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Perturbation Theory for the Anomaly-Free Chiral Schwinger Model 

*I N.K. Falck and G. Kramer 

II. Institut fUr Theoretische Physik, Universitat Hamburg 

Abstract: 

We apply perturbation theory to the gauge invariant version of the chiral Schwinger 

model. The cancellation of anomalies is shown explicitly in terms of Feynman dia-

grams. We calculate the exact propagators for the gauge field, for the Wess-Zumino 

field and for the mixing between these fields. Using these propagators, we demon-

strate the existence of a massive state. 

*) Supported by Bundesministerium fUr 'Forse hung und Technologie, 05 4HH 92P/3, 

Bonn, FRG 

I. Introduction 

Since it has been shown that the chiral Schwinger model /1/ leads to a consistent 

quantum theory /2/, this model attracted a lot of attention /3- 17/. Another 

reason for this renewed interest is the general development in the field of ana-

malous gauge theories, namely the discovery that a gauge invariant formulatioll is 

possible in spite of an apparent anomaly /12, 18, 19/. This development might ~ive 

rise to the hope that even anomalous gauge theories can be quantized c~nsistently, 

which has also been expressed in refs. /20- 22/. The chiral Schwinger model 

served as a playground to demonstrate how an apparently anomalous theory can be 

formulated gauge invariantly. This gauge invariant formulation is extremely useful 

in order to establish that there are no genuine anomalies which could spoil gauge 

invariance. The reason for this freedom of anomalies is the fact that the anomalous 

contributions of the fermionic sector are cancelled by those of the Wess-Zumino 

scalars, which are automatically present in the gauge invariaqt formulation of the 

quantum theory /12, 18, 19/. The mechanism of anomaly cancellation has been in-

vestigated using nonperturbative methods like bosonization or solving the equations 

of motion /2 - 5, 10- 15/. Most of these works use the & "' 0 gauge ( El is the Wess-

Zumino scalar), which is identical to the earlier "anomalous" formulation without 

gauge invariance. It has been claimed that perturbation theory can not be applied 

since t.he exact photon propagator contains inverse powers of the gauv.e coupling constant 

/2, 3/. This feature, however, is a gauge artefact, which can be avoided in other 

gauges. 

In the present work we want to develop the perturbative approach to the chiral 

Schwinger model in two different gauges: i) the Lorentz gauge and ii) the so-called 

Jackiw-Rajaraman (JR) gauge, For these gauges there exist operator solutions /13/ 
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such that it is possible to compare the exact photon propagators. Besides these 

we are going to calculate the e- e and the photon- e mixing propagators to all 

orders in the coupling constant. Furthermore we show the anomaly cancella:.-.ion _in 

terms of Feynman diagrams and 1-.'e present lhe effective acLion of the ,::auge fi<>1d 

which results from integrating out both, the fermion and the Wess-Zumino scalAr. 

Our motivation lo consider lhe perlurbalive approach is Lwofo1d: Firstly, lhe Feyn~nan 

diagram calculation shows us explicitly how the cancellation of anomalies occurs 

and therefore might be more convincing than formal arguments. Secondly, it seem:.< <..lmt 

the above mentioned nonperturbative methods are not available in a realistiC' four 

(or higher?) dimensi.onal world so that perturbation theory is the only possible 

approach. 

ln secLion 2 we calculate the vacuum polarization diagram::;, using a modified 

dimensional regularization for the fermion loop. llere the can('ellation of the 

anomalous contributions coming from the fermionic and the bosonic secto1·s is exp.li-

ci tly shown. Tn section 3 we sum up the perturbation series in <Jrder t.o obtain th-= 

completely corrected propagators for the boson fields, To this aim t~e use t\;o 

di ffet·en L. me L.hod~, namely the exp.L i cit summed. ion of Fe.vnman d i ap:ramC' anrl a si mpJ e 

inversion of the kinetic operator in the effective action after int.egraling cut the 

fermion fields. In section 4 we indicate hew the~pectrurr.can be read off frcrr: the 

full propagators, and we discuss the special case of the covariant anomaly. 

