:rongly cr>rrelated to these fluc

tuations. Spins that are members of different clusters 

will point in random relative directions on Sn-1· A 

sizable probability 

them is only given 

to establish an active bond between 

if one is inside a cone around the 

order '-/'11£/B1 • It is related to the other with an angle of 

ratio in area of the intersected part of the sphere to ·-· the full sphere and thus proportional to l~/B)~. 

To emphasize the rdle played by clusters we may write 

?_ 2:::: e__ -,e !i. k~}"-
tk·l'~ 
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II i'c (k,l'') 
'-

C 4. 2 I 

The spins in each cluster contribute a complicated weight 

factor given by the multiple integral 

"-c ~;:c 
(3 L k,l' l~>, • <>,..- IJ e... u~p- ,~ C 4. 3 I 

For the sum in the exponent no a'1lbiguity arises, since 

when x and x+IJ are not in the sarr,e cluster k>\f'

necessarily vanishes. The very definition of clusters 

guaranties that for B--':; oo all spins in c become aligned, 

and zc may then be evaluated in perturbation theory 

(spinwave approximation). Such a calculation is deferred 

to the appendix, and the result is 

' -' 
-,_,"=" (lc\('/nr)r 

- \r,-\ 

c~ (<ln' Kc) -r C 4. 4 I 

nere \c\ is the nurr.ber of spins in c, Cn is the surface 

of the unit sphere in n dimensions, and the opel-ator 

under determinant is the diluted lattice Laplacian 

(A.l3). The zero mode has to be omitted in the evaluation 

of det'. The weak ccupli:-.g form (4.4) generalizes the 

factor q for each clhsler in Lhe FK-r~presentation of the 

Potts morlel. Obviously continuous field 'variables probe 

considerably more geometrical details of clusters and 

incorpor;'!te them in the form of c<Jmpli·.:ated weights, when 

the system is regarded as a correJ a ted percolation pro

cess. The features of the Q(n) G"-model that enter into 

the w._:nk coupling evaluation of zc ~cok consistent with 

universality: the number of field components and the sym

metry structure. 

The adapt ion of the microcanonical Monte Carlo 

algorithm to 0(3)-spins is straightforward for the local 
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spin and bond updates for which we implemented the heat

bath form. As collective moves we perform rotations of 

the clusters with elements chosen randomly from 0( 3) 

according to the invariant group measure. We found that 

restrictions to S0(3) or a bias toward the unit element 

only enhance autocorrelations. For the 0( 3) €>" -model the 

extra operations of k~~-updating and cluster analysis and 

rotation take about 50% of the computer time needed for 

the spin heatbath, and grows exactly proportional to L2. 

These computer times refer to a scalar machine (PDP 10). 

In asymptotically free theories the 

be approached only from one side 

critical point can 

at asymptotically 

vanishing coupling. A simulation at criticality as in the 

Ising model is hence not possible. In quantum field 

theory, however, this is not desired anyway as we want 

physical 

cutoff. 

correlation lengths to 

To test the diluted 

stay 

form 

away from the volume 

of the OS -model we 

decided to always choose parameters such that the suscep

tibility is roughly 10% of the volume for .,,arious lattice 

sizes (C~.ll. From data on the standard formulation[21] 

we estimate that this corresponds to L/1:3 ... 4 where 1 is 

the spin correlation length. we think that this is a 

setting representative for numerical calc~lations. 

we present our data in a form similar to the last sec

tion in tables 2 ... 5 for lattices with L=~0,28,40,56. The 

var;ous runs are now distinguished by their bond fraction 

Ph as used in the 6" -model version of ( 3. 8) and by B. The 

chemical potential X and the quantities in the remaining 

columns are measured. Glancing at the tables we note that 

the gains we achieve are not as dramatic as in Lhe criti

cal Ising model. Although a quantitative statement is not 

possible on the basis of our data, we see that the dyna

mical exponent characterizing the growth of T with L 

(and l is probably not vastly·different f-)r the diluted 

and the standard version, and critical slowing ·down has 

certainly not heen eliminated. On the other hand on the 
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562 lattice we do realize ratios 

fixed accuracy up to a factor 

algorithm. 

of necessary sweeps 

8 in favor of the 

for 

new 

In fig.la and lb we show histograms of cluster size 

distributions on the 402 lattice for Pb~.ss and Pb~.525. 

