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Abstract: Moncpoléd cordensation -is responsible for confinement in U(1) lattice
gauge theory. Using numerical simulations and the Abelian projection, we demon—
strate that this mechanism persists in SU(2) nonabelian gauge theories. Our

results support the picture of the QCD vacuum as a dual superconductor.

I Ly ey S e e o m  ma e p  y ——_t —e y ——-

The latfice formulation of quantum chromodynamics (QCD) provides a tool for
exploring the dynamics of the QCD vacuum. In particular, it enables us to test
current ideas on color confinement. 't Hoof‘t1 and Mandelst.am1 have conjectured
?hat this phenomenon can be understood in terms of a color magnetic superconduc-—
tor,.in which eolor magnetic monopoles condense and color electric charges are con-
fined, This picture is dual to the ordinary superconductorz, in which electric charges

condense and magnetic meonopoles would be confined through the Meissner effect.

These ideas have been successful in understanding the mechanism of confine-
ment and the deconfinement phase transition in 4-& compact U(1) gauge theory, which

. N
contains monopoles3’

. To extend this to nonabelian gauge theories, it is crucial
to formulate the theory in terms of its relevant Abelian degrees of freedom, which
are color magnetic monopoles, coleor electrie charges and "photons'", This can be
achieved by fixing to a gauge such that the gauge freedom of the maximal Abelian
(Cartan} subgroup remains. This gauge fixing is called the Abelian projection 5’6’7,

Also, one should choose a gauge which is renormalizableS, and in which the Abelian

degrees of freedom describe the longdistance properties of the vacuum.

In a recent pa.perT vwe provided the framework for guantitative analysis by con-
structing the Abelian projection on the lattice, We also presented results of a
Monte Carle celculation of monopole densities at various couplings [5 (and tempe-
ratures) for gauge groups SU{2) and SU({3). However, these calculations were re-
stricted to nonrenormalizable gauges which are contaminated by unphysical short-—

8

distance artefacts .
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In this letter we tesi the above picture of confinement quantitatively in
h-a su(2) gauge theory. To relate the SU(2) theory to the better understood U(1)

theory, we study the Georgi-Glashow model, which interpolates between the two.

The action on an (LS3 x Lt.) lattice is

= |
S = PGZP:(l“-ZTr U(r))
* Py %‘;( - 3 Tr (DD UG UWT s | o

where U(p) is the product of parallel transporters U(s,ﬂ) around a plaquetie p

and q)(s\ = q}“(a\ 6o  is the fixed length ( (bq(s\ 4)“(3\ = 1 ) agjoi

nt

Higgs field. For Fg“ = ) Eg. (1) reduces to the pure SU{2) theory. For P“ = o0

Eq.{1) reduces to the U(1) theory, which can be seen most easily in the unitary
gauge (b(s\ = 63 5 a Tinite action then requires U{s,ﬁ) to be diagonal

and hence Abelian.

A renormalizable, maximally Abelian gauge is obtained by performing a local

gauge transformation ﬁ( s.f‘;\ = V( S). ll(s, fQV(s vlﬂ-‘ such that

~ ~
R = I Trile, Uspdg, U+(s,f.)) (2)
s,r\
is meximized. V{s)} is only determined up to left multiplication by d = diag (™
a l“(s)),which represents the residual U(1) gauge invariance. Following Ref. T
we perform the Abelian projection in this gauge; i.e. we decompose the parallel
transporters
» I t » - A
(- \c(s,r\\ ) - C(S,rﬂ -u,(s,rW 0
S
Ueer= N . (3)
Y N
< (s,2) (- \C(s'f‘“ b 0 w (5§

° ~o
where 'u(s “\ = ey ('\ afr u (S,A}\ are Abelian parallel transporters,
) = exp Liarg Uy lsig ;

(s)

"

and the coset fields cfs,n) € SU{2)/U(1) represent color electric charges.
Under a general SU(2) gauge LransTormation of the original gauge field, uls,n)

and c(s,l} transform in the desired fashion:

i . s) -1 un(s+f-.)

