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ABSTRACT. Symanzik's improvement programine is pursued for Wilson fermions using
the concept of “on shell” improvement. Twisted antiperiodic boundary conditions for
lattice fermions are introduced. The energy values and wave functions of quarks in the
twisted world are considered to one loop order perturbation theory. The coefficient
c(g]) of the proposed O{a)-“on shell” -improved action is caleulated to first nontrivial
order by considering a suitable “on shell” quantity.

1. INTRODUCTION

'In lattice gauge theory a gauge invariant ultraviolet cutoff is introduced through the finite

lattice spacing ‘a’. Consequently all physical amplitudes become cutoff-dependent.
From the work of Symansik [1] one learns that for perturbative calculations the following
expansion holds for lattice Feynman diagrams

8

!
D~ o Z tnma”(loga)™ (1.1)
Om=0

a—0
n

where w > 0 depends on the superficial degree of divergence of the diagram and ! is the
number of loops contained in it. ‘
From this formula one sees that if after renormalization the lattice spacing ‘a’ is decreased
then the corrections to the continunm Bmit terms only die off relatively slowly. It is there-
fore worthwhile thinking about how to improve the continuum limit behaviour of the lattice
approximation.

To this end two procedures have been proposed. One is due to Wilson and is basically non-
perturbative [2]. The other approach given by Symanzik uses weak coupling perturbational .
methods [3]. :

Symanzik’s method employs the fact that a lattice action for a given continuum theory is not
unique, i.e. various lattice actions yielding the same continuum Kmit exist. Given one lattice
action for a certain continuum theory other lattice actions with the same continuum limit
can be produced by adding operators obeying the symmetries of the theory and containing
higher powers of the cutoff,

The main idea of Symanszik’s improvement progranmme is to fine tune the coeflicients of these
operators in such a way as to eliminate the cutoff dependency up to a given order in the lattice
spacing. The values of these coefficients can be determined perturbatively or experimentally
via Monte Carlo simulations.

The action obtained by pursuing this programme is universal in the sense that all physical
quantities calculated with it are supposed to be improved. Whether this is true in the frame-
work of lattice gauge theory is however not yet clear. Symanzik himself was able to show
however that this was indeed possible for the $%-theory [1] and for the nonlinear o-model
4. ,,

For the nonlinear o-model Monte Carlo simulations employing this action yielded encourag-
ing results {5,6].

Despite of the conceptual problems still pending much effort was invested in extending
Symanzik’s programme to lattice gauge theory.

This was first pursued for pure Yang Mills theory in a paper by Weisz [7] dealing mainly with
the general form of the action and tree level improvement.

He found that at ruost three next to nearest neighbour terms have to be added to the standard
one plaguette Wilson action to perform {a?) improvement and by considering “classical”
improvement found for the tree level values of their coefficients

() _ 5 (m_ 1 (o) _ (0) _
oy = T o = 3 c; =¢; ' =10 (1.2)
where
B3
2 (¥}
cilga) = Zgﬁ e, (1.3)
=0
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The next step was an attempt to calculate 1hese coeﬁictents to one loop order perturbat:on

i 1iy only ylelded'mforma—

_da‘rd ?lf( ) Wilsen

-3
}(0.0305219) + 7(1.1043780)). (1.4)

(2N?
— N(0.0012
(0.0012167(1)) + TaN

The last steps to complete the treatment of Symanzik’s improvement programunte for pure
Yang Mills theory were then made by Liischer and Weisz. In a sequence of papers [8-12] they
presented both theoretical contributions and numerical caleulations.

As an important conceptual tool they introduced the concept of “on shell” improvement.
Instead of demanding the improvement of all Greens functions this means improvement of
only all “on shell” quantities, i.e. low lying {with momenta snall compared to the cutoff)
energy levels, S-matrix elements etc.

By studying the behaviour of the action under transformations that leave “on shell” quantities
unchanged it is possible to distinguish between two kinds of operators. If the coefficient of
an operator changes under such a spectrum conserving transformation of the action then its
valiue has no effect. on “on shell” quarit""'ties “Operators with this property are called redun-
dant, their coefficients are arbitrary and can be chosen for convenience, This property is valid
to a.El arders of perturbation theory.

It is therefore only the ‘coefficrents of operators that remain unchanged under spectrum con-
serving transformations that have to be determined perturbatively or via Monte Carlo.

In the case of pure Yarig Mills theory this means that one of the coefficients was found to be
redundant. It was théi set equal to zero for canvenience so that after a change of notation
compared to [7,8] i.e. ¢z ++ ¢z only the remaining two coefficients ¢y and ¢z had to be deter-
mined.
The main nunrerical result presented by Lnscher and Weisz is the caleulation of these coef-
ficienils to RTSE HOMEIVIAL STdeT Perrirbation theory, veriying ulwo the result given in i8] by
means of a completely independent calculation.

For this calcu!atlon they developed several eﬂiuent and usefal numenca& techniques {12],

Jn 3 fﬁc:enh-mfegraﬁmn routme.f iODs efisuring e@ﬁnentnl con-

vergence lﬁr“éqmﬂlﬂ‘ﬁﬁt dmm&tlon W]‘ll(‘h in addlhomaiso nges a_ re_hEI_e- esilma{e Tor the

error of {he numerical integration. )

The second important method is to compactify two spa.(‘e dimensions by introducing twisted

per:odlc b‘Gﬂ?rdErjf camht‘rmm thus providing-an explicit infrared-cutoff-and-giving-complete
3 ie theory then has B TS 4 am’d thre lowest lying stable

parhcles can, b.e € pﬁrg§wd,
gluon-gluon scat q :
provement Eo_eﬁimt‘.«;}ferﬁmes avaxlabl&

2

which can only be rendered completely by the sacrifice of chiral symmetry. As this, at least
in the framework of the fermion lattice action proposed by Wilson [13], is already performed -
by adding an operator containing a higher power of the cutoff it is quite suggestive to try to
soften the breaking of chiral symmetry with an improved action. This could ultimately lead
to a quicker regain of chiral symmetiry when taking the continuum limnit.

Although some early attempts [14-16] had been made in that direction no systematic treat-
ment using especially the fruitful concept of “on shell” -improvernent had been given.

The first steps in that direction were made by B. Sheikholeslami and the author [17].

In [17] the structure of the action suitable to perform improvement for Wilson lattice fermions
was studied and tree level improvement was carried out.

In the work presented here the improvement coefficient emerging in the scheme of O(a)-*on
shell” improvement is calculated to one loop order perturbation theory.

To this end the results obtained in {17] are summarized in Section 2.

The remainder of the paper is then organized as follows.

In Section 3 the notations used are given.

Section 4 deals with the extension of the concept of twisted boundary conditions introduced
n [12] to lattice fermions.

In Section 5 the propagator and vertices emerging from the action quoted in Section 2 are
elaborated for quarks with antiperiodic twisted boundary conditions.

In Section 6 the problem of the spectrum and stable particles is discussed.

The purpose of Section 7 is to find a suitable “on shell” quantity to vield the necessary im-
provement condition to one loop order. To this end a quantity is studjed that yields the tree
level improvement condition.

Section 8 deals with the fermion energy and the fermion wave functions to one loop order.
In Section 9 the definition of the quantity for which improvement will be demanded is given
and the Feynman diagrams contributing to its calculation are depicted.

Section 10 deals with the integration routines used to perform the lattice integrals in the
continuous directions.

In Section 11 the technical aspects of the calculation are discussed.

In Section 12 the results are summarized and discussed, the final result of the computation
is presented and possibilities to extend the calculation to two loop order are proposed.
Further technical and conceptual aspects of the calculation are presented in the Appendices
AB.



i1 mm“.n .milm

2. “ON SHELL” IMPROVEMENT FOR WILSON FERMIONS

Here the main results obtained by B. Sheikholeslami and the author are summarized because
they are the basis for the work presented in the following Sections.

While in pure Yang Mills Theory only lattice artifacts with even powers of the cutoff appear
(i.e. O(a?),0(a") ... corrections to the continuum limit) in lattice QCD with Wilson fermions
also odd powers of the cutoff emerge. As stressed in [17] for lattice fermions two different ap-

proaches of improvement are possible. In the minimal approach only the especially disturbing-

O(a) terms are intended to be cancelled. This concept will be called O(a} improvement in
the following. More ambitious is the task to additionally remove the O(a?) corrections to
the eontinuum limit which will be called O(a?) improvement. For both O(a) and O(a?) im-
provement the most general form of the lattice fermion action was derived. This amounts to
the construction of an action containing (up to total derivatives) all possible gauge-invariant
scalar operators of at most dimension five for O(a)} and six for O(a?) improvement that are
invariant under discrete rotations, parity and charge conjugation transformations.

For O(a?) improvement one ends up with 18 admissable operators. Considering the isospec-
tral transformation of the action only five of them are found to be redundant. Although to
lowest order classical improvement is compatible with “on shell” improvement and allows for
a considerable simplification of the action the coefficients of the remaining non redundant op-
erators of higher dimensions remain to be calculated in higher orders of perturbation theory.
Especially the disturbing four fermion contact terms cannot be excluded. As moreover for the
gluon sector the O(a?) improved action has to be used the approach of O(a?) improvement
for Wilson fermions is impractable and must be abandoned.

If one however only pursues O{a) improvement the situation looks favourable. For the gluon
sector the standard one plaguette Wilson action can be used, because it only produces O{a?)
deviations from the continuum limit which are not intended to be cancelled. The action is
drastically simplified and contains only two admissable operators of dimension five in addition
to the lowest order operators of dimension less or equal to four.

