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Abstract 

Thermodynamics and cosmology of torus-compactified heterotic 

strings are studied. We emphasize qualitatively new effects due 

to compactification. New topologically stable states appear which 

correspond to strings winding around the non-simply connected 

compact manifold. Under reasonable assumptions they avoid the 

blowing-up of the compactification scale when the universe 

becomes matter-dominated. For a higher-dimensional point field 

theory with scale-invariant ground state this blowing-up would be 

unavoidable. 
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1. Introduction 

Superstring theories (Green, Schwarz and Witten 1987, and 

references given there) are optimistically considered as 

candidates for an ultimate theory of all fundamental interactions 

of nature, including gravity. These theories are consistent 

(anomaly-free) chiral quantum theories, incorporate gravity in a 

natural way, and are presumably finite. As a theory of everything 

they would also have to allow a derivation of the standard model 

of strong, electromagnetic, and weak interactions, i.e. determine 

all the free parameters including the family number and the 

observed gauge structure. Furthermore, they would have to explain 

the vanishing of the cosmological constant despite supersymmetry 

breaking (Moore 1987). 

At the present level of understanding the best one can say is 

that this does not appear to be impossible. In any case, no 

attractive alternatives are around, at least none which would 

attack all these problems at once. 

one problem with the present formulation of string theories is 

that it is intrinsically perturbative, with strings moving on a 

classical background. Many classical solutions (superconformal 

field theories) exist, and it is unclear how to select the 

"right" one. Eventually the theory should self-consistently 

determine its own background. This could only be expected from a 

non-perturbative formulation which has not yet been found. 

Actually solving such a theory in a non-perturbative way would 

still be another matter. 

Despite this very incomplete understanding of the structure of 

the theory it is necessary to work out observable consequences at 

the level of string perturbation theory. This first of all means 

looking for classical solutions with acceptable low energy 

predictions (masses, Yukawa couplings, family number). No 

completely satisfactory one has been found yet. The other possi­

ble approach to make contact with phenomenology is to study the 

early history of the universe. Here the most striking prediction 
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of string theor~es is the existence of a phase transition at a 
critical temperature T0 close to the Planck scale. For the 
heterotic string (Gross et al. 1985) Tc is given by 

Tc. = t (2+ ff)ncJ.·J'z. r" (1) 

with ~ 
~~ a fundamental scale parameter of the order of the 

Planck length. Tc simply reflects the exponential increase of the 
level density of a free string gas. The specific heat turns out 
to be finite as T approaches Tc from below. Therefore Tc does not 
have the interpretation of a limiting temperature (Hagedorn 1965) 
but indicates a phase transition. This phase transition actually 
prevents us from following the evolution of the universe backward 
in time beyond the Planck time. This, however, would normally be 
one of the main objectives of a finite quantum theory of gravity. 
This might be another indication that perhaps a completely 
different formulation of string theories would be needed. The 
situation might resemble that of the physics of strong 
interactions before QCD. The existence of a high temperature 
phase transition was anticipated from the exponentially rising 
hadronic mass spectrum but there was no way to understand the 
nature of ~he high temperature phase without the notion of quarks 
and gluons. Similarly, a radically new approach might be needed 
starting from string theories, leaving the present formulation as 
an effective theory, perhaps appropriate for the low temperature 
(long distance) behaviour. The notion of smooth space-time 
manifolds might loose its meaning at short distances. 

Below the critical temperature the cosmological evolution is 
modified by higher derivative contributions to the Einstein 
equation (as well as to the background field equations of other 
massless modes), and by the contribution of higher string modes 
to the energy momentum tensor. Usually these effects are very 
small, and the cosmological evolution apparently does not differ 
significantly from that of the point field theory of the 
corresponding massless modes. 
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The original approach to string theories in 4-dimensional 
space-time was to compactify superstrings in their critical 
dimension de == 10, i.e. looking for classical solutions of 

topology M4 x K6 with K6 a 6-dimensional compact space. Most 
studied examples are tori (Narain, Sarmardi and Witten 1987) or 
orbifolds (Dixon et al. 1985). A general feature of these 
solutions is scale invariance, i.e. the compactification scale R 
is not specified. 

one might simply assume R to be small but this leads to a 
~osmological problem. This procedure could only be acceptable if 
R would remain sm~:l once it has been choosen to be so initially. 
For point field theories this is the case for a radiation 
dominated universe but not for matter dominance. There R starts 
to blow up in an unacceptable way (see e.g. Weiss 1986). It will 
be the main point of this paper to demonstrate that string 
theories provide a solution to this problem which is not 
available in the case of point field theories. It is in fact 
well-known that for string theories compactified on non-simply 
connected manifolds new states appear corresponding to strings 
winding around the extra dimensions. They form topologically 
stable sectors and appear as states with a R-dependent mass in 
the equivalent effective point theory. For certain values of the 
cumpactification scale or other background fields they may become 
massless (points of enhanced symmetry). To our knowledge these 
states (called winding states or solitons in the following) have 
not been studied in a cosmological context so far. we shall show 
that these states in fact stabilize the compactification radius 
under reasonable assumptions. 

