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Abstract: Monopole- coridensation is resp?nsible for confinement in U{1) lattice 

gauge theory. Using numerical simulations and the Abelian projection, we demon-

strate that this mechanism persists in SU(2) nonabelian gauge theories. Our 

results support the picture of the QCD vacuum as a dual supercondUctOr. 
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The lattice formulation of quantum chromodynamics (QCD) provides a tool for 

exploring the dynamics of the QCD vacuum. In particular, it enables us to test 

current ideas on color confinement. 1 t Hoeft 
1 

and Mandelstam
1 

have conjectured 

that this phenomenon can be understood in terms of a color magnetic superconduc-

tor, in which color magnetic monopoles condense and color electric charges are con

fined, This picture is dual to the ordinary superconductor
2

, in which electric charges 

condense and magnetic monopoles would be confined through the Meissner effect. 

These ideas have been successful in understanding the mechanism of confine-

ment and the deconfinement phase transition in li-d compact U( 1) gauge theory, which 

contains monopoles3 •4 • To extend this to nonabelian gauge theories, it is crucial 

to formulate the theory in terms of its relevant Abelian degrees of freedom, which 

are color magnetic monopoles, color electric charges and "photons". This can be 

achieved by fixing to a gauge such that the gauge freedom of the maximal Abelian 

(Cartan) subgroup remains. This gauge fixing is called the Abelian projection 5 •6 •7 . 

Also, one should choose a gauge which is renormalizable5 , and in which the Abelian 

degrees of freedom describe the longdistance properties of the vacuum. 

In a recent paper1 we provided the framework ror quantitative analysis by con-

structing the Abelian projection on the lattice. We also presented results of a 

Monte Carlo calculation of monopole densities at various couplings ~ (and tempe

ratures) for gauge groups SU{2) and SU(3). However, these calculations were re-

stricted to nonrenormalizable gauges which are contaminated by unphysical short~ 

distance artefacts8 • 
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In this letter we test the above picture of con~inement quantitatively in 

4-d SU(2) gauge theory. To relate the SU(2) theory to the better understood U( 1) 

theory, we study the Georgi-Glashow model, which interpolates between the two. 

The action on an (1
5

3 x Lt) lattice is 

s = 

+ 

~« L ( I 
1' 

_ ± Tr u (f)) 

~~ L ( 1- i Tr <<P<s)U(s,f<l4><••f<lU""<s,f-))) , 
'·I' 

(1) 

where U(p) is the product of parallel transporters U(s,~) around a plaquette p 

and ¢<•) " <l>""<•) 6 .. 

Higgs field. For ~~ = 0 

Eq.(l) reduces to the U(1) 

is the fixed length ( ¢1t(s) <Pct(s) = I ) adjoint 

l!:q, ( 1) reduces to the pure SU( 2) theory. For ~" • oO 

theory, which can be seen most easily in the unitary 

gaUge ¢<•) = "'• ; a finite action then requires U{s,~) to be diagonal 

and hence Abelian. 

A renormalizable, maximally Abelian gauge is obtained by performing a local 
"" . -1 

gauge transformation ll<.s,f'-) c V(s) U.(s,f'-)Y(s...f') such that 

" ~ ~+ R ~ L. Tr tc;3 U.ts,r) ~. U. <•.f<l) 
'·l' 

(2) 

is maximized. V(s) is only determined up to left multiplication by d ~ diag (ei ~(s), 

- i "' ('II h. h t h . ( I . . . R e ,w lC represen s t e res1dual U 1 gauge lnvarlance. Follow1ng .ef. 1 

we perform the Abelian projection in this gauge; i.e. we decompose the parallel 

transporters 

I c(,,~)\')i • - c.(s,f<l \( v..ts,f-) 

(1-\ds,f-ll')i) 0 
uc.,~) • 

I < ,_ 

\ c(s,f<) :~.J' ( 3) 

where 'IA..(s,r) ex f ( ( <lrs- U II ( •+) J are Abelian parallel transporters, 

- 3 -

and the coset fields c(s,~) t SU{2)/U( 1) represent color electric charges. 

