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Abstract 

For a given ·iattice spin or gauge theory an associated corre­

lated bond or plaquette percolation process is constructed. It 

is conjectured to reproduce the universal scaling behavior of 

the original model. Different field theories lead to different 

cluster weights generalizing a result by Fortuin and Kasteleyn 

for Potts models. The new representation lends itself to the 

design of Monte Carlo algorithms with reduced critical slowing 

down. 
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It has been known for some timel that the q-state Potts mo­

del·is equivalant to bond percolation2 with a weight factor 

q for each cluster and a certain bond probability fixed by 

the classical temperature. More recently Swendsen and Wang de­

monstrated3 that such a representation allows a Monte carlo 

simulation of the- Ising model at criticality with greatly 
reduced autocorrelation times on large lattices. Clearly the 

corresponding gain in computer time efficiency would be 

highly welcome for simulations of other lattice field theo­

ries. In fact, several related efforts along different lines 

have been made4. We are thus motivated to develop a perco­

lation representation for continuous spin and gauge fields. 

Detailed numerical tests in the two dimensional 0(3) 6-model 

are presently conducted and will be reported elsewhereS. 

The partition function for a spin model on a hypercubic 

lattice 

:c ~ T <tfA. (G,) e ~ s l G,· s .. /') (l) 

represents Q(n) ~-models, Ising models (n=l), x-y-models 

Cn=2), or Potts models depending on the choice of the inte­

gration measured~(.) and nearest neighbor couplings(.). We 

augment system (1) by a two-valued variable kx~ for each 

interaction bond 

~ =~ 
lk.,._ -o,i) 

~ lJ rlfA.l<>,) e_ ~ k,"'[-.e • s ls,-G,,,_..')] 

For a given kx~-configuration the spin model is now bond­

diluted, and the free parameter ~plays the rOle of a bond 

chemical potential. The annealed summation over kx~ is of 

course trivial, and Z can again be written in form (ll 

with a new nearest neighbor action 

( 21 
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s l<-) LD5 [(I+ e. '>t' >l<))/(1 ~e."')] 
) 

( 3) 

where !.= G'"x·S'x+IJ. e. [-1,1), and irrelevant constants are fixed 

by s(l) = 0 = 9(1). The q-state Potts model distinguishes only 

between E.= 1 and t.=t= 1 by s(t.o"l) = -K, and (3) then simpli­

fies to 

-\( =\..D~J(i+e..-.e.-K)/(I+e."')]. ( 4) 

All spin correlations formed with (2) depend on this combi­

nation only, and Fortuin and Kasteleyn's representation cor­

responds to choosing K = oo with K = log ( l+e ~). For each bond 

configuration the lattice sites may be grouped into dis­

connected clusters2, and K =Oaforces all spins in a cluster 

to be parallel. Then the spin summation can be carried out 

and results in a factor qNc (Nc = 4 of clustersl6. This 

innocent looking factor is however a nonlocal function of 

tkx~S and thus in general cumbersome? for Monte Carlo up­

dating; Swendsen and Wang incorporate it in their simulation 

by keeping bond as well as spin_variables and simulating 

their joint distribution. 

If we now consider continuous spins ~x (e.g. n~2l with the 

standard action s(El = ~(~-11 then clearly S<ll will be a 

variant actioh different from the original one for<t.<oo. 

Universality, however, leads one to expect that whereever 

in the (~,~) plane the model develops long range spin 

correlations one is approaching the same continuum field 

theory. If the standard version of the model wilh parameters 

(~ 0 ,'"1t0 =OO) and a diluted form at <f3,<t.< oo) are to describe 

the same long range physics, we will obviously have to 

choose ~ > ~ 0 : stronger ferromagnetism on the active bonds 

has to make up for the missing ones. 
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We may also analyse {2) from the percolation point of view; 

then the spin integrations are recognized to supply a weight 

factor for each cluster c 

-;z 2.. 
j_ k."\ 

with 

"Z c (~<,,..) = 

"><L e ~~..~,... ll-
c 

•c(K,I'J 

s Jic c\fA-ls,) e_[3 {;,/" k,;.v (<>,· 6"1'"- (} 

( 5) 

( 6) 