Very recently string theories have been formulated directly in 4 
dimensions. Presumably they cannot be understood through 
compactification of 10-dirnensional string theories (Kawai et al. 
1987, Antoniadis et al. 1986, Narain, Samardi and Vafa 1987, 
Lerche et al. 1986,. For these theories the question of a 
higher-dimensional Kaluza-Klein type cosmology does not arise, 
and our solution of providing a stable value for the 
compactification radius (i.e. one of the background fields) does 
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not apply. Of course, the existence of these theories makes the 

problem of selecting one vacuum out of many possible ones only 

more severe. 

The outline of this paper is as follows. In chapter 2 we study 

the thermodynamics of a free gas of heterotic strings 

compactified on a particular torus. We concentrate on the aspect 

of cornpactification because the thermodynamics of uncompactified 

strings has been studied before (Tye 1985, Bowick and 

Wijewardhana 1985, Alvarez 1986, Alvarez and Osorio 1986, Matsuo 

1986, Gleiser and Taylor 1985). Chapter 3 represents the main 

part of this paper. We present numerical estimtcs on the 

stability range of a 4-dimensional or 10-dimensional cosmological 

evolution, resp. Moreover, we discuss the conditions under which 

winding states can play a major cosmological role and solve the 

stability problem of the compacitfication radius. Chapter 4 

provides a summary. 

2. Thermodynamics of torus-compactified heterotic strings 

It has been demonstrated by various authors (Polchinski 1986, 

Carlip 1986, 0 1 Brien and Tan 1987) that the free energy of an 

ideal string gas is identical to that of an ideal gas of point 

particles with the corresponding mass spectrum. In particular, a 

modular invariant representation has been found by 0 1 Brien and 

Tan 1987. This analysis needs not be repeated here. 

Working in the analog gas representation is most convenient for 

our purpose. We therefore need to know the mass spectrum of the 

heterotic string compactified on some 6-manifold. As an example 

we shall study torus compactification. It does not lead to 

phenomenologically acceptable models because the compactified 

theory shows N=4 supersymmetry and therefore no chiral fermions. 

However, so far no completely satisfactory classical solution is 

known anyway, and we may therefore as well study this simple 

compactification scheme which is best understood. The mass 

spectrum depends on the background metric gij of the six-torus 
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and possible other background fields (Narain, Sarmardi and Witten 

1987). For our demonstrational purpose we simply choose 

g .. = d .. and put other background fields equal to zero. The 
1) 1) 

resulting mass spectrum is 

with 

and 

~ M' 'I = 

" t if He = 

~ 1 

'I H • = 

" 
~ 

l 

N, +;!Mt 
'I t 

' Nc-1 + 1 L 

~-' N~ + I L 

' ! ) l 1 · t • ...., m· r 
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( 2) 

( 3) 

( 4) 

Units are such that the string tension (?"~' )-~ has the value 1/y 

i.e. ~~ = 1/2. The P1 define the E8 x E8 root lattice of the 

left-moving bosonic string sector (Grosset al. 1985). The 

integers ni and mi have the meaning of winding numbers and 

quantized momenta on the six-torus, resp., with Ri the 

corresponding radii. The oscillator modes NL and NR take on 

non-negative integer eigenvalues. Physical states have to satisfy 

the constraint 

M2 
L 

M2 
R 

It is convenient to split the spectrum into non-winding 

( 5) 

(ni = O,¥C ) and winding states (nk # 0 for some k). Non-winding 

states have masses 
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with N a non-negative 
to the free energy is 

integer. The contribution of these states 

F = 
~u 
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where ~ is the level degeneracy of the uncompactified 10-dime­
nsional theory. In particular there are d~ = 8064 massless 

states. The asymptotic behaviour is known to be 

""' 
d " "' 

_A'/z 
N e>cp [( ~ .rr) Z7T fii ] 

determining the critical temper~ture (1) above which the 
canonical ensemble does not exist. 