ll. Vacuum Polari&fl,lio~t~ 

Our startin,s point is the Lagrangian clensity 

:i ~ - ~ f/. v F"'" + -if y,.u [i ~ + e YIT 4_r. ( ~ +, y, l] 1f 
( 1) 

a.--1 I I I'! [ '-U --e oe + ee"' (a-1)<>~ +£"'"1A +'i 
l /' o '-' GF 
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\iherc tile r-J:,]·.,_ilu~ ]]·,i.a;_[('ll ic: 'Jc:ec\: 

1 ,, ~ -14< ~ 1 

t. ' 0 1 
~ l y y =l> 

0< 
[ ~-

Y/'t< 

Eo< 1 

E If" 
/'"' 

(2) 

lGF is 1.1!<0' (,lll~t·t·.··,.ie,_'' [.:Flf.e Lixirw Lerm, ;..•hich i~; nS""tnPd to depend on tile 

ltaugc field orL1y. :'llc acticn1 cf ea. ( T1 ic: the so-call<>d standanl ac~ . .ion /10, 1:-~·· 

of the C'hin!l f:C'I~· ... -~r:r·,:T rr:o,iel 1,·:iUJ 1-~a~rrce fixin~ term. Interral.ion over the ferr.:ion 

f'ieLls yieldc' Lhe 'l:::t'on ,-f refc,, ·n 12/, pro\-ided lhal the regularization of 

llle rcnnion .Jc-LtTt~rinant is taken into acl·ount "-J'l'l'O!'t·iniely J··y l_lTC" !'anunelel' "u" 

'8, 9, L-,·. J· 1>" tiP(~,, :)'Tr ain:s lo ,cr•e lv>\Y the rec,nlllri:ation rl.qwndent raramelerc' 

,,f !.li(' f'el·~:ic'•.ir ·rn,; lrcsonic se;:-t,q·:· ·u·-:- n:-Jntcd to <:'<Jell other in p('rturbat.ion 

Lhccr~·. Ln c·r.:rr (.J l:avC' 3 cotl\-~cnlionnl l-:inel..ic term for the Hesc:-7.umino 3cn.lar, 

,.,e IT:'-'al•· B=iQ~?e'. 'L'I1i:' i>' l'''''";l·lc ~'o1· a> I, onl.v; a I is a ''reciaJ cn~'E-' 

18 h 't't'cct.• '"'J''ll':ll<'l,V lf'f. ,-.~··-+.:on ;m:l f'ot· a <. ! 8 becomeco '1 compLex 

r·j,·· 1 ·,-:·_], }-j~~c· ··: 1_,,!-:n ~ e to e ,..JJic:lt lns th<:' t,r,•nr: c-i~n. i:cnre fer the 

Jt:otr:cn t .,,., J'•'.~ • !'i · ''ll'. ·l·i· ~. '-' > 1, '•:-~r: + l1<> :JJ·~ ion !·•·2.J.' · 

S" \d'x {-{; 'f,v F"'"+ ify.l'[ ~ + efi? AI' (~+t'y,l] 'r 
( _:; 

-" g oe + ev;t=1e[:i-
l /' 

1 
E/',J")A~' + tr;.F t 

]'rom hen_' ·.1 ° r ('','1!11,311 

t-Ot'" Rl'P 8C' U .,,., [; 

Do 
1f 

Do 
() 

-
¥: k'" I' 

l 

k ' 

ma:,· 1' rc-<hi 

and lhe A- e vertex ic: given hy 

a-< 

= 11,~ f'ree "1'1";011 nn.J sral<Jt' j'Y'0P<w;R-

: !J) 

( ' \ 

' 
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' v~' =- e ~ ( kf'- 1 £ ~") 
J<'" 