As a reference we also display the analogous distribu

tions for uncorrelated percolation ( B=O) at Pb=.Sl and 

Pb=.49, i.e. just above and below the percolatjon 

threshold. The simiJarity in the plots is clearly 

visible. The peak at large sizes is a precursor of the 

infinite cluster in an infinite syslem beyond threshold. 

we found experimentally that working far below this tran

si lion area no criticality is reached with reasonable 

a-values, while far aboVe it only few large clusters form 

and the advantage of dynamical dilution fades quickly. 

From fig.l we may suspect that in the presence of 0(3) 

spins correlating the bonds the transition moves to Pb)! 

for our a-values. This looks consistent with the pertur

bative result (4.4) which favors a larger number of 

smaller clusters as B grows. To conclude this section we 

w0uld like to remark that the total magnetization that is 

used as a diagnostic observable for slowing down in 

refs. {6] and [ 7] is not useful for our case. When all 

clusters are rotated with the invariant group measure the 

spin orientation of the whole system is trivially 

decorrelated after one sweep. 
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5. Conclusions 

In this article we demonstrated that the Monte Carlo 

algorithm by Swendsen and Wang for the Ising model is 

improved further by employing a microcanonical version of 

it. Our main interest however centered around defining 

and testing an extension of their method that may be used 

for theories with continuous dynamical variables. In the 

two dimensional 0(3) G"-model we found that our new for

muJation, although clearly superior to a standard local 

heatbath simulation, falls short of offering advantages 

com~arable to those realized in the critical Ising model. 

A more detailed investigation focusing on long range 

correlations could shed further light on the profitable

ness of the new algorithm. 

Apart from numerical applications we feel that our con

cept of adding dynamical dilution to an arbitrary lattice 

model and analyzing it from a percolation point of view 

is also of theoretical interest. A key question is if the 

model really stays in the same universality class as we 

assumed for the G"-model. we find this hard to decide in 

the two dimensional model due to the shortage of univer

sal physical quanti ties. For the application to abelian 

or nonabelian gauge theory a more complicated labelling 

algorithm for plaquette percolation cluster~ has to be 

deve~oped along the lines of [11]. Otherwise this impor

tant extensiOn seems straightforward. Par the special 

case of Z ( 2) gauge theory an exact equivalence a la FK 

arises. We hope to return to these issues in the near 

future. 
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Appendix 

In this appendix we want to compute the weight factor 

corresponding to one cluster c of O(n)-spins 

~c.= ('II <l<> o f->F,,,. k,,.._(S,·<s-.,.-1\ ~ "-EC. I. "-- I) 
(A,l) 

in leading order perturbation theory. In this limit all 

spins in c are forced to carry out small oscillations 

around one conunon direction bec;;r;use by definiticn of a 

cluster each pair of spins may be connected by a chain of 

bonds. Since all overall directions on the sphere are 

equivalent we have to fix n-1 collective symmetry coor

dinates before the perturbative expansion of (A.l) can be 

set up. 1'his is done in the usual ·,,ay by introducing 

= 6ls-) ~ clc<j. { C<O'>J I ~d'} (A.2) 

~0\_Y>) 

into (A.l). In (A.2) we integrate with the Haar mPasure 

over all gESO(n), f is a still arbitrary function, and 

6(G) is defined by (A.2). After changing variabl<?s ~~61-~ 1 

the group integrations factor out and cancel, and we have 

~<-t ~~c. d.s. 6.(<>)-tl<>)e..ro~,,.. k,,.(<>,-<> •• ,.-1)_ !A.3l 

We define the total spin as 

s L .,K (A, 4 l 
<<oC 

and choose 
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{ l "J ~ S ( s') Hs") .. Hs'-') EJ( s'), (A.5) 

i.e. the total spin is constrained to lie along the n

axis in spin space. To this choice of f there belongs a 

compensating 1:::. , 

6l·•Y'" 
'"'

