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Abstract:

We azpply perturbation theory to the gauge invariant version of the chiral Schwinger
model. The cancellation of anomalies 1s shown explicitly in terms of Feynman dia-
grams. We calculate the exact propagators for the gauge field, for the Wess-Zumino
field and for the mixing between these fields, Using these propagators, we demon-

strate the existence of a massive state.

%
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I. Introduction

Since it has been shown that the chiral Schwinger model /1/ leads to a consistent
quantum theory /2/, this model attracted a lot of attention /3 - 17/. Another

. reasen for this renewed interest is the general development in the field of ano-
maious gauge theories, namely the discovery that s gauge invariant formulation is
possible in spite of an apparent anomaly /12, 1B, 19/. This development might give
rise to the hope that even anomalous gauge theories can be guantized consistently,
which has also been expressed in refs. /20 - 22/, The chiral Schwinger model
served as a playground fo demomrstrate how an apparently anomalous theory can ke
formulated gauge invariantly. This gauge invariant formulation is extremely useful
in order to establish that there are no genuine anomalies which could spoil gauge
invariance. The reason for this freedom of anomalies is the fact that tbe anomalous
contributions of the fermionic sector are cancelled by those of the Wess-Zumino
scalars, which are automatically present in the gauge invariant formulaticn of the
quantum theory /12, 18, 19/. The mechanism of anomaly cancellation has been in-
vestigated using nonperturbative methods like bosonization or solving the eguations
of motion /2 - 5, 10 - 15/. Most of theseworks nse the & = 0 gauge { & is the Wess-
Zumine scalar), which is identical to the earlier "anomalous" formulation without
gauge invariance. IL has been clai&ed that perturbation theory can not be applied
gince the exact photon propagator contains inverse powers of the gauge coupling constant
/2, 3/. This festure, however, is a gauge artefact, which can be avoided in other

gauges.,

In the present work we want to develop the perturbative approach to the chiral
Schwinger model in two different gauges: i) the Lorentz gauge and ii) the so-called

Jackiw-Rajaraman (JR) gauge. For these gauges there exist operator solutions /f13/



such that it is pessible to compare the exact photon propagators. Besides these

we are going to calculate the B-6 and the photon—- @ mixing propagateors to all
orders in the coupling constant. Furthermore we show the ancmaly cancellatlon in
terms of Feynman diagrams and we present Lhe effective acticn of the pauge field
which results from integrating out both, the fermion and the Wess-Zumino scalar.

Qur motivation to consider the periurbalive approach is twofold: Firstly, the Feynman
diagram calculation shows us explicitly how tha cancellation of anomalies occurs
and therefore might be more convincing than formal arguments. Secondly, it seems ilal
the above mentioned nonperturbative methods are not availeble in a realistic four
{or higher?} dimensional world so that perturbation theory is the only possible

approach,

In seclion 2 we calculate the vacuum polarization diagrams, using = modificd
dimensional regularizaticn for the fermion locp. Here the cancellation of the
anomalous contributions coming from the fermicnic and the bosonic sectors is expli-
citly shown. Tn section 3 we sum up the perturbation series in order to chtain the
completely corrected propagators for the boson Tields. To this aim we use two
differenl mebhods, vanely the explicit summalion of Feynman diagrams and a simple
inversion of the kinetic ocperator in the effective ackion afbter inbegraling ocut the
fermion fields. In section b we indicate how Lhe spectrumcan be read off from the

fill propagators, and we discuss the special case of the covariant anomaly.

IT. Vacuuin Polarizalion

Our starting point is the Lagrangian density
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Por the time being we leave the photon propagator unspecified, sinee it depends

on the choice of gauge. Finally, there is a speciality concerning the ATy vertex (11}

r {(‘T't}jau‘s 9/“3",}4)(4+ ;'J,r,)[y»(p-k)_]‘-

for the following reason. We waut to use dimensional regularization and, additionally,

we would like to exhibit the full regularization arbitrariness. Since dimensicnal . .
& Ay, s ey/,yﬁy;)(ftuyr)[y‘ﬂ} ,