(61 
a.-4 

For the time being we leave the photon propagator unspecified, since it depends 

on the choice of gauge. Finally, there is a speciality concerning the A~'t vertex 

for the following reason. We want to use dimensional regularization and, additionally, 

we would like to exhibit the full regularization arbitrariness. Since dimensional 

regularization is gauge invariant, it necessarily leads to the covariant anomaly /23/, 

which corresponds to a~ 1 (see eq. { 18), below) and does not reflect the regulari-

zation arbitrariness. Hence one is led to modify the fermion photon vertex in d 

dimensions to /16/: 

r;, = ,· e fi? ( r y)< + ,. s ~" y "y <) ( 1 + i r, ) (7) 

where 

7'+ 5 1+ 012.-d) (81 

e~'" =- e,.,f< Ef<" + a u - c1. ) (91 

such that in two dimensions the usual vertex is recovered 

ry +' s fJ v"v = v + 0(2-d) 
I' I'"' 'r -r )< • 

( 10) 

Usual dimensional regularization corresponds tor= 1, s 0, any deviation from 

these values means an unequal treatment of the light-cone components of the gauge 

field, i.e. a violation of gauge invariance, which is necessary to avoid the co-

variant anomaly. 

't 
The contribution TT;uv of the fermion loop to the vacuum polarization tensor 

is shown in fig. 1. It is given by the following expression in d dimensions: 

Tr" (k)= 
!"~ 

1re' ~ clJp 
(21rJ"-
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1 

0-pl' p' 

·7/r [( ,-~ .. s ~.:4'" y, H 1+ <y,> Cy· lp- ~ >J 

·(,-y.•<s evpYPy,>l1+iy,>fy·pJ 1 

Using standard integrals in d dimensions with integrands Py /p 2 (p-k) 2 and 

p~pf/p 2 (p-k) 2 reported in /24/ we obtain for (1 1) 

-rr,:w ,.eQ.1r-t-\ 
~~ 

£r;o-1Jf kc-kf 

where 

s£ 
(-1/), rd) n2- ~ J 

T'( d) 

T' 
j-t lrl) f 

q <-f' k 2 

<f 2-d } 

T'l''""f = l/r [cr~ +<.st;.,"y"y,>C-'~• '/,> y.,.. 

c~y, + ir o,fyPy,)l4+ iy,> Yr f 

( 11 I 

( 121 

( 13) 

In ( 12) only the second term has a pole in {2-d), Therefore we can evaluate the 

trace of the first term directly in two dimensions with the result /25/ 

kc-kr T' = 8 k k 
f'rTVf f' V 

, 
-4k,}'., 

+4-Y"k"k,+ 4 £"" k "k)< ( 14 I 

In the second term we have to calculate the trace of the y matrices in d dimensions. 

This is problematic in the terms which i.nvolve Ys linearly. In these terms one 
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cannot. asswne the anbcommutativity of y
5 

with the y ma':.rices. General scheme~ 

to do the evaluation correctly have been developped by several authors /~'6, 2'i/. 

These schemes are not needed here since we must not anti commute y
5 

w_i th V in Lhe 

trace with one sine;le ;y,- . We use the cyclic commutativity of lhe trace inste3~. 

Then we obtain /25/ 

'"' ~ T!'".-"f = lr r-.-'-s,J (2-rf.J~r iF) 

where the (2-d) factor comes from Yc Yv yc, (l-d_) Yv . Substituting 1!1~ 

and ( 15) into ( 12) and performing the limit d-" 2 yields !:.he fc:-rmion loor (',_'nl !' i-

but ion 

TT~ 
I'" 

_ t. e.2 

-7 [( 'T~ f '+ 1) ktJ,..~- 2 'i- k~- ~~ k "k..,- E,., k"~ f, 

This implies Lhc cf'fccl.ive action: 

W~[AJ~ ~'fcL\·[aAI'k" 

-A~' CJ,...+ ~.) 
'J "j p 
0 (~f..,-

By ma.k.ing the idcnLi f'ic3.Lion 

l ' r - S 1- 2 s "" 2 -r- 1 a 

Ef'~ ) A" } . 

we esLablish tbP de~;i,·eU relation between the :regularization pa1·ameler cf the 

( 16\ 

{ 17: 

r '"' 

fermionie ~i!'rtor (~;inrr r·+~~ = 1 Lh!"l'f' is on.ly one such l':lt'anJt'lc:r) awl Lll,.., rf':"'.!ln-

rization parauwter of the Wess-/,umino sector. !\, is mot.ivated by 1.he defin:iJ-:ion c1' 

the 1-coc·ydc, '-'llich~:-iv('s fho action for the Wess-Zumino field e us /10, 12/ 

Se= w"[A- ~<1e]- W~[AJ e a-., 
( 1?) 

