
=--~LEKTRONEN-SYNCHROTRON 0 E SY 

1{1!H:!J~£.!_UD THEORY ON RIEMANN SURFACES AND THE UNITARITY PROBLEM 

by 

B. Schroer 
I 

rf[e-Le. un-Lve.f[/.ldii.:t Be.f[.Un 

ISSN 0418-9833 

NOTKESTRASSE 85 · 2 HAMBURG 52 



DESY behiilt sich aile Rechte fur den Fall der Schuurechtserteilung und fur die wirtschaftliche 

Verwertung der in diesem Bericht enthaltenen lnformationen vor. 

DESY reserves all rights for commercial use of information included in this report, especially in 

case of filing application for or grant of patents. 

To be sure that your preprints are promptly included in the 

HIGH ENERGY PHYSICS!INDEX; 

send them to the following address ( if possible by air mail ) : 

DESY 
Bibliothek 
Notkestrasse 85 
2 Hamburg 52 
Germany 



I 

DIEUTSCHE:s ELEKTRONEN-SYNCHROTRON 0 E SY 
DESY 87-lJSO 
Ju"l,y 1987 

IE~A_ti!!!_ti_l_IJoLD THEORY ON RIEMANN SURFACES AND THE UNITARITY PROBLEM 

by 

B. Schroer 

ISSN 0418-9833 

N OTKESTRASSE 85 2 HAMBURG 52 



DESY behalt sich aile Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche 

Verwertung der in diesem Bericht enthaltenen lnformationen vor. 

DESY reserve!> all rights for commercial use of informatiqn included in this report, especially in 

case of filing application for or grant of patents. 

To be sure that your preprints are promptly included in the 
HIGH ENERGY PHYSICS INDEX, 

send them to the following address ( if possible by air mail ) : 

DESY 
Bibliothek 
Notkestrasse 85 
2 Hamburg 52 
Germany 



OESY 87-080 
July 1987 

Abstract 

ISSN 04!8-9833 

Quantum Field Theory on Riemann Surfaces and the Unitarity Problem 

B. Schroer 

Freie Universitiit Berlin 

Arnimallee 14, 1000 Berlin 33 

By the use of the Kleiri method instead of the Theta~ function method of Jacobi we are able 

to relate a conformal quantum theory on Riemann surfaces to the corresponding Hat space field 

theory and its Virasoro algebra. Physical positivity holds on a distinguished real subset in the 

manifold with nontrivial Hausdorff dimension which in the general case g > 1 cannot be shifted 

by a hamiltonian. Our picture of obtaining curved two dimensional quantum field theories by 

applying special diffeomorphism to flat ones resembles that of the Hawking-Unruh effect. 

Quantum Field Theory on Riemann Surfaces and the Unitarity Problem 

The rriodern covariant formulation1 of relativistic strings is based on perturbative Feynman 

integrals. The g-loop order requires the study of special two..dimensional conformal quantum 

field theories on Riemann surfaces of genus g and their dependence on Teichmiiller parameters. 

Using the method of Jacobi, physicist have learned2 how to calculate free field genus g correlation 

functions of arbitrary spin in terms of Jacobi Theta-functions. The price to be payed for this 

formal elegance was very high (up to now). There is no simple natural relation of this approach 

to the flat space conformal invariant field theory with its circular diffeomorphism group and the 

Virasoro algebra. From experience with the g=l case and its temperature formalism, one knows 

that there exists a !~dimensional "real" submanifold on which the free field correlation functions 

for spin s =1- 0 fields are positive definite in the sense of Wightman i.e. have positive definite 

Kiillen~Lehmann spectral functions. Using the O~function representation it becomes however quite 

cumbersome to derive this unitarity statement even in the case g=l. In the g > 1 case I have not 

been able to see a generalization of this unitarity structure by just studying the explicit O~function 

representation.*. There exists however an alternative method which, although not leading (up to 

now) to such elegant compact formulas, nevertheless has the elegance of a field theoretic method. 