1
,_, Sdc~ t:(\~'~-'l') ... w~~)'')M\s\Tl/ Sc~.~ 

(A. 6) 

' where S is the unit vector in IRY'I parallel to S . When g 

runs over SO(n) the vector S,<t moves over the sphere Sn-1, 

and in fact the integral in (A. 6 > is the unique nor-

malized invariant integral over the sphere that we may 

also write as 

b.ls) 1~ r ~ _,._, ~ct:'X 6(1XI-06lx') .. , 6(x•-) 6(x') (A. 7) 

with 

C,., = ~0-'X. ~l\xl-1) ~ 2-rr";.,_/rt•;,) (A.9) 

the surface of the unit sphere in n dimensions. The tri

vial integration in (A.7) then leaves us with 

t..ls) ~ \S\"-'c" 

Clearly this geometric factor 

space of the rotated copies of 

fixing function f. 

(A. 9) 

corresponds to the phase 

c that we exorcized by the 

we are now ready for the expansion of (A.3) and parame

terize 

f ljl lf' ID>-' ,r;- lo ... \ 
6,.=\ "'l "')"'>.,,. }~1-fr'f:, J ~ ( lf, ) -v 1-\f','')- (A.lO) 
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To leading order in 1/B we have 

?..~""C., \cl'-'t(~!~<l4'x S(~'f,)e:-~ ~~<k"'\~,-'f •• ;-')"1~-• _j - (A.ll) 

In (A.ll) we used Is\ ==\c\(l+o<l/.6)) with lei the number 

of spins in c. We dropped all subleading terms in the 

action as well as in the measure. Also factorization in-to 

n-1 ide!"Jtical contributions has been used, and lf)( is a 

one component field now. The integral may finally be eva-

luated by introducing an orthonormal 

on c that contains the constant 

system of functions 

~~(x)=l/~ . The 

f)-function takes care of the integration over this mode 

while the \cl -1 remaining ones are gaussian. The result 

reads 

'I lt.\-1 -'I ..., ~\ 
~<~C.,_\<-1'-'Lic\ 'l'"/1')---.::- (Gid 1 KcJ '- \ _ (A.l2) 

The quadratic form Kc ( \c\...; \CI matrix) is read off from 

the expon~nt in (A.ll) 

Kc.l<,Y)=2: l k.,._(S,,y -S",_, 1)+-ky~<(~,,y-l'x,yti'-J~. <A.l3l 
#-

It is a diluted version of the standard lattice Lapla

cian. Finally we note that factors of the form A\<.\ in 

zc only affect the normalization of the full partition 

fuP-ction z in (4.2), on which correlations do not depend. 
1<.\"'' 

using this freedom to multiply (A.l2) by (13/2ir) T we 

have derived (4.4). 
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Footnotes 

#1: Note our sign convention for actionsi they 

correspond to negative energy in classical 

statistical mechanics. 

#2: Here we assume implicitly (and correctly for our 

applications) that Zm peaks at an Nb<Nb since 

otherwise the demon would run away[l5] with a 

macroscopic number of bonds, In that cas~ ko should 

e.Jter (3.4) with the opposite sign. 

#-3: Ur.correlated percolation is given by (3.7) ·;.dth B=O 

and a bond probability Pb=(l+e~~,-1, 
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Taple Captions 

Table 1: Results of simulations in the two dimensional 

Ising model. 

Table 2: Results of simulations in the 0( 3) G -model on 

a 202 lattice. 

Table 3: Results of 3imulations in the 0(3) ~-model on 

a 282 lattice. 

Table 4: Results of simulations in the 0( 3) <:>-model on 

a 402 lattice. 

Table 5: Results of simulations in t~e 0(3) G-model on 

a 562 lattice. 