Consideration of the isospectral transformation of the action shows that only one of them is
non-redundant i.e. its coefficient has to be calculated perturbatively. The redundant oper-
ator can however be used to break chiral symmetry to lowest order and thus aveid species
doubling. At first sight it is surprising that the term which removes the unwanted additional
low lying energy states at the edges of the Brillouin zone gives no effects when considering
& spectrum conserving transformation. It must be noted however that the concept of “on
shell” improvement only applies for all momenta small compared to the cutoff i.e. not for the
large lattice momenta where species doubling arises.

One ends up with the standard Wilson lattice fermion action plus one additional term which
can still be formulated using only next neighbour interactions

4
5= EE > ;—a{—-2[ﬁfoa +4 — ghbo( gl ) B(2)¥(x)

w

z all
lattice aitea
+ SR [(r - 1k ¥z + 4) + (r + )0 (2 — )%~ )] 2.1)
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- 5B S Ueloe Pun(e) V() -

B

Where
Pus(2) = (Tl + a)U*( + n)v*(z)

+U 2 — V)U+(:I: —a—oYWule — g - 2)0u(x — f)
—Uu(z)U)f (z — i + lJ)U.T(m - #)U»(z - i)
U (2 = 9Wu(z = DWulz - &+ B)U S (2))]

(2.2)

is a selfadjoint version of (2.9) in {17] and the shorthand notation ¥(z),¥(z) for the N¢
row and column matrices of the fermions transforming under the fundamental representation
of SU(N¢) and U,(z) for thé SU(N¢g) matrix of the parallel transporter has been used.

" Furthermore a mass-subtraction term be(g3) has made its appearance. As is well known and

will be discussed in detail later, this term is necessary in order to remove unwanted O( ¥
effects in perturbation theory for fermions of zero bare mass.
The coefficient

clgh) = D Mgp¥ (2.3)
=0

has to be calculated order by order in perturbation theory by imposing suitable “on shell” im-
provement conditions.
To lowest order [17] one has

M =r (2.4)

where 7 is the coefficient of the chirality breaking term introduced by Wilson.
‘As explained above “on shell” improvement cannot be used to determine suitable values of r
because it only puts the constraint (2.4). :
To this purpose the discussion of the energy momentum relation of the lattice fermions as
given in [17] proves useful.
For improved actions these considerations have been first made by Liischer for a free scalar
field [18]. '
For the action (2.1) the following observations are made. Consider the free massless theory.
The one-particle energy states are related to the poles of the time Fourier transformed prop-
agator. They are given by

E; =logz;

where z; are the poles inside the unit circle.
The main effect that arises is the appearance of “unphysical” energy states besides the “phys-
ical” ones which approximate the continuum energy momentum relation

EXp) =5 (7 = {P1.P2,P3))

For r = 0 there are two energy states, one real and one complex, whose real parts coincide.
As a consequence of chiral symmetry there are additional zeroes of the energy at the edges
of the Brillounin zone.

In the case r # 0 the “unphysical” second energy state has a sinall-p expansion of the form

1, (r+1) 1 {(X¥+1),

E(p):;mg( 1)+ e 7+ O(a®). (2.5}

One sees that for r < 1 the solution is complex but its real part is shifted to values above the
“physical” energy values as r approaches 1.



For r = 1 this solution becomes infinite corresponding to a pole of the propagator at zero while
for 7 > 1 B{p)} is real and for r >» 1 again tends towards the “physical” energy momentum
relation, . - S :

The important observation is that for v = 1 thiS unwiiited state is completely removed,
so this is the natural choice for the coefficient of the chirality breaking term in the action.
Another merit of #his-cheice of s ‘thatsip the-hopping parameter expatision no backtracking
is encountered. The calculation presented in the following is thus done for

“p=1  and V=1 o (2.5)

3. Notations

Throughout this paper a
spacing ‘a’ set equal to on o1
always be reintroduced thro
4 'denotes the’
For the parallel transy

with antihermitian gauge fields 4, belonging to the fundamental representation of SU(N) is
Forthe fermion:sector. &:set.of euclidean y-matrices With the properties

o L ltmnt =2
P e ’f)': A

f’.;w Z ;if)’m?’u]

is T ;
When performing explicit calculations the following representation was chosen

4 )., %-:1( ey 03) #=1L2%3
) J . -

will often be used.

4., FERMIONS WITH ANTIPERIODIC TWISTED BOUNDARY CONDITIONS
ON A LATTICE WITH TWO COMPACT DIMENSIONS

The concept of twisted periodic boundary conditions for gluons has been discussed in detail
in [12]. Here the modifications necessary to formulate this concept for fermion fields are

elaborated.
As in [12] consider a lattice with finite size of L lattice spacings in the ;- and z-directions.
Winding once around the torus in these compact directions the gluon fields Uy, transform like

Uu(z + Lo) = ULz} v=1,2 {4.1)
In this expression the §2, are constant SU'(V)-matrices with the following properties

00 = =G, M (4.2)
ar (-1l w=1.2 |

The corresponding gauge group Gq consists of all fields A(x}eSU(Nc¢) with
Alx + L5) = QA2 (4.3)
and U,(x) transforms according to
Uu(z) = A(@Wu{x)A ™ Hx + ). (4.4)
To formulate twisted boundary conditions consistenily for quark fields one introduces in
addition to the colour group SU{N¢) a so called “smell group™ SU(Ng) with Nz = N¢ = N.
This idea was first developed by Parisi [19] and its practical use has been pointed out to the

author by Liischer. Omitting spinor and flavour indices the quark fields are then Ne x Ng =
N x N-matrices ¥(x) = ¥_[r) with e.g.

Y ol z)Vea(x) = Tr(R(2)E(2)).

©.8

Now an analogous condition to (1.1} can be formulated
W(r + L9} = BN R w12 (4.5)

The additional factor €/ ¥ guarantees the antiperiodicity thus suppressing even multiples of
the minimal momenta (especially the zero modes) because of

¥(r + NLi)y= —¥(x) r=1,2 ’ (4.6}

-1
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The gauge transformations of ¥(x) and ¥(z) under elements of Gq are

Piz) = Alz)¥(z) (4.7)
B(z) = T(x)A ™ ()} (4.8)

A basis of plane waves is given by
TpeiPz (4.9)

Antiperiodicity puts the following constraint on the momenta
Tp=—e®MNr,  i=1,2 (4.10)

Thus
pi= %(3.},- F1)  vpmel. (4.11)

The I'p are unique up to a phase. As in the gluon case it is chosen to give

r, = :ltV:+vz!(V|+v:V1)Q;VzQ;’1. (4.12)
Define don d
[=@ny R (413)
> P -
with

p:(POgP13P3); _WSPU;Pa <m
T
p1={ppm) = ﬁ(%/] + 1,2, + 1), vi,2el0, LN — 1IN Z.

Then the relations

Tix) = fe"l”r,,-i!(p) {4.14)
p

and

F(p) = Y e P Tr{T] ¥(a)} (4.15)

T

for the inverse hold.

Apart from spinor and flavour indices \i’(p) is a scalar gquantity because the colour and smell
group structure is absorbed in the T'y.

The analogous formulae for ¥ are

(o) = ]e‘fp*r‘;'i:(p) (4.18)
P
T(p) =Y e Tr{l,%(x)}- (4.17)
8

For quark momenta p,p'!

ki
p;_:-ﬁ(2U1+1,2V2+1) vied

P = -I—’Z-rﬁ[Zu; + 1,2y + 1) vieZ

as for gluon momenta the symmetric and antisymumnetric products

(2,2} = vaf + vt + (11 + 22)(1 + 1) (4.18)
{p, '} = 1ty —1av) {4.19)

are intreduced.,
Using these expressions one defines

oHp, p') = 2 HPR 2P (4.20)

If k%' denote gluon momenta [{12] with

2“ ! 2“‘ L ! !
ko= patunpa), ko= oln,m)  p el
one finds for the products of momenta occurring in Feynman diagrams

Tplpe =zlk, k' g
Pkrp =z{k, P)rk+p

(k + p is a fermion momentum) (4.21)
g IS PP qp, ) Il N {p' — p is a gluon momentum).

5. PROPAGATOR AND VERTICES OF THE O(a)-*“ON SHELL” -IMPROVED LATTICE ACTION
FOR QUARKS WITH ANTIPERIODIC TWISTED BOUNDARY CONDITIONS

Using the Ansatz (2.1) with r = ¢ = 1 and taking into account the twisted boundary condi-
tions for the guark and gluon fields the quark propagator and the guark-gluon vertices are
given hy

g8 =
Hp) S5 ()~ Bbola ) + S Lol Y A (k). A, ()
B

r

E(propr = 3 kY E(EOVEC(pr, i ks s ke Y B(p2) (5:1)

i=1

Tquark momenta are always denoted by p, p; etc. whereas for gluon momenta k, &; etc. are used.

9
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One finds for the inverse propagator

5:Mp) = My +Z(i1,, sin p, + 2sin’ ‘%i) (5.2)
I

and the quark-gluon vertices

V]Fe(pl .-IPZ; kyp) =

2 5 i
.‘."(k,pz){—’)‘“ cos ‘—’”ZLJ“ + isin (-‘u—‘%?ﬁ’—"i - ;:(%L) cos Lzﬁ Y o sin k,.}, (5.3)
13

erFG(pl :pZ;k]:fJ;’\'z!I}) =
- %Z(Pl = pz2-p2)

. {Sw [{:(k. Jhay + :(khklﬂ [— cos [P—"i& + iy, sin (—P'?”)"]