- ~ --~-- ---- -~-~--~------~-~ 

- ' -

Tile c-<.··ineirlc-·nc•-' Lf r If'• \,•itll the res•JJL of the ferr.:ion integration in the path 

inl et;ral "Xl:ib[l_':' ll1e l.:f'll l;;nc\.'!1 feet that in t;.ro dimensions the one-loop 

rolarJ::aLi(:'ll Jlnt:;J'lir' l~' :_he on]~· fen:~io1•ic ccnll'ibuLion to Lhe polari::alion Lensor. 

Th:> conf 1·i l·u' ic_n lT 6 

/'l.' 
or l !:~" e -exclJallf:C' lo ~)_) 

1] ~ j li<]'J (' ,.~,! (' . ~ <l' "'•!l ... ,,,, 

TTe 
/'~ 

= -<e'[_::_:'_k"q + (a-1 
k 2. Q-1 J"f"V + .~4 ) k,.. k>) 

E/',k'k v Ev~k"k/'"] 
So llw Cc)J);i'~' I,, ,:•.·' ',',)1• t· •1ari ··1f '-·:J '· ·-'1 :".)1' l'C-9.-is 

2 

TTl"" = rr" 
!'" 

+ 1T e 
!'" 

0 '""(k' -kk) •' J,..~ I' u 

\,"; ~ h 

lfn 2 = e
1

a
2 

;·nc 

'lw 

I'!' 

~., !"'' 

R,u TT" 
/'" 

k"' n;.,_, 

a- 1 

<11' F h"l! tl•c" ·;n .... ,T · :·il"!: iGil<' 

·1: ···: 

ce 2 [.ca-1!k -E kP] 
lJ l)l' 

0 

r~- •::: 

:is o--ho\-.•n in r:ir,. 

(.'('1 

(;'1) 

• h'? <--n · ~n '1ll·l L·:::::· 

In llJ}c: ·,.;ey ;.·•· r~·c.Jv-:'1' tl!r n:osf. iiL)'c:·'-<H:'. ,.,,: :1 c:f' the W'lnper~on·bl~i··:"?- l_r':"''''li?!Jt 

v-r:i t h:i n pcrt:uriJH Lien + hcor·.1·, JJam•'ly :_ hR t t l],~r<~ 1-" nc genni ne anomaJ.1·. As men t i2r:co j 

above, Cl"lin'l! ·1imcJ:f'iona1 rei_'0J1ari::cd.ion '.)f Ll!<:' fcrmicn !oop ·::'C:!'t'"'-"r:cn:is :c a= 

:i.e. tc the c•v;al·ian'. anonialy ("--'E F~-'1}"'--'t dl)A'"U) 
/"'> _,uV 

TJ:= C8~'>" ~~ "' !10',· 

ever, :s excluded in our [!l'OcedlH'e since in this case the 8 1 field docs no~. 
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propagate, hence the $ -exchange does not exist. This again elucidates the 

necessity to deviate from ordinary dimensional regularization in order 

to exhibit anomaly cancellation perturbatively. In section 4 we also discuss a= 1. 

Eq. (21) may be used to integrate out both the fermion and Wess-Zumino field, 

this results in the complete effective action: 

[,' ~ 
eJI 

\ d~x {-
1 
if fj.,., ( 1+ ;•"> F~"" + l(}F} . {25) 

Eq. (25) coincides with the result of the path integral treatment of ref, /12/, 

it contains a complete summation of the perturbation series for the photon pro-

pagator. We shall make this summation more explicit in the next section. 

III. Boson Propagators 

In this section we are going to calculate the completely corrected propagators of 

the boson fields All and 9 . This can be done using two different methods: The 

first one consists of summing up all Feynman diagrams built out of figs. and 2. 

