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Abstract 

A tra~sformation is investigated that mixes quarks with 

composites of N-1 antiquarks in a gauge invariant way for 

QCD with gauge group SU(N). An infinite family of identi­

ties among fermionic Green functions is derived in the form 

of a generating functional. 
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A popular choice for the lattice discretization of eu­

clidean fermions is the staggered action(!] 

S, ~ 2:_ lf.\x) [it' (>)Ll,.(x) 't-(nl'-)-'t (<>,.) U.~(x)%~ +WI I: '\i=(<)'1+(x) 
~ . 

~: L. ("i=J,!\'t- +W>iY'I-}, 
• 

(l) 

where r~~)are the standard phase factors stemming from the 
Dirac matrices, and U~(x) is an arbitrary SUCN) Wilson type 

gauge field. From the Grassmann fields~.~ we form the local 

(antiJbaryon and meson composites 

BV) ~ ~~ t.._, ... o... 'lj-Q
1
(x) ... 't-._ix) > 

l'.lx') ~ -/;~ tQ,. .. o • .;;:o.l><) .. , lt~,li<) 
M (x) ~ '4=._ lx) "1-a.lx) • 

( 2) 

(3) 

In (2) and (3) we exhibit the color index ai=l, .• ,N, which is 

the only index carried by't,\t, and ta
1

, .. Q_tl is the SU(N}­

invariant 3ntisymmetric ~ymbol. It is known[2] that for N=2 

mesons and baryons "are the same". This case is popular, 

because the formidable numerical problem of incorporating 

fermions is somewhat ameliorated as compared to the physical 

value N:3. A more precise statement is that for N:2 and 

vanishing mass in (1) there is an additional global SU(2) 

symmetry under which (B,B M) transform as a triplet. This 

becomes mctnifest if we introUuce a field#! x..:(x) with a new 

indt::x o<,:l, 2 

'X'._ l>) = ~ .. b ~. lx) >:'~G)~ '4-._lx) ( 4) 

An easy rearrangement of terms shows that (1) reads in terms 

of -x:_ (H:2) 

S ~ L: f/._lx) (~ u."t-)).b t.."~ x:_ (x) X~l"~'-J 
'I" 

-1- "' .,_ 
~ 

lob l:~(' x: (.x) X~ l_x) 
) 

2:_ 15) 
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where-r:is a Pauli matrix. Clearly, for m=O, Sis invariant 

11nder i'l. global SU(2) acting onto!, i.e. mix.ing"f'and~. 

Such a mixing also occurs as the analogue of Bogoliubov 

transformations[3], if the BCS-model partitlon function is 

formulated as a Grassmann functional integral over nonrela­

tivistic fermion fields(4]. The baryon and meson fields 

assume the form 

'? l<) -5: l'-'t)"~' '-~• -x: (xj X~ (x) 

l'l?; V) -1- t,{,x) 1 l ~~l;<)-1Slx)) 1 Mlx)). 
(6) 

We see that for N=2 a mass term is similar to an external field 

"magnetizing" F in a fixed direction, and fermion number is 

the left-over symmetry of rotations around that axis. 

In this letter we discuss consequences of the possibility 

to r:tix "t and 't¥ in :'l ')auge ir:variant way also for N ~ 3. To 

that end we consider a transformation 

with 

"1-<>. -"> 'I-~ = 1+-(A + o< lf "­

"'{'<>. --'7 't~ ~'+a.+;;;: lf~ 

\{ <>. ~ I 
(><-~)\ 

£..o, .,. o..~,~_ 1 o.. 'lf:a •. , ... 'tta.., 

- I 
4 e. .. tN-1) 1 t_ o., ,., 0.~-1 Q '4'Q. • ... 'tt-~ lH • 

(7) 

( 8) 

The parameters o<,. 
1 
;(are (anti )commuting scalars if N is evf'n 

(oddl. Note, that we always mix odd Grassmann numbers, and 

that (7) is a gauge covariant equation. For N=2 the fermion 
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number phase group tog•'ther with ( 7) compose the extra SU ( 2) 

symmetry#2. For N > 2, t-owever, the kinetic term varies under 

(7), and also the Jacobian of the transformation has to _be 

worked out as (7) is nonlinear. The variatjons uf gauge 

invariant cvmposites are as follows: 

M --'3 M c- - 0 «"' \ M r· + N 13,o< 1o<E + -,- -(1-l-1 ~ ) 

o( ( r' ,_-
~--'31', +--- -~ - t-~,2. o<. t>, 

l»-t)\ ( 9) 

1S --">ts ;;z ( 't' 2. + -(-' -M -lJN 2 0< 5 
l-1- I)~ I 

and 

S-'7 s + s ... +<:;;;z .. ~;;:-< (10) 

with 

s"- : ;:;:: "-~-- rt lf"'-
• 

+ "' N Z: E <>< ) • 
+-.NZO<B . ) ( 11) S;;: ~ L. ;;,_ if if:. "t 

" 
s~.,_ ~ ~ ;;;: if rt If" 

X 
"' + l»-i)! ? ;;;: o( (- ..;:'1-)-.' 