{ 8) 

Eq. (6) is the mass spectrum one obtains by first taking the 
point field l~mit in 10 space-time dimensions, and compactify 
afterwards. This procedure misses all the winding states 
(nk ~ 0 for some k). From eqs. (2-5) it would be very easy to 
work out these masses and level degeneracies systematically. This 
is in fact not even necessary for our purpose, for the following 
reason. Higher mass string levels give a very small contribution 
below and even at the critical temperature. For the energy 
density at a compactification radius R-1 (in units oe.' = 1/2) and 
T = Tc we find a contribution of about 1.2 per cent. It is even 
smaller for the pressure. This is easy to understand because Tc 
(eq. (1)) is a small number in the units o(' = 1/2. Higher mass 
states are therefore exponentially suppressed. In this case it is 
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sufficient for all practical purposes to approximate the 
non-winding sector of the free eneigy (eq. (7)) at T~T0 by the 

level N=O states, and concentrate on those winding states which 
become massless for some values of the compactification scale. It 
is easy to c_heck that the only states of this type are given by 

~~ . t'VIK. :: .T"'f .f, 

1"1~'=' 0 

I z: (r") • 0 
:r 

< ,. /<. 

NL•Nt•O 
I 

So1"11f. k. 

i.e. they wind around the kth circle once. The corresponding 
Kaluza-Klein mass tower is given by 

( (1,<) )l 
\H.., = 

l 

't !<:, -+ ~ R. l • 
- 'f + L. 

it"-

m.' -· ~· • 

{ 9) 

{10) 

vanishing for JtJt-= R = "'l'rr } m~ =0 ( ~.,.t), R;. \ i.+ k:) unrestricted. 
This is a point (or better submanifold) of enhanced symmetry. If 
Ri = R for all i one gets a maximal enhancement 

E
8 

X E
8 

X U{l) 6 
~ E

8 
x E

8 
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The contribution of these winding states to the free energy is 

F "" " 

t 

- IJ, T -z,' 
z. .:!. n' 
n~1,J1 •• • 

"' ' .2 d. L. 
<•1 

r (1,r! 1 (n l<,t)) L \Hw )K,T"Mw 
{rw;

1 
<+t] 

{ 11) 

with level degeneracy d~ = 16, because these states are built on 
8 degenerate bosonic and fermionic vacuum states. Other winding 
states are suppressed in eq. {11). 
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Eq. (11) is however not appropriate for all purposes. It 

represents a grand canonical ensemble with zero chemical potenti­

al, i.e. assumes unconstrained changes of particle numbers. This 

is of course not true for the winding states in particular, which 

can only be pair-produced and cannot decay into non-winding 

states but only annihilate. Eq. {11) should therefore only be 

used if Rk is very close to R, and these states are copiously 

produced. Otherwise, if the particle density is low, it is better 

to use a representation with a fixed number of winding states Nk. 

Quantum statistics effects do not play a significant role in this 

case, and eq. {11) should be replaced by 

F.,"" 
' -I z:_ 
,1::=1 

N, loj { 

3. cosmological Evolution 

' 

{,T 
-:z;l E. . \ \1(-:::-l )\I\ ~.~1) 

{"':,o~kj T 
( 12) 

We now discuss the influence of winding states on the problem of 

stability of the compact space. For simplicity we identify the 

radii Ri = R of the six-torus and study the time evolution of the 

compactification scale R. Denoting the scale factor of 

three-space by a(t) we consider the tO-dimensional metric ansatz 

gAB= diag (-1, a 2 (t), ... ,R2(t), .. ) (13) 

The Einstein equations reduce to the following set of differenti­

al equations 

y. ~ ~ ( - '+) ~ 5' P'- t;; pc + 9' Y•Yz ~~lay;) (14a) 

y, = ~ \ S- 3 f' ~ 'l.p, - N Y4< - 'tl '/•
1 

) (14b) 

~ ~ 

10 

c; \ Y• \ 1• t1yz) + yz \3y, + sy.)) (~ )-' 
r.lf 

(14c) 

with 0(t) = T-l(t) the inverse temperature. We have introduced 

the notation 

Energy 

in the 

y,"' Q l<J 
"u J 

~(+) 
y, = ~lt) 

density S and 3- and 6-pressure 

standard way from the free energy 

., 
s ~ v,v, 

-1 pl = 

- "' 

~ (oF) 
r.>~ I 

r;)F 

<:;"JJ, 

Pc = 
,_L'll 

-' "' v, 'i)jl 

(15) 

P3 and p6 are calculatE~ 

( eqs. ( 7) , ( 11) , ( 12) ) 

( 16) 

with v6 =(<,R.)' . The constraint equation 

3 y; 't _..,, y. y, + !J) t<' f 
(17) 

has to be satisfied initially. 