The second method relies on the fact that the effective action after fermion inte-

gration is purely quadratic in the boson fields. Then the corrected boson propaga-

tors may be obtained by simply inverting the matrix between the fields. He want to 

present both procedures for two gauge choices, ngmely the Lorentz gauge d A" = 0 

" 
and the so-called JR gauge I 13/ d...,_ ( opv-+ __ 1_~ e"'v) A = 0 

/ rr a.-1 v , 'l'he first one 

is the most popular gauge, the second one is motivated by the fact that, classically, 

9 and AIJ. decouple in this gauge. At this point we want to stress that it is not 

possible to use the [) = 0 gauge within perturbation theory since this gauge does 

not allow to define a free photon propagator. 

__.r:-

- 9 -

III a) Summation of !"eynman Diagrams 

i) In lhe Lorentz gauge the gauge fixing term in the Lagrangian reads: 

t. -< 
GoF = J.cl 

(~A)<)~ 

with ~ being the gauge parameter. This implies the free photon propagator 

0 

Dl'" ~ k' 
(~/'"- (-1-ol) .,..:u) 

The full All propagator is given by {cf. fig. 3) 

D!'" 
= o· 

I'" 

00 

2 [ OT· o· >"'J'' 
"1=0 

Using cq. {21) f'01· fJ. ... we find 

2 

CTT· o•)~ p= ~· Cf' fl ~) k' 

which may be inserted into eq. {28) to yield 

v 

D
- l:(l{. t" L.l:z oD t."t 

·.uv - - -, k k - - ( q - ~) '<> ("" ) 
I k :r " ~· II'" F ::;;0 -;;r 

= "~',.,, [ ~,...,-[1-«(1-::)] ·'\~" l 

I 26) 

I 27) 

I 28) 

I 29) 

I 3D) 

which agrees wil.ll lhe rt'sult of lhe operator solution /13/. The Wess-Zumino pro-

pagator is shown in fig. !1, here no iteration i.s necessary since the full photon 

propagator is used: 

D = e 0: + D
9
° (- i \j ) D)<" c < V,..) 0; 

~k'(lt~m') [ "' ""'[ • ( ,' •t ~- a• a -~+o( 1- kl )(a.-1) 

I 31 l 
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Finally, the full A-f] propagator is {cf. fig. 5) 

D.u= D iV"o• 
I f'V G I 3.· I 

, 1 E 
_ -e~. [<((1-",;', )~-a=T !"" - • I' • k" J . 

This completes our diagrammatic calculation of the exact boson propagators, the 

results may be collected in the matrix: 

'?L = ( o~'"' o~' ) 

- D"' D e 

~o'(k'·m') 

,. I'" 
-" ~ 

+[<-oL(1- :;'>H~'~" 

,,--.[ ""' v -<e ra-1 .L (1-k" )k 

_.!__ E"P k ] 
a-1 f' 

' e r.:::f' [ <>' ( 1- ";.' )k -" 

-'- [/'< k J 
Q--1 c:L 

k ·- ""' ' -;• [a- 1 

' ' + ,{ ( 1- "f, ) (. -') 1 

ii) ln Lhe ,JH [;1Htge Lhe t_;<luge fixing Lerm is given hy: 

i = ..:..!._ [ d ( ql'~~-'- t"'">A ]Q 
GF ~ot /"I a--1 " 

I 331 

I 3" I 

In order to ca1culate the free photon propagator, the quadratic term in A contained 

in the action has to be written in the form .i AF H 0 Av 
, I'" , the free propa-

gator is i times the inverse of ~v . In the present case M0 is of the form 

H;v = Q ~!'" t b ~ k,.. + -c (~" k "k,-1 E,.., k"";.) I 35 I 

- 11 -

L.hcn {1<! 0
)-

1 
can be parnmeLrized as 

( ( H 0 r') '""= X ~I'"+ y k I' k v + d e" ~ k~ I, v + [ V< k" k I') I 36 I 

with 

X=a~bk2. 
a (a+ bkl)+ .c 1 k'~ 

- h 
Y =a (a-+ b k z) + .c t k ~ " 