Let us first revisit the g=l case. Concider first the special case of a s=l field (a current) on a 

rectangular torus. By averaging over the lattice points (n,m B), I define a new field on the u-light 

cone: 

l N 

J'(u) ~ lim ,., LJ1",mP)(u) 
N->oo y N 

",m 

(!) 

* I am indepted to R. Schrader for informing me that D. Friedan is working on this problem 

2 



For positive m this is the action of the semigroup of the light cone haminonian on a free field. The means that the (thermal) reference state, which is obtained via the Gelfand-Segal reconstruction 

sum in (1) ranges over N lattice points with N--+ oo The two point function of the Hilbert space from the set of positive expectation values, is not a lowest weight state of the 

symmetry generator. To be more precise, there are two operators H. One is obtained by integrating 

< J(u)J(u') >= 
2

1ri 1 __ :_\2 (2) 
the hamiltonian density. This operator is bounded below, but the thermal reference state is not an 

implies: ei~enstate. The symmetry generator on the other hand can not be obtained in the field algebra. 

I I 
< Jfi(u)J.B(u') > = L < J(u)J(n,m.B)(u') >= 21ri L (u- u' + n + i{Jm)2 

n,m 

n,m I I " I 

--'- . +~ L_- [, •n '" 

21fi (u- u' H:) 21fl (n,m)~(O,O) 

Its construction requires the additional use of the nontrivial commutant of the field algebra, which 

I 

(n + ifim)'J 

(3) turns out to the (anti)isomorphic to the field algebra3 . These two copies exist also for the total 

Virasoro algebra. 

The last expression has been obtained by symmetric summation in m and representes the Weier- The generalization of this construction to g > 1 is conceptually simple but computationally 

straB p-function restricted to the real light cone variable z=u. involved. Take a Fuchsian group G, i.e. a discrete subgroup of SL(2,R) generating the particular 

The positivity follows either directly from (1) by smearing with (anti) analytic test function compact Riemann surface.-'~ Such a group is generated by a finite number of elements. These 

or from the form of the Kallen-Lehmann spectral function (the fouriertransform of (3)): elements correspond to the fundamental domain which has a hyperbolic polygon as its boundary. 

/(p) ~ e(p)plo,.,.(p) 2::1""' + ,-'"') 
Such a polygon can always be choosen to touch the light cone. A polygon side which lies on the 

(4) 
n;:>:o light cone (i.e. the real axis) is called a free side and the others are inner sides. Inner sides are 

Three comments are in order: pairwise equivalent by the generators of the Fuchsian group but free sides remain distringuished. 

{1) Spinors have nontrivial transformation law under global conformal transformations: they Let us again consider a s=l free field J{n) which has a trivial transformation law under the covering 

live on a two fold covering of Minkowski-space. Appropriate signs in the sum (1) can easily be SL(2,R). In analogy to the previous case we define 

attached, which account for the different spin structures on the torus. 

{2) The correlation functions of JT for ; complex is not positive definite. However if one adds 

N 

JG(u) ~limN-~ }N L U(g;)J(u)U+(g;) 
g;•G 

(5) 

the conjugate situations -r* , positivity is restored. For string theoretic purpose this is sufficien~ Now the U's are true unitary operators in the Fock-space. The N 1h approximant clearly leads to 

for getting positivity after integration over the Teichmiiller parameter r. a positive definite two point function and this state of affairs cannot change in the limit N --+ co . 