regularization is gauge invariant, it necessarily leads to the covariant anomaly /23/,

which corresponds to a = 1 {see eq. {18), below) and does not reflect the regulari- Using standard integrals in ¢ dimensions with integrands p, /p?{p-k)? and

zation arbitrariness. Hence one is led to modify the fermion photon vertex in 4 p‘rpf,/l:a’-{p—k)2 reported in /24/ we obtain for (11)
i dimensions to f16/:
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is shown in fig. . It is given by the following expression in d dimensions: This is problematic in the terms which involve ¥ linearly. In these terms one
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cannob assume the anticommutativity of Ys with the ¥ matrices. General schemes The rolnecidence of eg. (171 with Lhe result of the fermion integration in the path
to do the evaluation correctly have been developped by several authors /26, 27/. integral .., B, &y exbhibits the well known (zcb that in two dimensions the one—loop
These schemes are not needed here since we must nob anticemmule a}sw.i.th yooin the polarization Jiasgram is Lhe only Termionic cenlribution to the polarization tensaor.
trace with one singie ¥s - We use the cyclic commutativity of the trace instead. e

“The contritulicn TT/uL‘ of the £ -exchange to Tl;w is shown in fig. 7,

Then we obtain /25/
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propagate, hence the & -exchange does not exist. This again elucidates the
necessity to deviate from ordinary dimensional regularization in order

to exhibit anomaly cancellation perturbatively. In section Lk we also discuss a = 1.

Eq. (21) may be used to integrate out both the fermion and Wess—Zumine field,

this results in the complete effective action:
2
= 2 fo 1 m ~Y {25)
aﬁ"gd {3 Faw (1+ G VR4 Lopf .

Eq. (25) coincides with the result of the path integral treatmeat of ref, /12/,
it contains a complete summation of the perturbation series for the photon pro-

pagator. We shall make this summation more explicit in the next section.

TI1. Boscn Propagalors

Tn this section we are going to calculate the completely corrected propagators of
the boson fields Au and © . This can be done using two different methods: The
first one consists of summing up all Feynman diagrams built out of figs. 1 and 2.
The second method relies on the fact that the effective action after fermion inte-
gration is purely quadratic in the boson fields. Then the corrected boson propaga-—
tors may be obtained by simply inverting the matrix between the fields. We want to
present both procedures for two gauge choices, namely the Lorentz gauge a|1Au =0
and the so-czlled JR gauge /13/ a/u (3””‘*'&':‘1",,.— E/“))Av= 0 . The first one
is the most popular gauge, the second one is motivated by the fact that, classically,
& and Au decouple in this gauge. At this point we want to stress that it is not

possible to use the £ = 0 gauge within perturbation theory since this gauge does

not allow to define a free photon propagatof.

III a) Summation of Feynman Diagrams

i) In the Lorentz gauge the gauge fixing term in the Lagrangian reads:

.=t %
IGF ™ (%“A ) (26)

with ® being the gauge parameter. This implies the free photon propagator

9}‘1' = - ];h ( }/uu

The full A" propagator is given by (ef. fig. 3)

- (4-o) -k%) (27)

o
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Using eq. {21) for T;y, we find
k*kp
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1
« m ol
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which agrees wilh the result of the operator solution /i3/. The Wess-Zumino pro-
pagator is shown in fig. b, here no iteration is necessary since the full photon

propagator is used:

Dg= Dy * D, (-¢V,) D*ceVy) 0
; 2 . (31)
S L Rtmb) {kz—% [a1—4+oc(4—% )(a__”a} ,
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Finally, the [ull A-@ propagator is (cf. Pig. 5)

O Bpw (V0 (27)
—eYa- -1
‘b(b.! [c{(/f /u W/ag k{] .