— felgaMz(ha kz) — =(ky, ky)] sin P52y "o (sinky, — sinkzn]
a2
+iouwelg?) [k hy) - 2(ky k)]

- k - . k P 3
. {?. cos {l‘zﬂﬁ ros =2 cos t"”—zp*-)i cos *—5’- ~ cos ¥ cos *JZL] }

P1 kz,l—’

and
VG 1 por by ik, ks, o)

= —3:tp - pz,pz)[[:(h.kz = ky)ztha,ha) + ks ke )s(e + sy k)]

+ . . 3
. {(“,,.e‘w (% {7, cos pitp ,zp’—)—"— ~ isin et z—mpﬂ" )

2 (Pr—p2ha X [ (Pr—p2)p i K2 ki —kaldy
+ clg,)cos _—‘—2—2 = L "'up(E sin{p; — p2)p — cos ——-F sin < cos 2 )
P
2 I {(p1—p2} tpy—p2) (haths)
-+ ay,.c(go)[%w sin 8 cos IR ooy SRR cog 200

T S VY T
+ bup sin ST cos (B 4 ko),

Ty —pale Ry -k
sin (ks 132;-2#;).; cos ¥ ZP:L cos (L1 ] a]p]}

b

+ 2 cyel. Perms.}. (5.5)

ka, T
P1
ke,U
Pz
ky.p
For VFC(py. pui k. p) the Slavnov Tayler identity holds:
T pprrk ) = isthop) {SE () - SE' (o)} (5.6)

11



6. SPECTRUM AND STARLE PARTICLES

Calculated in e.g. the Coulomb gauge the fermion two point function is expected to have
poles corresponding to the existence of massive charged unconfined fermions in the iheory.
The LSZ-construction can be applied and S-matrix elements calculated in perturbation the-
ory. ]

Consider momentum configurations p = {w, ) with 5 = (p1,p2.p:) = {pL.p3).

Near the pole w = i E(p) the fermion two point function has the form

Z{p}

91 () = o+ Ep) + O(1} {6.1)

where E(§) and Z(p) have the power series expansion®

E(p) = Y 9" E™(p) (6.2)
»=0

Z(py =Y 9" 2"(5) (6.3)
r—0

To lowest order E(°){5) is given by the location of the pole in the free fermion propagator

SN (w,B) lumimorg) = O- (6.4)
Thus
3 ~2
EIO) B =
- sinh® E'°Yp) + Z sin? p; + (My — 2sinh? w;@ + %)2 =0, (6.5}
i=1 =
and hence
M2 MOF + LY -
» EO(p) i+ {1+ Mdp” + (P — )
4 sinh = <
i 22 8 6)
142+ 2 (8.

=5+ M2(1— M) + O(a®).

I The expansion for the energy F{f) is given in terms of the bare coupling go bul of course this quantity when
reexpressed as a function of the renormalized coupling has a finite limit when ‘a’ goes to zero.

12

With

M,
Mg = Mo(1 — —,;“) (6.7)
this yields
EOp) =5 + Mp + O(a*) = p + 9} + M + O(a”), (6.8)

. i.e. up to O{a?) corrections the action {5.1) describes a continuum theory with renormalized

mass Mg.
Furthermore

EOp) 2 /(M3 + 5) = /(M +m3((2w1 + 1) + (202 + 1)?))
where pL = m{2ty + 1,215 + 1), vy, 1268, me e

LN

(6.9)

The introduction of twisted antiperiodic boudary conditions has led to the fact that even for
zero bare mass the theory has a mass gap.
For the lowest lying energy levels X and ¥ one finds

pfz = 2m® (ui‘(,v;{ =0,-1})

2 2 v v (6.10)
pi=10m? (i =0,-1Au =1,-3)v(1 o 2)

For the gluon sector qualitatively the same picture holds true. Although here, differing from
[12}, the *unimproved” gluon propagator

1
(k2)

Dy (k) = = 2Xe sk, K8, k% 4 (0 — 1ok (6.11)

with a general covariant gauge fixing is used, the location of its poles is still to lowest order

given by
ko = £/k3 + K2 (6.12)

X, has been introduced by Liischer and Weisz [12] and performs the supression of the zero
momentum meodes for the gluons:

{0 if k; = 0 (med N)

6.
1 otherwise. (6.13)

13



Taking info account (6.13) the lowest lving massive particles in the gluon sector are 4- and
B-mesons with

B4% - 4m? 16.14)
k8% — gm? {6.15)
corresponding to minimal energies of
EPHEA 0) = om (6.16)
E%E 0) = 202m. (6.17)

To lowest order in ‘a’ X and 1™ quarks correspond to stable particles for they cannot decay
into another quark and a gluon because

EO YT 0) <« (BVpY.0) + EVRE,0))7 = (M + 2m?) + 2m). (6.18)

At weak coupling this property can be expected to persist.

Whereas in pure Yang Mills theory both 4 and B mesons are stable particles one finds tLat
this only holds true for the lowest lying 4 mesons when fernnons are included.

While the lowest lying gluon states can be realized by gauge invariant operators i.e. Wilson
loops winding around the world in the compact directions. this cannot be accomplished for
the stable quark states,

For the considerations of tree level “on shell” improvement made in the next Section one
temporarily considers the general form of the action given in {2.1) where the coefficient of
the Wilson term has not yet been fixed, but has still the generic value r.

Then one wonld have

E®Np)? = p* = 2m® + MZ(1 - rAy i + O(a”) (6.19)

instead of (6.8) i.e. Mg = Ms(1 — £Mq). -
The propagator then has a pole at w = ={E'")5) with the residue Z'"){p).
It follows that

= Oa?)

S|P (BB - MR+ (Mo + (0f = EO(p) - -‘-I}‘})z))]
B - whe B0 {6.20)

=1+ 7(My - -ME) =1+ ¢Ag+ Olc?}

r
2

14

Therefore

3
1 . N
z"p) locamiogs = 1 :_if'_('*’m sinh EYN 5+ L esinp, — M)+ Ofd?)
- rilg) " (6.21)
1 .
= siilllf(o'(ﬁ) ~ My 'IJLU)L}}]&{‘U]{[;) + OQla’)
with
3
WPip) = {1+ FMp) " (g sl Ep) + EZ tusinp, — Mg)u®
=1
(6.22)

3
B0p) = (1= rMp) Fad (e sinh ENp) =~ i Y a5 sinp, — Ma)
p=]

v 070
(tgla = €ay i, = ugto =12

where o denotes the two possible polarisations of the quarks.
For later use. a modified Gordan identity is introduced. Let a, be an arbitrary vector then

22 pal(py u 'y =

3
a0 p) ey(sinh E'(p) - «inh E1°HF)) - i Z ap{sinp, —sinp,))
v=1
3
- au{ouoitsinh E(f) - sinh E{p")) - 3 7 unlsinnp, - sin pi_))} uf_;nip').
v_1

(8.23)

The desired identities are obtained by differentiation with respect to a,.

Furthermore one has

a0’y p) = 201 = pMR) T Mp(sinh EVF) + Mg )bay (6.24}



7.“ON SHELL”-IMPROVEMENT AND LOWEST ORDER

In [17] the fact that “classical” improvement is compatible with “on shell” improvement was
employed io deduce the relation {2.4) for the tree level “on shell” improved action.

In order to perform the calculation of ¢!!? an appropriate “on shell” guantity has to be found
for which one loop improvement will be demanded.

To this end one first considers “on shell” quantities to lowest order. If they yield the tree
level improvement condition (2.4} they are suitable to derive 1,

In the case of pure Yang Mills theory the mass of the lowest lying gluons and an appropriate

gluon three point function derived from a gluon S-matrix element were chosen to deduce the
necessary two independent relations needed to determine the two improvement coefficients
emerging in this scheme to one loop order.

The following argument shows that the quantities derived from the fermion two point function
i.e. the fermion mass renormalisation and the fermion wave function renormalisation cannot
be used to calculate ct!},

For the fermion self-energy 5{p) and the three point function I's{p),p2: &, p) the Ward and
Slavnov-Taylor identities hold to all orders of perturbation theory. Let

B(p} = a"=(p) (7.1)
p=1
Ts(ps,pzsk i) = g0 3 08" T8 (pr, s Ko p) {7.2)
w=0

then the following relations are valid

N R v
*13*3( Yp) = T (p,pi 0, 1) (7.3)
Py
and
i2(k, p2) (2 (p2) — S(p)) = kT (o1, pai ko p). (7.4)

In all orders of perturbation theory the contribution of & to F‘sy](pl,pg;k,p.) reads

)

T prypoikop) = =

k. .
(k,py)cos T;' Zai,psinkp. (7.5)
,

Since

I (p,p:i0, ) = 0 {(7.6)
and

b T (o, p2ik, i)

=(k.p2) Z aupsinky,sink, =0
pp

1
5

the following conclusions can be drawn.
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Since the contribution of ¢{g2) to any difference of fermion self-energies
=p1) - T(p2)

vanishes for generic py,pa, ¢{gZ) can only contribute a constant to the fermion self energy. As
E(p) is an analytic function of p this constant vanishes.

Hence to the »’th order of perturbation theory ¢*) gives neither a contribution to the fermion
mass renormalization nor to the fermion wave function renormalization. As both gquantities
cannot be used for a perturbative calculation of ¢(g2) one has to turn to scattering processes
between stable fermion and gluon states.

Consider quark-quark-scattering.