Note that the 10-dimensional gravitational constant ~ 1 = inG1~ 

which would normally appear in eqs. (14), (17) has been absorbed 

by a rescaling of time t _.,. X.. -lt. 

The time evolution of the scale factors a(t), R(t) is now 

completely specified. The choice of initial conditions at T = Tc 

is less clear, however. Assuming e.g. a first order phase transi­

tion at T = T
0 

one could imagine the visible part of the universe 

to originate from a single bubble formed during that phase 
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transition. Kinetic considerations would allow to estimate the 
bubble size if one would understand the dynamics of the high 
temperature phase. Since this is not the case we shall take the 
initial value of the compactification scale R as a free parameter 

instead. The stability problem of compactification may be 
considered as being solved naturally if R(t) does not blow up for 
a reasonable, sufficiently broad range of initial values R(o). 

We now discuss the time evolution of R(t). The driving force for 

a possible blow-up of R is J - 3p3 + 2p6 (compare eq. (14b)) 

which competes with a friction term. We first ignore the winding 

states. There are two limiting regimes (for T~Tc) 

R << T _, J' "" 3 r J , r' "' o 

R'JJT_, J"' ~p, "" 5pc 

obviously corresponding to a radiation dominated 4-dimensional 
(R(t) ~ constant, a(tl ~ t 112 J or 10-dimensional 
(T(t) ~ a(t)- t 115 J expansion, respectively. The range of 
attraction of these limiting regimes can be found by numerically 

studying the space of trajectories. In particular, for a 
symmetric initial expansion rate (y1 (o) = y 2 (o) = 1/6 f~l ) we 
find the universe developing towards an effective 4-dimensional 

space-time if 

R(o) ~ R,_. ,-.J 0.95 I 18 I 

At R R*, T = Tc we find as equations of state 

p3"' 0.27]' PG"' 0.03J' (19) 

Excited string modes have very little influence on this 
behaviour. The destabilizing effect for R(o)> R* arises from the 

N=O Kaluza-Klein modes (compare eq. (6)}. 
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Starting from a string theory one also finds higher derivative 

contributions to the Einstein equations. Below T0 there 
contrib~tions are also numerically small, however (Kripfganz and 
Perlt 1987). 

If R(o) is in the stability range (18} R(t) will approach a 
static value which is stable as long as the universe is radiation 
dominated. However, when it becomes matter dominated (p3 ~ 1/3j' 

~ P3 <~JP ) Yz = 0 is no longer a solution as is obvious from 
eq. (14b). R(t) will start blowing up. This has been studied e.g. 
by Weiss 1986 and need not be repeated here. It would lead e.g. 

to a non-acceptable time variation of gauge coupling constants. 

In the remaining part of this chapter we study the question of 
whether the contribution of winding states to the energy-momentum 
tensor would qualitatively change this picture. Certainly this 
can only occur if the number density of winding states at the 

time tM of the onset of matter dominance is sufficiently large 
(this will be further specified below). This role cannot be 

played by strings originally present (they would be totally 
diluted) but by winding-antiwinding pairs in thermal equilibrium. 

This immediately requires their mass to be small (not much larger 
than the temperature), which in turn means that R(tM) must be 
extremely close to R. This would appear unnatural if not R itself 
would act as an attractor. In fact it may do so. The argument has 

two steps. One is to show that R(tl stays close to R up to tM if 
it is close to it at a time when T has fallen somewhat below the 

critical temperature such that also the Kaluza-Klein modes are 
sufficiently suppressed. In this case the equations of state will 
be 

P; 1/3 + Oir 2 1 

P6 = c
1

T2r + O(r 3 ) (20) 

with r{t) =: R(t) - R. Eq. (20) follows from a low mass expansion 
of the free energy ( eqs. ( 7), ( 11)). The constant c 1 is given by 
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C, ~ 31itd.u / (lr.R.)' 