‘u.’(s,i«\ = e 'u.(s,rl\ € )

(4

-2 afls)

c’(s,r‘d = c(a,)‘l\ e

The color magnetic monopoles of the theory manifest themselves as half-integer

valued magnetic currents on the dual lattice:

m(*s,0)= = L aga(p = 0,fz, ., (51

w ?e'df(s-»fn,r)

where u{p) is the product of Abelian varallel transporters u(s,ﬁ.) around a plagquette
p, and f{s+i,un) is the 3-cube with origin s+h perdendicular to the u-direction,
dual to the 1ink from *s to *s+p on the dual lattice. The monopole current ls topo-—
logically conserved on the dual sites *s: Zr (\'\’\(*S,F\) - H\(*S-F\,F‘y\ = 0.

Consequently, the monopole currents form clesed loops on the dual lattice.

To understand confinement in terms of the ideas cited at the outset of this
letter, it is helpful to investigate the different phases of the theory ang the
nature of the accompanying transitions. The phase diagram at finite temperature
(T = (I_.ta.)_1 ) is shown in Fig. 1. The theory has a decconfinement phase transi-

tion extending from U(1)&F>“’-' o) to suU(2) (F“ = O) , and the Polyakov loop
Lt
P 2T T WCseth #) (6
2 t=0

is the order parameter of the transition. At finite F,“ and large %G , there is

also a transition to a deconfined Higgs phase. We use numerical simulations on a
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103 x 5 lattice at various values of F)GJP“ to analyze the properties of the

monopoles in the three phases. (Simulations on 5 lattices yield similar results.)
We generate the configurations according to standard methods, and then meximize R
A}

in Bq. (2} iterativelyg for the configurations in the Monte Carlo ensemble. In all

cases the statistical errors are smaller than the symbols plotted.

The U{1)} theory indicates that the confined phase is a ccherent monopole
plasma, characterized by a high density of long, entangled moncpole loops. In the
deconfined phase monopoles are dilute and their loops are small. Tn Fig. 2 we
show a 2-dimensicnal projection of the monopole currents for typical gauge field
configurations at [3“ = B, which corresponds essentially to U{1}, and at Fa“ =0,
which is SU(E).Conside-r first the U{1)} case depicted in Figs. 2 {a,b). In the
confined phase ([SG = 1.1) the monopole loops are so entangled that it is difficult
to distinguish individual loops. However, we have verified that the dominant porticn
of the magnetie currents is in long, intersecting loops. In the deconfined phase
(PG = 1.3) the monopole lcops are small and have almost disappeared. Now consider
the SU(2)} case depicted in Figs. 2 (c,d). Remarkably, the behavior of the monopoles

in the two phases is just as before.

To quantify this picture we consider the perimeter density of monopole loops

L= L 3 b m s, (7

and the number density gm:"n of monopole—antimonopole pairs in adjacent spatial
cubes. Having seen Fig. 2 one expects the physics of the menopoles in SU(2) to
be similar to the U{1) case. In particular, the deconfined phase is characterized
2 2 . . .
- ok -
by 1 = QXP( x [SG 3 and g”‘;‘ euF( " PG') in the Villain form of

b
the Ul1) theory .
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In Fig. 3 we present Monte Carlo data for I1n{l} as & function of FG for
,?,“ =0, 1, 2 and B. Theyclearly indicate the deconfinement phase transition.
This ceccurs at the same critical FG where the Polyskov loop gets a nonvanishing
vacuum expectation value. Qur data suggest that the transition is first order at

PH=8,2,|

ponential fall-off of 1 shows that the monopoles form a dilute gas, as in the U{ 71}

and second order at {5“ = 0, In the deconfined phase the ex-

theory. The slope is compatible with _,“,2. independent of ﬁ“ , a8 indicated by

10 . .
. The same is true for g _— also, Thus the dilute gas

the s01id lines in Fig. 3
approximation of the U{1) theory correctly describes the physics of the monopoles
in the deconfined phase of the SU(2) theory as well. The Abelian Polyakov loop,

composed as in Fq. (6) from Abelian parallel tramsporters, is also an order para-
meter of the deconfinement phase transition”, and it rises more dramatically at

the transition than the ncnabelian Polyskov loop. This demonstrates again the re-

levance of the Abelian degrees of freedom.