This completes our diagrammatic calculation of the exact boson.propagators, the

results may be collected in the mabtrix:
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= =1 pY, A 2 ,
Lop o (g7 e#)A, ] (34)

In order to calculate the free photon propagator, the guadratic term in A contained

in the action has to be written in the form % A" M;VAD , the free preopa-

gator is 1 times the inverse of M . In the present case M° is of the form

/ll))

MO
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/4
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Lhen (M9) can be parametrized as
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This may be used to derive the free photon prepagator:
3 4
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Precisely as in Lhe case of the Lerenlsz gauge, the full propagator is given by
the diagram of fig. 3 {we employ an obvious index free notation):
0 = ”
-]
D=0°-2 (mp*) (39)
Y]

The sum can be performed, if one observes thal
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Reinserting lndices, we ind for the full photon propagaler:
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Again, bthis agrees with the result of the operator sclution /13/. The full 8-6



and A- & propagators are given in figs. 4 and 5, respectively, the calculation

yields the complete propagator matrix

_btj/“: [+ +[:T4;" o (4- ?b-‘:)]hﬂ&”

e (R )

cela-1 o _,,_:: )bk

not
IR (k) .
T \-ietar e (- 2k

(k") 1- f, (auf)"-’f—:]

{43)

We note that the A- 8 propagater is proportional te the gauge parameter, it can
be eliminated by choosing « = 0. This is the quantum analogue of the classical

statement that A“ and & decouple in this gauge.

As promised in the preceeding section, we want to clarify the procedure of
integrating out the fermion and the scalar field. The resulting effective action

may be achieved by inverting the full photon propagator. Let D? be the free

/ll)
photon propagator in any gauge, then the inverse of the full photon provagatoer

is:

D" = [ D,§ (o] = [ 0% (a-Tpey ]

ey

Foml

M° gives the free action for the gauge field while TT leads to - % v 5

such that egq. {25) is valid for any gauge which depends only on the gauge field.
The restriction to these gauges is necessary since otherwise the vacuum polari-
zation tensor would become gauge dependent which is out of the scope of the pre-
sent work. Bq. (25} can also be verified in the Lorentz and JR gauge by explicitly

inverting the full photon propagators of eqs. {30) and (U2}, respectively.
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IIIb) Full Propagators vis Matrix Inversion

When the fermion lield is integrated out, the fermioniec part of the action is re-

placed by wu[ Al (ef., eq. (17)), then the Lagrangian is guadratic in (Au’ g )

and may be writlen according to:

(A% 0) [Muw Va A” 4
v, M®J\e /12

A v |
(A‘Q)/%(’;) (us)
where

M® = k" (46}

Vu is given by eq. (6), and Muv contains the contributions of the classical gauge

field action, of W¥[ A ] and of the gange Tixing term. Now we define P to be i times

the inverse of M , we use the parametrization:
w
a’ b

b7 d

with

d=[(rM% V. (M )y, T (18)
(a‘*)/w = i“i/au + \Q‘ﬁé v, (49}
4

bv = —d \ju_ (M—f)/‘l’= fa"’/“ '5" -;I-—e (50}

Egs. (L8) and (49) can be rewritien In Lerms of geometric series:



- 1y =
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L‘O(‘—'F’-b

3N

["L"tiu(c'f"l")#wt' v, #'e]m‘ (51)

°

Faf e () S v o™, T e

which may be represented diagrammatically (figs. & and 7, respectively), where
the photon lines already include all fermionic corrections. Hence id is the full
©-& propagator Dy and ia®Y is the full A-A propagator ¥ Inserting some

factors of i into eq. (50), i-b” is recognized as the full A-6 propagator DY

T A ol i )T‘fo

e {53)

(bY= - (t'd)(-c'\ju

This is shown diagrammatically in fig. 8,

Hence we mey conclude: the completely corrected propagators, containing all
powers of the pauge coupling, can be achieved by simply inverting the matrix M. .
We also performed this calculation of the exact propagaters in the Lorentz and
JR gauge, and the results are identical to ?L and ?JR’ respectively. There is
only cne point worth to be mentioned in this caleculation, namely the inverse of
Mul? . This is given by:

Lorentz gauge:

NVRW 2 4
(M) s
) ~elta-nCkimt)e J R et atq))

(3
b!

'{[~£kl+ezra—fﬂ;’” “fe1- 2 k' -2e]

S et T R W )
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JR gauge:

-4)!‘V=

M (R 27 e etk b £¥ k&%)

4
ki (kim')
1 z
(Ko (g alba 2m' @0l g

z
ka's « om?ca-1> .