Figure Captions 

Fig.la: Distribution of cluster sizes in the s-.nodel 

run on ~he 402 lattice for Pb:.SS (see table 4) 

Fig.lb: Same as fig.la for Pb:.525 

Fig.lc: Distribution of cluster sizes for uncvrrelated 

pe1·colation on a periodic 402 lattice at Pb=. 51 

Fig.ld: Same as fig.lc for Pb=.49 
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L type Nc E l:;E AE c "" Ac lsw/1000 

20 1 - .72101101 40 I 4 I .21 • 5112 I 43 I 46 I 3 I 2.1 200 

201 
2 17.8 .72251 7 I 3. 4 (1 I .013 .51561201 

I 
3.4111 .11 50 

20 3 17.5 • 72221 2 I 1. 4 I 1 I .000q3 ."i2l')( 9 I 1.5111 i .019 50 

40 1 - • 7138 (11 I I I 140 I .27 .42931861 2601401 9. 5 200 

40 2 70.7 • 7144 I 5 I 4.2111 .0051 .43171191 4.1 I 2 I .094 50 

40 3 71.0 .71231 1 I 1. 9 I 2 I .00034 .43051 9 I 2. 0 ( 1) .022 so 

80 1 - • 71114 (104 I I 550 I 
I 

.22 .3651( 135 I 750120011 16 200 

80 7 284 • 71087 I 281 5. 3 (1 I .0020 .36421 181 5. 5 I 21 .091 50 

80 3 286 .708841 6 I 2. 5 I 3 I . 00012 .35761 9 I 2. 2 (11 . 01 ~ 50 

Table l 

Pb £ ~ Nc E "• AE c I cc.. Ac tsw/1000 

1. 1.3 - - .519701321 7 I 21 .0041 .09521191 i 17 I 21 •. 060 30 

.55 4.5 1. 95 12.4 .532851291 7111 .0019 .10041211 16 I 1 I .049 20 

.525 5. 5 2.01 17.1 .532)21241 5.015 I . 0011 .1049(151 9. 0 I 51 .025 I 20 

.512 6. 5 2.07 20.2 .53S721221 I 5. 5 I Bl .0011 .11051141 7. 4 I 31 .011 I 20 ' 

I 
I 

• 5 7. 2.09 22.9 • 52605 (19 I 3. 8( 1) .00068 .09971111 7.6 I 31 .017 20 

.475 10. 2.25 29.9 . 51804 (18) 4. 6 I 5 I .00066 .10311121 14 I 21 .026 20 

.45 17. 2.51 36.7 .50069(171 5. 5 ( 5) .00064 .10541141 i1131 .044 20 

Table 2 



Pb B '>t Nc E -c,_ AE c <:c. Ac #sw/1000 

l. 1.4 - - .56299(231 .0936(27) 38(2) .],2 30 

.55 6. 2.08 27.9 .57329(19) 6(1) .00071 .1035(22) 19( 1) .052 20 

.525 7.5 2.15 38.1 .563>5(151 6( 21 .00058 .0936(15) 18(31 .038 20 

.512 9. 2.23 44.7 .55982(151 7 ( 31 .00060 . 0999 <14 I 14 < 4 I .027 20 

.5 11. 2.31 51.6 .55375(151 6(11 .00047 .1042(161 18(4) .032 20 

Table 3 

Pb B ">(. Nc E 1:.._ AE c Tc. Ac #sw/1000 

1. 1.5 - - .60246(151 ( 141 .0011 .1022(34 I 74(7) .23 50 

.55 8. 2.19 66 .60148(111 8(21 .00048 .1021( 22 I 35 ( 5) .086 

I 
30 

.525 11.5 ' 2.34 92 .58742( 7) 8( 21 .00034 .1071( 12 I 30{3) .055 50 

.512 12. 12.35 101 .57194( 7i 8(31 .00031 .0892(101 36 ( 81 .047 50 

.5 15. I 2. 45 115 .56112( 81 ( 10) .00035 .0942(161 63 ( 7J .075 30 

Table 4 
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Pb B ">t Nc E "tt. 

l. ,: : I,: .. - .63612(15) I 2ll 

.525 205 .59326{ 8) 711) 

.512 18. 2.52 231 .576871 9) 1112) 
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II 
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II 
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AE c "c. I Ac I #sw/1000 

.0011 .1094166) 217112) .69 30 

.00013 .1231123) 7518) .083 20 

.00020 .1217126) 108(12) .088 20 I 

Table 5 