Under a general SU(2) gauge transformation of the original gauge field, u(s,~) 

and c(s,~) transform in the desired fashion: 

v..'t•,r) = 
i. d. ( S) _, -.(s•j) 

e 'IA.(s,f<) e ) 

(h) 

c'(s,f-) = d•.y) e 
- :1.< o<.(S) 

The color magnetic monopoles of the theory manifest themselves as half-integer 

valued magnetic currents on the dual lattice: 

rn("s,r) = 
I 

lj. .. 
L: o.·~ "'(f)~ o,±f, ... , 

rd{< .. f'.rl 
( 5) 

where u(p) is the product of Abelian parallel transporters u(s,~) around a plaquette 

p, and f(s+~,~) is the 3-cube with origin s+~ perdendicular to the ~-direction, . 
dual to the link from *s to *s+~ on the dual lattice. The monopole current is topo-

logically conserved on the dual sites *s: L.r \m("""s,f)- rn(itts·f,t! )) """0. 

Consequently, the monopole currents form closed loops on the dual lattice. 

To understand confinement in terms of the ideas cited at the outset of this 

letter, it is helpful to investigate the different phases of the theory and the 

nature of the accompanying transitions. 'l'he phase diagram at finite temperature 

\ T "' (Lta)-
1 

) is shown in Fig. 1. The theory has a deconfinement phase transi

tion extending from U( 1) \~\\""'" 00) to SU( 2) {~" =- 0) , and the Polyakov loop 

L\- \ 

1' ~ .!. Tr TI U(s•t£. ~~ <6: 
t t•O ' 

is the order parameter of the transition. At finite ~\t and large ~Cr , there is 

also a transition to a deconfined Higgs phase. We use numerical simulations on a 

-··---~--- ---··""~~--- -~-------~-~~~--~-.--- -~~ 
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103 x 5 lattice at various values of ~~, ~\.\ to analyze the properties of the 

monopoles in the three phases. (Simulations on 54 lattices yield similar results.) 

We generate the configurations according to standard methods, and then maximize R 

in Eq. (2) iteratively9 for the configurations in the Monte Carlo ensemble. In all 

cases the statistical errors are smaller than the symbols plotted. 

The U(1) theory indicates that the confined phase is a coherent monopole 

plasma, characterized by a high density of long, entangled monopole loops. In the 

deconfined phase monopoles are dilute and their loops are small. In Fig. 2 '.-le 

show a 2-dimensional projection of the monopole currents for typical gauge field 

configurations at ~~ ."' 8, which corresponds essentially to U( 1), and at ~" "' 0, 

which is SU(2).Consider first the U(1} case depicted in Figs. 2 (a,b). In the 

confined phase ( ~C:t-"' 1.1} the monopole loops are so entangled that it is difficult 

to distinguish individual loops. However, we have verified that the dominant portion 

of the magnetic currents is in long, intersecting loops. In the deconfined phase 

(~~"' 1.3) the monopole loops are small and have almost disappeared. Now consider 

the SU(2) case depicted in Figs. 2 (c,d). Remarkably, the behavior of the monopoles 

in the two phases is just as before. 

To quantify this picture we consider the perimeter density of monopole loops 

t = _!_ 
~v 

(71 L. I rn('s,f-) I 
1 

""',r 
and the number density Smiii of monopole-antimonopole pairs in adjacent spatial 

cubes. Having seen Fig. 2 one expects the physics of the monopoles in SU(2) to 

be similar to the U(l) case. In particular, the deconfined phase is characterized 

by l "' 
the U( 1) 

e•p (-TC• (\:.) ,, 
theory 

and g...,., "'e•p<-w'~G.) in the Villain form of 
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In Fig. 3 'Je present Monte Carlo data for ln(l) as a function of ~Gr for 

~~ = 0, 1, 2 and 8. Thr:1yclearly indicate the deconfinement phase transition. 

This occurs at the same critical ~Gr where the Polyakov loop gets a nonvanishin@' 

vacuum expectation value. Our data suggest that the transition is first order at 

r., - 8 rH - • 2, 1 and second order at ~H 0. In the deconfined phase the ex-

ponential fall-off of 1 shows that the monopoles form a dilute gas, as in the U( 1) 

theory. The slope is compatible with -1(2. if!d~pen~ent: of 0\4. , as indicated by 

. . . . 10 . . 
the sol1.d llnes l.n F1.g. 3 . The same 1.s true for (> - also. Thus the d1.lute gas 

.) mm 

approximation of the U( 1) theory correctly describes the physics of the monopoles 

in the deconfined phase of the SU(2) theory as well. The Abelian Polyakov loop, 

composed as in Eq. (6) from Abelian parallel transporters, is also an order para

meter of the deconfinement phase transition
11

, and it rises more dramatically at 

the transition than the nonabelian Polyakov loop. This demonstrates again the re-

levance of the Abelian degrees of freedom. 