For large ~ the fluctuations of the continuous spins now re­

main relevant for the bonds, because they typically arrange 

1- E>x ·Gx+J-1 = o(l/~l. Then {6) can be computed in perturbation 

theory after the introduction of collective coordinates to 

eliminate the zero-modes corresponding to simultaneous SO{nl­

rotations of all spins in a clusterS. The lead1ng order 

{gaussian fluctuations) result of such a calculationS for the 

O(n)~-model reads 

';!,~ = 

Here 

Cn "" 

\C\ is 
2 .,-n/2 

h-1 

(lei f!>/:nr)¥ C (o~e_t' Kc.f~ 
the number of spins in cluster c, and 

1 r ( n/2) is the surface of the sphere j n 

n dimensions. Kc is the {negative) diluted lattice 

Laplacian on c, 

( 7) 

Kc (x,y) ~ ~ t k,,..,._.lo,,y- '8,,~"-JYJ + k11'-lb'x,y -S,,y+,_.)~ (BJ 

with x,y ~c , .-nd de~'Kc is the determinant of the \cl • \c\ 

matrix Kc with the zero eigenvalue belonging to the constant 

r.-1ode omitted. We d -opped a factor of the form A \cl which only 

contributes to the total normalization of Z because 

L \c\ = total ~ of spins. Apart from the gaussian determi­
~ 
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nant contribution zc represents the phase space volume 

corresponding to the arbitrary orientation of the cluster•s 

total spin normalized relative to the gaussian modes. For 

n_,.l (7) reduces to the Ising model result of Fortuin and 

Kasteleyn, Zc = 2. If n > 1 there is an analogous factor 
"-I 

C0 (~/~'lT)"""'r for each cluster, but clearly the remaining part 

of the weight encodes further information on the geometric 

structure of the cluster. 

Fig. 1 shows some first numerical results for the 0(3) 

b-model on a two-dimensional 20~20 lattice. Rather than 

fixing~ we employed the microcanonical demon-algorithm9 

to run at various fixed percentages of active links. We 

plot the nearest neihgbor spin correlation E as a function 

of ~with the line "100 %" corresponding to the standard 

version of the model ('lt= oo). Although E is a non-universal 

short range quantity, we found it valuable for adjusting~, 

when the bond-fraction is varied: for equal E also the mag­

netic susceptibility (indicative for the correlation length) 

turns out to be very similarlO, The simulat'ion of the 0(3)­

model is accelerated by performing random, i.e. Haar-mea­

sure distributed, 0(3)-rotations of the independent clusters 

after each heatbath sweep of the spin and bond variables. 

These collective moves leave the Boltzmann factor invariant 

and represent the natural generalization of choosing random 

Potts spins for each cluster3. They are similarly found to 

reduce autocorrelation timesS. The Hoshen-Kopelmanll algo­

rithm is used to divide spins into clusters after each bond 

sweep. This takes less computer time than the spin update 

itself. we make further use of the nonlocal information re­

siding in the clusters to define improved (i.e. less noisy) 

estimatorsl2 for correlations. Since all correlations between 

spins in different clusters vanish d~e to their independent 

Q(n) rotations we may for example measure the twopoint func­

tion as 
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.G~x-y} = <s,·Gy etx,y;k.,._)) ( 9) 

with 6 = 1 if x and y belong to the same cluster as defined 

by the bonds [kx~i, and e = 0 otherwise. Many more details 

on the numerical aspects will be published in Ref. 5. 

To conclude a word on gauge theory: Obviously the bond 

variables in this case live on plaquettes which form clus­

ters by connecting links. The links in each cluster may be 

gauge transformed independently. New moves different from 

just gauge transformations arise in this way if a site bor­

ders links belonging to different clusters; the gauge trans­

formation at that site may be chosen independently for each 

cluster and applied to the respective links. As a consequence 

an improved estimator for fundamental Wilson loops may be 

taken to vanish exactly unless the loop is fully contained 

in one cluster. On the asymmetric torus appropriate for finite 

physical tempernture the deconfinement transition (non­

vanishing Polyakov loop) can only take place when there is 

a finite probability for links to belong to an "infinite" 

cluster closing in the temporal direction, i.e. beyond a 

(generalized kind of) plaquette percolation threshold. 
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Fig. 1: Nearest neighbor correlation E in the 2-dimen­

sional 0(3) <:>:-model vs. f?> for various fixed 

fractions of active bonds. The percentages vary 

slightly along the curves (as indicated for the 

endpoints); this is a finite size effect on the 

202 lattice caused by the extra demon degree of 

freedom in the microcanonical algorithm9. 
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