The lowest order diagrams are

1.) 2.)

ks kz
P=z Pz

In order to suppress the contribution of one diagram the following “on shell” momenta of the
lowest lying excitations are chosen

p1 =(iEm, wm, 1is) Py =(iEm, — m, — is)
p2 =(iE,m, —m, —is) ph =(iE,m, m, is)

(7.8)

p=py Pi=pm
ki = p1 - py = py — p2 = (0,0,2m, 2s) (7.9)
k2 =p1 —py = py — p2 = (0,0,0,0).

As pointed out in the previous Section due to the boundary conditions quarks and ginons
carrying these minimal momenta in the p;, k., are stable, so for these particles scattering
amplitudes are meaningful quantities.
As intended diagram 2 doesn’t contribute because the gluon propagator vanishes. s is chosen
such as to make by “on shell” namely

s =m+ Ola®).



The scattering amplitude 1s then to lowest order

S0 = T D, (k)T (7.10)
with
T = @ ®p WV (pr gy ke s (5Y) {7.11)
T, is obtained from T}, by replacing
pr——p, Py Py, gy, ko —hy (7.12)
Using the generalized Gordon identity (6.23) one finds (¢! = ¢)
s 17Ta13)

T = =k, p)ERNB ) =71 + cMR) = Se—r)ip1 + pY)p + Ola?)]uy

Due te the Slavnov Taylor identity (5.6) only the 8, - part of the propagator contributes to

the scattering amplitude.

The small ‘a’ expansion of 5 then gives

S0 _ 1y -"{klgkl) TR L oeMn)— e Lot Ofa?) (0}

= =3V = Ta (F1)|[—7ult + chlR) = S{c - r)ps + pl )y — Ofa®) uy ' (5))
L

X )i—w,.(ucﬂfm—g(c—r)(pl -+ 0 |

?uug BN ey (PN + M)

___%' {(U)

- "efumu‘”' pl)u“”(pl hr‘°'(:a, Jug(Br)ic — TN + cMa)+ O(a®)}. (7.14)

If $19%1),u €0) 1{P1) ete. denote the corresponding infinite volume quantities one finds

i) w1 = cMg)?

o
o) ~1P1}‘!u

1
) _ 1y, F_ (o), _
s = 2'\’“ L_z {1+rAg)? "n.](Pl)'}p 'g](P Ya
_ 91Mﬂua 1(p1 )utu)(pl)utu)(pl]uw](pl)(c — 7)1 + ¢Mg) + Ola® )}

- (1_-!—_:51}2_)2{(1 + eMg)25'1)
SHBE (7 g (7))

N1+ eMRYah (5 'y B,

Ny
+ ﬁ—i—;ﬁl. rlc-r
(7.15)

'y

Thus for Mg # 0 § yvields the tree level improvement condition (2.4)
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In the case of zero bare mass Mg = My = 0 a slightly differenf momentum configuration has

to be chosen:
L1010 1) py=m( &1, 10-14) (7.16)

pr
p:=m{—i.1.—1.—1) ph—m(—i1, 1, A)

P2+ py = 2m(—i,1,0,0}

and
p1 = Py = 2m(i,1.0,0),
b= P —p'l = p; —py = 2m(0,0,1,1) {717)
ky = py = py = p) — p2a = 2m(i,0,0,0).
Again diagram 2 doesn’t contribute and one finds
T = slhapES (51 )i 2 5(e = rhipy + Ph)u + Ofa?)uly (5)) (7.18)
T = ok g (B ) e — e ripe £ ph)e + OIS (B). (7.19)
The scattering amplitude to lowest order is
ooalky k) -
50 _ _%\h,,,l, T“”T‘“" (7.20)
]
Now set
TLOI :n('ﬂ)(l);r‘((ﬁ){a)fo(az) {7.)1)
I;(.D)r — T‘(,D“(l) o 1‘:‘”)'((1‘] _ 0(02],
where the term in Yrackets indicates the O(1) aud Ofa) contributions. Then
T¥a) = T"a) — 0. 0= 2.3 (7.22)
and
S = Bt ) (T TE0 S BT6) « TET) - 0(e%),
=M
(7.23)

1
The first order corrections to the continuum limit therefore originate from the term
!
N ATTE (@) + T 1)) (7.24)

=y
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For definite polarisations in the in- and out-states,i.e. a = F =4 = v = 1 one finds

TO(1) = — 2zmi(1—i)  TEV(1) = - 2m*(1 + )

(7.25)
Ta) = 2izm*c—7)  To™{a) = 2im¥(c - 7)
yielding
TOWTE(a) + T (T (1) = —8izm (e —7) (7.26) -
and
7Y =2:m?(1+4) TOV(A) = 2mP(d - 4) (7.27)
Tl‘o)(a) =2zm*(c —7) Tl(u)'(a) = 2m?e—1)
giving
TOMT (a) + T Q)T (1) = ~8izm®(c — 7). (7.28)

So to lowest order both polarisations in the intermediate gluon state yield the same contri-
bution to the scattering amplitude.

Thus for the momentum configuration (7.16) (7.17) consideration of § yields once again the
tree level improvement condition.

8. ENERGY AND WAVE FUNCTIONS TO FIRST NONTRIVIAL ORDER

From now on only quarks with zero bare mass will be considered. The constant r in the
action (2.1) is set equal to 1 again which azccording to Section 2 is the natural choice for
this coefficient. Thus the value of the improvement coefficient ¢(g}} to lowest order becomes
¢=1 .

In Appendix A the following formulae for EV(5) and ZU')(p) are derived

1
EM(5)2%p) = - SEOTS

(?}Z(M{ﬁ)zu’(?) lpg:iE(u’(ﬁ)Z(o)(ﬁ) {8.1)

z0p) =

e}
- (0)s - {1) {0) -
2iE‘°’(ﬁ)Z (p)(apos (PN pemimionp 2 (P)

1
+WIN1(@E“’@)1,,,,=;E(o,(,;}2‘°’(ﬁ)+Z‘“’@)z“’(p)\,,,u:.,.;.o>(p)z\-*l(zﬁ)!+O(a3)- (8.2)

According to Appendix B to one loop order the fermion self energy has the form

w1 . . i P] ]
M mipong = ivm SmPp).,,D:sgm)(,s]( 74"‘1'

N (Po 2Py £ P(B)+ Poy)) +id (5) - 4(5)

2
(8.3)
where a,(p) and b(F) are gauge invariant contributions.
One finds
bp) = b+ 5%m? + 0(a®), (8.4)
where
() ArZ _
b == 0.2025565(4)
{8.5)
NT -
{01 __
b= S 0.0093304(8)
and b{,m. bgn) are universal for X and Y quarks with momenta of
miti, +1, £1, +¢) (8.6)
and
m{4i,+1,+3, £3i) (8.7)
respectively.

Therefore as already indicated in {2.1) a counterterin of the form
—gibolgh1T{x) B2} with  By(0) = B

has 1o be incorporated in the action in order to cancel the Of %) effect arising from bf]ﬁ). With
the relations

295 Zp) = O(a®)
ZMp)ye 2! p) = —2sink EY(B)Z'(B) ~ O(a®) (8.8)
2 ), 20 p) = 2isinp, 2 p) - O(a®) g =1,2.3
’ Fi
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one finds

ENp) = ~(} " sinpuau(p)} |, gy + Ola®) (8.9)

1
E)(p)

Using the numerical resuits quoted in Appendix B one finds for X and Y quarks with the
above momenta

E8p) = - -jv\-[-; —(0.0093304(8)) E'®(p) + O(a®) {8.10)

where use has been made of the remarkable relatior obtained there i.e.
(0 4 s
Bm? = (3 aulp) sinpu) iz p) (8.11)

holding for the action given in {2.1}).
I Appendix B it is furthermore shown that

1

a .
mzm(ﬁ)( B =) o 2 (B) = CIRIZV(p) + O(a”) (8.12)

where C{5) is O(1) and O{logm?) but has no O{a) contributions.
Inserting this into (8.2) yields

295 = CBZNP) - o ZMB +0(a’) (8.13)

EO)(p)
where :
Mgy = i{— cos pg Sinpgb(lo) + sin py Z sinpua,(p)} + 0(a?)
M=mm@ﬁwwM»meW+mﬁ

M; = cos po{ao(p) sin p1 — sinpoai{$}) + sinpe SlllPlb ) + Ofa
Mz = Mz(1 —2) ‘
M, = My{1 — 3).