-,e 
{Til 

a(a.+hkrJ+<i:.EJ?'f 

This may be used to derive the free photon propagator: 

Do -l [h z -t k ~ "'- ot 1'"=0 ~,uv+(.i-1-10 _, 1 ,) ,..k..,+;;=;Cj..,k k,t £..,.,k ~)]. I Jill 

l'rf'ci~ely (t~~ in Lll<: ca~;,, or the Loren[.:; r,aur,e, the rul.l propagator is given by 

Lhc tl i aeram or f.i f,. ] (we- employ an obvious index free notat.i on) : 

~ 

D= o•.z <Tro•!"' 
.... o 

The sum can be performed, if one observes thaL 

o•rr o• = ( o•+ < « !J ) TT ( 0 °+ ' « .U 
k' k' 

..,• =-p:co•.,.," !!<) 
k' 

Th.i~; irq>l i c•s 

D=-lcL kk 
k' 

L ~ ' 

+ ( D o+L cL T: ) ~o { ;, )"' 

HcinserL.inr, ind.icr>~;, we rind for the full phoLon propa~al.or: 

~v= k~'-mt [ Q - [1+-' -
lfA"V (a--1)1. 

o{. ( 1 - ~: ) ] Ji,.,_k 
k' k' 

•r.:<Jk' ( '_,u, k"k..,+ E,~ k"kl")] 

I 39 I 

(!1[1! 

(ill) 

( h:?) 

Again, this agrees with Lhe result of the operator solution /13/. 'l'he full fJ-e 

-, 



- 12 -

and A- 8 propagators are given in figs. 4 and 5, respectively, the calculation 

yields the complete propagator matrix 

-··,,.~ [4• .!_ ,- <i-(4- ~·)"k"k" r (cc-~J ~t ~ 

.:!.- r,,. •• k"+ ,""k '") a.--1 Li .;. .;. Q 

I ;;k-
,r--r '"'t v < e r•-' "- ( 4- .-.) k 

ier.:-7«-(4-'!f;: )k-" \ 

(k ' ')[ ot ·~ '] --rn 1-- (Q-1) -at .1r t / 
( 43 I 

We note that the A- 8 propagator is proportional to the gauge parameter, it can 

be eliminated by choosing ~ 0. This is the quantum analogue of the classical 

statement that A~ and 8 decouple in this gauge. 

As promised in the preceeding section, we want to clarify the procedure of 

integrating out the fermion and the scalar field. The resulting effective action 

may be achieved by inverting the full photon propagator. r,et o;v be the free 

photon propagator in any gauge, then the inverse of the full photon propagator 

is: 

0_,: [ 0°· Z ITT·D'J"' f 1 
[ D'· (11.- TTD'T' F' 

"'"'0 

= D ,-' TT N'- TT 

M0 gives the free action for the gauge field while TT leads to 

{ 4h) 

~ F /)'ll_ 'l.. F~"'"" 
'f- j-'V Q 

such that eq. (25) is valid for any gauge which depends only on the gauge field. 

The restriction to these e;augcs is necessary_since otherwise the vacuum polarl-

zation tensor would become gauge dependent '"'hich is out of the scope of the pre-

sent work. Eq. (25) can also be verifi"ed in the I,orentz and ,JR gauge by explicitly 

inverting the full photon propagators of eqs. (30) and (!12}, respectively. 

-
- 13 -

IIIb) Full Propagators via Matrix Inversion 

When the fermion field is integrated out, the fermionic part of the action is re-

placed by Wlf[ A] (cr. eq. ( 11)), then the Lagrangian is quadra1Jic in (A!J., 8 

and may be writ len according to: 

'£: 
:t 

where 

(A"', 9) (H;.• 
\-vv 

1'1e : k~ 

v"' 
Me )(;~) = i A") (A~",9)..A1_ (

9 
( 45 I 

( ll6) 

V is given by eq. (6), and M contains the contributions of the classical gauge 

" "" 
field action, of w'~-[ A] andofthegaugefixingterm. Now we defineP to be i times 

the inverse of Jk , we use the parametrization: 