. . . »
In both cases the limit « — oo {(i.e. no gauge fixing} reproduces -—¢ GM" or

ref. /2/, which is the exact photon propagator in the € = 0 gauge:

ool (5 - 20k 4 - e b ek b T (56)
GUMD has a pole for e — 0. This is related to the fact that in the & = 0 gauge
a free photon propagalor does not exlist and therefore a perturbative treatment is
not possible. Finite values for o allow for a free photon propagator (cf. egs.
(27} and (28)) and hence remove the pole for e — 0, thus allowing for a perturba-

tive appreach.

IV. Discussions and Conclusions

The propagator matrices can be used to establish the presence of a massive state

perturbatively. To this aim we study the residue matrix of P at the pole k? = m?:

. {51}
L F Y -t c A
- £
t. ™ g £7L Y
=;’l—! de mtt
£V%k, T
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In both gauges, the residue matrices of - i P have three eigenvalues, two of them
vanish and the third one is positive for m®> O, exbibiting one physical state of
mass m. Unfortunately, it is not so easy to count the massless modes by looking

at - 1 Res KP, k2 =0 ] , since one is accustomed to find more nonvanishing eigen—
values than physical sbtates. We found two nonzero eigenvalues with different sign.
If the usual procedure /P8/ can be Lranscribed to our case, too, this means that
there 15 no massless state in the boson sector. Then the massless state, found in
the bosonized version /P2, 3, 15/, has Lo be Interpreted as the translation of the
fermionic pair of left and right moving states. Making these statements more pre-
cise, however, would require a detailed investigation of the physical subspace of
the Hilbert space like in the Gupta-Bleuler quantization /29, 30/, this we did not

intend to do.

Our final item is the case a = 1. As we already pointed cut, this case is

achieved by ordinary dimensional regularization which implies the covariant ancmaly.

For a = i Lhe Lagrangian veads

F/“U+ 'EJ//‘[:,?”-FGWA/“ (4-#:‘))})]1{-
(50}

*99‘9/«'5#”’4_\; +IG-F .

Here anomaly cancellation can nol be exhibited diagrammatically, since the & -

exchange {fig. 2) does not exist because the 6’ does not propagate. Functional

integration over 8' Elves 5 (%M Eﬂ Az)) , this means that this case 18

anomaly-free, too, since the covariant anomaly is proportional to %uu [
TR

with F = 0 due to the & —function. The latter can be exponentiated as usual

to give

4 8 -1 )
- — o] A = F e (60)
=5 (d, ¢ ) =
fel 2} Vs ¥ 4_} Pk
with fﬁ¢0 in order to reproduce the J ~function. This implies the free photon
propagator in the Lorenlz gauge:

Do

-t L.t
—— - - o £y L
e T Tk “bv (F-ofs o) =]

- ol
3T e Bk

There are no loop corrections since:
pe Y pe =0 (62}

This means Duu = Div , which vanishes in the Landau sauge ( o = 0}, Hence the
quantum system, defined by eq. [5%9) together with the prescription to regularize
gauge invariantly, dees not contain any degree of freedom in the boson sector.
Again the massless boson, whieh has heen found in earlier works /2, 3, 10/, has Lo

be conslruud as the bosonized version of the Fermionic degree of Treedom,

Tn conelusion, we huve studied the perturbative approach to the gauge invariant
version of the chiral Schwinger model. Precisely as in the nonperturbative treat-
ment 1L 1s the Wess—Zuminc scalar field which makes the absence of anomalies trans-
parent. Gauge invariance; which is not a feature of the action, can be read off
from conservation of the vacuum polarization tensor Tt“” . Hence in this case we

have just the contrary of the usual approach bto anomalous gauge bheories: there
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the action is gauge invariant and the corresponding guantum theory is not, here the
acticn is not gauge invariant but the guantum theory is. This feabure, which

is astonishing at first sight, can be understocd in the path integral approach:
there the gauge variation of the ¢lassical action cancels thaf of the fermion

measure /12, 18, 19/.
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