For the Higgs phase transition it is also interesting to investigate the role 

of the 't Hooft-Polyakov monopoles. They are defined in the unitary gauge 

(\)<s) W(s)<\><s)W<•)-·~ 63 , \l(s,f'-) ~ W(s)U(s,f') W<s.;r'. 
Replacing IJ(s,;J) in Eq. (3) by U'(s,J1) 'He repeat the construction of magnetic 

currents for the 't Hooft-Polyakov monopoles. Figure 4 shows the perimeter density 

of 't Hooft-Polyakov monopole loops both as a function of ~<; at ~t-t"' 0.5, 1, 2, 8 

and as a function of ~k at ~G- "' 2.4. For ~\-\ "' 1, 2, 8 we find a dense state of 

long entangled 't Hooft-Polyakov monopole loops in the confined phase, whereas 

they become dilute and small in the Higgs phase. However, the slope of the ex-

ponentia] fall-off of l is -w 1 ~J:l at ~1-t"' 8, where the theory is essentiall:,' 

U( 1). At Lhis coupling the Higgs phase transit ion occurs at ~C.. o:: 1. 1, which is 
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con_s~s:t_e:n_t w:-:i;..th 
£-: =--~~ 

a t,(c~~ 
~ o_~- ' 

expansio~~und :_h~et ~( !_) l~~~ry 12
• A~ ~l! _"' 0.5 we 

cross from the -conf-i-ried -to the deconfined symmetl-ic 'Phase, where the 't Hooft-

PolyS:Kov mOil:oiJtiles are no-t dilute. We ther·etore do not ObServe an expohential 

ran..:.o-rr- Of 1 in tllis caS_e_. Tfiis is confirmed in Fig. 4 (b), where we cross the 

phase transition from t.he deconfined symmetric t.o the deconfined Higgs phase at 

fixed ~"G" = 2. 4 ~-;-: -

The results presented in this letter suggest the following picture of the 

phases of the Georgi-Glashow model. The Higgs phase transition is well described 

in terms of 't Hooft-Polyakov monopoles: in the Hig&s phase they are heavy and 

therefore dilute, where-as they condense in the 80(2) symmetric phases. On the 

oiher hand, the deconfinelnertt phase transition can be understood in terms of 

color magnetic monopoles defined in the maximally Abelian gauge. In the decon-

fined phases the co!or magnetic monopoles are well described by the dilute gas 

approximation of ,-the U( 1) theory. In the confined phase color magnetic monopoles 

condense causing color confinement by the dual Meissner effect. 

Finally, the importance of the Abelian degrees o-f freedom may be relevant in 

numerical-simulations. It is possible to accelerate the update procedure in Abelian 

ga'tlge'"'"theories, but nonabelian- gauge_ theories· are more -problematic 13 • Perhaps the 

Abelian projection- can be used to formulate nonabelian theories such that accele-

rated Abelian algorithms apply. 

W~ \.l'bUHI. like:·to thank M. Lii~cher, M. Ma.rcu, and F-. Wagner rOr their continued 

interest. 
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Figure Captions 

Fig. 

Fig. 2 

Fig. 3 

Fig. 4 

Phase diagram of the Georgi-Glashow model at finite temperature. 

2-dimensional perspective projection of the color magnetic monopole 

currents. Apparently open loops are in fact closed due to the perio

dic boundary conditions. The empty regions are illusory because we 

try to show long loops 

leave the lattice. (a) 

~~ = 1 • 1 ' ~~~ = 8; (b) 

~co= 1. 3, ~~~ = 8. (c) 

~c.= 2.2, ~~~ = 0; (d) 

(!>c;. = 2.6, ~~~ = o. 

in their entirety and thereby occasionally 

Confined phase close to the U(1) limit: 

deconfined phase close to the U(1) limit: 

Confined phase of the pure SU(2) theory: 

deconfined phase of the pure SU(2) theory: 

Perimeter density ln(l) of color magnetic monopoles as a function 

of ~Gt for ~0) ~~~'"' ~ 1 ( V') ~~~ "' 2. 
1 

l A)~11 ., I 
and (()) ~~ = 0. The solid lines indicate exponential fall-off 

. 2. 
w1 th slope - 1T • 

Perimeter density ln(l) of 't Hooft-Polyakov monopoles (a) as a function 

of ~G- for. (.0) ~~= 8, (. \7) ~~~ = 2, \Ll) ~~~= 1 and(<))~~~= 0.5, 

and (b) as a function, of ~~~ for ~10- = 2.4. 
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