? t J!{-1 = ( a~'" b"') 
-b" d. 

with 

d= [Me+~ (M-')~'vv~r 1 

(a-'))"" = 1'1/w + \j. ~ e Vv 

b"' = - c{ ~ ( N-')I'V - a"'/' \j. 4 

Me 

Eqs. (!18) and (l19) can he rewritten i.n l.erms of geometric series: 

( 471 

( 48) 

( 49) 

(50) 
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~ 

[-i ~ (< W')~"" ' v" r:t• "' ] ' I 51 I ' i·d.=/'1. z 
?t:O 

(52) • "" [ . "'1 t'·a~-'"=(iW')~' ·~, [(t'V)~ 9 (-,'VJ(<W'J] " " 

which may be represented diagrammatically (figs. 6 and 7, respectively), where 

the photon lines already include all fermionic corrections. Hence id is the full 

e-e . uu · t n•• · propagator D9 and l· a lS the full A-A propaga or . Insert.lng some 

factors of i into eq. (50), i · b lJ is recognized as the full A- e propagator D u 

i·b"=-(<cJ.)(-<~)(;H·'J'""= t·a"'~"ci~) ' 11• I 53 I 

This is shown diagrammatically in fig. 8, 

Hence we may conclude·: the completely corrected propagators, containing all 

powers of the gauge coupling, can be achieved by simply inverting the matrix .A{. 

We also performed this calculation of the exact propagators in the Lorentz and 

JR gauge, and' the results are identical to 7L and PJR' respectively. There is 

only one point worth to be mentioned in this calculation, namely the inverse of 

Mf-llJ , This is given by: 

Lorentz gauge: 

(M-')~-'"= 1 
-e 2ca-1JCJi!.'"'"l)+~ k 1 (.ft~ el(ct-t-1')) 

[[ < ' l ] ,., [ < ' '] k"k" · -;;k+e(o-<J t - (1-;;_)k-:le 7 I 54 I 

-f, ( E ,u .t k,. k " + E "~ k,. k I< ) } 
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JR gauge: 

(M-'!"'" ' [-k' ~'-"--'-c,~'"k k"• c""k k"') ~~(k!.-.,.,lJ :J a--1' (IL ttl 

k' '(1 ' ) [ ' l ' + a -+ ~1 z - ci k a. -2-m (a--1') J 
kla:l- ot.-mz(a-1)2. 

I 55 I 

k"'k"] 

In both cases the limit o(. ........_. oo (i.e. no gauge fixing) reproduces -' &'"" of 

ref, /2/, which is the exact photon propagator in the e = 0 gauge: 

r ,~ .. ,- t. [ I' • 
lF -4~-ml -;, 

A •' +,_ .... [(e-,-2)k"'4"- ,,. •• _,._, •• k.4 .. ]} I 56 I 

G'"" has a JlOle for e _......,. 0. This is related to the fact that in the $ = 0 gauge 

a free photon propae;ator does not exist and therefore a perturbative treatment is 

not possible. Finite values for oC- allow for a free photon propagator (cf. eqs. 

(27) and (28)) and hence remove the pole for e ......... O, thus allowing for a perturba-

tive approach. 

IV. Discussions and Conclusions 

The propagator matrices can be used to establish the presence of a massive state 

perturbatively. To this aim we study the residue matrix of Y at the pole k 2 = m2 : 

1/.v,[ lj[ ' ~ ~ .,., • ] 
I 571 ( ' '" ,,, " 

""- ''"'") -"" 'J 4 Ya-.' 

'lnt t't> ~"'k ,.,• -- [ 
" ' YQ:7 .. 



. _..i> 
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J?v., [ 'j)~R ' k '~ ""t j 

-'»1
1 p~ [4 ... ..:!_ ] 1 -~"k v 
~ (a.-·1)l fl 0 I 58 I 

= ' 
_.!__ (£"'"4 ~"+ t""t kA) 
~-1 ~ ~ 

m' 

0 0 

In both gauges, the residue matrices of'- i 'P have three eigenvalues, two of them 

vanish and the third one is positive for m2 > 0, exhibiting one physical state of 

mass m. Unfortunately, it is not so easy to count the massless modes by looking 

at-iRes[?, k 2 0} since one is accustomed to find more nonvanishing eigcn-

values than physical states. We found two nonzero eigenvalues with different sign. 