For the Higgs phase transition it 1s also interesting to investigate the role
of the 't Hooft-Polyakov monopoles. They are defined in the unitary gauge
Do) = WHHEWET'= 65+ Uls,f) = WEHUGR Wsepd ™
Replacing ﬁ(s,ﬁ) in Eg. (3} by -U.(s,ﬂ,) we repeat the construction of magnetic
currents for the 't Hooft-Polyakov monopoles. Figure B shows the perimeter density
of 't Hooft-Polyakov monopole loops both as a function of P’G at F.vH: 0.5, 1, 2, 8
and as a function of F“ at [5& = 2.4, For Fia =1, 2, 8 we find a dense state of
long entangled 't Hooft-Polyakev moncpole loops in the confined phase, whereas
they become dilute and small in the Higgs phase. However, the slope of the ex—
ponential fell-off of 1 is ~w® only at FH = 8, vhere the theory is essentially

U{1). At this coupling the Higgs phase transition ccecurs at F,G_: 1.1, which is
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Polyakdv mdﬁcpales a?e ﬁot dilute. We therefore do not observe an exponentlal

FEY1- STT &F 1 in thls cage. This 1sconf1rmed1n Flg h (b), where we cross the

phase tranSLtlon from the deconflned symmetrlc to the deconflned nggs phase at

The results presented in this letter suggest the following picture of the
phases of the Georgi-Glashow model. The Higgs phase transition is well described
in térms of }f Hooff—Péi}akovh£6§6poles: in the Higgs phase they are heavy ané
{herefore dilute;rwhéféasrtheg condense in thé SU(E} sy&meﬁric phaseé. On the
other hand, the deconfinement phase transition can be understood in terms of
color magnetlc moAéggie; deflﬁéd in the maxlmally Abellan gaug;; In the decon-
flnedphasesthe color magnetlc menopoles are well described by the dilute £Zas

approximation of the U{?) theory. In the confined phase color magnetic monopdles

condense causing coler confinement By the dusl Meissner effect.

Finally, the importance of the Abelian degrees of freedowm may be relevant in
numerieal -simuiations. I% is possible to accelerate the update procedure in Abelian
ggugp¢thegries,lbut-nonabelianrgauge;theories-are mOIE‘problematiCIE. Perhaps the
Abelian projection can be used to formulate nonabelian theories such that accele-

rated Abelian algorithms apply.

We would like” to thank M. Liischer, M, Marca, and F. Wagner for their continued

interest.
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Figure Captions

Fig. 1 Phase diagram of the Georgi-Glashow medel at finite temperature.

Fig. 2 2-dimensional perspective projection of the color magnetic moncpole
currents. Apparently open loops are in fact closed due to the perio-
dic boundary conditions. The empty regions are illusory because we
try to show long loops in their entirety and thereby occasionally
leave the lattice. (a) Confined phase close to the U(1) limit:

%G = 1.1, F’“ = 8; (b) deconfined phase clcse to the U(1) limit:
PG = 1,3, P" = 8. (c¢) Confined phase of the pure SU{2) theory:
F’G = 2,2, p“ = 0; (@) deconfined phase of the pure SU(2} theory:

fsc‘= 2.6, P" = Q.

Fig. 3 Perimeter density 1n(1l) of color magnetic monopoles as a function

of [SG ror (1) FH=%J(_V)IS“= 2_} (A)Fuz\
and (Q) W 0. The solid lines indicate exponential fall-off
with slope -11'1.

Fig. 4 Perimeter density 1n{l) of 't Hooft-Polyskov monopoles (a) &5 & function

of F’G' for (En P:“= 8, (V) {3“ =2, (A) P“= 1 and (O) F}“= 0.5,

and (b) as a function-‘ of F“ for P;G_= 2.k,
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