2 (8.14)

Due to the relation (8.11) one has for the O(a) improved action My = O(a?} and

zZN(p) =

_ _ 1 s _ g
C(p) 2N p) - EE‘(@(YU(I& (B)Y2'{5) + Z'"Np)i# (P))re) + Ola®). (8.15)
Together with the fact that C{p) and a,(f) are O(1) with O(a?) corrections (see Appendix
B) this shows that Z*)(5) has no Q(a) corrections.
It has been checked that relation (8.11) is a merit of O{a) improvement because for the Wilson
action one finds’
; Nt~
B =5 (0.3257151(7))

(8.16)
BOH (5 0.02920(4) N =2

TThe numerical values quoted here have been derived only for X quarks with momenta given by (8.6).
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whereas
1 al iBysinp)l,_ g = 0.00617(12) N =2, (8.17)

The result for b:]u).u' given in (8,16} agrees with the one obtained by Stehr and Weisz in {20].
The vaiues of the hopping parameter A of the equivalent zero quark mass theory is then

1 {9)
S - 8.18
K= (1 g - 0) (8.18)
ie.
.1 NT-1, 4
K = Z{1 + 0.0506391(1)— g5 + O(gy)) (8.19)
8 2N
for the O(a)-improved lattice action and
w1 NP1, 4
EY = {1+ 0.0814288(2) 9 + O(gd)) (8.20)

for the Wilson action.
Now the form of the wave functions to one loop order is to be determined. In analogy to
{6.21) one defines

sinh E{p)Z(p) = ua(p)aa(p)- (8.21)

Expanding up 1o first order yields

Zi(p) sinhE“_[fﬂZ(o}(ﬁH

(ll) i1) ] £0) 8,29
it BT 5 (Ve (p)+ul (PP (p))+ O(a*). (8.22)

sinh ECHp }

With the Ansatz 0
uD(p) = AU(p)u'(p)

. (8.23)
a"p) = a B M (B) 70

this vields

sinh EM(p)

L 2Oy H (M(PYZPUB) + 2V (F e M(B) e + O(a®).  (8.24)
sinh E(9}(p)

AT

From this and (8.15) one dedunces a solution

sinh E(”(p]

: sinh E19){5) +Clpy L - —0d (p) = Ola®). (8.28)

M(p) = oE(U)( )
Abbreviating the term proportional to I by A(f) one therefore finds

7
«)Ecu)[p

$ ) = APITP) i w NPH (Pho + Ol

W ip) = A(p)e' (B} - Yok { P)U‘O’(PHO( ]

(8.26)

So as ZU(p) the fermion wave functions to one loop order perturbation theory have no O(a)
corrections. This property could aiready be expected from the considerations in Section &
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where it was argued that tree level improvement already accounts for the O{a) improvement
of “on sheli” quantities depending only on the fermion two point function to one loop order.

Next the O(a) effects in the three point function arising from the wave functions to one loop
order will be studied. Consider

95 (Pyu(p) (8.27)
up to first order. One then has
(S5 7y — T(p))u(p) = _
(557(p) ~ id (B) — br) () + Ay () ~ sz(;{)W‘ (71 (5))
=3 E{;)(ﬁ)'ﬂ(“’(ﬁ)wd (P)u!(p) — sinh B (phroud(5) — if (PR (B) — 11w ®Hp) + O(a?)
— ~ s PR (PB) +id (P
— sinh EM(pyou'®)(5) — id (51! 2(F) — biu'®(p) + O(m*)
= ~hu"p) + O(a®) (8.28)
where
Sp'(B) = —u)(p) ~ sinh ()0 + Ofa”) (8.28)
has been used.
Analogously one finds
a(plg; 'p) = —a' (B () + Olgg) + Ola”}. (8.30)

With this relation a generalized version of the Gordon-Identity (6.23) can be derived.
From
a(p)(g; ' (B) + be¥ +7# (g5 P} + bi)ulp') = Ola®) + Olgy) (8.31)

it follows that to leading order
@) -l(p + Py — (alF) + alf' Na) + Cprl{p — 2') — (alp) - a(F))u)ulp') = 0. (8.32)
Using this one obtains the following relatior for the O(a)-effects arising from Fgu](p,p’; k1)

ﬁ(?)(fpr)] + %(001(}1 — 9l —az{p — P2 — oualp — 9 ): ) ()
= ﬂ(?)(i(_a"f;i + %(0’01(0 —a'ly — oala — d')y — ozla — a')s)julp’) (8.33)

where the abbreviations a, = a,{p), @', = a,(§') 0 = 0..3 have been introduced.

H
As the terms in the bracket in the second expression are already Q{gj) the wave functions
multipiying them can be taken to lowest order.

One therefore has

15 ’
a5y My B A {8.34)

=0

!By a slight abuse of notation here the O(g;) effects arising from the contribution of E'1'(p).E'V{5') ate
incorporated in I‘gn'[p, Pk 1)

For X quarks with momenta given by (7.16) the relations -

ay = ay ay = —ap gy = —a3 =@ (8.35)
hoid i.e.
My — ta,
M, — My =0
Mo = —ay. (8.36)
Mig = --aq
My —M;s =0

For the Ofa) contributions from the fermion wave functions to one loop order one therefore
finds using the notations introduced in Section 7 :

THWF = —2mPliag(py) + as(B)NL + i) = —m B (1 + 1) (8.37)

whereas
T (@)WF = 2m?(—iag(pa) + ar(B2)N1 — i) = mB (1 —4) (8.38)

Taking the combination contributing to §¢1) (see (7.28)}
T (@ F 0 T W F T (1) = 228 (1 4+ 8)(1 - §) — (1 +4){1 — 1)) = 0 (8.39)

one observes that the Ofa) contributions from w{1(#) cancel exactly in the 1-channel of gluon
polarisations.

(R
o



9. IMPROVEMENT TO ONE LooP ORDER PERTURBATION THECRY

As pointed out in Section 7 the 1-channel of the S-matrix element considered there inde-
pendently yields the tree level improvement condition ¢!%) = 1. Due to the factorisation
properties of the S-matrix this can be expected to persist, so the quantity for which O(a) im-
provement will be demanded to one loop order is in accordance with [12] chosen proportional
to the residue of the pole of the S-matrix element

1 13
A= ;z(*k,P;)TL T

= RGBT, B, ()
AP s f2, Fys —k, Lyuy (Bh) {9.1)
where
m =mli,1,1,7), Py = m(i,1, -1, i), k=p—p =2m(0,0,1,i)
p2 = m{—i,1, -1, ~4), Py = m(—i,1,1,i)
and  p=(po+ Y g EM(p).p) etc.
r=1]

whereas Z(k}® is the gluon wave function renormalization. For all quantities a perturbative
expansion of the form A = $77  g2Val¥} T, = 5, o7 g2 T\ ete. is assumed.

Using the notations introduced in Section 7 one finds up to one loop order
UL SYCH
1 . .
i SR PNTTZ O + 200 + (T 1+ VT2 ). (03)

m?

Now the O(a}-corrections to A"} have to be eliminated by properly adjusting the g2-part ¢!!)
of the constant ¢(g3). :

Since
ZM(1)% =1+ O(a?)
ZW()C = O(1) + O(a®) 9:4)
and
TiMa) = T/™May = 0
due to tree level improvement one finds
AD(a) = =k T T (1) - LT ). (9.5)

In the previous chapter it was shown that the contributions io )1‘”(&) stemming from the
fermion wave functions to.one loop order and the insertion of E'Y(p) ete. into I‘(;” cancel,
If Tl(”(a)vp and T]““(ﬂ')vp denote the Ofa) contributions to

_(0), _ 1) _ 1 _ ) _
B EOT o, gy kb, DB and @m0 (b, B -k, 105 )

respectively one finally finds

MD(g) = %:(4-.;;;)(T,“’(a}"FI,‘“"(i) + T T (a) Y F). (9.6)

The contribution of ¢ to Tf“(a)rF and Tj”'{a)"’F can be obtained from the tree level

computations of the last chapter
g PRt
Tll”(ﬂ']l Eet o)) :['lll‘v(az)l Pl gl (9.7)

whereas the following six diagrams contribute to to T]“)[a}vp and T](”'[a)VF

DIACRAM 1 DIAGRAM 2

DIAGRAM 3 DIAGRAM 4

DIAGRAM S DIACRAM 6
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10, COMPUTATION OF FEYNMAN INTEGRALS ON A LATTICE
WITH TWISTED BOUNDARY CONDITIONS

The computation of one-loop Feynman integrals on a lattice with twisted boundary conditions
amounts to the evaluation of

10 = [ 1)
o
for inner fermion lines or

If) = ] £K)

for inner gluon lines.
After properly taking inte account the Clebsch-Gordan coefficients arising in the twisted
world and the functions X3+ suppressing the zero modes of gluon propagators the momentum
sums over the two compactified dimensions can be performed by computer for a given lattice
size L in these directions. This means that in these directions fermion momenta take the
values

(2v+1)m v=1.LN

while gluon momenta are given by
2my v=1.LN.

The remaining two-dimensional integrals over the Brillouin zones of the continuous directions
0 and 3 are ireated via one dimensional subintegrals using the exponentially convergent inte-
gration procedure described in [12]. To this end the integrand is summed over 27 equidistant
points

T

—n + —r p=1.27,

n
If the integrand has been correctly substituted so that no poles on the real axis occur these
sums differ from the exact value of the integral only by a term

A~ B2 B real.

This is of course a benefit of the imass gap created by the introduction of the twisted boundary
conditions for both quarks and gluons,

The sumimation is first done for » = 1.2.3. From the first three sums the constants A and
B and hence an estimate for the error are determined. If it is greater than the requested
absolute error for a subintegral. then n is increased by one i.e. the number of integration
points doubled and another estimate is won.

Ta this end 1t of course suffices to determine only 2
done up to a maximum of 7 = 7 {128 integration points).

Another benefit of this method is that the trigonometric functions occurring in the specific
Feynman-integral can be tabulated beforehand, so that this time consuming calculation has

'~ new values of the integrand. This is

to be done only once for the allowed maximum of 2” equidistant points of integration.
After the integration procedure has terminated the result can be further improved by cor-
recting it with the value of the estimated deviation from the exact result.

All this leads to an extremely efficient integration rontine which allows for results of high
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accuracy. With a maximum of 128 points in each continuous direction a precision of 12 digits
can be gained without difliculty provided the integrand has been properly substituted.

" The required computer time is kept sufficiently small so that even the lengthy integrands

usually emerging in computations with improved actions can be performed.

Moreover a reliable estimate of the error can be won which is one of the major features of
this procedure compared to other numerical integration routines.

It can be assumed {12] that the results obtained this way have an expansion of the form

=]

Iy = ) tav + bolog((ma)*))(ma)*** (10.1)

=0

where the value of & depends on the superficial degree of divergence of f.