If the usual procedure /28/ can be transcribed to our case, too, this means that 

there is no massless state in the boson sector. Then the massless state, found in 

the bosonized version /2, 3, 15/, has to be interpreted as the translation of the 

fermioni.c pair of lef't and right moving states. Making these statements more pre-

cise, however, would require a detailed investigalion of lhe physi.cal subspace of 

the Hilbert space like in the Gupta-Bleuler quantization /?9, 30/, this •..;e did not 

intend to do. 

Our fi.nal j tern is the case a 1. As we already pointed out, this case is 

achieved by m·di.nary dimensional regularization which implies the covariant anomaly. 

For a !.he Lagrangian reads 

'£=-~ ~~F"'"+ 'iy/'[,~+erti'A/'C1+<Vc)J'tf 

+ee'ii t"'"A /' ,_, + ;[ IJ.F 
I 59 I 

Here anomaly cancellation can not be exhibited diagrammatically, since the 8-

exchange (fig. 2) does not exist because the B' does not propagate. Functional 
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integration" over e' gives S!<j..e""Av) this means that this case is 

anomaly-free, too, since the covariant anomaly is proportional to E_r<V F"'JJ 

with F' 1~ v = 0 due to the J -function. The latter can be exponentiated as usual 

to give 

f. < ~ 
e' ~ i1 ( ~ '"'"A") 

-1 

lrJ 
F F-"" 
/'" 

I 6ol 

with f -----'»0 in order to reproduce the J -function. This implies the free photon 

propagator in the Lorentz gauge: 

D' 
!'" 

-' rr-11k' [ r ~r- n- "r+ <i) 

~ 
]-• 0 

-' « 

~· 
~ 4., 

'L'here are no loop corrections since: 

D 0 TT'~D 0 =0 

k_,- L" 
-k-,- 1 

I 61 I 

( 62) 

This means D [) 0 

fJ.lJ f!.V 
which vanislles in the Landau gauge ( r:L = 0). Hence the 

quanlum system, defined by eq. (59) together with the prescription to regularize 

gaur:e invarianLly, does not. contain any degree of freedom in the boson sector. 

Again the massless boson, •..;hich has been found in ear.lier works /2, 3, 10/, hns to 

be construul as the bosoni.zed ver·s Lon of the fermionic degree of freedom. 

Tn con~lll!;ion, we h:.tvr• stulliYd the perturbat,ive approach to the gaur;e invariant 

version of the chiral Schwinger model. Precisely as in the nonperturbative treat-

ment it i.s the Wess-Zumino scalar field •..;hich makes the absence or anomalies trans-

parent. Gauge invari.ance, l{hich is not a feature of the action, can be read off 

from conservation of the vacuum polarization tensor TT/"v . Hence in this case we 

have just the contrary of Lhe usual ar;prcach to anomalous gauge theories: there 
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the action is gauge invariant and the corresponding quantum theory is not, here the 

action is not gauge invariant but the quantum theory is. This fealure, which 

is astonishing at first sight, can be understood in the path integral approach: 

there the gat~e variation of the classical action cancels that of the fermion 

measure /12, 18, 19/. 

-----
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Figure Captions 

F'ig. ,, 
Fig. 2: 

Fig. 3: 

Fig, l1: 

Fig. 5: 

Fig. 6: 

Fig. "(: 

Fig. 8: 

Fermion loop diagram 

G -exchange diagram 

full A-A - propagator 

fu.ll e- e- propagator 

full A- e- propagator 

diagr·ammatic representation of i d 

(~ cont.Ftins fermion loops) 

di.ar,rammatic representation of i a).J.V 

(~contains fermion loops) 

diagrammatic renresentation of i b lJ 

( ~ contains fermion loops) 
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