The linearized term of the evolution equation (14b) becomes 

8r + 24y1r + 2Rc1T2r = o 

Making use of the constraint equation (17) 

with 

s ::- C2T4 ~ 3y/ 

CL 
t 

~JL 
30 
~ J. /(z,-R.)' 
1( 

~u u 
d, = d. + 1Z d. = Jl5' 

( 21) 

( 22) 

( 23) 

( 24) 

eq. (22) can be solved explicitly by introducing z = y1- 112 as a 

new independent variable. Solutions are found to be Oth order 

spherical Bessel functions in z, or 

!W) ,. 

with 

r, 
~ ~­

ft 
lj• l fzd) + !L (or l f2Ct) 

rr 

c · rr "R c c -'Yt 
'f ' t 

( 25) 

( 26) 

Therefore, as soon as R is sufficiently close to R it will stay 

close to it during the whole radiation dominated period. Winding 

string states would be light and abundant. 

This conclusion only holds, however, ·if R gets very close toR in 

the first place. In general this will not be the case. Numerical 

calculations show that near the· critical temperature the winding 

contribution (11) to the free energy is so small that R does not 

--
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act as an attractor for a sizeable neighborhood. A typical 

trajectory ·starting with some R(o) (R* will move towards some 

limiting. value different from iL In this case winding states 

would be heavy and would not be produced in large numbers. In 

this case they could not play any role in solving the stability 

problem of the matter dominated period. 

Th_ere is a way out if the net number of winding strings is 

non-zero initially. This would not be as artificial as it may 

sound, since we assume anyway that something like bubbles of a 

non-trivial topology may form at the critical temperature. This 

would be quite natural if topology would not be a meaningful 

concept in the high temperature phase, e.g. if space-time bcomes 

discrete. 

Now, if the net number of winding strings would be non-zero 

initially, and if R is not very close to R there would still be a 

·few heavy winding states which cannot decay since they are 

topologically stable. Eq. (12) for the winding sector of the free 

energy now becomes appropriate. If there are Nw winding states of 

mass ~ 

M 2 = 4R2 + 1/R2 - 4 w 

they give a contribution to the pressure p6 (for Mw~T) 

p, "' N.., 

G 

-1 

vllz,-R.J' 
R 'UHw 

(()( 

( 27) 

( 28) 

which drives R(t) towards R. This contribution will be relevant 

only for some initial period, until the non-matching winding 

states are diluted. This would be sufficient, however, to give R 
a broad range of attraction. Once R(t) is close to R it would 

follow the solution {25). 
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There might be other ways of ensuring a density of light winding 
states of perhaps a few orders of magnitude below the photon 
number density during the radiation-dominated period. Turning now 
to matter dominance R(t) will increase somewhat from R makinq 
these states heavy. Since they are topologically stable they 
cannot decay but must annihilate. Annihilation will be in general 
incomplete. Therefore, a small fraction of these states will 
survive. Effectivel-y, we are again in a situation of a fixed 
number of winding states, and eq. (28) applies. Again we find a 
stabilizing force preventing R(t) from blowing-up, provided 

J+ 'Zp< ~ 0 ( 29) 

Due to the peculiar R-dependence of the mass of the winding 
states (eq. (27)) their energy density may be negligible compared 
to t!P6 1. This will be the case for 

R. - R. .S r* 
/1 

= 3 (f" (o('·1) 
(30) 

From eq. (28) we finally find a lower bound on the number density 
nw of the winding states compared to the baryon density n8 

3:. n" "'l 3 
no Hu fu' ( 31) 

iT:' H 6 is the proton mass in Planck units! The number density of 
winding state surviving until today may therefore be very small, 
but still provides a stabilization of the compactification scale. 

4. Summary and Discussion 

The cosmological scenario outlined in this paper for a 
torus-compactified heterotic string theory has various general 
aspects valid for non-simply connected manifolds. At low energies 
these theories contain additional states due to the 
compactification. They are topologically stable and have a mass 

...... ~_....,._ ......... _ .. _ .. _ _.. 
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depending on the compactification scale R. The mass ~ will be 
minimal for some value R of R. Interesting cosmological effects 
are expected in particular if Mw(R) = 0. This appears to be a 
rather general phenomenon at least for torus or orbifold 
compactifications (Narain, Sarmardi and Witten 1987, Nair et al. 
1987). Whereas the ground-state is scale invariant in these cases 
the incoherent contribution of the winding states to the 
energy-momentum tensor breaks scale invariance. Under reasonable 
assumptions this contribution stabilizes the compactification 
scale during the cosmological evolution while it would blow up 
otherwise during the matter dominated period. 

It would be interesting to study the astrophysical consequences 
of similar but more realistic compactification schemes in some 
detail. As far as we can see, however, these winding states might 
not have any other observable effect as long as they belong to a 
hidden sector, i.e. the usual matter fields are singlets under 
the corresponding symmetry enhancement. 
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