(3) The resulting torus correlation function have the remaning H-symmetry. The existence of 

an abelian symmetry implies the positivity on each real line parallel to the light cone line. This 
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The resulting two point-function 

< J0 (u)J0 (u') >~ L < J(u)U(g;)J(u') >, (6) 
g;EG 

depends on the particular Fuchsian group. The free side of the polygon lying on original light 

cone is the real submanifold on which one has Wightman positivity. If is distinguished and unlike 

the torus case there exists no hamiltonian which shifts it to other places. The free line represents 

points which in the hyperbolic metric are at infinity i.e. such a situation describes a noncompact 

surface. For a compact Riemann surface a point on the light cone line can be represented by 

a sequence of points on the surface, i.e. the distinguished set is not a smooth one dimensional 

submanifold, but rather a quite complicated topological subset of Hausdorff dimension larger than 

one. The field theoretic generation of the TeichmU.ller parameters proceeds as follows. Consider 

special non-MObius diffeomorphisms of Diff(R) ~ Diff(S1) generated by the subgroups belonging 

to the infinitesimal generators L0 , Ln, L-n· These transformations have the form 

u ~ fn(u) = (h;; 1 o A o h,.)(u) 

his a covering transformation which in the compact (S1) language corresponds to: 

whereas 

h: z----+ z" 

A= au+b 
cu+ d 
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(7) 

(8) 

-_-----,---"- ----------·-

The result of all three transformations is a bona fide (non-covering) transformation from Diff(R). In 

addition to· demanding f( +oo) = +oo we normalize the rs at two finite points say f(o)=o and f(l)=l. 

For odd n the only normalized maps of the form (7) are the identity. For n=4m+2, the MObius 

part consists of just translation, whereas for n=4m one obtains all affine MObius--transformations. 

A straightforward calculation reveals that for u2 > o 

1 
-< 
'• 

f(ut+ u,)- f(u,) 
f(u,)- f(u,- u,) < '• (9) 

where Cn depends on n but not on Uj • Diffeomorphisms with this property are called (nor-

malized) "quasisymmetric" transformation. They form a subgroup of Diff(R} and pocess a deep 

relation to Beltramie-form and "quasiconformal" transformations5 • .AJJ a result of their normal-

ization they constitute a contractable subset and form the points of the universal infinite dimen-

sional Teichmiiller space used by Bers5 . The smallest Cn is a measure from the distance to a 

MObiustransformation which in the case of our normalization must be the identity. The finite 

dimensional Teichmiiller spaces of compact Riemann surfaces are subspaces of quasisymmetric 

diffeomorphism fullfilling 

(/Gf-1)(u) =Moebius- transformation (to) 

where G represents the previously introduced Fuchs group. If the set of MObius-transformations 

on the right hand side form again the group G, i.e. for automorphisms f of Gone obtains the so 

called modular transformation. Dividing out this discrete group of diffeomorphism one descends 

from the Teichmiiller space of all" G-covariantn diffeomorphism (10) to the Riemann moduli space. 

It is fairly easy to see that the level n quasisymmetric transformation of the form {7) can never 
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have property (10}; one needs infinite products 

/(u) ~ !1"/"(u) (11) 

The Ansatz (11) may be converted into a Virasoro algebra relation by using the fact that the f .. 

lie on one parametric subgroup. The only finite transformation is such a relation in the Virasoro 

algebra are the unitary representors of the Fuchsian group G. We hope to return to some explicit 

algebraic calculation identifying elements of the Virasoro algebra (involving infinite high level 

elements} with the tangent vectors to the origin of Teichmi.iller space. Our main purpose in this 

note was-to point out that there exist a thoroughly quantum field theoretical approach to Riemann 

surfaces and Teichmiiller-spaces in which the link with the flat space conformal field theory with 

its Virasoro generators is essentially used. 

In some sense our approach resembles the Hawking-Unruh6 construction of generating new 

correlation functions with horizons and a Hawking temperature (---+ Teichmi.iller- parameters?) by 

doing just (acceleration) ~~~(ormations on flat sp~e correlation functions. Related mathematical 

topics are the determination of the commutant _algebra for the JG and the connection with possible 

modular properties of the local algebras of quantum field theory7 • 

It is worthwhile to cornpyre the present operator method with the one based on Feynman 

integrals and ~heir evaluation with the help of Jacobi 0-functions. I am indebted to R. Peccei for 

the hospitality during my stay at DESY. I acknowledge several discussion with D. Buchholz. 
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