With ‘a’ set equal to one this results in a power series expansion of I(f) in terms of m. To
extract the values of the first coeflicients e, and b,, I{f} 1s evaluated for a whole range of
lattice sizes L i.e. different values of m = %

For the calculation of the gauge invariant part of A this was done for even values of L ranging
up to 36 for ¥ = 2 and 30 for N = 3 respectively.

The results obtained that way where then fitted with a behaviour of the form 10.1 and the
values of a,, and b, for small v extracted.

It was found that in the integrals occurring in this compntation the coeflicients with odd w
vanish.

Although through the necessary fit procedure a significant loss in precision was encountered
it was still possible to extract the values of aq and b up to four digits.



11. EVALUATION OF THE FEYNMAN DIAGRAMS CONTRIBUTING TO
THE VERTEX FUNCTION TO ONE LooP ORDER PERTURBATION THEORY

Here the procedure of obtaining the integrands is explained which were afterwards treated
numerically using the methods described in the previous Section.
The contribution of each diagram will be abbreviated by

BN D (F) =16 (11.1)

where Dy is obtained by combining the appropriate vertices and propagators.
Before the contraction with the polarisation vectors ﬁgo),u,n) the expressions for the inte-
grands resulting from the various Feyminan diagrams contributing to the vertex function

have an expansion
15

Z(f N, g;‘gi)B., (11.2)

v=0

where DenP# is the denominator produced by the propagators of the internal lines, Ceg is
the Clebsch Gordan coefficient of the diagram, \ is the combination of the Xy of 2ll internal
gluon lines and B, denotes the basis spanning the sixteen dimensional space of Dirac spinors

By =1, By = v, By =9y, By =1
By =73, B; = s, B = a¢1, B: = ap (11.3)
Ba:UDJy By = 013, By = 013, By = o33

Bz = ¥s7e, Bz = 1571, By = ¥572. Bis = 1513

This expansion was worked out analytically for each diagram.

Intermediate steps of the calculation were checked using the algebraic formula manipulation
program REDUCE.

The final results from the analytical calculation which were coded into the computer by
hand were then once again checked to prevent any errors occurring in the calculation or in
the procedure of coding them. This was done numerically by inserting definite values for the
internal momenta and comparing the results with expressions for the numerator of the specific
diagram produced again with REDUCE by directly combining the appropriate vertices and
propagators entering the diagram.

After this check the results were then used to produce the numerator of the Feynman integrals
for the various N, 's.

The vertex function has the form

# OB o'k, 1)t (7 "“”(Zo 1B, ', {11.4)

v=0

As for the tree level case the continuwm limit terms are localised in the O, with & = 1..4,12..15
while the O(a)-corrections that one is interested in are giver by the O, with v = 0,5..11.
Moreover it is found that the O, with v = 0,5 only contribute O{a*) corrections to the
continuum limit. As the final multiplication with the polarisation vectors i '( ) ( ) projects
on the O, with v = 0,1,8,15 it suffices to calculate for every diagram the contnbutlon to Oy

and determine its first order coefficients ap,by as explained in the previous Section.
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It is thus an interesting result of the calculation that the spinor structure of the three point
function under consideration allows for an analytical separation of the O{a) corrections from
the leading order contribution which therefore doesn’t have to be calculated with high nu-
merical precision. Furtherinore the tedious task to separate the first order corrections from
the leading terms by nieans of a fit procedure is avoided whick would have necessarily led to
a substantial loss in numerical precision.

Moreaver it was found that similar to the tree level the O(a) corrections to Tl( ' and T“)il
are the same up to a factor of —:z. Therefore only the contributions to T](”(a) had to be
evaluated numerically to high precision. In the following Sections the results emerging for
the gauge invariant and gauge variant contributions to Tl(”(a) of each diagramn are given for
N=2and N = 3.

As explained above this amounts to the determination of the O{m)} and O{mlogm®) contri-
butions ag, by of each diagram to the coeflicient Og for the external momenta

p=mir,1,1,1) Po=mli1,-1,-1) : = 2m{0,0,1,i). (11.5)

For all one loop diagrams ap and & have an expansion in the gauge fixing parameter o — 1
of the form

ap = Z o= (11.6)
and .
by = Zb},"‘””(a a1y (11.7)
w0
respectively,

had - @ - . - - .
The coeflicients am e b:la " il be called the gauge invariant contribution whereas the

remnaining terms \\111 he referred to as the gauge variant contributions to g, be.

On the results the following checks can be made.

Because of the gencral covariant gauge fixing. gauge invariance can explicitly be checked.
Furthermore the logarithmic contributions to ¢!} 1must cancel. Moreover logarithmic contri-
butions to leading order must vanish. which means that the sum of the coeflicients by have to
vanish. These features provide an excellent consistency check especially on the combinatorial
factors attached to each diagram.
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12, CONCLUSIONS

Collecting the contributions of all diagrams' one finds

N=2
Diagram of! g1 anGV'(ﬂfl) bDGV'(a_U
1 0.03864(2) |  0.0063301(3) 0.0096333(1) ]
2 —0.01630(1}| —0.0189979(2) —0.017895(5) | —0.0031652(8)
3 0.01512(1)] 0.0189979(2) 0.017399(3) | 0.0031661(8)
4 0.34360013(1) - 0.06132780(1) -
5 —0.03903(2) | —0.0031652(8) | —0.035505569(1) o
6 —0.03903(2) | —0.0031652(8) | —0.035505569(1) -
J— 0.30800(8) | —0.0000003(28) 0.000004(8) | 0.0000009(16) | (1 1
and
N=3
Diagram : af! bt
1 0.05787(4) — i 0.0766861(1) 0.004212(4)
2 ~0.03268(4) + : 0.0329050(8) ~0.028500(4)
3 0.03087(1) — i 0.0329050{8) 0.028496(2)
4 0.59478907(1)
5 —-0.05953(2) + ¢ 0.0383431(1) —0.002108(1)
6 T 0.05853(2) + ¢ 0.0383431(1) —0.002108(1)
sum 0.53179(14) —0.000008(12)
| N=3
| Diagram h ag‘:v,(a—l‘) bﬂmr‘(“"“
1 " 0.0064555(1) — 1 0.0221846(1} -
2 ~0.02819(1) ’ —0.004747(1)
3 To.o2820(1) 0.004747(1)
4 0.08392226(4) R
L 5 20,0451889(1) + ¢ 0.0110932(1) | -
6 T0.0451889(1) + i 0.0110812(1) - ;
sum 0.00001(2) — i 0.0000002(3) ) qg (12.2)

The result has ail desired features. It is explicitly gauge invariant and both the logarithmic
and complex contributions of individual diagrams cancel.

1A mote detailed discussion of the evaluation of the individual diagrams is given in the author’s thesis.
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This cumulated presentation of the results for the individual diagrams displays the following
features.

- There is a natural grouping of diagrams if one takes into consideration the various cancella-

tions taking place.

The first group of closely related diagrams are diagrams 2 and 3. Among them the gauge
variant parts, the leading logarithins of the gange invariant parts as well as the complex parts
of a§T for N = 3 cancel.

The second group of diagrams are diagrams 1,5 and 6. Among them the leading logarithms

of the gauge invariant parts and the complex parts of af?, oFV cancel. To perform also the

" cancellation of the real part of the gauge variant part however the contribution of diagram 4

is needed.
Taking into consideration the remarks made in Section 11 on the dependency of Tl(l)(a)VF

and TP)'(a)""F one eventually finds for the valne of A")(a) defined in Section 9

0.308000{8) — 2V N=2
A = dm 12.3
(@)= 49m\ ) estre(14) — 2600 N = 3. (12.3)
This gives the desired value of ¢!!) as
0.15400(4) N =2
(5 _ 2,
‘ { 0.26590(7) N = (124)

Although the cancellations described above already provide a decent check on the caleulation
and all steps of the analytical work involved have been verified by computer, one would like
to have a double check on the obtained result.

The natural way to do this wonld be a totally independent calculation. Here a compromise
method was chosen.

As mentioned in Section 6 in addition to the lowest lying X quarks there are also the stable
Y quarks. A'')a) was therefore calculated again using a different momentum configuration
involving these ¥ quarks, i.e. for exteinal momenta

v =mf{ 1,1,3,31) 7y =m( 1,1,1, 1)

. . . 12,5
p: =m[ —4,1.1, 1) pp, =m{ —1,1,3,37) ( )
and
L+ Py = 2m(d,1,2,26), P2+ Py = 2m(—i,1,2,20)
ky=p —py = pp — p2 = 2m{0,0,1,%) (12.6)

ky = g — Py = p) — p2 = 2m(i,0,0,0).
instead of {7.16), (7.17).
For the reasons given helow this caleulation was however performed only for N = 2. Along
the same lines as in Section 8 for the X quarks one finds that the contribution from the wave
functions «'V(5) and from the insertion of E{V(5) into T4" vanish within the error bars. The
explicit caleulation given in the Appendix ylelds a nuwmerical contribution to A a) of

A = 0.00060(540). {(12.7)

Comparing the result (12.7) with the contributions to A1 given in {12.1), (12.8) shows that
g o4 )

this contribution can indeed only be excluded within the error hars.
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The observation that T,(”(a)VF and T](IP(H)VF differ only by a factor of —: persists, so

again only the diagrams contributing to Tf”(a.)VF have to be evaluated to high numerical
precision.

Since the ¥ mass is rather close to the threshold for produetion of a X guark and a A meson it
is much more delicate to find the right substitution of the integrands. This leads to a slower
rate of overall convergence compared to the case considered before. Moreover because of
the considerable loss in symmetry in the external fermion lines the integrands become more
complicated which too increases the amount of computer time needed for their numerical
evaluation.