The possibility of nonlinear changes of variables in 

Grassmann integrals has already been menticned in {5] and 

presented in detail in I6j. For our purpose it is adequate to 

consider a generic integral over an n-dimensional Grassmann 

algebra 

I ~ r.l"1_, '" J."!.· 4 h) (12) 

and a "general coordinate transformation" 

NL,.... -"> "'l',.. h ) (13) 
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Here ~"'"is assumed to be odd, i.e. even monomials in the 

expansion of '"'\.11"'- have c-number coefficients, and odd ones, 

if they occur, have anliconunuting coefficients. Moreover we 

want (13) to be invertible as a power series, which is the 

case if its linear part e "'1.1~/?J't..., \,_c 
0 

is a non singular c-number 

matrix. Then it follows from results in (61 that 

~ol't, · il"loc {hJ = \~"l, .. cl"tn cJ.dc~'t7itS{('t~) (14) 

holds. As in the linear case the only difference as corepared 

to ordinary integrals is the exponent of the Jacobian 

determinant. Note that only even Grassmann elements appear 

under det(.)-l which can be defined purely algebraically. 

Also, left- and right differentiationr51 give the same 

matrix elements. For transformation (7) the ~esulting 

Jacobian is given by 

s1-
e = 

~ 

II 
~ 

lT 
"' 

-I 

ole;t f"2l"•'<•) >'<''lx))) 
'" ~"t\o<) l"' 0<)) 

i 
,-2 

(1 t ;;,. « 1 -f or N ~ 2. 

;;(o<. - "-2. 
\ - 2 --(-"-+"+-) 1or N>2 

(>,·>)! 

and thus for the ndtrivial cases N > 3 

~ 

s~ ~ L. ) ;;( o{ /_ - )"-2 (' ~ - ~ ( 
l-2 ~~ c"''t + o">~ ~ C;<<><) (Y'I-) .\ 

where the nilpotency pro~erties (~~JN+l ~ o 

and { ~oc:) 2 ~ 0 for N=odd have been used. Note, that for 

(15) 

( 16) 

the physical case N=3 the chiral cor,densate appears in ( 16). 
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If we now combine our results it has been shown that 

r _ s 1 s +S~+s~ -.-s""' ... s'} 
2l b 1j--b '+' e._ = j b 't 1:5\ e._ 

(17) 

or 

< e_.S~+S;;: +S"'"' t-Sl) = 
(18) 

Differentiation of the r.h.s. of <18> with respect to general 

x-dependent ~, ~ produces gauge invariant identities. Since 

we Norked with an arbitrary background gauge field they hold 

for both dynamical and quenched staggered fermions. One 

example of an identity following from <!8) (order CZo< at one 

site) is 

< [ C"f ~Jl•)~l•)-r"-'W1!:(•!](4l•)l/1'liC.)>onN"M•!] 
(19) 

- "' (~-•)\ ( '4-"1-l·~"-1 - l~,)! l">%)r· > -o 

or for m~o and N=3 

2<>0:'t-l<)) = < ("*t,~.)v)l{lx) \fl<) (t,~."t-)(•)) 
(20) 

such a relation could in principle be used or monitored in 

numerical simulations. Clearly, (20) is ef.lsily checked in terms 

of Feynman diagrams, but the Bogoliubov transformation systema­

tically produces an infinite family of such gauge invariant 

identities. 

One of the original motivations to develop generalized Bogo­

liubov transformations for staggered fermions was related to 
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the dimer simulation of baryons at strong coupling [71. There 

sources conjugate to B, 8 had to be introduced to run the algo­

rithm, and then they had to be numerically extrapolated to 

zero strength. A transformation with ~,~constant and nonzero 

(N=2 or 4l produces the source terms automatically without 

changing the physics. A closer inspection of the new terms in 

(11) and (16) revealed however that it is unavoidable to pro­

duce new negative amplitudes in the dimer model along with 

B, B sources. Thus the notorious negative weight problem for 

fermions reappears and renders the Bogo1_;;_ Lbov transformed ver­

sion of staggered fermions useless for i-lonte carlo simulation 

by the dimer method. Nontheless, we thought that the appli­

cation nonlinear changes of Grassmann variables is of interest, 

and that identities contained in (18) may be useful in other 

context. 
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Footnotes 

i 1 For euclidean fermions "+'and ~are independent integra­

tion variables. 

# 2 This is strictly true for infinitesimal oe,D(; otherwise 

the field has to be rescaled trivially to define a proper 

SU(2)-mixing. 
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