The recalculation of T;”(a)v‘p was therefore performed only for ¥ = 2 and up to lower values
of L and thus o lower numeriral precision. The results are summarized in the following table

’ N=2
Diagram | a§' ] bgT RAREE) peTe D

1 0.06316(8) | 0.006348(15) 0.0096833(1) - ;
2 —0.01629(4) | —0.018997(1) 0.017889(8) | ~0.0031648(8) '
3 0.01512(1) | 0.0189981(2) 0.017899(3) | 0.0031661(8) |
4 0.34860013(1) . 0.06132780(1) - ?
5 ~0.04602(4) | —0.0031662(5) | —0.035505569(1) -

6 —0.05687(8) | —0.003167(1) | —0.035505569(1) - _

[ sum 0.30776(25) |  0.000015{18) 0.000010{11) | 0.000013(16] | (12.8)

Comparing (12.8) with (12.1) the following cbservations can be made.

Al diagrams that depend only on gluon momenta don’t change their values. This is true for
most of the gauge dependent parts and for the gauge independent parts of diagram 3 and 4.
The degeneracy of the gauge independent part of diagram 5 and 6 is lifted. The grouping of
diagrams described above however persists. Although the numerical precision of the second
calculation is worse it nevertheless turns out that within the error bars the same result is
found as for the original configuration of external momenta. The result obtained for the value
of the improvement coefficient to one loop order perturbation theory is therefore believed to
be trustworthy,

As already mentioned in the discussion of diagram 4 this diagram has all features of the total
result.

Moreover this diagram yields the main contribution to the coefficient '), The sum of all
other diagrams only amounts to a 10 % correction to its contribution.

So altogether this diagram gives a 10 % precise estimate of the final result at the price of
ouly 2 % the effort. If one would wish to get a notion of the value of ¢(g2) to two loop
order, one would therefore suggest to first evaluate only the diagrams containing closed gluon
loops. The effort needed to do this could be expected to be camparable to the work presented
here and one could hope to find a good estimate for the order of magnitude of higher order
corrections.
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As a last point the influence of the artificial *smell” group SU(¥s) introduced in Section 4
on the value of ¢!’} abtained in this Section has to be studied.

To this end it suffices to note that in all diagrains contributing to the one loop caleulation of
AP g} no closed fermion loops appear, so no dependence on Ng occurs.
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APPENDIX A

The purpose of this Appendix is to derive formulae for the first order contributions E{1)(5)
to the fermion energy and Z{!)(7) to the fermion wave fanction renormalization.

To this end the pole structure of the fermion two point function is studied in more detail.
At the pole the fermion two-point function has the expansion

__Z(p)
g2(p) = ST EGP + O(1). {.4.1)
To lowest order (A.1) yields
AL
Se(p) = W o). (4.2)

w? & Et0l(p2

In order to determine the O(l)-term in (A.2) one seis

Nr(
s = . A3
R = B (4.3)
Np(p) and Dp(p) have the following expansions
r(p) = No(p}+ (w — B (p)) N1 (p) — . (44)
Di(p) = Dotp)w® + E(p)) + Da(p)w® + E(p)) ... (A.5)

with
No(p) = Daip)2'"p) =

: E®F) . apy
~osinh E((5) — :'Z sinp,. = 2(— sinh?® e + L s > ) (ALG)

v=1 e=1
No(p) = O Ny = —iyg cosh ' (F) = sinh ' p AT
NP = - NEP) miponyy = — e cosh EV0(R) = sinh B4 ) (A1)
1 a
Doip) = 5oy A DR(PI L imen

AUEOp) A

?i“hw . ()(04) =71 - OEWJ(
=1-3

_ SEO) B Ole') (A8)
1 a8
pl = — =7 - - ) s
Ihi{p) SEW'(;‘:}:{*D ()= {5 DHI =y
1 4 - 2 y
= SFis (pé‘;{z : —B;E‘-“(pr ~ 2eosh 2R A - 2sinhf EM o)) - Ora”)

S Ola”n {AG)

One therefore has

Sr(p) =
AR , 1 D (p) gl
Sr B T amp) P z%) g (P)+O(a2)+0(w E(p))
_ 2 . M)
T *iE“”(ﬁ))("iE“”(ﬁ)) " 2iEW(5)
20y L ! 2 w — B3
(p)( 5T aEeae) Ofe®) + Ofw — E™())-

To one loop order the relation

g2(p) = Skip) + SIS p)p)Sr(p)

holds.
By inserting (A.1) and {A.10) one finds

z%p) Zp)  2ECNIECNp)
SLENGR T A EOGE (o Eopp O
z'p) 1 ; i
= m + CJ‘;;'EWZ(m(P)S(”{P)(I’)Z(U)(P)
b 2O ) () 2 )

87 - EO(p)7)

! — NS () 2 ) +

- [ E(U)(p) )" Eun(

ZOBIE M p) N () = Of2 )

From this one deduces the following relation for EUHp)

(1)) = (e, -
EUARZT ) = TaE(p)

At the pole one finds for the residue Z!{ 5}

Zip) 21 5y Z“’lp] ZWis

= . =’ ] F”){
")Elp) ‘_}E((l)(‘ﬁ] ‘)E(UI,PI ')EIUI( J

—~ ZOpZ MNP o £ (B

- Olgg}

(0 -
tE lZ J{pi

S 20y EETSTSIPIOAY 1B

Z“'jEp] 1 (0] o )
2 D \—-lll o).
. 2E(l]|(p) dE! u){ E Z (ol 5 dw (p)) -«'iiE"["gp]Z ()
! 9] w1
T E jRZ (A=)
1

R Ay iy, - _‘Z(m,

Tgepy SHPET e 2

where the abbreviation

— O{a*)

(A.10)

(A11)

(A.12)

{A.13)

(A.14)



has been introduced.
So finally one finds for Z9}5)

7(p) =

+

1
2 E0)(p)

1

a
- 7» (1) (0); =
ZiE(D)(}?)Z ( )((9 )| w=iE10p5) Z(p)

5iE0 () NP ) | ity Z0(B) + ZOBITNR) |mproriy W1 (7))

+0(a%).
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(A.15)

APPENDIX B

Here the fermion self energy is calculated to one loop order.
For

{1}
= po=1E'"(5)

(r)

numerical values for the momentun: configurations studied are derived.
For

a
70 (S o

only a qualitative discussion is given, because for this quantity it suffices to know that it does
not yield O(a)-corrections to Z''){ ). Diagramatically one has

£ (p)= O =

> > C

* TADPOLE DTAGRAM® "BUBBLE D1AGRAN"

First the contribution of the tadpole diagram is treated.
The gauge variant contribution yields

; ~1 Xgr
=R < e [ R Sk i)

(k)2
(c=1) f \wk?
S e g, conn ®1
a -1 .
= ( 7l )(-rh, sin g, — cos pu ) Pay
where ;
A\kl}\'ﬂ
PZH;I Sl p=0..3 (BQ)
122
| (k)
Symmetry requires
Poy = Py and Pay = Poa. (B.3)

Now!

o 53 _ - 2 _4 N =
Py = {0.&.81000-18(6) 0.0111778(1)m? - Oa?) (B.A)

2
0.10328893(1)~ 0.026576{3)m”+O(a*) N=3

! The leading terns in the small *a” expansian of these and otler gluon integrals in the twisted world can be
obtained from the well known values {21] of the corresponding integrals in the continuum by multiplication
with a facior

N
NT_a-
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and
0.0581000210{6)+O(a*) N=
- B.5
Pn { 0.10328892(1)+0{a®) N = (B.5)
The gauge invariant part of the tadpole diagram yields
TPGI 1 L.
E“)(p) = ;(Zry‘u sinp, — cos p, )P {B.6)
P .
where -
Xp
P = f L (B.7}
L2
2
Numerically one finds
P 0.232400086(1)—0.023552(4)m?+0{a*}) N =2 (B.8)
! 0.4131557(1)—0.053149(5)m*+0(a*) N =3 )

The contribution of the bubble diagram is more involved. The gauge variant part however
can be considerably simplified using the Slavnov Taylor identity (5.6)

5(1()BDGY _
- e -
| ““(,2) KD bk PO, p — KK )Se -~ KV (p = 15— )
-1 X M — 1
- ey [ 2570 = S70ISr 0 =155 = S =D (B

First the second term of the integrand is studied. Numerical evaluation yields

1 X _ _
é(ﬁ:) ; F](P)SF(F'— k')SFI(P)) ipg (EW(pY T Hp Smpp)lpu ,Egmlp,P(P) +0{e®) (B.10}

where
P(p) = 0.0465464(5)—0,00949886(3) log m? + O(¢*) N=2 (B.11)
pr= 0.0048071(3) - 0.01688686({3)log m? +O{a?) N =3 ’
for X quarks with momenta
mi=i,+1,+1,=+i) (B.12)
and
P(p) = {0_010?7(1) - 0.00949686(3 ) log m*+O(a*) N-2 (B.13)
for ¥ quarks with momenta
m{xi. =1, =3, +3:). {B.14)
Altogether one finds for the gauge variant contribution of the bubble diagram
(1), BD.GV
N p) ‘Pnf“gnw“-;) =
oa—1 . 1 . . y
- o fpsinp( 2P - Pip} - Psu)— 5 cos pu Py —sin g Poye gy = Ola™) (B3]

10

with
X
P =
“rz)z

X cos k!
Pa“:ji(fcm)zp w=10...3, Pip = Py, Py = Py
o

Xy sink?
Py, = j—-(i"z)z £ u=0...3, Pyy = Pus, Py = Pyy.
o

Numerical evaluation of the integrals yields

Py = 0.03505688(2)—0.005408859( 2} log m?-+0.0027937(5)m? +{a*) N=2
2 0.0591581(1)~ 0.01688686({3)log m®+ 0.006640(4)m?+0{a') N =3,

PSD =
{ 0.0060068654(4)—0.00949885%( 2} log m*-+0.0027937(5)m* + Ola?)
0.00751354(7)— 0.01688686(3)logm®-+ 0.006640(4)m*+0(a’)

A
It
(XN

Py = Pao + Ola")
and
P =Py =0
Using (B.18),(B.19) (B.15) can be furthermore simplified

" BD.GV
)i ipo=iE1ONp) =

a—1

N 1 -
_ ,772——1;7# sinpu{2P; — Pip) - Pa,) — Ecosp,,Pzpj pomiEtorp) T o)

so that altogether the gauge variant contribution to S(V{p} reads

GV a—1

(n S i S -
= p) pe=ibtoNp) T 7’77(".;4 Slnpu)!poz,gtm(p){P‘Z;‘ - 2P, —P(p)-i—P:;”j

The gauge invariant part of the bubble diagram yields

2} 1. 2 Ap k)
= k,k’-( cm [pfl\ Yo - (\_‘psm )

S0 BRG] _ _}[ Yplinudy - B)

with
!

-~ 1 Lk - I
B -2y cos(2p - K, — cos PN sinf AR S -E-R— b
L Jrin

" rFER "
N i I Iz 1 N o . 4 L N g f gt
< siu(Zp - Kgsingp - A - S /_J((n.ap,J +costp = k0 ) sinlp - E'yesink,
o T e

11

(B.16)

(B.17)

(B.18)

(B.19)

{B.24)



and
kf
Au = 2sin{p — k), (1 + sin®(p — —‘;),,)
— ),
— (2sin{2p ~ k"), — sin k:' Z(ros Pp + cos{p — kr)p)z sin® (_P__')._).__
p#R v

1 — ,
+ ésin ky, L sin(p — k') (sinp,, + sin(p — k') )

_ %(Cospn + cos(p — &'),) 2_“ sin(p — k'), sin k),
- l';in k! E cos’ ﬂ E sin k! sin(p — k")
9 I P I3 L4
v pEY
1 2 k.u T Y . ' Lot
+ = cos el E sink, (sin(p ~ k'), sink,, — sin(p — k'), sink,)

1 k!
+ Zsin(p— k'}chosz - Zsin2 k, p=0...3 (B.25)

v pFEY
Combining this result with the contribution from the tadpole diagram one gets

)Gl

P, . . _
BOEY |pgmamonpy = 15 (510 50) oy + 6 (B) + B(B), (B.26)

where the contribution of P
1
- I(Z €08 Py Hpy i1 (5
n

from the tadpole has been absorbed into the constant b(p).
Evaluating the integrals gives the following remarkable property. The numerical results for
the leading orders of b(5) are independent of the particular momentum configuration under

constderation.

One finds
5(p) = 8" + Bm? + O(m?), (B.27)
where
NE_1
B 0.2025565(4
° 2N ¢ }
(B.28)
2
oy _ N -1
B = T 0.0093304(8)

both for X quarks with momenta given by (B.12) and for ¥ quarks with momenta given by
{B.14). The numerical evaluation of the a,(p) yields different values for X and ¥ quarks, i.e.

ag{p) [ 0.01001(2)-0.004749(1)logm®+0(a?) N =2 (B.29)
sinh BNz ~ | 0.01602(10}-0.008444(5)log m>+ O(a®) N=3 -

(B.30)

o (p) _ {0.00650(1)70.004?49(1)1057?12+O(a2) N=

>
sin p, 0.00961(8)—0.008444({5)log m?+O(a®) N=3
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axlp) _ alp)
sinp;  sinpy (B.31)
as{f) _ ao{p)

sin p; ;hE(D){ﬁ)

for X quarks with the above momenta.

For ¥ quarks only the case N = 2 was considered

aq(p) \ .
2P g 01502(4) - 0. 0 N=2 B.32
sinh E10)(p) 502(4) — 0.004745(5)log m* + Ola”) ( )

a.l(P_) = 0.01819(4) — 0.004740(10)log m® + O(a?) N == (B.33)

Slﬂpl

ax(p) 0.01397 - 2 2 .

- = L »(6) -- 0.004(4.(5)logm + O(a ) N =2 (B_34)

sin py

i) o0 _ , . N

- = 0,01500(2} — 0.004752(3)log m* + O(a”) N—2 (B.35)

sin py

Nevertheless both for X and Y quarks the general relation

(sin puau (B, iponpy = B ° {B.36)

holds which is the reason why both the (2} and O(a) effects in Z{!)(5) and ut?){(p) can be
cancelled by a universal subtraction of

g2by () ¥ ().

In Appendix A it was shown that the contributions of
2]
(1)
(a‘_"p; A va) !pﬂ:,Elm(m
to ZM(p) have the form

a
_ (9, oy & 1) i (0} = -
sp(pZ PG B P ppmipiany £ (F). (B.37)
so only these combinations will be considered. Moreover the relations (8.8) will frequently be
used.
The contribution of the tadpole diagram is again simple. It reads

8 TP 1
- b= Sy = " _ 2
QIAE(O):‘(“;S_)Z‘D (p)( apo E'”(p] pD:;Em(me](P) 7‘12(0}(}’)(131 ¥ (0 I)P'Zﬂ) + 0(0 )
(B.38)

1.e. no O(a) corrections appear.
For the gauge variant contribution of the bubble diagram one finds

ETE{ R BDGY _ (a ;2]};'
Po 2 - (krz)?

— (1yo cospg + sinpp ) Srip — A-'}S;](p] - S;](p)SF(p — k"Mivo cos po + sinpg)

{Q(i‘)u cos pg — sin pg)

a8 ' .
- Sp']{l’)(a—msf‘(P ~k"SEYp) — tivpcos(p — k")o + sin(p— & )o)}- (B.39)
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From this one deduces that

_r aw () BDEY (o), -
ZzE(“)( )Z (P)( E (p) )Epnz.‘Erui(f,}Z (p)

= (o= DZV()(P, ~ 2) 4 0W?) (B40)

and again ne O{a) corrections arise.
Finally the gauge invariant part of the bubble diagram is treated. It yields

8 1), \BD.GI 1 \Lr 11, Cu+ D
G T @ =g 7 7 (p k]
dpa k” (3, sinf(p — ), + 43, sin® B2 )2)

B 25111(;0 — kg (cos(p — k"o + 3, sin’ (”7,:']" Wivedu + B)} (B.A1)
{Ep 5i112(p — k')p + ‘I(Spsin2 7('”7;“)“ 2y

where B, A, are given by {B.24),{B.25) while

kf k.’ ".f ’ir
D = sin{p — k')u(Z(cosz{p — 7),‘ - sin?(p — Yu) - 2(cos?(p — = )o —sin’(p— - )u)

. —k
— 4sind{2p —~ k'Y L sin® Lpf% — sin(2p — k') cos(p - k'}g
I

X X

k oo )
— sin(p - &)y cos -—22 Z sin{p — k'), sin k!, + cos(p — k")o sin kg Z cos(p — k'), cos ?'"
p#0 u#0

Y-
- isin(p — Kl S cos? 2 Y sin R, (BA?)

H v U

LJ
Co = sin(2p — kg sin(p — k"o — 2cos(p — k' )u(1 + sin’ 7).3]
) R I ) R !
— 4fcosi(p - 5o — sin®{p - ?)Q)L sin® -(P-—o—}‘
2 2 ~ 2
X K X I

k k k
— sin{p - k') sin I::J(Z cos(p — 5 ) cOS ?" - cos(p — 5 Jo cos Eﬂ,)

)
k! By~ 1 . k,
—cos{p— rlpcos ;)D- \/_‘ sin{p - k) sink), - sin? kf cosip — 1')e L cos® -
2 2 < 2 = 2
1 2 ko NN L 1 5 \
- 5cos cos{p — k')g Lsm ko~ 1 cas{p -~ k'l > cos® 2 L sin® I\ {B.43)
- - r=u o i

44

and

1
Cy = —sin{p — &' Jolsin{2p — k'), + 5 sin K, E(cos P+ cos(p— k')
- m

— k' 1 .
+ sink, {sinpy + sin(p ~ k')g)z sin® (_P__;? v + sinky,(sin{2p — k')o + sin2(p — ko)

1 . r
— 5{sinpy + sin(p— k') sinkg cos(p — &')o
1 k!
_ ESinI‘L sin ky cos(p — k')g Z cos’ ?” u=1,2,3. [(B.44)
r#0,u

Thus

_..‘1._,.“ [D)( }( ‘—‘[1]( )BD,G‘I’

) -
";Ew)(p} Vpemiponp 2 (P)

_ jlkf{ cusinp,
= ‘ - —
"E“”{p) B2 (32 sin®(p ~ k), + 4T, sin® 25k g2)
2sin(p — k' Jo{cos(p — k'Y + E:Vsm2 (p=K)s e, sinpp}}i ZW)( )
(X, sin’(p — k), + 4T sin? FREAY e y2ye | pg=s O (5)

+ O(a?)., (B.45)

For the momentum configurations of interest one has

1 a BD,GV
(0) Y «in g {0y - Syl o 2
aigi 2 N e B Y e Z(0) = CPIZ ) 4 O(®) (BAD)

where

C(p) = 01} ~ O(log m®) (B.47)

s0 again no O(a) corrections appear.
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